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A b s t r a c t .  To embrace the fast growth of circuit complexity, verifica- 
tion researchers are probing new verification methods. Verification by 
composition, among others, is regarded as a promising direction. 
Symbolic Trajectory Evaluation (STE) is a theory for digital circuit ver- 
ification. In the last a few years, STE has been used in proving prac- 
tical digital circuits and has been proven a practical methodology with 
a mathematical foundation in circuit verification. However, the circuit 
model used in the existing STE verification systems is, in general, not 
compositional. 
In this paper, we present a compositional circuit model. This model 
distinguishes two different types of unknown circuit values, i .e. driven 
undefined value and undriven undefined value. This treatment makes 
composition of circuit model possible. Major results of the paper are the 
following: 

1. A language for describing finite state machines. This language is 
used to describe circuits behaviors. Expressions written in the lan- 
guage can be interpreted to the new model in this paper, as well 
as to the existing model. An operator in the language is designed 
for finite-state machine composition. The semantics of this opera- 
tor is consistent to our intuitive understanding of "connecting two 
circuit node together". The major theorem concerning this operator 
is that it preserves the properties of the finite-state machines being 
composed. 

2. The finite-state machine description can also be interpreted to the 
model which is used by the Voss system, a circuit verification system. 
A theorem shows that under certain conditions, two interpretations 
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of the same finite-state machine description achieve the same verifi- 
cation results. This theorem allows us to perform circuit verification 
by using the well-developed STE verification system, and then to 
interpret the verification result in the model presented in this paper. 

1 I n t r o d u c t i o n  

To tackle fast growth of circuit complexity, verification researchers are probing 
new verification methods. Verification by composition, among others, is regarded 
as a promising and necessary direction. 

To perform verification by composition, it is necessary that circuits are modeled 
in a compositional way. That is, composition of circuit models must preserve 
properties of each individual components. Therefore, properties which are veri- 
fied in individual circuits do not need to be verified again in the composite. 

The main focus of this paper is a circuit model which is compositional. It is 
an offspring of the circuit model used by Seger and Bryant [1] which regards a 
circuit node value as one of {0, 1, _k, T} where 0, 1 are logical values, and _1_, T 
are under-defined and over-defined logical values respectively. As illustrated in 
Section 3 of this paper, an inadequacy of this quadruple circuit model is that it 
is not compositional. 

The organization of this paper is the following: Section 2 briefly introduces the 
theory of symbolic trajectory evaluation (STE) and the quadruple circuit model 
used by STE systems. Section 3 first briefly discusses the inadequacy of the 
quadruple model with respect to model composition, and then introduces a cir- 
cuit model, which is compositional. A language for describing finite state ma- 
chines, named Set expressions, and its semantics are introduced. Section 4 dis- 
cusses composition of finite state machines. Section 5 establishes a relationship 
between the proposed model and the one used in STE systems. Finally, Section 
6 presents applications of this work. 

2 S T E  a n d  t h e  • M o d e l  

2.1 A Language  for Tra jec to ry  Evalua t ion  

In symbolic trajectory evaluation [1], system behaviors are given as trajectories 
over fixed length sequences of states. Each of these trajectories are described by 
a trajectory formula, called trajectory formula. A trajectory formula is in one 
the following forms: 
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1. unc. a constant in the language, which represents unconstrained circuit be- 
havior. 

2. Node specifications: 
(a) n is 0. The node "n" has value 0 
(b) n is 1. The node "n" has value 1. 

3. F1 A F2. Formulae F1 and F2 must both hold; 
4. E ~ F. The properties represented by the formula F need only hold the 

boolean expression E is evaluated to true; 
5. N F .  N is the only temporal operator used in the language. N F  specifies 

that F must hold in the following state. 

A verification procedure checks assertions in the form of an implication A =r 
C; the formula A (the antecedent) gives the stimulus and current state, and 
the formula C (the consequent) gives the desired response and state transition. 
Although the language has limited expressive power due to it's lack of such 
operators as disjunction and negation, along with temporal operators expressing 
properties of unbounded state sequences, it is designed as a compromise between 
expressive power and ease of evaluation. In practice, it is proven to be powerful 
enough to express timing and state transition behavior of circuits, while allowing 
assertions being verified efficiently. 

2.2 D o m a i n  o f  D i s c o u r s e  

In symbolic trajectory evaluation, a circuit is modeled as operating over logic 
levels O, 1, a third value 3_ representing an indeterminate or unknown level, and 
a fourth value T, representing an overly defined value (such as asserting value 0 
and 1 to a circuit node at the same time). Let Q = {0, 1, _1_, T}. Q is partially 
ordered as shown in Figure 1. 

T 
/ \  

0 1 

\ /  
3_ 

The ordering relation is: _l_ C O, 1 C T 

Fig. 1. Partial Order of Q 
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Intuitively, E orders the elements of Q according to the amount of information 
they carry: 2_ carries no information; 0, 1 carry fully defined circuit node values, 
and T is the overly defined, thus inconsistent value (too much information). 

In lattice theory, a finite set S is a complete lattice under the partial ordering E 
if for every a, b E S, there exist a unique smallest c E 5: (under the partial order 
_)  such that  a E c, b E c, and a unique greatest d E S (under E) such that  
d E a, d E b. Given a, b E S, such unique c and d are denoted by a II b (the least 
upper bound) and a Iq b (the greatest lower bound) respectively. A finite set S 
has a least upper bound (greatest lower bound) under E if there exists a unique 
l E S (g E S) such that  for every s E S, I E s (s E g). By this definition, Q 
is a complete lattice under the partial ordering E, where T and 2_ are the least 
upper bound and greatest lower bound of the lattice respectively. Furthermore, 
let Q'~ = Q • Q • . . .  • Q be the cartesian product of n Qs. We can extend 
the relation E (of Q) to a relation of Q'~ pair-wisely: for every a, b E Qn, a E b 
if and only if for every i : 1 < i < n,  ai E bi. It is easy to show that  Qn is 
a complete lattice under the extended relation E, and for every a, b E Qn and 
every i : 1 < i < n, (a H b)~ = a~ I_lbi, (a 13 b)~ = ai 13 b~. 

Our intention is to use Qn as the set of all possible states of an n-node circuit. In 
practice, a circuit node is usually referenced by its name, or a character string, 
rather than by a natural number (as a subscript of a product). Therefore, it is 
often convenient to regard Qn as a set of functions N ~ Q where N is a set of 
n node names. In particular, we use _L to denote the function N ---, {2_}. That  
is, ] ' (a)  = 2_ for every a. 

To express the behavior of a system over time, we use sequence of circuit state, e.g 

sequence of elements in Qn.  Conceptually, these sequences are infinite, although 
the properties expressible in the language can be determined from some finite 
prefix of a sequence. Given two sequences (of elements of Q n )  cr = cr ~ ~r 1 . . .  and 
r = r ~ r i -. �9 we extend the relation _ to the sequences pointwise: if~r = cr~ 1 �9 �9 �9 
and 7" = 7"07"1 . . .  are two sequences, then o" E 7" iff ai E 7"i for every i > 0. 

The definition of trajectory formulae can be extended to allow node specifica- 
tions contain symbolic boolean expressions, rather than just 0 and 1. This exten- 
sion makes specifications written in trajectory formulae very compact. Symbolic 
evaluation can be thought of as computing circuit behavior for many different 
operating conditions simultaneously, with each possible assignment of 0 or 1 to 
the variables in Y indicating a different condition. Formally, this is expressed by 
defining an ass ignmen t  ~ to be a particular mapping from the elements of ]2 to 
binary values. A formula F in the logic expresses some property of the circuit 
in terms of the symbolic variables. It may hold for only a subset of all possible 
assignments. Such a subset can be represented by a boolean domain function 
d over Y yielding 1 for precisedly the assignments in the subset. For example, 
the constant functions 0 and 1, for example, represent the empty assignment 
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set and the set of all possible assignments, respectively. However, allowing sym- 
bolic boolean expressions does not add any expressive power. Therefore, unless 
indicated explicitly, t rajectory formulae in this paper are variable-free. 

2.3 Use  o f  Symbol s  

In this paper,  we adopt  the following convention of notations: every syntactic 
entity in a language (tern expressions and Set expressions, see Section 3.2) are in 
sans serif font, such as And, Not. Function symbols are represented by upper-case 
words, such as AND, NOT, UNION, plus conventional function symbols such as 
[3 and R. 

Uses of function tJ and relation ~ are quite liberal in this paper. Although both 
are originally defined in a lattice such as Q, they are also used as binary function 
and relation on 

1. functions such as elements of Qn with the extension in a pair-wise manner;  

and 
2. sequences of elements in Qn with the extension: let or = a ~ a 1 .- .  and r = 

7 -0 7 "1 �9 .. by sequences such that  for every i > O, a i E Qn and v i E Qn, a t3 ~" 
is a sequence c~ = s ~ ~1 . . .  such that  for every i > O, ~i = r U r i. ~ ~ ~" if 
and only if for every i >__ O, c~ i E v i . 

2.4 C i r c u i t  M o d e l  S t r u c t u r e s  

A circuit model  s tructure  is M ~ [(S, _E), Y] where S is the set of all functions 
from a set of nodes N to {0, 1, L, T}, E_ is the ordering relation on S defined in 
the previous subsection, and Y is a monotone function S ---, S. Let S ~ be the 
set of all (infinite) sequences of elements of S. In general, we are only interested 
in those sequences related to the behavior of a circuit model, namely, those 
sequences constrained by function Y in the model structure. We formalize this 
by introducing the concept of a trajectory. Given a model M = [(S, E),  Y] and 
an arbi trary sequence cr = ~~ . . .  E S ~, a is a t rajectory  of M iff for every 

i >_ O, �9 Y ( ~  E ~ri+X 

We now assign a meaning to the specification language in terms of defining 
sequences. Let F be a trajectory formula, its defining sequence, denoted by 6(F),  

is defined as follows: 

1. 6(unc) ~ / . J _ . . . .  
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2. Let b E {0, 1}, 5(n is b) is a sequence a _ [ - . .  s  where (r a function 
N --* {0, 1, J-} defined by: for every x E N, 

3. 5(F1 ^ F2) = 5(F1) u 5(F2). 
4. 5 ( E - *  F ) =  [ ~F) E is evaluated to 1 

L_L J - . . .  Otherwise 

5. 5 ( N F ) =  _~5(F). 

Assume that  5(F) = 5~ . . .  is the defining sequence of formula F,  define the 
defining trajectory of F constrained by Y, denoted by r y ( F )  1 "~ r 1 * ' ' ,  a~  

follows: 

ri { @ i = 0 
-" 6~- kl Y(v i-1) i > 0 

2.5 Spec i f i ca t ion  a n d  Ver i f i ca t ion  

The truth semantics of trajectory formulae is defined relative to circuit model 
and its defining trajectories. In particular, given a circuit model M and a tra- 
jectory or, a trajectory formula F is true on the trajectory ~, written ~r ~ F,  is 
defined as follows: 

1. ~ ~ unc for all a. 
2. a ~  1 . . .  ~ n is b iff b_E a~ 
3. ~ F 1 A F ~ i f f o ' ~ F 1  and c~ ~ F2. 
4. (a) ~ ~ E ~ F if a ~ F and g is evaluated to 1. 

(b) ~r ~ E --* F for every a if E is evaluated to 0. 
5. tr ~  ~ N F  i f f a  1 . . .  ~ F.  

A specification of a circuit is a pair of trajectory formulae A and C, denoted 
by A =~ C, where A and C are called antecedent and consequent respectively. 
A :=~ C is a specification of a circuit model A4 if for every trajectory ~r of .~4, 
~r ~ A implies a ~ C. 

A major theorem proved in [1] is the following: 

T h e o r e m  1. Let A and C be two trajectory formulae and A4 = [(S, E_), Y] be a 
circuit model. 5(C) E ~y(A), if and only if for every trajectory ~r of.hi, ~r ~ A 
implies cr ~ C, namely, A ~ C is a specification of Ad. 
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Informally, this theorem can be interpreted as the following: the next-state func- 
tion Y is a function from circuit states to circuit states, vr  (A) is the sequence 
of states when the input to the circuit is what specified by the formula A. Each 
state includes the values of input /output  circuit nodes as well as internal state 
nodes. 6(C) _ 7y(A) means that in every state, a circuit node value is either 
equal to what specified in the formula C, or its value is not mentioned in the 
formula C iJe. unrelated to the assertion A ~ C. By this theorem, in order to 
show that  a circuit model has a property A ==~ C, it is sufficient to show that  
6(C) [:fi_ 'ry(A). 

3 T h e  M o d e l  9 c 

In this section, we introduce a slightly different lattice than Q for circuit mod- 
eling. The  motivation of F can be illustrated by the example [n Figure 2. 

b = f(a) 
c = g ( a )  

Fig. 2. Example: Composition of Circuits 

In this examp]e, functions .f and 9 are defined in the t ru th  table. An interesting 
situation is when the value on 'a' is l ,  and the value on 'd' is D, which lead to 
f ( l )  = 2- and g(0) = 1. Since the outputs of f and g are connected, how do we 
reconcile two different values 2_ and 1? There are two different interpretations 
to the fact f(2_) = l ,  which lead to different answers to the question: 

- The value on 'b'  and 'c' can be g(0) = 1 if the node 'b' is not driven by any 
value, i.e. l is interpreted as an undriven "unknown" value. 

- Alternatively, the value on 'b' and "c" can be an unknown vMue (T)  if 'b '  
is driven by some unknown but valid logical value, possibly be 0. i.e.,  .L is 
interpreted as a driven but unknown value. 

This example illustrate a need of differentiating two different type of I s ,  i.e. 
driven unknown value and undriven unknown value, when we consider compo- 
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sition of circuits. However, when modeling circuits by Q, these two different 
unknown values are treated equally. Therefore, circuits modeled in Q are, in 
general, not compositional. This motivates our attempt to enrich Q in order to 
obtain a compositional model of circuits. 

3.1 The  Model  .T" 

The example in Figure 2 reveals that, in order to be compositional, it is essential 
for a circuit model to distinguish two different types of unknown values. For this 
reason, we extend the lattice (Q, _) to (~r, _) where ~r = {0, 1, X, Z, T} and the 
partial order E is shown in the following diagram. 

T 

0 X 1 

\ 1 /  
• 

The ordering relation is: / _ 0, X, 1 _ T 

Apparently, ~" is a complete lattice under the ordering relation indicated by 
arrows in the picture. In the context of circuit modeling, the intuition behind 
these 5 values is the following: 0 and 1 have their conventional meaning. T is an 
over-constrained value. A_ represents an unconstrained value. It could be used 
to model a don't-care input, or an undriven, unknown output value, such as the 
high-impedance state of a tri-state output. X is also an unconstrained value. 
The difference between X and _1_ is that X represents a driven unknown output 
value. 

Conventional boolean functions, and l J, l-1 can be extended to the values in Y'. 
The following "truth-tables" are those for AND, NOT, L], and Fh 

3 - 0 X  1 T  -1- 0 X  1 T  . l_0X 1 T  
• _ L l O X l l r  • • • • 
0 0 0,0 0 T 0!0 0 T T i T  0 . L 0 . 1 _ •  Z O X 1 T  
x x o x x T X xmT X -r r X _C C X • X IXlllXlOITJ 
1x01xll  T 1 i T T 1  r 1_1_ L_L 1 1 
T ' T  T I T I T  T T T T  T T  C T • 0 X 1 T NOT 

AND L] n 

Similar to Q-model structures, a ~'-model structure is ((S, E), Y) where S is 
the set of all functions from a set of nodes (names) to 5 ,  and Y, the next-state 
function of the model structure, is a function S ~ S. 



100 

3.2 R e p r e s e n t a t i o n  o f  Next-state Functions 

We now introduce a notation for describing next-state functions of finite state 
machines: tern and Set expressions. A tern expression can be regarded as an 
extension of boolean expressions in 2-, and a Set expression can be regarded as 
a description of next-state function of a finite-state machine. 

3.2.1 tern Expressions a n d  Set  Expressions 

A tern expression is defined as: 

tern ::= One I Zero IX I Val str I And tern tern I Not tern 

where One, Zero, X, And, and Not are the syntactical representations of 0, 1, X, 
and functions AND, and NOT respectively, and 

Val str 

is used to refer to the value on the node which is named by the string str. It 
plays a role similar to that  of boolean variables in boolean expressions. As a 
concrete example, the following tern expression 

(Not (And (Val 'in1') (Val 'in2'))) 

describes the output of an NAND gate whose input nodes are 'in1' and 'in2' 
respectively. 

In the definition of tern expression, we carefully excluded symbols which corre- 
spond to _L and -F in 2-. This choice will be justified when the semantics of tern 
and Set expressions is presented later. 

A Set expression is defined as: 

Set ::= Empty ] Element str, Driver I Union Set Set I Join Set Set 

Driver ::= (tern, tern) 

The constant Empty corresponds to an empty finite state machine (which has 
neither internal state nor output). Element is the constructor that  actually intro- 
duces a new node which is named by the string str and defines driver functions 
for the node. A driver function is given in Driver which is a pair of tern expres- 
sions, the first expression is a guard and the second expression is the value being 
driven when the guard is evaluated to 1. For example, 

Element 'n' (One, Zero) 

creates a circuit node whose value is always 0. 

The constructor Union is used to create a collection of Element definitions. 
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Union Sz $2 

is a collection of node drivers which contains all the node drivers in either $1 
or $2. If  there are both  Sz and $2 contain a driver for the same node, then the 
Union constructor will use the greatest lower bound of the values being driven at 
the same t ime when both guards are evaluated to 1 (See more in Section 3.2.2). 

The expression 

Join Sz S~ 

is similar to Union S1 $2, except when both $1 and $2 contain a driver for the 
same node, then the Join operator will use the least upper bound of the values 
being driven at the same t ime when both guards are evaluated to 1. 

3.2.2 Interpreting Set Expressions to .T" 

The semantics of Set expressions includes evaluation of tern expressions, and an 
interpretation of Set expressions. This interpretation effectively translates a Set 
expression to a next-state function (of a finite-state machine). 

Given a tern expression t, t is a constant if it does not contain any Val (such as 
Val 'a ' )  subexpressions. The evaluation of a constant tern expression t, denoted 
as s maps  t to an element in jr: 

1. ~:(Zero) -- 0, •(One) = 1, and E(X) - X; 
2. g(And tl  t2) = AND g( t l )  g(t2); 
3. g(Not  t) = NOT g(t)  

Given a Set expression S, a node of S is a circuit node name (str) such that  
either 

Val str 

appears in S, or 

Element str driver 

appears in S. A node space of S is a set of nodes such that  every node of S 
belongs to the set. Apparently, there are more than one node space of a given 
S. Without  losing generality, we assume that  there exists a universal set of 
circuit nodes (names), denoted by Y, which includes all the circuit nodes we are 
interested in. We use Y as the node space of any given Set expression, unless 
explicitly indicated otherwise. 

A state is a function ~ :U ---+ ~r. An example of such a function is ~ :/4 --~ (_l_}. 
Tha t  is, for every a 6/4 ,  -~(a) -- J_. 
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We now extend the evaluation of a constant tern expression to arbitrary tern 
expressions: given a state ~, the evaluation of a tern expression t in the state ~,, 
denoted as g(t, to), is defined recursively as: 

1. g(Zero, 9) = O, 6(One, ~o) = 1, and s ~o) = X; 
2. c(val str, ~) = ~(stO; 
3. g(And tl t2, ~) = AND g(t~, ~) g(t2, ~); 

The interpretation (semantics) of a Set expression S, denoted by [S], is a func- 
tion which maps a state to a state: for any state s, 

1. {Empty](s) = ~. 
2. {Element n, (g, v)](s) is r  U -* 5 ,  such that for every a E/ / ,  

g(v,s) i f E ( g , s ) - l a n d n - - a  
r --- / Otherwise 

3. [Union SL S2](s) ~ UNION [~St](s) [S2~(s). 

where the function UNION (in f )  is defined by the following "truth-table": 

I O X 1 T  

x o 

The truth4able of the function UNION 

4 Finite State Machine Compositions 

The purpose o~ :F is to pro%de tee c~pability o~ composLr~g next state ~unctions 
of finite state machines. In this section, we show that the Join constructor of Set 
expression realizes circuit composition. The relationship between the Join and 
Union operators will also be discussed. 

4.1 Circait Model Compositions 

In circuit designs, composition of two (or mare) physical circuits means connect- 
ing (wiring) nodes with the same name (in different circuits) together to form a 
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new circuit. The following "truth table" gives our understanding of "connecting 
two node values" in 9% 

2 0 X 1 T  
_LJ_IOX li t  
0 0 0 T TII- 
X X T X T  T 
1 I T T I l T  
T I T T T T T  

The truth table of "connecting" values in 
the 5-element domain. Note that  the truth 
table is identical to that  of the U operator 
in the same domain. 

Let A, C be any trajectory formulae, $1, $2 be any Set expressions. Also let 
Y = [Join $1 $2], Y1 = [$1]~, ]I2 = [$2]~. If zy(A) does not have any T 
element, (i.e. let vy(A) = 7-0 . . . rn . - . .  For every i > 0, T is not in the range of 
ri.) then 

T h e o r e m 2 .  6(C) E_ rr , (A) implies 6(C) E vy(A), and 6(C) E_ ry2(A ) implies 
~(C) E ry(A). 

This theorem shows properties which are held in components are also held in 
composition, if the composition is modeled by the constructor Join. 

4.2 Implementation of  Model Compositions 

In practice, the function JOIN poses two problems: 

1. Potentially, it may create a large number of T elements. To catch all these T 
elements requires extensive computing resource. According to our experience, 
it is responsible for up to 5% increase of computing time during verifications. 

2. The verification may be too pessimistic: it is may be acceptable to have a 
circuit node have a T value. In fact, during transient states, occurrences of 
T on a circuit node is quite common and does not necessarily mean that  the 
circuit presents undesirable behavior. 

To solve these two problems, we use the Union operator in the Set expressions, 
rather than Join, to compose two Set expressions. 

From the truth-table of UNION (Section 3.2.2), we find that  it has the following 
properties: 

1. It generates far less Ts than II does; 
2. UNION does not generate a T unless both operands are T. 
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3. Except the bottom row and the right-most column, the truth-table of UNION 
corresponds that of II in the following way: the corresponding entries in the 
tables are either equal to each other, or the entry in the table of LI is 3- and 
the entry in that of UNION is • 

The last property is essential: from verification's perspective, ff a circuit node 
has the value L, then nothing can be concluded about that circuit node's value, 
except its being 2; If a node value is 3,, then it implies that the circuit may 
have had undesirable behavior, such as short-circuits. This implies a possible 
malfunction of the circuit implementation unless the specification does not ex- 
plicitly mention the value of this node i.e. the node has value _L. Therefore, it is 
safe to replace T values in a trajectory (sequence of circuit states) by • as far as 
verification is concerned. This property suggests that circuit composition might 
be realizeded by the Union operator as well. The following theorem confirms this. 

Let $1 and $2 be two Set expressions, Y = [Join Si $2], and Y' = [Union Si $2]. 
The following theorem shows the relationship between Y and Y': 

T h e o r e m 3 .  Given trajectory formulae A and C, 

1. I.f 6(C) E ry,(A), then g(C) E 7y(A). 

Z. If 6(6) E 7"r(A) and vr(A) does not contain any T value, then 6(6) E 
~,(A).  

This theorem says that, instead of verifying 6(C) E r (A), we verify 6(C) E 
Ty,(A). If 6(C) E viz,(A) holdsi then 6(C) E vr(A) holds. Otherwise, either 
6(C) E ~,-(A) fails, or 7y(A) contains 3- values. By proving 6(6) E ry,(A), 
we can avoid significant amount 3,-checking, and avoid to be too pessimistic in 
interpreting verification results. 

5 R e l a t i o n s h i p  B e t w e e n  t h e  Q - M o d e l  a n d  t h e  : ~ ' - M o d e l  

This section discusses the relationship between the two different circuit models. 
The purpose of establishing such a relationship is practical: Voss, a circuit verifi- 
cation system which uses the Q-model, has been developed and proven practical 
in circuit design verifications. In fact, both tern expressions and Set expressions 
are the integrated components of the Voss system. Establishing such a relation- 
ship between Q-model and Y-model allows us conduct verification in Voss and 
then to interpret the result in Y-model. 
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5.1 I n t e r p r e t i n g  Set  Expres s ions  to  t h e  a - M o d e l  

In Q, the functions AND, NOT, U, and UNION are as defined in the following 
"truth-tables": 

_L0 1 T  2_0 1 T  _L0 1 T  
J_ LO L T  - L I 0 1 1 T  J-0 1 T 
0 0 0 1 T _LO1T 
1 L 1 1 T  0 0 0 i T T  00 0 

1 I T I T  1 J _ l l l  
T I-'T T T  T T T T T  2 0 I !T  

AND NOT U UNION 

Note that the extensions of AND, and NOT to Q is carefully done so that  both 
functions are monotonic. This is to accommodate the requirement that  every 
next-state function in a Q-model has to be monotonic [1]. 

Given a tern expression t, it can be evaluated to a value in Q the same way 
as we evaluate t to ~ .  To distinguish the evaluation of a tern expression to Q 
and that  to 9 v, we add subscripts to the evaluation function s i.e. s (s 
evaluates a tern expression to Q (E). Similarly, we add subscripts to the semantic 
function [S~ i.e. [S]~ and [S~y respectively, in order to distinguish the different 
interpretations in Q and 5 r .  

We now interpret Set expressions in @: given a Set expression S, 

1. [Empty]]Q(s) = _~. 
2. [Element n, (g, v)]]Q(s) is r  U --* Q, such that  for every a E / / ,  

EQ(v, s) if CQ(g, s ) =  1 and n = a and ,~Q(v, s) # X r 
L . L  < Otherwise 

3. [Union $1 S2]]~(s) = UNION [S1]]~(s) [S2]]Q(s). 
4. [Joi. & = [& iQ(s )  u 

5.2 T h e  R e l a t i o n s h i p  B e t w e e n  [S]7 a n d  [S]Q 

The difference between [S]• and [S]y is the treatments when g(v, s) = X, 
g(g, s) = 1, and n = a (in [Element n, (g, v)]~(s) and [Element n, (g, v)]~-(s)). 
In this situation, [S]~(s)(a) = _L whereas [S~Q(s)(a) = X. This is because 
that,  in Q, there is no distinction between driven unknown value and undriven 
unknown value, they both are represented by _L. To further illustrate this subtle 
difference, let us compare the Set expression Empty with 

Element 'n' (One, X) 
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Since [Empty]]Q = I and [Element 'n'(One, X)]Q = ~_, the two expressions are 

equivalent in Q. On the other hand, [Empty]]Q = 1, [Element 'n'(One, X)]]Q is a 
function f such that f(n) = X,  therefore, [Empty[y # [Element 'u'(One, X)]~. 
Although very subtle, this difference is exactly we have been after: Empty rep- 
resents a finite state machine whose value on the node 'n' is undriven unknown 
whereas 

Element 'n' (One, X) 

represents a finite state machine whose value on the node 'n' is driven unknown. 

The following theorem establishes an important relationship between [[S]Q and 
Isle: 

T h e o r e m 4 .  Let S be any Set expression such that [S]Q is monolonic. Let 
Y -= [S~j: and Y'  = [S]Q. For any trajectory formulae A, and C, 

1. if b(C) E ry,(A), then b(C) E ry(A). 

2. if b(C) E ry(A), and 7y(A) does not contain any'T, then ~5(C) E 73,,(A). 

This theorem allows us to conduct verification in the Voss system, which models 
circuits in Q, and interpret the verification results in 2": if 8(C) E 7y,(A), then 
re E vy(A). If b(C) [Z ry,(A), then either b(C) [~ vy(A), or *y(A) contains T 
elements. Neither case is desirable thus A =~ C is not an assertion of the given 
circuit. Disallowing T elements in rv(A) is a way to obtain pessimistic verifica- 
tion results. The Voss system is capable of checking and reporting whenever a 
trajectory (73-(A)) contains a T value. 

6 Application 

6.1 The  Voss S y s t e m  

The Voss system, a formal hardware verification system developed at the Univer- 
sity of British Columbia, consists of three major components: a highly efficient 
implementation of OBDDs; an event driven symbolic simulator with very com- 
prehensive delay and race analysis capabilities [2]. From a user's point of view, 
the Voss system verifies assertions in the form of 

FhM fsm (ante, cons) 
where fsm denotes a finite-state machine and the pair (ante, cons) represents a 
trajectory assertion to be verified. The finite-state machine fsm is specified by a 
next-state function. 
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The following table summaries several verification experiments conducted by the 
Voss system: 

Circuits 
64 x 32-bit moving data stack 

# Transistors 
16,470 

Time (sec) Memory 
35 1.2M 
200 3.2M 
400 9.0M 
320 10.1M 
530 10.1M 

35.4M 

J64 x 32-bit stationary data stack 15,383 
UART 9840 
32-bit Tamarack (synchronous) 7, 214 
]2-bit Tamarack (asynchronous) 7,214 
32-bit RISC core (32 regs) 16,100 7,300 

6 . 2  V e r i f i c a t i o n  b y  C o m p o s i t i o n  

Originally, our work on verification by composition was motivated by verification 
of a system of more than one components. It is often the case that the designer of 
one component does not have finite state machines of other components when his 
design needs to be verified. In this situation, traditional verification methods may 
not be applicable due to a lack of a complete description of implementation e.g. 

a finite state machine. Although the designer could make assumptions about the 
environment (behaviors of other components) in order to valid his own design, 
such assumptions may disguise design errors even verifications produce positive 
answers. 

To briefly illustrate our approach to the above mentioned problem, let us ex- 
amine various verification exercises performed on the Tamarack microprocessor 
[3, 4]. Originally, a memory is an integrated component of the microprocessor's 
behavioral specification [3]. However, various Tamarack implementations which 
we are aware of do not contain such a memory module. Instead, memory is 
treated as part of the environment in which the microprocessor operates. To 
correlate the verification results to the original specification, assumptions of the 
behavior of the memory module have to be made. 

There are mainly two reasons justifying separation of processor and memory in 
various verification efforts: 

- The complexity of memory would make verification by automated verifiers, 
such as Voss, computationally intractable. 

- Tamarack designs usually do not contain a memory module. Therefore, a 
complete implementation of Tamarack is usually not available to verification 
exercises. 

However, the correctness of an implementation can only be established in an 
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environment which realizes the memory module faithfully. Conceptually, our 
approach, i.e. verification by composition, proceeds as follows: 

1. Obtaining a specification for the processing unit of Tamarack and verify an 
implementation of the unit against the specification. The work reported in 
[4] accomplished this in hybrid hardware verification system [5, 6]. 

2. Obtaining a specification of the memory module and then generating an 
abstract circuit model automatically: 
Automatically generate a Set expression Srn from the trajectory assertions of 
memory. In [7], we reported a constructive method which generates a finite- 
state machine from a given set of trajectory assertions such that ISIs: is the 
next-state function of some circuit model of the given set of assertions. We 
also proved that  such a finite state machine is the smallest machine in terms 
of the number of internal states [8]. 

3. Translate the next-state function of Tamarack to an equivalent Set expres- 
sion St, according to the interpretation of Set expressions presented in Sec- 
tion 3.2.2 2 . 

4. Perform the Union operation on Sm and St to obtain a new Set expression 
S = Union $1 $2.. 

5. Finally, verify the original Tamarack specification against S by the Voss sys- 
tem. An important difference between this verification and~other verification 
exercise, such as [4], is that,  if succeeds, guarantees the correctness of the 
processor /memory composition. 

7 Conclusion 

In this paper, we presented a 5-element circuit domain which is compositional. 
The purpose of devising this model is to facilitate verification by composition. 
The major results can be summarized as follows: 

1. We presented a language for finite state machines (SetExpressions). This 
language is used to describe circuits behaviors. Expressions written in the 
language can be interpreted to f ,  as well as to Q. An operator in the lan- 
guage is designed for finite-state machine composition. The semantics of this 
operator is consistent to our intuitive understanding of "connecting two cir- 
cuit node together". The major theorem concerning this operator is that  it 
preserves the properties of the finite-state machines which are being com- 
posed (Theorem 2). 

2. The finite-state machine description can also be interpreted to the model 
which is used by the Voss system, a circuit verification system. A theorem 

2 This is an ongoing work. 
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(Theorem 4) shows that  under certain condition, two interpretations of the 
same finite-state machine description achieve same verification results. This 
theorem allows us to perform circuit verification by using the well-developed 
Voss system, and then interpret the verification result in the model presented 
in this paper. 
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