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Abst rac t .  Speed-independence is a property of a circuit ensuring cor- 
rect operating regardless of the magnitude of delays in all its gates. In 
this paper, circuits are modeled by formal transition systems, and speed- 
independence is characterized by state predicates expressing constraints 
on the transition system. This makes it possible to define a formal con- 
dition corresponding to speed-independence, and to mechanically verify 
that a given transition system satisfies the condition. The condition is 
formulated in such a way that the transition system, and hence also 
the circuit design, can be checked in a modular way, i.e., by checking 
the circuit design module by module. This means that large designs can 
be checked in smaller pieces and without providing an explicit circuit 
realization of the environment. 
A number of designs have been verified using the approach described 
here, including a speed-independent RAM cell, a complex switch of a 
data-path, and a number of standard components such as counters, FIFO 
registers, and various Muller C-elements. 

1 Introduction 

The correct operation of a speed-independent circuit does not depend on the 
delays of its components (gates). Such circuits are very robust to data  and pa- 
rameter variations. This may have significant practical advantages [11, 14], for 
example, a potential reduction of power dissipation [18]. However, to realize a 
design by a speed-independent circuit, the design must meet some constraints 
excluding behavior that  depends on timing details of the components. Hence, a 
designer must not violate these constraints. There are several ways to achieve 
this, one would be to follow a "correct by construction" approach [11]; in this 
paper another alternative is explored, using mechanical tools to check that  a 
high-level description of the designs behavior meets certain conditions (ensuring 
speed-independence), The following standard example is used throughout the 

paper to introduce and motivate the approach. 

Example: M o d u l o - N  C o u n t e r .  The modulo-N counter with constant respon- 
se time is a simple, yet interesting, example of a speed-independent design [5]. 
To save space, it is assumed that N is a power of two, and therefore the counter 
is called a modulo-2 ~ counter. The counter has one input, a, and two outputs p 
and q. Every signal change on the input a is acknowledged by a signal change 
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of either p or q. The first 2 '~ - 1 up-going changes on a are acknowledged by up- 
going changes on p and the last, 2n-th, by an up-going change on q. The same 
with down-going changes. The counter cell is composed of a toggle element, a 
pipeline latch, and an OR-gate. The design used in this paper uses a four-phase 
protocol and was done by Christian D. Nielsen [15], it has many similarities with 
the two-phase design described in [5]. 

n-1 Modulo 2 counter 

: Counter cell 

I 

an/ ~ 

pO 
, ~  pmO 

Modulo 2 n counter 

Fig. 1. A Diagram of the Modulo-2 '~ Counter 

P 

q 

End of  example  

This paper introduces a technique for checking that a high-level description 
of a design, such as the moduio-N counter, allows for a speed-independent cir- 
cuit realization. By using a high-level description, it becomes possible to check 
the design early in the design process. The behavior of a circuit defined by a 
high-level description is modeled as a transition system, and the conditions en- 
suring speed-independence are expressed as predicates on the state space of the 
transition system. The conditions are formulated in such a way that the transi- 
tion system, and hence also the circuit design, can be checked in a modular way, 
i.e., by checking the circuit design module by module. The modulo-2 n counter 
consists of a toggle module (called T in Fig. 1), a few gates, and a modulo-2 n-1 
counter module (which itself may have further submodules). The basis of the 
reeursive specification is a modulo-1 counter which simply connects the input 
a to the output q by a wire, and assigns the constant value false to the other 
output p. 

The hierarchical nature of a design is exploited in the speed-independence 
check by treating modules as black boxes where the internal details are hidden. 
As a consequence, it is also possible to check a particular module, such as the 
toggle, without providing an explicit circuit realization of the environment, i.e., 
to check non-autonomous designs. This means that large designs can be checked 
in smaller pieces, and that designs can be checked without providing an explicit 
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circuit model of the environment. 
There are already several verification tools for checking speed-independence 

based on model-checking. For example, in [1, 8] different methods have been pre- 
sented based on a direct construction of the circuits state space or its essential 
subspaces. In [3, 4] speed-independence is verified as an absence of choking (or 
computational interference) in a trace-based specification of a circuit. These ap- 
proaches use special purpose tools aimed at verifying a limited set of properties. 
The work described in this paper differs in several respects. Most importantly 
with respect to the level of the circuit specification. It is possible to check designs 
with composite data-types, e.g., n-bit words, hierarchy (which is maintained in 
the verification), and non-autonomous parameterized designs. Another interest- 
ing difference is that  the tools used to check for speed-independence are general 
purpose and not constructed specifically for speed-independence. Exactly the 
same tools (the Larch Prover [?] and a translator [12]) are used for verifying 
other safety properties of design descriptions. The price for the generalization, is 
an increased computational complexity of the verification algorithm. However, 
the hierarchical verification technique compensates for this. A number of designs 
have been verified, including a speed-independent RAM cell, a complex switch 
of a data-path, and a number of standard components such as various Muller 
C-elements, FIFO registers, and counters. 

This paper is organized as follows. Section 2 describes the design language 
SYNCHRONIZED TRANSITIONS used for modeling circuits. In Sect. 3 it' is shown 
how to define and verify constraints, called invariants and protocols, on a design 
and its environment. Section 4 presents the definition of speed-independence, and 
informally describes a condition called persistency that  guarantees speed-inde- 
pendent behavior of a design. Section 5 describes how to check the persistency 
condition with a combination of a theorem prover and a simple model-checking 
tool. Section 6 demonstrates the application of the method to the mechanical 
checking of a recursively described design. The appendix contains a number of 
definitions of concepts that  are introduced informally in the main text of the 

paper. 

2 Modeling Circuits 

Speed-independence is a property of a physical circuit ensuring that  the circuit 
operates correctly regardless of the magnitude of delays in all gates of the cir- 
cuit. To make formal analysis of speed-independence possible, a model of the 
physical circuit is required. In this paper formal transition systems described in 
the design language SYNCHRONIZED TRANSITIONS are used to model physical 
circuits. As an example, consider a circuit component for a Muller C-element, 

this is described as follows: 

<< a - -  b - >  y : = a > > .  

In this example, a, b, and y are boolean state variables, and whenever a = b, it is 
possible to assign the value of a to y. If a ~ b, then y keeps its current value. This 
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construct is called a t rans i t ion ,  and it models a single independent component 
of a circuit. A circuit with many components (operating in parallel) is described 
by composing a number of such transitions (one for each component). 

<< a # b - >  y := a >> II << a := N O T  y >> II << b :-- y >> 

This describes a simple oscillator, ff initialized in any state then the oscillator 
describes a computation where the three state variables a, b, and y alternate be- 
tween T R U E  and F A L S E  indefinitely. The boolean expression appearing before 
- >  in a transition is called the precondition, when this is the constant T R U E ,  

it can be omitted as exemplified by the last two transitions. State variables are 
introduced by a variable declaration. 

S T A T E  y : B O O L E A N  

The name of the state variable (y) denotes the value of the variable. The type 
of the state variable (given after the ":") specifies its domain, i.e., the set of 
possible values. The state variable y can, for example, take the boolean values 
T R U E  and F A L S E .  The value of a state variable is changed by executing a 
transition where the name of the state variable (e.g., y) appears on the left-hand 
side of an assignment (:=). 

SYNCHRONIZED TRANSITIONS has a number of additional constructs that  
are not explained here, see [16] for a comprehensive introduction. The appendix 
defines the concepts used in this paper. 

2.1 O p e r a t i o n a l  M o d e l  

A design specifies a set of transitions (fixed throughout the computation) each 
of which may execute whenever it is enabled. Although a design description in 
SYNCHRONIZED TRANSITIONS has some similarity with a program in a high-level 
programming language, the interpretation is very different. An assignment state- 
ment in a high-level program is only executed when the control of the program 
is at the point of the statement. There is no similar global control flow deter- 
mining the computations of a design in SYNCHRONIZED TRANSITIONS, which 
just  specifies a fixed set of transitions. Unlike a Pascal or C program, the order 
in which transition descriptions are written does not influence the computation. 
SYNCHRONIZED TRANSITIONS is similar to UNITY [2] which describes a com- 
putation as a collection of conditional data-flow actions without any explicit 
control-flow. Operationally, the computation can be modeled as repeated non- 
deterministic selection and execution of an enabled transitions. In this model, 
transitions axe executed: 

- one at a t ime ,  i.e., only one active transition is executed in any state t 
- repeatedly, each time it has been executed, it is immediately ready to be 

selected again, 

- independent ly ,  of the order it appears in the design description. 

i This corresponds to an interleaving semantics of parallel processes. 
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It is not required that  a transition is executed immediately after it becomes 
enabled, because other enabled transitions may be selected. In fact, there is no 
upper bound on when a transition is selected. This corresponds to the unbounded 
gate delay in logic circuits [10]. For example, the transition << y := a O R  b >> 
describes an OR-gate. The implicit precondition, TRUE, specifies that  it is al- 
ways allowed to set the output,  y, to the logical OR of the inputs, a and b; 
however, an arbitrary delay may elapse between a change of the inputs and the 
changing of the output.  

SYNCHRONIZED TRANSITIONS can be used to model circuits at different level 
of abstraction. The examples given above show modeling at the gate level. How- 
ever, the same language is also used at higher levels, for example, a multiplier 
can be described as follows: 

< < z : =  s * t  >>. 

Here s, t, and z are state variables of type integer and the transition describes a 
state change where the product of s and t is assigned to z. 

By modeling a circuit as a design in SYNCHRONIZED TRANSITIONS, it is pos- 
sible to formally verify properties of the design, for example functional properties 
or refinement. In this paper, the emphasis is on verifying speed-independence, 
and the next sections describe how to capture this property as a condition on 

the transition system. 

3 I n v a r i a n t s  a n d  P r o t o c o l s  

To verify a certain property formally, it is necessary to formulate it rigorously 
in such a way that  it can be determined unambiguously whether a given design 
has the property or not. In this paper, the focus is on formally expressing the 
property that  a design is speed-independent, however, this is only a special case, 
and one can envision many other properties that  a designer may wish to verify. 
In general, the verification tools for SYNCHRONIZED TRANSITIONS support  two 
ways of rigorously specifying properties that  are to be verified. 

Invariants: are predicates over the state variables. They define a restriction on 
the allowable subset of the state space (the states for which the predicate 

holds). 
Protocols: are predicates on pairs of states, Fre,post, defining a restriction on 

the allowable transitions between states (to ones where the pre- and post- 

state satisfy the predicate). 

The language has constructs for writing invariants and protocols. As an illus- 
tration, consider an invariant stating that  two state variables z and y are never 
TRUE simultaneously (mutual exclusion for z and !/). 

I N V A R I A N T  N O T  (z AND y) 

The following is an example of a protocol which states that  whenever z changes, 

it gets the value of either y or z. 
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PROTOCOL x.pre ~ x.post ~ x.post=y.pre OR x.post=z.pre 

z./we denotes the value of z immediately before the transition (the pre-state), 
and similarly z.post is the value of z immediately afterwards (the post-state). 
The same notation is used to write the value of an expression E in the pre-state 
as E./we and in the post-state as E.post. 

Invariants and protocols are typically used for verifying safety properties of a 
design, for example, mutual exclusion, or that  variables in the interface follow a 
convention such as four-phase signaling (hence the name protocol). An in depth 
treatment is given in [16]. Establishing a safety property involves the following 
steps: 

- finding a way to express a property as an invariant or /and a protocol; 
- verifying that  the invariant holds in any initial state of the design; 
- checking that  the invariant holds in all states reachable from the initial states; 
- verifying that  the protocol holds for any possible transition between reach- 

able states. 

Notice that  invariants and protocols are stated by the designer, and that  they 
express important safety properties that should hold for any computation of 
the design. It is the aim of the verification to check whether they really hold, 
i.e., whether they hold for any reachable state of the design and for any possi- 
ble transition between reachable states. In section 4 it is is shown how speed- 
independence can be expressed as a protocol which may then be verified as any 
other protocol. 

3 . 1  E n v i r o n m e n t  a n d  N o n - d e t e r r r d n l s m  

In general, the computation of a design depends on the behavior of the en- 
vironment. Therefore, to verify the design one needs a way of specifying the 
environment. In [3, 4] the behavior of the environment is expressed by the set of 
possible signal traces, i.e., using the same model used for specifying the inter- 
nal behavior. In [1, 8] the verification is done on an autonomous circuit that  is 
constructed by composing the original circuit with an environment making the 
composition autonomous. This makes it difficult to express a non-deterministic 
behavior of the environment. Here we describe behavior of the environment im- 
plicitly by defining protocols and invariants constraining the state space and 
possible transitions of external state variables. 

By making invariants and protocols express information about permissible 
environments, it becomes feasible to verify a component in isolation, i.e., with- 
out checking the global behavior of the entire design. When combining several 
components, it is of course necessary to check that  their invariants and protocols 
are consistent, i.e., that  they have a consistent view of their interface. In [16, 17] 
it is shown how such a verification is clone in a localized manner using the same 
techniques and tools that  are used in this paper for checking speed-independence. 
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Fig. 2. The interface to the latch (a), its gate-level realization (b). 

E x a m p l e :  A P i pe l i ne  La t ch .  A simple speed-independent pipeline latch is 
used to illustrate how to specify a non-deterministic environment. The interface 
to the latch consists of four state variables: two boolean acknowledgments, ai, ao, 
and two duals, Di, Do, modeling a one bit data-path, see Fig. 2.a. The domain 
for the data-path variables contains three possible values of a data  bit: {E, T, F} 
("empty",  "true", and "false"). The variables ao (the output acknowledgment) 
and Di (input data) are changed by the environment. Fig. 2.b shows a possible 
gate-level realization of a latch based on two C-elements and one NOR-gate [14]. 
The latch is described in SYNCHRONIZED TRANSITIONS as follows: 

CELL latch(ai, ao: BOOLEAN; Di, Do: dual) 
BEGIN 

<< a i -=  empty(Do) >> II << ao # empty(Di) -> Do:= Di >> 
END latch 

The boolean function empty returns the value TRUE when the value of its dual 
parameter is equal to E. 

The environment of the latch supplies the dual input, Di, and one can imagine 
different behaviors of the environment, it may for example, follow the return-to- 
empty-convention where Di has the value E between any two valid values. This 
external behavior is described by the following protocol (the predicate same(E) 
is a shorthand for E.pre = E.post): 

PEt -- (NOT same(Di)) =r 
((ai.post ~ empty(Di.post)) AND (ai.post = empty(Di.pre))) 

This expresses that  whenever Di changes (NOT same(Di)) then its empty sta- 
tus must change to the opposite value of the acknowledge ai. Even though this 
is a very restrictive protocol, it allows the environment to non-deterministically 
choose between the two valid values T and F.  

Below a less restrictive protocol is specified where Di is allowed to change 
directly from one of the valid values to the other. 

PE2 -- (NOT same(Di)) ~ (ai.post # empty(Di.post)) 

In both eases, ao, must behave as follows: 
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(NOT same(no)) =:~ (no.post : empty(Do.post)) 

To describe a pipeline latch for a wider data-path,  e.g., a 16 bit word, the only 
change in the design description is replacing the type dual with another type. 
However, the gate level realization of a wider data-path would require a signifi- 
cant change (to compute empty). 

4 C h a r a c t e r i z i n g  S p e e d - i n d e p e n d e n c e  

This section gives an informal description of the persistence condition which is a 
protocol that  must be met by a design ff is going to be realized as a speed-inde- 
pendent circuit. In David Muller's original work, speed-independence was defined 
through the notion of "final classes" of behavior [13]. This paper follows the more 
recent trend defining a circuit to be speed-independent if its correct operation 
is independent of gate delays. A practically useful check for speed-independence 
cannot be based directly on this definition, because that  would require checking a 
possibly infinite number of different combinations of gate delays. Instead, we have 
found a condition, called the persistency condition, which is both mechanically 
checkable and sufficient to ensure speed-independence. 

A transition t is persistent, if once it becomes active, it remains active, pro- 
viding the same post-value for the write variable, while other transitions occur. 
A design meets the persistency condition, if it can be shown that  all transitions 
are persistent both with respect to changes made by other transitions and with 
respect to transitions made in the environment. In the appendix it is shown how 
to formulate the persistency condition as a protocol which makes it possible to 
check that  a design meets the protocol mechanically. 

As an illustration, consider again the simple oscillator presented in Sect. 2. 

<< a # b - >  y : :  a >> [[ << a : :  N O T  y >> I[ << b := y >> 

The first transition is persistent because once it is active, it must be the case 
that y # a and y = b. The second and third transitions are not active when this 
is the case, hence neither a nor b can change value. Similarly, it can be argued 
that the other two transitions are persistent. 

To illustrate a non-persistent design consider the following modified oscilla- 
tor: 

<< y : :  a OR N O T  b>> [[ << a : :  N O T  y >> I] << b : :  y >> 

Consider a state where a, b, y : FALSE, FALSE, FALSE. The second transition 
is active, but so is the first, ff  the first transition changes y to TRUE, then the 
second is no longer active, and hence it is not persistent. 

Example: T h e  P i p e l i n e  L a t c h  ( c o n t i n u e d ) .  To illustrate the use of the 
persistency condition on a non-autonomous design, consider again the pipeline 
latch from Fig. 2. It turns out that  the speed-independence of the latch depends 
on how strong assumptions can be made about the environment. To show that  
the latch design satisfies the implementation condition persistency, it is necessary 
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to verify the persistency protocol for each of the two transitions; for brevity only 
the protocol for last one is shown below: 

(ao.pre r empty(Di.pre)) A (Do.pre r Di.pre) A same(Do) 
=r ( ao.post r empty( Di.post ) ) A (Do.post r Di.post ) ^ same( Di) 

The left side of the implication indicates that  the transition is active in the 
pre-state. The expression same(Do) makes the condition hold trivially for the 
transition itself (as stated in the appendix, this is just a way of encoding the 
condition t l  ~ t2). The right side of the implication requires that after the state 
change from pre to post the transition is still active (in the state post), and 
provides the same value for the variable Do (clause same(DO). 

It must be shown that  for any pair of states (/tee, post) satisfying the pro- 
tocol, PE, of the pipeline latch, the persistency protocol holds. In Sect. 3.1 two 
different protocols are considered. For the weakest of the two protocols: 

PE2 =- (NOT same( Di) ) :ez ( ai.post r empty( Di.post ) ) 
it is not possible to show the persistency protocol, and hence, it cannot be ex- 
pected that  the pipeline latch is speed-independent when placed in an environ- 
ment where only PE~. can be assumed. Consider instead, the stronger assumption 
about the environment defined by PEt: 

PEt - (NOT same(Di)) =r 
((ai.post r empty(Di.post)) AND (ai.post = empty(Di.pre))) 

It turns out that  with this assumption, it is possible to show that  the persistency 
protocol is met (see Sect. 5.1), and also that  the other parts of the definition are 

met. 

5 M e c h a n i z i n g  t h e  C h e c k  

This section describes how to mechanize the check of the persistency condition 
using a combination of a theorem prover and a simple modal-checker. One of 
the possibilities offered by these tools is the ability to check the pipeline latch 
separately without giving an explicit circuit realization of the environment. 

The tools make it possible to take a design description like the one shown 
in Sect. 3.1 and automatically generate verification conditions corresponding to 
the persistency condition. These may then be given to the theorem prover for 
verification. In some cases, like the two oscillators, no additional information is 
needed, however, in more interesting cases, it is necessary to provide an invariant 
excluding some or all of the states that  the design will never enter. For the latch, 

it is for example the case that: 
(NOT empty(Do)) AND (NOT empty(D~)) ~ Di=Do 

This information may be added as an explicit invariant, and for the simple latch 
example it is possible to manually generate the few extra invariants needed (part 
of it is shown above), but in larger and more complicated examples, it can be a 
significant help to use a model-checking tool to characterize the reachable part 
of the state space; this is explained further in the next section. 
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5.1 R e a c h a b i H t y  I n v a r i a n t  

The reachable state space of a design is usually a small subset of the state space 
defined by the cartesian product of the domains of all state variables. A char- 
acterization of this reachable state space is useful for almost any kind of formal 
verification, and also for verifying speed-independence which is the topic of this 
paper. One way to characterize the reachable state space is as an invariant, called 
the teachability invariant. Below, it is discussed how to generate this invariant. 

Let D be a design in SYNCHRONIZED TRANSITIONS with the set of transitions 
t l ,  ..., t,~, the external invariant I•, and the external protocol PB. Each transi- 
tion, t~, defines a state transition predicate t~(Fee, post). In other words, each 
transition t~ defines a state transition relation R t ' .  The union of these relations 
define a state transition relation for the internal state variables of the design. 
This relation, R, is defined as follows: 

(sl ,  s2) �9 R I (sl) ^ IE(s ) ^ (eE(s , s2) v s2)) 

Two states S, and $2 are in relation R if they differ either by the value of 
an external variable or by the value of the write variable of transition t~. This 
variable can change its value from state $1 to state $2 either as defined by 
p s (  sl ,  s2 ) or by , S2 ). 

The transitive closure of R, denoted by R*, is called the teachability relation 
of the design. If the initial predicate, U0, is given, then the set of states reachable 
from the initial states can be characterized by a predicate, called the teachability 
invariant, I~o , that  is defined as follows: 

Z o(S) �9 u0 s) �9 R" 

For simple designs, derivation of this invariant can be done manually, but for 
more challenging designs this is too laborious. However, the teachability invariant 
can be derived automatically using a model-checking tool. For our experiments 
we have used the state generation kernel of the TRANAL system, included in 
the FORCAGE system [8]. The algorithm is based on a breadth-first search of 
the state transition graph, this is illustrated in Fig. 3. The states of a design are 
represented as boolean vectors and transitions as boolean vector representations 
of boolean functions. The algorithm proceeds in stages. At the kth stage a kth 
layer of states is derived. All states in this layer are reachable from the initial set 
of states through k transitions. For the next iteration, the states reachable from 
kth layer are found, thus giving the (k + 1)-th layer of states that  are reachable 
in k + 1 transitions. The algorithm ends when no more new states can be found. 
To simplify the check for the fixed point of the generation process, a heuristic is 
described in [8] allowing one to compare two layers of the teachability set instead 
of performing comparison of the whole set of states in the current layer. 

State explosion is a potential danger, of model-checking, however when used 
as here to generate invariants of a modular design, we hope to avoid the problem. 
The individual cells of a modular design contain relatively few state variables and 
model-checking is only used on such limited modules, whereas the composition 
of modules is verified using localized verification. However, our experience with 
the approach is still limited. 
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Fig. 3. Breadth-first search for reachability invariant 

E x a m p l e :  T h e  P i pe l i ne  L a t c h  ( c o n t i n u e d ) .  The following expression char- 
acterizes the invariant derived automatically for the pipeline latch: 

INVARIANT 
(Di -- Do) OR (ai AND empty(Do)) OR ((NOT ai) AND empty(Di)) 

This invariant, called I below, can be used to verify that  the pipeline latch meets 
the persistency condition. If the invariant is inserted in the design description for 
the pipeline latch and if this is given to the automatic translator, the verification 
conditions shown below are generated (they have been simplified a little to make 
this presentation more clear). The restrictions on the interface constrains the 
environment, but it must also be met by the latch itself, in Sect. 4, this restriction 
was defined by the following protocol (PE). 

PR 0 TO COL 
((NOT same(ao))~ (ao.POST -- empty(Do.POST))) A 
((NOT same(DO) (ai.POST r emptyWi.POST)) ̂  

(ai.POST = empty(Di.PRE))) 

For each (of the two) transitions of the design, it must be shown that  it satisfies 
the persistency protocol of the other transitions (in this case there is only one), 
and the protocol PE describing the environment. 

I(pre) A tl (pre, post) ~ PersistenttJ (pre, post) 
I(pre) ^ PE(pre, post) ~ PersistenttJ (pre, post) 

Where Persisten~i (pre, post) is a protocol describing the persistency condition 
for transition tj ,  i, j E 1, 2. E n d  o f  e x a m p l e  

The verification technique described above has been used to check a number of 
designs, for example, a complicated switch of a data-path, various realizations of 
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(* latch *) 
<< am:= N O T  (p OR q) >> II 
<< a = p m O  -> p:= a >> [] 
<< a =  qml -> q:= a >> [I 

(* OR-gate *) << pmO:= prn OR qrrtO >> II 
toggle(qm, qmO, qml)  II 
{ Iv = 1 I co~.t_o.~(am, p . , ,  q.~) } II 
{ N > l I count_even(am , pro, qm, N DIV  ~ ) }  

Fig. 4. The modulo-2"* counter, N = 2'* 

a Muller-C element, and a speed-independent RAM design. In the next section, 
it is shown how a parameterized recursive design description can be checked for 
speed-independence without unfolding the recursion or binding the parameters 
to particular values. 

6 Verification of  Modular Designs 

In this section it is shown how localized verification [17] is used to check a 
modular, parameterized, and recursively defined design. The modulo-N counter 
is an example of such a design; the value of N is left unspecified in the description 
which is a recursive composition of a modulo-N/2 counter, a toggle, and a few 
simple gates. A 2 '~ counter can be viewed as a composition of a 2 '~-1 counter 
and a counter cell, as shown in Fig. 1. The counter cell is composed of a toggle 
element, a pipeline latch (from Fig. 2.b), and an OR-gate. A SYNCHRONIZED 
TRANSITIONS description of a modulo-2 '~ counter is given in Fig. 4. The complete 
counter that works for arbitrary numbers has been designed and verified, it is 
omitted in this paper, because it does not show anything substantially new 
compared to the modulo-2 '~ counter. 

The design shown in Fig. 4 is the same as the one shown in Fig. 1. The 
first three transitions correspond to the latch (shown in Fig. 2) and the fourth 
transition is the OR-gate. The last three lines describe the sub-cells. The first 
is a toggle element. Then follows two conditional instantiations, if N > 1 a new 
instance of the count-even cell is made (the modulo-N/2 counter) and if N = 1 
the recursion stops by instantiating a simple modulo-1 counter. 

Using the approach described in this paper, the verification of the speed- 
independence of the modulo-2 '~ consists of the following steps: 

1. describe the cell interfaces by protocols (and invariants), 
2. generate the persistency protocol for each cell, 
3. generate the reachabillty (or another sufficiently strong) invariant of each 

cell, 
4. generate the verification conditions, 
5. verify the verification conditions. 
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The last four steps can be done mechanical]y whereas the first step requires some 
insight in the design in order to capture all essential aspects of the environment 
of a cell. Each step is now illustrated using the modulo-T* counter as an example. 

Protocols for the Cell Interfaces." When the interface variables of the counter 
cell change, it is always known what the new value is, e.g., whenever p (or q) 
change it becomes equal to a. This is described by the following protocol: 

PROTOCOL 
NOT same(p) ~ p.post = a.pre AND 
NOT same(q) ::~ q.post = a.pre AND 
NOT same(a) ~ a.post # (p.pre OR q.pre) 

Similar protocols are needed to describe the interfaces to the toggle cell and 
the modulo-1 counter. It requires some experience and insight in the design to 
come up with these protocols. If they are too weak (does not contain enough 
information) it will not be possible to verify the desired properties and the entire 
verification cycle must be repeated. 

The  Pe r s i s t ency  P ro toco l .  It can be verified that the counter is speed-inde- 
pendent by showing that it meets definition 4. This is done by including per- 
sistency protocols in the design description, for example, in the cell count_even, 
the persistency protocol for the four transitions is: 

( (am.pre~NOT(p.pre OR q.pre) AND SAME(am) ) =~ 
(am.post-~NOT(p.post OR q.post)) ) AND 

(((a.pre=pmO.'pre) AND (p.pre~a.pre) AND SAME(p) ) 
((a.pos~=pmo.post) A~D (p.post~.post))) AND 

(((a.pre=qml.pre) AND (q.preTta.pre) AND SAME(q) ) :ez 
((a.po,t=qml.post) AlVD (q.post#a.post)) ) AND 

( (pmO.pre# (pm.m OR qmO.p,'e) AN" SAME(pmO) ) 
(pmO.post~ (pro.post OR qmO.post)) ) 

Similar protocols are needed in the other cells (toggle and count-one). 

The Reachabillty Invarlant. To verify that the design meets the consistency 
protocols (and the other protocols formulated by the designer) it is necessary 
to find an invariant for each cell. The toggle and the count-one cells are simple 
enough that a suitable invariant can be formulated by the designer. However, for 
the count-even cell, it is possible to generate the following invariant automatically 

as described in section 5.1: 
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INVARIANT 
((NOT pro) AND (NOT qmO) AND (NOT p) AND (NOT pmO) AND 

((am AND qm AND qml) OR 
((NOT am) AND ((NOT qra) AND (NOT qral) OR (q AND qral))))) 
oR ((NOT q) aND (NOT qm~) aND (am aND (NOT pro) AND q~ aND 

((pmO AND qraO) O_H 
((NOT p) aND (NOT pmo))) 
OR (pmo AND q.~O aND p AND (NOT .m) AND (NOT pro)) OR 
((NOT qm) aND (NOT q.~O) A~D (pro aND pmO AND ( ~  OR p) OR 
( ~  aND (NOT p) AND (~OT p,~O)) OR 

(p AND (NOT .m) AND (NOT pro)))))) 

This is by construction an invariant, and hence, it need not be verified again, it is 
however included in the design description and utilized to verify the persistency 
and other protocols. 

T h e  Verification Condit ions.  To verify that the modulo-N counter meets the 
persistency protocols the design description is translated into a number of ver- 
ification conditions for the theorem prover. The localized verification technique 
embedded in the translator utilizes the modular structure of the design; there- 
fore, the number of verification conditions that  are generated to verify speed- 
independence (or any other safety property that  can be described as an invariant 
or protocol) is linear in the size of the design description. In case of the modulo- 
N counter, the number of verification conditions is independent of N (which 
determines the depth of recursion). 

First, all transitions of each cell are verified locally by showing that  the 
(local) invariants and protocols of that  cell (including persistency) will hold 
after executing the transition, assuming that  the invariant held in the pre-state. 
This is a standard way of verifying invariance [6]. 

The second step is to verify that no cell instantiation results in a design where 
the invariants and protocols for the instantiated cell are violated by the envi- 
ronment and vice versa. This is done using the localized verification technique 
[17] without considering the individual transitions of the cell or the environment. 
Instead the invariants and protocol of the instantiating cells are assumed to ex- 
press sufficient constraints on the state changes of the environment to show an 
implication ensuring that  the protocols and invariants of the instantiated cell 
hold. For example, to verify the instantiation of the cell toggle the following two 
implications must be shown: 

X..(~.e) ^ I , (~e )  ^ [,(po,t) ^ P , (~e .  po,t) ~ 1..(post) ^ P . . (~e .  po~t) 

Zce(~e) ^ h ( ~ e )  ^ Ic,(vost) ^ Po,(we, vo,t) ~ h(r,o,t) ^ P t ( ~ e , ~ , t )  

I and P are the invariants and protocols in the toggle cell (subscript t) and the 
count-even cell (subscript ce). Note that  the two conditions avoid considering 
the individual transitions of the two cells. Two similar conditions axe generated 
for each cell instantiation in the design. Note also that  the protocol, for example 
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Pt, includes the persistency protocols. Hence, these proof obligations cover part 
2 of definition 4. 

A more detailed description of the localized verification technique is given in 
[17] which also contains a proof of the soundness of the technique. 

T h e  Veri f ica t ion .  The verification of the counter with the mechanical tools 
shows that  the persistency condition is met; therefore, the counter design is 
speed-independent. The complete verification of the counter with the LARCH 
PROVER on a DEC Alpha station took approximately 22 rain, and the run time 
is independent of the actual size of the counter (parameter N). 

A drawback of theorem provers is that  they often require intensive human 
interaction during the verification. Our translator generates a script that  con- 
trols the verification and usually only a little additional manual interaction is 
needed. To verify speed-independence of the modulo-N counter, it was necessary 
to manually help the theorem prover approximately once, for each verification 
condition. 

7 Conclusion 

This paper has described a set of mechanical tools that  can be used to assist 
a designer in verifying that a design is speed-independent. There are already 
model-checking tools available for this. However, as demonstrated above, the 
use of general purpose tools gives some new possibilities like checking high-level 
and incomplete designs. Furthermore, the use of general purpose theorem provers 
avoids the need for constructing specialized tools. Although the run-time for the 
method described in this paper is worse than for checking speed-independence 
by known model-checking tools, we find that  it is still reasonable for practical 
applications. For example, all components of a vector multiplier design were 
verified within a few hours of run-time on a DEC Alpha station. Several mis- 
takes in the design were found. The inherent universality of theorem provers 
allows one to verify any properties expressible in the logic theory underlying the 
particular theorem prover. The persistency condition is an example of a safety 
property, and any other safety property can be mechanically verified using the 
same combination of a theorem prover and model-checker. 

A p p e n d i x .  N o t a t i o n  a n d  T e r m i n o l o g y  

A design consists of a set of state variables, st, s2 , . . . ,  s,,, and a number of tran- 
sitions, t l ,  t 2 , . . . ,  t,,~. For a given design, the set of state variables and transitions 
are fixed. In this paper, we focus on a subset of SYNCHROnIZeD T~L~,~SITIONS 
in which all variables are of finite types, i.e., each variable has a finite set of 
possible values from a fixed finite domain (determined by the type). 
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Each transitions, t, has a form <<Ct - >  zt :-- Et>>, where Ct - is a predicate 
called the precondition, zt is a state variable, and Et is an expression, that  has 
a unique value in any state. The transition t is enabled (in a state s) if and only 
if Ct is satisfied (in s). The transition t is active (in a state s) if and only if 
it is enabled and zt ~ Et (in s). For each transition, t, the predicate active t is 
defined as follows: 

active t =- Ct A (zt ~ Et)  

When necessary, this predicate is explicitly applied in a particular state, s, and 
then written as active t (s). 

A transition defines a set of ordered pairs of states, for each such pair, the 
first element is called the pre-state and the second the post-state. More formally, 
each transition t defines a predicate t(p~e, post) on the pairs of states such that:  
activet(tn'e) and state post differs from the state Im'e only by the value of the 
variable zz, i.e., zt.post = Et.tn'e, where zt.post denotes the value of zt in the 
post-state, and similarly Et.tn'e is the value of an expression E in the pre-state. 
The predefined predicate same(z)  is a shorthand for z.pre = z.post, where z 
can be any state expression. 

A design defines a set of computations that  are sequences of states, So, $1 , . . . ,  
where So is an initial state, and for each pair, S~, Sr there is a transition, t, 
such that  t(S~, Si+l), i.e., S~ is a pre-state of t ,  and S~+1 is a post-state of t .  Note, 
that there is only a single transition accounting for one step of the computation 
(going from S~ to S~+1). Alternatively it might be external variables of the design 
that  change value between S~ and Si+l according to the external protocol. 

The initial state (or set of states) is specified by defining the initial value of 
some or all of the state variables. 

I N I T I A L L Y  a -- F A L S E  b -- F A L S E  

State variables get their initial value before any transitions are executed, and 
they retain this value until a different value is assigned to them. It is not required 
that all state variables are given an initial value. 

A1. Well-behaved Designs 

To ensure a one to one correspondence between a design description in SYN- 
CHRONIZV.D TRANSITIONS and its circuit realization, it is necessary to exclude 
certain designs, for example, those that  contain contradictory assignments to the 
same state variables. 

The write set, W t, of a transition, t, is the set of state variables appearing 
on the left-hand side of assignments. In this paper multi-assignments are not 
considered, therefore the write set has a single element: W t = {zt}. Similarly, 
the read set, R t, of a transition is the set of state variables that  appear in the 
precondition and on the right-hand side of the assignment. 
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Definit ion 1. The transitions t l ,  t 2 , . . . t ,  meet the ezclusive write condition if 
and only if: 

vi, j ~ [1..n] : w t' n w ' J  # ~ ~ ~(c~, ^ c~j) 

This condition ensures that  there are no states where different enabled transi- 
tions can assign to the same state variable. 

D e f i n l t l o n 2 .  The transitions t l , t2 , . . . tn  meet the unique write condition if 
and only if for each state variable z and for each value, v, in the domain of state 
variable, z, there is a unique transition that can assign the value v to the state 
variable z. 

This condition ensures that  for each value that  a state variable may get, it is 
possible to identify a unique transition assigning that  value. 

De f in i t i on  3. A SYNCHRONIZED TRANSITIONS design is called well-behaved if 
it obeys the exclusive write and unique write conditions. 

It can be shown that  the expressiveness of well-behaved SYNCHRONIZED TRAN- 
SITIONS designs is enough to code any asynchronous logic circuit. 

A 2 .  C h a r a c t e r i z i n g  S p e e d - i n d e p e n d e n c e  

Let t be a transition of a design. The protocol Persistent t (pre, post) is defined 

as follows: 

P e,sistent' (pre, post) -- Active' (pre ) =~ (Active' (post) ^ same( Et ) ) 

Intuitively, Persistent t defines the constraint that  transition t stays active, pro- 
viding the same post-value for the write variable, while other transitions occur. If 
the write variable of the transition t is of type boolean, then the latter conjunct, 
same(Et), is redundant. 

Def in i t i on  4. Let D be a design with the invariant Itr and the protocol 
PE(pre, post). Then D satisfies the persistency condition, if the following can be 

shown: 

1. for all pairs of transitions t l , t2  in D, t l  ~ t2: 
t l  (pre, post) ^ ./tr (pre) =~ Perslstent t~ (pre, post) 

2. for any transition t in D: 
PB (10re, post) ^ Itr (pre) ~ Persistent' (pre, post). 

When a design meets the persistency condition, it is ensured that  no active 
variable is disabled by the state changes of other transitions or by the state 
changes of the external variables. The justification of the persistency condition is 
given in [9], where it is argued that  a well.behaved SYNCHRONIZED TRANSITIONS 
design is speed-independent, if and only if it satisj~es the persistency condition. 
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The persistency protocol generalizes the notion of a conflict state [8], that  is 
used for analysis of semi-modular binary circuits. 

In the mechanical tools described in this paper the following formulation of 
the protocol Persistentt(pre,post) is used: 

Per sistentt (pre, post) 
Active t (In'e) A same( W t) ::~ (Active t (post) A same( Et ) ) 

An additional clause same(W t) guarantees that  transition t has not occurred 
between states w e  and post. This clause ensures that  the t l  ~ t~ condition holds 
as required by definition 4. 
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