
A C o m p o s i t i o n a l Circuit M o d e l and
Verif icat ion by C o m p o s i t i o n *

Z h e n g Z hu

Integrated System Design Labora to ry
Depar tmen t of Compu te r Science

The University of British Columbia
Vancouver, B.C. C a n a d a V f T 1Z4

(zhu@cs.ubc.ca)

A b s t r a c t . To embrace the fast growth of circuit complexity, verifica-
tion researchers are probing new verification methods. Verification by
composition, among others, is regarded as a promising direction.
Symbolic Trajectory Evaluation (STE) is a theory for digital circuit ver-
ification. In the last a few years, STE has been used in proving prac-
tical digital circuits and has been proven a practical methodology with
a mathematical foundation in circuit verification. However, the circuit
model used in the existing STE verification systems is, in general, not
compositional.
In this paper, we present a compositional circuit model. This model
distinguishes two different types of unknown circuit values, i .e. driven
undefined value and undriven undefined value. This treatment makes
composition of circuit model possible. Major results of the paper are the
following:

1. A language for describing finite state machines. This language is
used to describe circuits behaviors. Expressions written in the lan-
guage can be interpreted to the new model in this paper, as well
as to the existing model. An operator in the language is designed
for finite-state machine composition. The semantics of this opera-
tor is consistent to our intuitive understanding of "connecting two
circuit node together". The major theorem concerning this operator
is that it preserves the properties of the finite-state machines being
composed.

2. The finite-state machine description can also be interpreted to the
model which is used by the Voss system, a circuit verification system.
A theorem shows that under certain conditions, two interpretations

* This research was supported, in part, by operating grants OGPO 109688 and OGPO
046196 from the Natural Sciences Research Council of Canada, fellowships from the
Province of British Columbia Advanced Systems Institute, and by research contract
92-DJ-295 from the Semiconductor Research Corporation.

93

of the same finite-state machine description achieve the same verifi-
cation results. This theorem allows us to perform circuit verification
by using the well-developed STE verification system, and then to
interpret the verification result in the model presented in this paper.

1 I n t r o d u c t i o n

To tackle fast growth of circuit complexity, verification researchers are probing
new verification methods. Verification by composition, among others, is regarded
as a promising and necessary direction.

To perform verification by composition, it is necessary that circuits are modeled
in a compositional way. That is, composition of circuit models must preserve
properties of each individual components. Therefore, properties which are veri-
fied in individual circuits do not need to be verified again in the composite.

The main focus of this paper is a circuit model which is compositional. It is
an offspring of the circuit model used by Seger and Bryant [1] which regards a
circuit node value as one of {0, 1, _k, T} where 0, 1 are logical values, and _1_, T
are under-defined and over-defined logical values respectively. As illustrated in
Section 3 of this paper, an inadequacy of this quadruple circuit model is that it
is not compositional.

The organization of this paper is the following: Section 2 briefly introduces the
theory of symbolic trajectory evaluation (STE) and the quadruple circuit model
used by STE systems. Section 3 first briefly discusses the inadequacy of the
quadruple model with respect to model composition, and then introduces a cir-
cuit model, which is compositional. A language for describing finite state ma-
chines, named Set expressions, and its semantics are introduced. Section 4 dis-
cusses composition of finite state machines. Section 5 establishes a relationship
between the proposed model and the one used in STE systems. Finally, Section
6 presents applications of this work.

2 S T E a n d t h e • M o d e l

2.1 A Language for Tra jec to ry Evalua t ion

In symbolic trajectory evaluation [1], system behaviors are given as trajectories
over fixed length sequences of states. Each of these trajectories are described by
a trajectory formula, called trajectory formula. A trajectory formula is in one
the following forms:

94

1. unc. a constant in the language, which represents unconstrained circuit be-
havior.

2. Node specifications:
(a) n is 0. The node "n" has value 0
(b) n is 1. The node "n" has value 1.

3. F1 A F2. Formulae F1 and F2 must both hold;
4. E ~ F. The properties represented by the formula F need only hold the

boolean expression E is evaluated to true;
5. N F . N is the only temporal operator used in the language. N F specifies

that F must hold in the following state.

A verification procedure checks assertions in the form of an implication A =r
C; the formula A (the antecedent) gives the stimulus and current state, and
the formula C (the consequent) gives the desired response and state transition.
Although the language has limited expressive power due to it's lack of such
operators as disjunction and negation, along with temporal operators expressing
properties of unbounded state sequences, it is designed as a compromise between
expressive power and ease of evaluation. In practice, it is proven to be powerful
enough to express timing and state transition behavior of circuits, while allowing
assertions being verified efficiently.

2.2 D o m a i n o f D i s c o u r s e

In symbolic trajectory evaluation, a circuit is modeled as operating over logic
levels O, 1, a third value 3_ representing an indeterminate or unknown level, and
a fourth value T, representing an overly defined value (such as asserting value 0
and 1 to a circuit node at the same time). Let Q = {0, 1, _1_, T}. Q is partially
ordered as shown in Figure 1.

T
/ \

0 1

\ /
3_

The ordering relation is: _l_ C O, 1 C T

Fig. 1. Partial Order of Q

95

Intuitively, E orders the elements of Q according to the amount of information
they carry: 2_ carries no information; 0, 1 carry fully defined circuit node values,
and T is the overly defined, thus inconsistent value (too much information).

In lattice theory, a finite set S is a complete lattice under the partial ordering E
if for every a, b E S, there exist a unique smallest c E 5: (under the partial order
_) such that a E c, b E c, and a unique greatest d E S (under E) such that
d E a, d E b. Given a, b E S, such unique c and d are denoted by a II b (the least
upper bound) and a Iq b (the greatest lower bound) respectively. A finite set S
has a least upper bound (greatest lower bound) under E if there exists a unique
l E S (g E S) such that for every s E S, I E s (s E g). By this definition, Q
is a complete lattice under the partial ordering E, where T and 2_ are the least
upper bound and greatest lower bound of the lattice respectively. Furthermore,
let Q'~ = Q • Q • . . . • Q be the cartesian product of n Qs. We can extend
the relation E (of Q) to a relation of Q'~ pair-wisely: for every a, b E Qn, a E b
if and only if for every i : 1 < i < n, ai E bi. It is easy to show that Qn is
a complete lattice under the extended relation E, and for every a, b E Qn and
every i : 1 < i < n, (a H b)~ = a~ I_lbi, (a 13 b)~ = ai 13 b~.

Our intention is to use Qn as the set of all possible states of an n-node circuit. In
practice, a circuit node is usually referenced by its name, or a character string,
rather than by a natural number (as a subscript of a product). Therefore, it is
often convenient to regard Qn as a set of functions N ~ Q where N is a set of
n node names. In particular, we use _L to denote the function N ---, {2_}. That
is,] ' (a) = 2_ for every a.

To express the behavior of a system over time, we use sequence of circuit state, e.g

sequence of elements in Qn. Conceptually, these sequences are infinite, although
the properties expressible in the language can be determined from some finite
prefix of a sequence. Given two sequences (of elements of Q n) cr = cr ~ ~r 1 . . . and
r = r ~ r i -. �9 we extend the relation _ to the sequences pointwise: if~r = cr~ 1 �9 �9 �9
and 7" = 7"07"1 . . . are two sequences, then o" E 7" iff ai E 7"i for every i > 0.

The definition of trajectory formulae can be extended to allow node specifica-
tions contain symbolic boolean expressions, rather than just 0 and 1. This exten-
sion makes specifications written in trajectory formulae very compact. Symbolic
evaluation can be thought of as computing circuit behavior for many different
operating conditions simultaneously, with each possible assignment of 0 or 1 to
the variables in Y indicating a different condition. Formally, this is expressed by
defining an ass ignmen t ~ to be a particular mapping from the elements of]2 to
binary values. A formula F in the logic expresses some property of the circuit
in terms of the symbolic variables. It may hold for only a subset of all possible
assignments. Such a subset can be represented by a boolean domain function
d over Y yielding 1 for precisedly the assignments in the subset. For example,
the constant functions 0 and 1, for example, represent the empty assignment

96

set and the set of all possible assignments, respectively. However, allowing sym-
bolic boolean expressions does not add any expressive power. Therefore, unless
indicated explicitly, t rajectory formulae in this paper are variable-free.

2.3 Use o f Symbol s

In this paper, we adopt the following convention of notations: every syntactic
entity in a language (tern expressions and Set expressions, see Section 3.2) are in
sans serif font, such as And, Not. Function symbols are represented by upper-case
words, such as AND, NOT, UNION, plus conventional function symbols such as
[3 and R.

Uses of function tJ and relation ~ are quite liberal in this paper. Although both
are originally defined in a lattice such as Q, they are also used as binary function
and relation on

1. functions such as elements of Qn with the extension in a pair-wise manner;

and
2. sequences of elements in Qn with the extension: let or = a ~ a 1 .- . and r =

7 -0 7 "1 �9 .. by sequences such that for every i > O, a i E Qn and v i E Qn, a t3 ~"
is a sequence c~ = s ~ ~1 . . . such that for every i > O, ~i = r U r i. ~ ~ ~" if
and only if for every i >__ O, c~ i E v i .

2.4 C i r c u i t M o d e l S t r u c t u r e s

A circuit model s tructure is M ~ [(S, _E), Y] where S is the set of all functions
from a set of nodes N to {0, 1, L, T}, E_ is the ordering relation on S defined in
the previous subsection, and Y is a monotone function S ---, S. Let S ~ be the
set of all (infinite) sequences of elements of S. In general, we are only interested
in those sequences related to the behavior of a circuit model, namely, those
sequences constrained by function Y in the model structure. We formalize this
by introducing the concept of a trajectory. Given a model M = [(S, E), Y] and
an arbi trary sequence cr = ~~ . . . E S ~, a is a t rajectory of M iff for every

i >_ O, �9 Y (~ E ~ri+X

We now assign a meaning to the specification language in terms of defining
sequences. Let F be a trajectory formula, its defining sequence, denoted by 6(F),

is defined as follows:

1. 6(unc) ~ / . J _

97

2. Let b E {0, 1}, 5(n is b) is a sequence a _ [- . . s where (r a function
N --* {0, 1, J-} defined by: for every x E N,

3. 5(F1 ^ F2) = 5(F1) u 5(F2).
4. 5 (E - * F) = [~F) E is evaluated to 1

L_L J - . . . Otherwise

5. 5 (N F) = _~5(F).

Assume that 5(F) = 5~ . . . is the defining sequence of formula F, define the
defining trajectory of F constrained by Y, denoted by r y (F) 1 "~ r 1 * ' ' , a~

follows:

ri { @ i = 0
-" 6~- kl Y(v i-1) i > 0

2.5 Spec i f i ca t ion a n d Ver i f i ca t ion

The truth semantics of trajectory formulae is defined relative to circuit model
and its defining trajectories. In particular, given a circuit model M and a tra-
jectory or, a trajectory formula F is true on the trajectory ~, written ~r ~ F, is
defined as follows:

1. ~ ~ unc for all a.
2. a ~ 1 . . . ~ n is b iff b_E a~
3. ~ F 1 A F ~ i f f o ' ~ F 1 and c~ ~ F2.
4. (a) ~ ~ E ~ F if a ~ F and g is evaluated to 1.

(b) ~r ~ E --* F for every a if E is evaluated to 0.
5. tr ~ ~ N F i f f a 1 . . . ~ F.

A specification of a circuit is a pair of trajectory formulae A and C, denoted
by A =~ C, where A and C are called antecedent and consequent respectively.
A :=~ C is a specification of a circuit model A4 if for every trajectory ~r of .~4,
~r ~ A implies a ~ C.

A major theorem proved in [1] is the following:

T h e o r e m 1. Let A and C be two trajectory formulae and A4 = [(S, E_), Y] be a
circuit model. 5(C) E ~y(A), if and only if for every trajectory ~r of.hi, ~r ~ A
implies cr ~ C, namely, A ~ C is a specification of Ad.

98

Informally, this theorem can be interpreted as the following: the next-state func-
tion Y is a function from circuit states to circuit states, vr (A) is the sequence
of states when the input to the circuit is what specified by the formula A. Each
state includes the values of input /output circuit nodes as well as internal state
nodes. 6(C) _ 7y(A) means that in every state, a circuit node value is either
equal to what specified in the formula C, or its value is not mentioned in the
formula C iJe. unrelated to the assertion A ~ C. By this theorem, in order to
show that a circuit model has a property A ==~ C, it is sufficient to show that
6(C) [:fi_ 'ry(A).

3 T h e M o d e l 9 c

In this section, we introduce a slightly different lattice than Q for circuit mod-
eling. The motivation of F can be illustrated by the example [n Figure 2.

b = f(a)
c = g (a)

Fig. 2. Example: Composition of Circuits

In this examp]e, functions .f and 9 are defined in the t ru th table. An interesting
situation is when the value on 'a' is l , and the value on 'd' is D, which lead to
f (l) = 2- and g(0) = 1. Since the outputs of f and g are connected, how do we
reconcile two different values 2_ and 1? There are two different interpretations
to the fact f(2_) = l , which lead to different answers to the question:

- The value on 'b' and 'c' can be g(0) = 1 if the node 'b' is not driven by any
value, i.e. l is interpreted as an undriven "unknown" value.

- Alternatively, the value on 'b' and "c" can be an unknown vMue (T) if 'b '
is driven by some unknown but valid logical value, possibly be 0. i.e., .L is
interpreted as a driven but unknown value.

This example illustrate a need of differentiating two different type of I s , i.e.
driven unknown value and undriven unknown value, when we consider compo-

99

sition of circuits. However, when modeling circuits by Q, these two different
unknown values are treated equally. Therefore, circuits modeled in Q are, in
general, not compositional. This motivates our attempt to enrich Q in order to
obtain a compositional model of circuits.

3.1 The Model .T"

The example in Figure 2 reveals that, in order to be compositional, it is essential
for a circuit model to distinguish two different types of unknown values. For this
reason, we extend the lattice (Q, _) to (~r, _) where ~r = {0, 1, X, Z, T} and the
partial order E is shown in the following diagram.

T

0 X 1

\ 1 /
•

The ordering relation is: / _ 0, X, 1 _ T

Apparently, ~" is a complete lattice under the ordering relation indicated by
arrows in the picture. In the context of circuit modeling, the intuition behind
these 5 values is the following: 0 and 1 have their conventional meaning. T is an
over-constrained value. A_ represents an unconstrained value. It could be used
to model a don't-care input, or an undriven, unknown output value, such as the
high-impedance state of a tri-state output. X is also an unconstrained value.
The difference between X and _1_ is that X represents a driven unknown output
value.

Conventional boolean functions, and l J, l-1 can be extended to the values in Y'.
The following "truth-tables" are those for AND, NOT, L], and Fh

3 - 0 X 1 T -1- 0 X 1 T . l_0X 1 T
• _ L l O X l l r • • • •
0 0 0,0 0 T 0!0 0 T T i T 0 . L 0 . 1 _ • Z O X 1 T
x x o x x T X xmT X -r r X _C C X • X IXlllXlOITJ
1x01xll T 1 i T T 1 r 1_1_ L_L 1 1
T ' T T I T I T T T T T T T C T • 0 X 1 T NOT

AND L] n

Similar to Q-model structures, a ~'-model structure is ((S, E), Y) where S is
the set of all functions from a set of nodes (names) to 5 , and Y, the next-state
function of the model structure, is a function S ~ S.

100

3.2 R e p r e s e n t a t i o n o f Next-state Functions

We now introduce a notation for describing next-state functions of finite state
machines: tern and Set expressions. A tern expression can be regarded as an
extension of boolean expressions in 2-, and a Set expression can be regarded as
a description of next-state function of a finite-state machine.

3.2.1 tern Expressions a n d Set Expressions

A tern expression is defined as:

tern ::= One I Zero IX I Val str I And tern tern I Not tern

where One, Zero, X, And, and Not are the syntactical representations of 0, 1, X,
and functions AND, and NOT respectively, and

Val str

is used to refer to the value on the node which is named by the string str. It
plays a role similar to that of boolean variables in boolean expressions. As a
concrete example, the following tern expression

(Not (And (Val 'in1') (Val 'in2')))

describes the output of an NAND gate whose input nodes are 'in1' and 'in2'
respectively.

In the definition of tern expression, we carefully excluded symbols which corre-
spond to _L and -F in 2-. This choice will be justified when the semantics of tern
and Set expressions is presented later.

A Set expression is defined as:

Set ::= Empty] Element str, Driver I Union Set Set I Join Set Set

Driver ::= (tern, tern)

The constant Empty corresponds to an empty finite state machine (which has
neither internal state nor output). Element is the constructor that actually intro-
duces a new node which is named by the string str and defines driver functions
for the node. A driver function is given in Driver which is a pair of tern expres-
sions, the first expression is a guard and the second expression is the value being
driven when the guard is evaluated to 1. For example,

Element 'n' (One, Zero)

creates a circuit node whose value is always 0.

The constructor Union is used to create a collection of Element definitions.

101

Union Sz $2

is a collection of node drivers which contains all the node drivers in either $1
or $2. If there are both Sz and $2 contain a driver for the same node, then the
Union constructor will use the greatest lower bound of the values being driven at
the same t ime when both guards are evaluated to 1 (See more in Section 3.2.2).

The expression

Join Sz S~

is similar to Union S1 $2, except when both $1 and $2 contain a driver for the
same node, then the Join operator will use the least upper bound of the values
being driven at the same t ime when both guards are evaluated to 1.

3.2.2 Interpreting Set Expressions to .T"

The semantics of Set expressions includes evaluation of tern expressions, and an
interpretation of Set expressions. This interpretation effectively translates a Set
expression to a next-state function (of a finite-state machine).

Given a tern expression t, t is a constant if it does not contain any Val (such as
Val 'a ') subexpressions. The evaluation of a constant tern expression t, denoted
as s maps t to an element in jr:

1. ~:(Zero) -- 0, •(One) = 1, and E(X) - X;
2. g(And tl t2) = AND g(t l) g(t2);
3. g(Not t) = NOT g(t)

Given a Set expression S, a node of S is a circuit node name (str) such that
either

Val str

appears in S, or

Element str driver

appears in S. A node space of S is a set of nodes such that every node of S
belongs to the set. Apparently, there are more than one node space of a given
S. Without losing generality, we assume that there exists a universal set of
circuit nodes (names), denoted by Y, which includes all the circuit nodes we are
interested in. We use Y as the node space of any given Set expression, unless
explicitly indicated otherwise.

A state is a function ~ :U ---+ ~r. An example of such a function is ~ :/4 --~ (_l_}.
Tha t is, for every a 6/4 , -~(a) -- J_.

102

We now extend the evaluation of a constant tern expression to arbitrary tern
expressions: given a state ~, the evaluation of a tern expression t in the state ~,,
denoted as g(t, to), is defined recursively as:

1. g(Zero, 9) = O, 6(One, ~o) = 1, and s ~o) = X;
2. c(val str, ~) = ~(stO;
3. g(And tl t2, ~) = AND g(t~, ~) g(t2, ~);

The interpretation (semantics) of a Set expression S, denoted by [S], is a func-
tion which maps a state to a state: for any state s,

1. {Empty](s) = ~.
2. {Element n, (g, v)](s) is r U -* 5 , such that for every a E/ / ,

g(v,s) i f E (g , s) - l a n d n - - a
r --- / Otherwise

3. [Union SL S2](s) ~ UNION [~St](s) [S2~(s).

where the function UNION (in f) is defined by the following "truth-table":

I O X 1 T

x o

The truth4able of the function UNION

4 Finite State Machine Compositions

The purpose o~ :F is to pro%de tee c~pability o~ composLr~g next state ~unctions
of finite state machines. In this section, we show that the Join constructor of Set
expression realizes circuit composition. The relationship between the Join and
Union operators will also be discussed.

4.1 Circait Model Compositions

In circuit designs, composition of two (or mare) physical circuits means connect-
ing (wiring) nodes with the same name (in different circuits) together to form a

103

new circuit. The following "truth table" gives our understanding of "connecting
two node values" in 9%

2 0 X 1 T
_LJ_IOX li t
0 0 0 T TII-
X X T X T T
1 I T T I l T
T I T T T T T

The truth table of "connecting" values in
the 5-element domain. Note that the truth
table is identical to that of the U operator
in the same domain.

Let A, C be any trajectory formulae, $1, $2 be any Set expressions. Also let
Y = [Join $1 $2], Y1 = [$1]~,]I2 = [$2]~. If zy(A) does not have any T
element, (i.e. let vy(A) = 7-0 . . . rn . - . . For every i > 0, T is not in the range of
ri.) then

T h e o r e m 2 . 6(C) E_ rr , (A) implies 6(C) E vy(A), and 6(C) E_ ry2(A) implies
~(C) E ry(A).

This theorem shows properties which are held in components are also held in
composition, if the composition is modeled by the constructor Join.

4.2 Implementation of Model Compositions

In practice, the function JOIN poses two problems:

1. Potentially, it may create a large number of T elements. To catch all these T
elements requires extensive computing resource. According to our experience,
it is responsible for up to 5% increase of computing time during verifications.

2. The verification may be too pessimistic: it is may be acceptable to have a
circuit node have a T value. In fact, during transient states, occurrences of
T on a circuit node is quite common and does not necessarily mean that the
circuit presents undesirable behavior.

To solve these two problems, we use the Union operator in the Set expressions,
rather than Join, to compose two Set expressions.

From the truth-table of UNION (Section 3.2.2), we find that it has the following
properties:

1. It generates far less Ts than II does;
2. UNION does not generate a T unless both operands are T.

104

3. Except the bottom row and the right-most column, the truth-table of UNION
corresponds that of II in the following way: the corresponding entries in the
tables are either equal to each other, or the entry in the table of LI is 3- and
the entry in that of UNION is •

The last property is essential: from verification's perspective, ff a circuit node
has the value L, then nothing can be concluded about that circuit node's value,
except its being 2; If a node value is 3,, then it implies that the circuit may
have had undesirable behavior, such as short-circuits. This implies a possible
malfunction of the circuit implementation unless the specification does not ex-
plicitly mention the value of this node i.e. the node has value _L. Therefore, it is
safe to replace T values in a trajectory (sequence of circuit states) by • as far as
verification is concerned. This property suggests that circuit composition might
be realizeded by the Union operator as well. The following theorem confirms this.

Let $1 and $2 be two Set expressions, Y = [Join Si $2], and Y' = [Union Si $2].
The following theorem shows the relationship between Y and Y':

T h e o r e m 3 . Given trajectory formulae A and C,

1. I.f 6(C) E ry,(A), then g(C) E 7y(A).

Z. If 6(6) E 7"r(A) and vr(A) does not contain any T value, then 6(6) E
~,(A).

This theorem says that, instead of verifying 6(C) E r (A), we verify 6(C) E
Ty,(A). If 6(C) E viz,(A) holdsi then 6(C) E vr(A) holds. Otherwise, either
6(C) E ~,-(A) fails, or 7y(A) contains 3- values. By proving 6(6) E ry,(A),
we can avoid significant amount 3,-checking, and avoid to be too pessimistic in
interpreting verification results.

5 R e l a t i o n s h i p B e t w e e n t h e Q - M o d e l a n d t h e : ~ ' - M o d e l

This section discusses the relationship between the two different circuit models.
The purpose of establishing such a relationship is practical: Voss, a circuit verifi-
cation system which uses the Q-model, has been developed and proven practical
in circuit design verifications. In fact, both tern expressions and Set expressions
are the integrated components of the Voss system. Establishing such a relation-
ship between Q-model and Y-model allows us conduct verification in Voss and
then to interpret the result in Y-model.

105

5.1 I n t e r p r e t i n g Set Expres s ions to t h e a - M o d e l

In Q, the functions AND, NOT, U, and UNION are as defined in the following
"truth-tables":

_L0 1 T 2_0 1 T _L0 1 T
J_ LO L T - L I 0 1 1 T J-0 1 T
0 0 0 1 T _LO1T
1 L 1 1 T 0 0 0 i T T 00 0

1 I T I T 1 J _ l l l
T I-'T T T T T T T T 2 0 I !T

AND NOT U UNION

Note that the extensions of AND, and NOT to Q is carefully done so that both
functions are monotonic. This is to accommodate the requirement that every
next-state function in a Q-model has to be monotonic [1].

Given a tern expression t, it can be evaluated to a value in Q the same way
as we evaluate t to ~ . To distinguish the evaluation of a tern expression to Q
and that to 9 v, we add subscripts to the evaluation function s i.e. s (s
evaluates a tern expression to Q (E). Similarly, we add subscripts to the semantic
function [S~ i.e. [S]~ and [S~y respectively, in order to distinguish the different
interpretations in Q and 5 r .

We now interpret Set expressions in @: given a Set expression S,

1. [Empty]]Q(s) = _~.
2. [Element n, (g, v)]]Q(s) is r U --* Q, such that for every a E / / ,

EQ(v, s) if CQ(g, s) = 1 and n = a and ,~Q(v, s) # X r
L . L < Otherwise

3. [Union $1 S2]]~(s) = UNION [S1]]~(s) [S2]]Q(s).
4. [Joi. & = [& iQ(s) u

5.2 T h e R e l a t i o n s h i p B e t w e e n [S]7 a n d [S]Q

The difference between [S]• and [S]y is the treatments when g(v, s) = X,
g(g, s) = 1, and n = a (in [Element n, (g, v)]~(s) and [Element n, (g, v)]~-(s)).
In this situation, [S]~(s)(a) = _L whereas [S~Q(s)(a) = X. This is because
that, in Q, there is no distinction between driven unknown value and undriven
unknown value, they both are represented by _L. To further illustrate this subtle
difference, let us compare the Set expression Empty with

Element 'n' (One, X)

106

Since [Empty]]Q = I and [Element 'n'(One, X)]Q = ~_, the two expressions are

equivalent in Q. On the other hand, [Empty]]Q = 1, [Element 'n'(One, X)]]Q is a
function f such that f(n) = X, therefore, [Empty[y # [Element 'u'(One, X)]~.
Although very subtle, this difference is exactly we have been after: Empty rep-
resents a finite state machine whose value on the node 'n' is undriven unknown
whereas

Element 'n' (One, X)

represents a finite state machine whose value on the node 'n' is driven unknown.

The following theorem establishes an important relationship between [[S]Q and
Isle:

T h e o r e m 4 . Let S be any Set expression such that [S]Q is monolonic. Let
Y -= [S~j: and Y' = [S]Q. For any trajectory formulae A, and C,

1. if b(C) E ry,(A), then b(C) E ry(A).

2. if b(C) E ry(A), and 7y(A) does not contain any'T, then ~5(C) E 73,,(A).

This theorem allows us to conduct verification in the Voss system, which models
circuits in Q, and interpret the verification results in 2": if 8(C) E 7y,(A), then
re E vy(A). If b(C) [Z ry,(A), then either b(C) [~ vy(A), or *y(A) contains T
elements. Neither case is desirable thus A =~ C is not an assertion of the given
circuit. Disallowing T elements in rv(A) is a way to obtain pessimistic verifica-
tion results. The Voss system is capable of checking and reporting whenever a
trajectory (73-(A)) contains a T value.

6 Application

6.1 The Voss S y s t e m

The Voss system, a formal hardware verification system developed at the Univer-
sity of British Columbia, consists of three major components: a highly efficient
implementation of OBDDs; an event driven symbolic simulator with very com-
prehensive delay and race analysis capabilities [2]. From a user's point of view,
the Voss system verifies assertions in the form of

FhM fsm (ante, cons)
where fsm denotes a finite-state machine and the pair (ante, cons) represents a
trajectory assertion to be verified. The finite-state machine fsm is specified by a
next-state function.

107

The following table summaries several verification experiments conducted by the
Voss system:

Circuits
64 x 32-bit moving data stack

Transistors
16,470

Time (sec) Memory
35 1.2M
200 3.2M
400 9.0M
320 10.1M
530 10.1M

35.4M

J64 x 32-bit stationary data stack 15,383
UART 9840
32-bit Tamarack (synchronous) 7, 214
]2-bit Tamarack (asynchronous) 7,214
32-bit RISC core (32 regs) 16,100 7,300

6 . 2 V e r i f i c a t i o n b y C o m p o s i t i o n

Originally, our work on verification by composition was motivated by verification
of a system of more than one components. It is often the case that the designer of
one component does not have finite state machines of other components when his
design needs to be verified. In this situation, traditional verification methods may
not be applicable due to a lack of a complete description of implementation e.g.

a finite state machine. Although the designer could make assumptions about the
environment (behaviors of other components) in order to valid his own design,
such assumptions may disguise design errors even verifications produce positive
answers.

To briefly illustrate our approach to the above mentioned problem, let us ex-
amine various verification exercises performed on the Tamarack microprocessor
[3, 4]. Originally, a memory is an integrated component of the microprocessor's
behavioral specification [3]. However, various Tamarack implementations which
we are aware of do not contain such a memory module. Instead, memory is
treated as part of the environment in which the microprocessor operates. To
correlate the verification results to the original specification, assumptions of the
behavior of the memory module have to be made.

There are mainly two reasons justifying separation of processor and memory in
various verification efforts:

- The complexity of memory would make verification by automated verifiers,
such as Voss, computationally intractable.

- Tamarack designs usually do not contain a memory module. Therefore, a
complete implementation of Tamarack is usually not available to verification
exercises.

However, the correctness of an implementation can only be established in an

108

environment which realizes the memory module faithfully. Conceptually, our
approach, i.e. verification by composition, proceeds as follows:

1. Obtaining a specification for the processing unit of Tamarack and verify an
implementation of the unit against the specification. The work reported in
[4] accomplished this in hybrid hardware verification system [5, 6].

2. Obtaining a specification of the memory module and then generating an
abstract circuit model automatically:
Automatically generate a Set expression Srn from the trajectory assertions of
memory. In [7], we reported a constructive method which generates a finite-
state machine from a given set of trajectory assertions such that ISIs: is the
next-state function of some circuit model of the given set of assertions. We
also proved that such a finite state machine is the smallest machine in terms
of the number of internal states [8].

3. Translate the next-state function of Tamarack to an equivalent Set expres-
sion St, according to the interpretation of Set expressions presented in Sec-
tion 3.2.2 2 .

4. Perform the Union operation on Sm and St to obtain a new Set expression
S = Union $1 $2..

5. Finally, verify the original Tamarack specification against S by the Voss sys-
tem. An important difference between this verification and~other verification
exercise, such as [4], is that, if succeeds, guarantees the correctness of the
processor /memory composition.

7 Conclusion

In this paper, we presented a 5-element circuit domain which is compositional.
The purpose of devising this model is to facilitate verification by composition.
The major results can be summarized as follows:

1. We presented a language for finite state machines (SetExpressions). This
language is used to describe circuits behaviors. Expressions written in the
language can be interpreted to f , as well as to Q. An operator in the lan-
guage is designed for finite-state machine composition. The semantics of this
operator is consistent to our intuitive understanding of "connecting two cir-
cuit node together". The major theorem concerning this operator is that it
preserves the properties of the finite-state machines which are being com-
posed (Theorem 2).

2. The finite-state machine description can also be interpreted to the model
which is used by the Voss system, a circuit verification system. A theorem

2 This is an ongoing work.

109

(Theorem 4) shows that under certain condition, two interpretations of the
same finite-state machine description achieve same verification results. This
theorem allows us to perform circuit verification by using the well-developed
Voss system, and then interpret the verification result in the model presented
in this paper.

References

1. SEGER, C.-J., AND BRYANT, R. Formal verification of digital circuits by symbolic
evaluation of partially-ordered trajectories. Tech. Rep. Technical Report 93-8, The
Computer Science Department, The University of British Columbia, The Computer
Science Department, The University of B.C. Vancouver B.C. V6T 1Z4, 1993. To
appear in Journal of Formal Methods in System Design.

2. SEGER, C.-J. Voss - a formal hardware verification system, user's guid e. Tech.
Rep. Technical Report 93-45, The Computer Science Department, The University
of British Columbia, The Computer Science Department, The University of B.C.
Vancouver B.C. V6T 1Z4, 1993.

3. JOYCE, J. Multi-level Verification of Microprocessor-Based Systems. PhD thesis,
Computer Laboratory, Cambridge University, 1989.

4. ZHU, Z., JOYCE, J., AND SEGER, C.-J. Verification of the tamarack-3 micropro-
cessor in a hybrid verification environment. In Proceedings of 1993 international
meeting on Higer Order Logic and its Applications, Lecture Notes in Computer Sci-
ence, Vol 780 (1993), Springer-Verlag.

5. SEGER, C.-J. , AND JOYCE, J. A mathematically precise two-level formal verifica-
tion methodology",. Tech. Rep. Report-92-34, Computer Science Department, The
University of British Columbia, 1992.

6. JOYCE, J., AND SEGEI%, C.-J. Linking bdd-based symbolic evaluation to interactive
theorem-proving. In Proceedings of 30th Design Automation Conference (1993).

7. ZHU, Z. Construction of circuit models from trajectory specifications, in progress,
Janurary 1994.

8. ZHU, Z., AND SEGER, C.-J. Model construction from trajectory assertion and
the completeness of a hardware inference system. In The proceedings of the Sixth
International Conference on Computer Aided Verification (CA V9~), Lecture Notes
in Computer Science, Vol 818 (1994), Springer-Verlag.

