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Abstract .  A major challenge in the area of hardware verification is 
to devise methods that can handle circuits of practical size. This paper 
intends to show how the applicability of combinational circuit verification 
tools based on binary decision diagrams (BDDs) can be greatly improved. 
The introduction of dynamic variable ordering techniques already makes 
these tools more robust; a designer no longer needs to worry about a 
good initial variable order. In addition, we present a novel approach 
combining BDDs with a technique that exploits structural similarities of 
the circuits under comparison. We explain how these similarities can be 
detected and put to effective use in the verification process. Benchmark 
results show that the proposed method significantly extends the range 
of circuits that can be verified using BDDs. 

1 Introduction 

The times when researchers in the CAD field could sit in their ivory tower 
thinking up neat solutions for theoretical problems belong to the past. Nowadays, 
industry and other funding organisations require projects to come up with useful 
and practical results. Whereas only 10 years ago, a hardware designer would be 
surprised when an automatic tool could prove his LSI circuit (a couple of gates 
and a few flipflops) correct, today, the same designer expects tools that  handle 
his 10,000 gates VLSI circuit. Clearly, the biggest problem faced in the area of 
hardware verification is that  of scale. 

In this paper we show how a successful technique for proving equivalence 
of combinational circuits can be extended to greatly enhance its applicability. 
Our past work has concentrated on the use of BDDs to represent the circuits' 
functional behaviour. However, it is a known fact that  for many practical cir- 
cuits no reasonably sized BDDs exist no matter  what variable order we choose. 
Several approaches that  try to circumvent this intricate problem have been' pro- 
posed [1][9][11]. Often, the canonicity requirement for BDDs is dropped; then, 
of course, the equivalence check becomes harder. It is also possible to introduce 
extra variables with the intention of obtaining smMler BDDs. We feel that  those 
methods are either not general enough for our purposes, or lack convincingly 
strong results. The method we propose in this paper is modelled after [6][14], 
and still uses regular BDDs. It works fully automatically and does not impose 
any special requirements on the design process. 
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This paper is organised as follows. In section 2 we momentarily divert into 
the rather novel technique of dynamic variable ordering. We explain the main 
idea and show how it can be incorporated in a BDD package. The experimental 
results presented at the section's end serve both as evidence for the usability of 
the technique and as a stimulus for further investigations. Section 3 introduces 
our ideas on using structural information of the circuits at hand to aid in the 
verification process. We show that  with a minimum of extra effort, the available 
BDD routines can be used in a more clever way to establish equivalence. The 
results of our first experiments are very encouraging. 

2 D y n a m i c  V a r i a b l e  O r d e r i n g  

In this section, we briefly summarize the issues involved in applying a dynamic 
variable ordering technique, i.e., changing the order of the variables during BDD 
construction. We assume that  the reader is already familiar with the basic con- 
cepts of BDDs [8] and the popular way to implement them [5]. Dynamic variable 
ordering is a very important addition to a BDD package, because it relieves the 
user of the burden of specifying a good order a priori, i.e., before the BDDs are 
constructed. We can define a good order as one that  permits the function to be 
represented by a polynomially sized BDD. For gate level descriptions, several 
static ordering algorithms have been proposed [10][12] and shown to be success- 
ful for many circuits, However, it turns out that  dynamic variable ordering often 
substantially improves on the intermediate and final BDD sizes. In particular 
when BDDs are used in the area of verification, it is our opinion that dynamic 
variable ordering becomes a mandatory prerequisite for successfully handling 
large circuits automatically. 

2.1 Basic  P r inc ip l e s  

It is a well-known fact that  the size of a BDD representation for a given boolean 
function may drastically change when a different variable order is adopted. 
Therefore, it is very important that  a good variable order is used. Because 
generally it is difficult to predict a good order before the BDDs are actually 
constructed, it is necessary to use a technique that  searches a good order during 
the construction of BDDs. The problem with changing the order dynamically is 
that  one has to maintain canonicity. In the implementation of a BDD package, 
canonicity is achieved through a so-called unique table of BDD nodes: a node 
is identified by its pointer. A new node is only then created when it is not yet 
present in the unique table; otherwise the pointer stored in the table is returned. 
It would be very inefficient to construct entirely new BDDs for every different 
order that  is tried. Therefore, dynamic variable ordering is based on a succession 
of local modifications, each of which can easily be made to preserve canonicity. 
A natural local modification is the swapping of two consecutive variables, as is 
illustrated in Fig. 1. 
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Fig. 1. The effect of a variable swap on a BDD 

By repeatedly swapping adjacent variables every variable order can be gen- 
erated. However, for practical purposes a full exploration of the 'variable orders 
space' cannot be tolerated; a simple local-search approach with limited hill- 
climbing is chosen instead. This has become known as the sifting algorithm [16]. 
In this approach, each variable is tried at all possible positions in the order 
while the ranks of the other variables remain the same. This search for the best 
position of that  one variable may still lead to the construction of unacceptably 
large intermediate BDDs, hence the search is aborted as soon as the increase 
in the total number of nodes exceeds a given limit (we allow an increase of at 
most 5%). It is easy to see that  putting one variable at its best position takes 
O(#vars �9 #nodes) time. It makes sense to treat the variables in order of fre- 
quency: the variable with the most occurrences in the BDD is sifted first. The 
rationale is that by changing the position of this variable the largest gain, i.e., 
decrease in BDD size, may be achieved. 

2.2 I m p l e m e n t a t i o n  I ssues  

The integration of dynamic variable ordering into a BDD package requires two 
decisions, namely where and when the algorithm is applied. Rudell argues that  it 
must be invoked inside the recursive ITE routine, because this is the major  source 
for new nodes. However, dynamic variable ordering violates the invariants of the 
ITE routine. Since ITE recursively visits the nodes of its three BDD arguments 
in a depth-first fashion, starting at the top nodes, it is not allowed to swap any 
variables that  have ranks smaller than the node currently under consideration. 
Dynamic variable ordering may be partly applied to the rest of the variables. 
This idea has not been persued. Instead, we decided to allow dynamic ordering 
only to take place outside recursive ITE calls, but potentially after every top- 
level call. 

The question of when to apply dynamic ordering is not an easy one; on the 
one hand, dynamic variable ordering is a very useful, and for some applications 
even vital, feature of a BDD package, but on the other hand it takes O(#vars 2. 
~nodes) t ime for a single invocation, and therefore should not be called upon 
too liberally, especially when many variables are involved. Clearly, there are a 
number of conflicting interests: 
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- Dynamic variable ordering should be done as soon as the current order is 
found to be rather poor. 

- The quality of an order can only be assessed relative to the functions that are 
momentarily represented. There is usually no way to predict the sequence of 
future BDD operations on the current functions. 

- When the initial (or some intermediate) order is good, then the next call to 
dynamic ordering should be postponed as long as possible. 

- When the functions to be represented are such that no good order exists, 
dynamic ordering should be refrained from completely. 

Rudell uses an absolute bound on the total number of BDD nodes to trigger 
the ordering. After each reordering, it is reset to twice the then existing number 
of nodes. Our solution is to fix the total time spent in one call to some reason- 
able constant, say 10 (cpu) seconds, and to use both a relative and an absolute 
threshold to trigger the variable ordering. The absolute threshold criterion we 
use is the same as described above. The relative threshold is introduced to be 
able to anticipate sharp increases in BDD size as a function of the number of 
top-level ITE calls. Dynamic ordering is triggered when the increase exceeds a 
factor of 2. This value is chosen because the majority of BDD operations takes 
two operands, and empirical evidence shows that  the size of the result is of the 
order of the sum of the sizes of the operands; worst-case it would be the product. 

The effect of dynamic variable ordering is illustrated in Fig. 2 for a 16- 
bits rotator circuit with 16-bits data input and output,  and a 4-bits control 
input (20 BDD variables). Mark the difference in scale of the vertical axes: 
without dynamic variable ordering more than a million BDD nodes are required 
to compute the rotator 's outputs; with dynamic ordering, some 4000 are needed. 
The ragged behaviour of the graphs is due to the particular way the circuit is 
described as a table, see Fig. 3. The program that constructs the BDDs handles a 
table row by row which causes intermediate results that  are directly freed again, 
hence the peaks and plateaus in the figure (careful examination shows that there 
are precisely 16 of them). 

Dynamic variable ordering requires easy access to all BDD nodes with the 
same variable label. Hence unique tables need to be maintained per variable in- 
stead of having one large table shared by all of them. As a consequence and clear 
disadvantage, memory for those hash tables gets fragmented. On the positive 
side, it allows for a finer control over the amount of memory allocated for each 
table. In fact we do this dynamically, i.e., when more nodes for a particular vari- 
able are needed the table is extended, and when enough nodes of that variable 
are freed again the table is shrunk. This approach turns out to be both beneficial 
with regard to run time and memory usage. 

2.3 E x p e r i m e n t a l  R e s u l t s  

We have implemented the algorithm for dynamic variable ordering in the BDD 
package that is developed by one of the authors. It is based on the work of 
Karl Brace reported in [5] and papers by Richard Rudell [16][17]. Apart from 
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t a b l e  {C : : 
0 : :  I n [ i S : O ]  
1 : :  In[14:0] 
2 : :  I n [ 1 3 : 0 ]  
3 : :  I n [ 1 2 : 0 ]  
4 : :  I n [ l l : O ]  
5 : :  I n [ l O : O ]  
6 : :  I n [  9:0] 
7 : :  I n [  8:0] 
8 : :  I n [  7:0] 
9 : :  I n [  6 :0 ]  

10 : :  I n [  5 :0 ]  
11 : :  I n [  4 : 0 ]  
12 : :  I n [  3 :0 ]  
13 : :  I n [  2 :0 ]  
14 : :  I n [  1 :0]  
15 : :  I n [  0 :0 ]  

} 

I n [ 1 5 : 0 ] ;  i n p u t  C [ 3 : 0 ] ;  o u t p u t  O u t [ i S : O ] )  

Out ; 

I n [ I S : I S ]  ; 
I n [ I S :  14] ; 
I n [ l S :  13] ; 
I n [ 1 5 : 1 2 ]  ; 
I n [ 1 5 :  11] ; 
I n [ 1 5 : 1 0 ]  ; 
I n [ i S :  9] ; 
In[15: 8] ; 
I n [ 1 5 :  7] ; 
I n [ 1 5 :  6] ; 
I n [ 1 5 :  5] ; 
I n [ i S :  4] ; 
In[15: 3] ; 
I n [ 1 5 :  2] ; 
In[15: 1] ; 

F i g .  3. Description of the 16-bit ro ta tor  circuit 
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the usual logical operations on BDDs, it includes a rich set of meta  routines 
(e.g. quantification with respect to a set of variables, composition, conversion 
to sum-of-cubes), routines for statistics (e.g. size, number of minterms), support 
for development of new operations, and routines to visualize BDDs (e.g. for 
X-Windows). 

Table 1 indicates the effect of dynamic variable ordering on some typical 
benchmarks, all taken from [13] except for the rotator. ~nodes  is the size of the 
final (shared) BDDs for all output  functions. The run time is in seconds on a 
HP9000/735 workstation. The 'good' and 'bad'  orders are obtained manually, we 
don't  claim them to be the best, resp. worst; 'dynamic'  means dynamic variable 
ordering is on during BDD construction; 'bad'  is taken as initial order, and at 
the end dynamic ordering is applied exhaustively until no more gain is obtained. 
The results for min_inax include BDDs for both the regular outputs and the 
next-state functions. 

With our implementation, we achieve results comparable with Rudell's [15]. 
As our experiments point out, there is no such thing as "one medicine cures all". 
Some tuning of the dynamic variable parameters may often give better results. 

Table 1. Experimental results of dynamic variable ordering 

Circuit Good Bad Dynamic 
Nodes Secs Nodes Secs Nodes Secs 

16-bits rotator 81 <1 1081328 45 81 <1 
8-bits adder 36 <1 751 <1 36 <1 
16-bits adder 76 <1 1 9 6 5 7 5  12.7 123 <1 
32-bits adder 156 <1 >1000000 29 452 1.9 

8-bits min_max 893 <1 75377 4.7 892 1.7 
16-bits min_max 3305 <1 >1000000 45.2 3303 8.9 
32-bits min_max 12545 1.4 >1000000 33 33971 48.5 
8-bits multiplier 9084 2.1 16697 2.9 8958 13.3 
10-bits multiplier 72916  24.5 159278  32.8 72204 204.8 
12-bits multiplier 598463 238.6 1513070 360.5 560216 1012.3 

3 Exploiting Structural Similarities 

In many design environments, formal verification is applied to establish the 
equivalence of two circuit descriptions. Typically, one description has been de- 
rived from the other by one or more design steps. Many of these steps have little 
effect on the global structure of a circuit. Therefore, it is likely that  there exist 
structural similarities between the two circuits to be verified, i.e., not only the 
outputs are functionally equivalent, but also some of the internal signals. For 
example, when the correctness of a technology mapping step is verified, both 
circuits have a similar global structure, and when a designer wants to check the 
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correctness of some manual  modifications, only small parts of the circuit may  
have changed. Intuitively, it should be easier to prove the equivalence of two 
circuits which have a similar structure, than to prove the equivalence of two 
circuits with a total ly different structure. However, this is typically not true for 
BDD-based verification tools; the efficiency of these tools is almost completely 
determined by the compactness of the BDD representations for the outputs  of 
the circuits. Therefore, the efficiency depends on the type of circuit that  is verified 
and not on the actual differences between the circuits that  are compared. 

One of the first verification methods to use structural equivalences was pre- 
sented in [3]. However, this method may  lead to so-called false negatives, i.e., 
the method may fail to prove the equivalence of two equivalent circuits. A 
more advanced method was described in [4]. This method still suffers from false 
negatives, although the authors suggest how BDDs can be used to avoid this 
problem. Recently, two verification methods were presented that  exploit equiv- 
alences between internal signals in combination with a test generator [6][14]. 
These methods do not suffer from false negatives, and the presented benchmark 
results demonstrate  the efficacy of using structural similarities. 

In this section, it is shown how a BDD-based verification method can be ex- 
tended to exploit structural  equivalences of the circuits that  are compared. This 
improves the method ' s  ability to deal with circuits that  are structurally simi- 
lar, even if these circuits cannot be represented efficiently by BDDs. First, it is 
described how equivalent internal signals can be used to improve the verification 
method; the ideas used are similar to some of the ideas presented in [4]. Then, 
it is shown how these equivalences can be detected during the verification of the 

circuits. 

3.1 Using Structural Equivalences 

Suppose we want to verify that  two outputs  f and g are functionally equivalent, 
i.e., we want to establish the equivalence of the corresponding functions F : 
B '~ ---* B and G : B n --* B, where n denotes the number of pr imary inputs. This 
means we have to prove that  for every input vector i E B n, 

�9 c(,_) = o .  (1) 

Now assume that  the fanin cones of f and g both contain a signal with the 
function H : B n --* B. Then, this function can be used to decompose F and G, 
i.e., there are functions Fd : B n+l -* B and Gd : B n+l --+ B, such that:  

F(i) = Fd(i, H ( i ) ) ,  (2) 
G(/) = Gd(f, H( / ) )  . 

In that  case, (1) can also be written as follows: 

(3v E B.: (Fd(i, v)(~ gd( i ,  v ) )A (v ---- U(i ) ) )  �9 (3) 

This formula indicates how a structural equivalence can be used to decompose 
the calculation of the difference. First, the difference of the two functions is 
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calculated while the common subfunction H is represented by an extra variable. 
If this difference is zero, the two functions are equivalent. However, if it is not 
zero, it cannot be decided directly that  the functions are not equivalent; this 
decision can only be made if the difference expressed in the original variables 
differs from zero. Otherwise, there must apparently exist variable assignments for 
which the calculated difference does not equal zero, but these assignments may 
not be valid because the variables representing subfunctions cannot be assigned 
values independently. To avoid these false negatives, it is necessary to replace 
the introduced variable by the function it represents. 

A verification method can repeatedly use structural equivalences to compare 
two circuits. The main advantage of this approach is that  the BDD representa- 
tions remain compact if sufficient equivalences exist between the circuits. The 
functions of the signals are not only expressed in terms of the primary inputs, 
but also in terms of variables representing common internal signals. Because 
the functional dependencies between these variables are not taken into account 
while constructing BDDs, this approach leads to smaller BDDs, even though the 
number of variables is increased. The main disadvantage is of course that  the 
equivalence check now requires substitutions, possibly resulting in a large BDD 
representation for the difference of two signals. However, in case the two circuits 
not only have some internal signals in common, but also use these signals in a 
similar manner, the difference may be relatively small, or it may even be zero, 
in which case there is no need for substitutions at all. 

The two circuits in Fig. 4 are used to illustrate how the verification method 
uses equivalent internal signals. 

il i2 

I 
a4 

i3 i4 

I1 
a5 

il i2 i3 i4 

b5 b 6 

Fig. 4. An example of two similar circuits 

First, it is verified whether the outputs a4 and b5 are equal. Obviously, this 
should be easy, because the parts of the circuits which define these outputs, are 
not only functionally but also structurally identical. During the verification, it is 
detected that the signals a] and bl, and a2 and b2 are equal, and therefore, two 
new variables vl and v2 are introduced to represent the functions of these signals. 
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Then, it is detected that  a3 and b3 are equal, because for both, the function 
--(vl A v~) is computed. The variable v3 is introduced for this function. Similarly, 
the function -~(il A vz) is calculated for both a4 and bs, and the equivalence 
of the outputs is established. This shows that the proposed method can handle 
structural equivalence without any problem. 

The verification of the outputs a5 and b6 is slightly more difficult. If the same 
equivalences as detected earlier are used, the function ~(i4 A v3) is computed for 
output as, and the function --(i4 A --v2) for output b6. The difference a5 @ b6 is 
i4 A (v3 ~ --v2) . Because this is not equal to zero and still depends on variables 
representing internal signals, the function --(vl A v2) is substituted for variable 
v3. Then, the difference becomes i4 A v2 A ~Vl. This is still not equal to zero, 
and therefore, also v2 is replaced by the function it represents. This results in 
the difference i4 A -n(i3 A i4) A ~Vl, which can also be written as i4 A -~ia A -~vl. 
After the replacement of vl by its function, this becomes i4 A -~i3 A i3 A i2, which 
equals zero. This proves that  the outputs as and b6 are equivalent. 

3.2 Detecting Structural Equivalences 

We will now address the problem of detecting structural equivalences of two 
circuits. A naive approach is to compare every signal calculated in one circuit 
with all signals calculated in the other circuit. However, this is not very efficient, 
since every equivalence check may require a series of substitutions; especially 
the comparison of non-equivalent signals can be quite expensive, both in terms 
of run time and memory usage. Of course, it is also possible to detect only 
those equivalences for which no substitutions are required. In that  case, it is not 
guaranteed that all equivalences are found, because it is only tested if two signals 
have exactly the same BDD representation. However, this is not an effective 
approach. If an equivalence is not detected because the difference of the BDDs 
is apparently not equal to zero, it is very likely that  all other equivalences in the 
fanout cone of these signals also remain undetected. In fact, it is very likely that  
the difference becomes larger while it propagates towards the outputs. Therefore, 
we introduce an extra preprocessing step to detect which signals are most likely 

to be equivalent. 
An effective preprocessing step is to calculate a signature for every signal by 

simulating both circuits for a limited number of randomly generated input vec- 
tors. Because two signals cannot be equivalent if they have different signatures, 
such a signature can be used as a coarse check for the equivalence of two signals. 
This technique does not exclude any equivalences, and therefore does not suffer 
from the same disadvantage as selecting signals on basis of the calculated BDD 
representation. However, there are circuits for which random input vectors are 
not very effective in distinguishing signals. In that  case, many inequivalent inter- 
nal signals will be compared, possibly requiring many substitution operations. 
The effects of this problem can be diminished by exploiting the result of the 
equivalence check. This result is namely the set of all input vectors that  distin- 
guish the two signals under comparison. Therefore, it is possible to randomly 
select vectors from this set, and perform extra signature calculations to update 
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the lists of potentially equivalent signals. This way, the negative outcome of an 
equivalence check is also used to check all other potential equivalences. 

Structural equivalences can only be used effectively if they are detected as 
soon as possible; otherwise, the BDDs for the outputs are constructed before 
any extra variables are introduced and the method cannot perform better than 
a conventional BDD-based method. Therefore, it is necessary to calculate sig- 
nals from both circuits simultaneously and to compare potentially equivalent 
signals as soon as possible. This means that the calculation order has to group 
potentially equivalent signals together as much as possible. To do this, we adopt 
the following strategy. The calculation order is determined by maintaining a 
so-called 'ready list' of signals. This list contains all signals for which potential 
equivalences exist and for which all predecessors with potential equivalences have 
already been calculated; initially, it contains the primary inputs of both circuits. 
From this list, the signal with the lowest topological level is selected, together 
with all signals that are potentially equivalent to it. These signals are calculated 
together with the parts of the corresponding fanin cones that have not yet been 
calculated. Then, the equivalence of these signals is actually checked, and the 
ready list is updated. 

3.3 I m p l e m e n t a t i o n  Issues 

We have implemented the presented verification method in C++  using the BDD 
package mentioned in Sect. 2. Dynamic variable ordering is used to order the 
variables; variables representing internal signals are created at the front of the 
order. A signature calculation is used to partition the signals of both circuits into 
groups of signals that are likely to be equivalent. Signatures are calculated by 
simulating both circuits simultaneously for 32 randomly generated input vectors. 
These signatures are used to create the initial partition. Then, the partition is 
refined by calculating new signatures. This is repeated until the partition does 
not change during five successive runs. Under the assumption of perfect hashing, 
the calculation of these potential equivalences takes O(C. n) time and O(C) 
space, where C denotes the size of both circuits that are compared, and n is the 
number of times the partition is refined. 

The notion of structural equivalence is slightly extended to allow for sig- 
nals that are functionally equivalent modulo complementation. Every signal is 
assigned a 'sign' that is determined by the value of that signal for a randomly se- 
lected input vector. If a signal has a negative sign, its function is complemented 
before we check for equivalences. If we detect structural equivalences and de- 
cide to introduce a new variable, the function of a signal with a negative sign is 
replaced by a negated variable; this has no further consequences for the equiva- 
lence check. To limit the number of extra variables introduced by the method, a 
new variable is created only if the size of the BDD for the corresponding func- 
tion exceeds a given threshold. In our implementation, we use a threshold of 32 
nodes. If it is decided not to introduce a new variable, the BDDs of the equiva- 
lent signals are still unified by selecting the smallest BDD as the representation 
for all these signals. 
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3.4 E x p e r i m e n t a l  R e s u l t s  

To evaluate the efficiency of the presented verification method, we use it to 
verify the correctness of some circuits that  have been synthesized with the logic 
synthesis systems EUCLID [2] and SIS, a system developed at University of 
California, Berkeley. All tests in this section are performed on a tIP9000/735 
workstation with a memory limit of 100 Mb. As benchmarks, we use instances 
of the min_max circuit and the unsigned bit multiplier, which are both described 
in [13]. The notations mM[n] and mult[n] are respectively used to refer to the 
n-bit instances of these circuits. Because our verification method only deals with 
combinational circuits, every latch in the min_max circuit is modeled by an extra 
input and output.  

Table 2 shows the performance of a conventional BDD-based verification 
tool on some selected instances of the benchmarks. As these results illustrate, 
the min_max circuit is an 'easy' example, which can be represented compactly 
with BDDs and thus scales well. The multiplier circuit on the other hand is very 
difficult to verify; the required amounts of memory and run time grow rapidly 
with increasing bit width. With a memory limit of 100 Mb, the applicability of 
this tool is restricted to instances with n < 14. 

Table 2. Benchmark results of a conventional BDD-based verification tool 

Circuits CPU time (s) BDD mem. (kb) 
mM[16], mM[16]sim 
mM[32], mM[32]sim 
mM[48], mM[48]sim 
mM[64], mM[64]sim 
mult[8], mult[8]sim 

mult[lO], mult[lO]sim 
muir[12], mult[12]sim 

1.7 
13.9 
24.0 
29.6 
14.3 

168.7 
1725.4 

340 
699 

1301 
2112 

741 
5036 

43806 

As a first experiment for the presented verification method, we test if all con- 
stants in the original circuit descriptions are propagated correctly by EUCLID. 
The resulting circuits are denoted by the suffix 'sim'. The results of these exper- 
iments are given in Table 3. The first two columns show the run times and the 
amount of memory required for storing the BDDs. The last column shows the 
number of variables representing equivalent signals. As the results demonstrate, 
the proposed verification method performs significantly better than the conven- 
tional one on these simple examples. This clearly illustrates that  the efficiency 
of the method does not depend solely on the type of circuit that  is verified, but 
also on the actual differences between the two circuits. 

In the second set of experiments, we resynthesize the benchmarks with SIS. 
After the usual optimizations such as constant propagation, the circuit is par- 
tially collapsed and factored. This results in circuits that  are harder to verify, 
because large parts of the original structure are modified. The suffix 'res' is used 
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Table 3. Experimental results for simple benchmarks 

Circuits CPU time (s) BDD mem. (kb) Eq. used 
raM[16], mM[16]sim 
mM[321, mM[32]sim 
mM[48], mM[48]sim 
mM[64], mM[64]sim 
mult[8], mult[8]sim 

mult[16], mult[16]sim 
mult [24], mult[24]sim 
mult[32], mult[32]sim 

0.6 
1.1 
8.9 
6.4 
0.8 
9.7 

23.6 
33.8 

395 
455 
661 
592 
379 
594 

1422 
2813 

41 
66 

144 
137 
56 

296 
765 

1407 

to indicate that  a circuit is synthesized with this method. The results are shown 
in Table 4. As these results show, it still pays off to exploit the structural equiv- 
alences, even though the verification of the larger instances of the multiplier 
cannot be completed; for mult[24]res and mult[32]res only 20 and 17 outputs are 
respectively verified successfully. This is not caused by the absence of structural 
equivalences, but by the size of the intermediate results during a sequence of 
substitutions. 

Table 4. Experimental results for resynthesized circuits 

Circuits 
mM[16], mM[16]res 
mM[32], mM[32]res 
mM[48], mM[48]res 
mM[64], mM[64]res 
mult[8], mult[8]res 

mult[16], mult[16]res 
mult [24], mult[24]res 
mult[321, mult[32]res 

CPU time (s) BDD mem. (kb) 
2.4 

11.2 
11.4 
17.9 
1.4 

92.6 

385 
686 
565 

1452 
353 

2134 

Eq. used 
15 
43 
32 
72 
32 

183 

In the third set of experiments, we use EUCLID to map the benchmarks onto 
another technology, namely a complete library of (3,3)-AOI cells [2]. Because 
the functions implemented by these cells are larger than the expressions in the 
original descriptions, the synthesis strategy also involves partial collapsing and 
factoring of the circuits, which modifies the original structure. The remapped cir- 
cuits are denoted by the suffix 'map'.  The results of these experiments are shown 
in Table 5. When compared to the results of the previous experiments, it can 
clearly be observed that  the circuits resulting from these synthesis steps are eas- 
ier to verify, because they have been collapsed less strongly. In this case, 46 and 
62 outputs are respectively verified successfully of mult[24]res and mult[32]res. 

In the fourth set of experiments, the EUCLID system is used to decrease 
the maximum delay of the circuits resulting from the previous experiment. This 
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Table  5. Experimental results for remapped circuits 

Circuits CPU time (s) BDD mem. (kb) Eq. used 
mM[16], mM[16]map 
mM[32], mM[32]map 
mM[48], mM[48]map 
mM[64], mM[64]map 
mult[8], mult[8]map 

muir[16], mult[16]map 
muir[24], mult[24]map 
mult[32], mult[32]map 

1.5 
2.9 
7.0 

10.8 
0.8 

17.2 

387 
454 
556 
638 
367 
640 

16 
63 
54 
74 
39 

201 

means that  segments of the critical paths in the circuits are restructured in order 
to improve the delay of these paths. For the min_max circuits, a speedup of 30~163 
is obtained, and for the multipliers a speedup of 15%. The circuits that  are 
synthesized with this approach are given the suffix 'fast'. The results are given 
in Table 6. Mark that  in this case, the results are not verified against the original 
descriptions, but against the results of the previous experiments. 

Table  6. Experimental results for circuits resynthesized for speed 

Circuits 
mM[lS]map, mM[16lfast 
mM[32]mav, mM[32]fast 
mM[48]mav, mM[48]fast 
mM[64]map, mM[64]fast 
mult [8]map, mult [8]fast 

mult[16]map, mult[16]fast 
mult[24]map, mult[24]fast 
mult[32]map, mult[32]fast 

CPU time (s) BDD mem. (kb) Eq. . sed  
0.4 
0.9 
5.9 
6.8 
0.5 
7.0 

21.2 
28.1 

404 
436 
489 
540 
373 
498 

1288 
2575 

27 
46 
99 

133 
41 

203 
505 
926 

In order to compare our results with [14], we verify some of the more difficult 
ISCAS benchmarks [7] against the same circuits after redundancy removal [18]. 
We also verify multi16] against the ISCAS benchmark c6288, which is a 16- 
multiplier with a similar structure. The results are shown in table 7. Although it 
is generally difficult to compare run times measured on different machines, the 
results indicate that our verification method is at least an order of magnitude 
faster than the method presented in [14] on the selected benchmarks. For the 
other ISCAS benchmarks, the differences are relatively smaller. The verification 
of the 16-bit instance of the multiplier against the ISCAS benchmark c6288 is 
performed very efficiently, because both circuits have the same architecture, and 
therefore, many structural equivalences exist. 

To measure the effect of dynamic variable ordering on the results, we have 
Mso performed some tests with dynamic variable ordering turned off. The re- 
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Table 7. Experimental results for some ISCAS benchmarks 

c3540, c3540nr 
c5315, c5315nr 
c7552, c7552nr 
mult[16], c6288 

muir[16], c6288nr 

4.5 
13.5 
46.7 
24.7 
15.2 

429 
505 

1104 
703 
621 

94 
115 
145 
201 
200 

suits of these experiments are given in Table 8. As these results show, dynamic 
variable ordering has a significant impact on the memory usage for the more 
difficult tests. It succeeds in finding good variable orders to compactly represent 
intermediate results of a series of substitutions. For the easier examples, the 
introduction of new variables for intermediate signals ensures that  the number 
of BDD nodes does not grow very fast in case of many structural equivalences. 
Therefore, dynamic variable ordering cannot improve much in these cases. 

Table 8. Influence of dynamic variable ordering 

Circuits 

mM[64], mM[64]sim 
mult[32], mult[32]sim 
mM[64], mM[64]res 

mult[16], mult[16]res 

Dyn. order. 
Time (s) Mem. (kb) 

6.4 592 
33.8 2813 
17.9 1452 
92.6 2134 

No dyn. order. 
Time (s) Mem. (kb) 

2.6 653 
20.4 3092 

8.6 1520 
42.5 5802 

4 Conc lus ions  and Future  Work 

In this paper, we have discussed two techniques that  enhance the ability of BDD- 
based verification methods to handle larger circuits. The technique of dynamic 
variable ordering has been briefly discussed, because it virtually removes the 
need to worry about a reasonable initial variable order. Therefore, it makes 
the verification method more robust. We have shown how this technique can 
be incorporated in a BDD package in a way that  is fully transparant to an 
application of the package. The penalty is an increase in run time, estimated at 
a factor 4 on average. 

We have also shown how a BDD-based verification method can be ex tended  
with a technique to exploit structural similarities of the circuits under compar- 
ison. These similarities are detected fully automatically. Experimental results 
demonstrate that  the new technique significantly extends the ability of BDD- 
based verification methods to deal with circuits that  are structurally similar. 
The successful verification of various multipliers shows that  it is possible to 
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handle circuits that  cannot be represented compactly with BDDs. Our current 
research focuses on finding a more effective technique to perform the required 
substitutions, because we believe that  the size of the intermediate results during 
a sequence of substitutions is the bottleneck in our current method.  We also 
intend to incorporate our method in an industrial design system. 
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