
Mechanized Verification of Speed- independence

Michael Kishinevsky and Jcrgen Staunstrup

Department of Computer Science, Tech. Univ. of Denmark,
DK'2800 Lyngby, Denmark.
e-maih ~mik~st}~id.dth.dk

Abst rac t . Speed-independence is a property of a circuit ensuring cor-
rect operating regardless of the magnitude of delays in all its gates. In
this paper, circuits are modeled by formal transition systems, and speed-
independence is characterized by state predicates expressing constraints
on the transition system. This makes it possible to define a formal con-
dition corresponding to speed-independence, and to mechanically verify
that a given transition system satisfies the condition. The condition is
formulated in such a way that the transition system, and hence also
the circuit design, can be checked in a modular way, i.e., by checking
the circuit design module by module. This means that large designs can
be checked in smaller pieces and without providing an explicit circuit
realization of the environment.
A number of designs have been verified using the approach described
here, including a speed-independent RAM cell, a complex switch of a
data-path, and a number of standard components such as counters, FIFO
registers, and various Muller C-elements.

1 Introduction

The correct operation of a speed-independent circuit does not depend on the
delays of its components (gates). Such circuits are very robust to data and pa-
rameter variations. This may have significant practical advantages [11, 14], for
example, a potential reduction of power dissipation [18]. However, to realize a
design by a speed-independent circuit, the design must meet some constraints
excluding behavior that depends on timing details of the components. Hence, a
designer must not violate these constraints. There are several ways to achieve
this, one would be to follow a "correct by construction" approach [11]; in this
paper another alternative is explored, using mechanical tools to check that a
high-level description of the designs behavior meets certain conditions (ensuring
speed-independence), The following standard example is used throughout the

paper to introduce and motivate the approach.

Example: M o d u l o - N C o u n t e r . The modulo-N counter with constant respon-
se time is a simple, yet interesting, example of a speed-independent design [5].
To save space, it is assumed that N is a power of two, and therefore the counter
is called a modulo-2 ~ counter. The counter has one input, a, and two outputs p
and q. Every signal change on the input a is acknowledged by a signal change

147

of either p or q. The first 2 '~ - 1 up-going changes on a are acknowledged by up-
going changes on p and the last, 2n-th, by an up-going change on q. The same
with down-going changes. The counter cell is composed of a toggle element, a
pipeline latch, and an OR-gate. The design used in this paper uses a four-phase
protocol and was done by Christian D. Nielsen [15], it has many similarities with
the two-phase design described in [5].

n-1 Modulo 2 counter

: Counter cell

I

an/ ~

pO
, ~ pmO

Modulo 2 n counter

Fig. 1. A Diagram of the Modulo-2 '~ Counter

P

q

End of example

This paper introduces a technique for checking that a high-level description
of a design, such as the moduio-N counter, allows for a speed-independent cir-
cuit realization. By using a high-level description, it becomes possible to check
the design early in the design process. The behavior of a circuit defined by a
high-level description is modeled as a transition system, and the conditions en-
suring speed-independence are expressed as predicates on the state space of the
transition system. The conditions are formulated in such a way that the transi-
tion system, and hence also the circuit design, can be checked in a modular way,
i.e., by checking the circuit design module by module. The modulo-2 n counter
consists of a toggle module (called T in Fig. 1), a few gates, and a modulo-2 n-1
counter module (which itself may have further submodules). The basis of the
reeursive specification is a modulo-1 counter which simply connects the input
a to the output q by a wire, and assigns the constant value false to the other
output p.

The hierarchical nature of a design is exploited in the speed-independence
check by treating modules as black boxes where the internal details are hidden.
As a consequence, it is also possible to check a particular module, such as the
toggle, without providing an explicit circuit realization of the environment, i.e.,
to check non-autonomous designs. This means that large designs can be checked
in smaller pieces, and that designs can be checked without providing an explicit

148

circuit model of the environment.
There are already several verification tools for checking speed-independence

based on model-checking. For example, in [1, 8] different methods have been pre-
sented based on a direct construction of the circuits state space or its essential
subspaces. In [3, 4] speed-independence is verified as an absence of choking (or
computational interference) in a trace-based specification of a circuit. These ap-
proaches use special purpose tools aimed at verifying a limited set of properties.
The work described in this paper differs in several respects. Most importantly
with respect to the level of the circuit specification. It is possible to check designs
with composite data-types, e.g., n-bit words, hierarchy (which is maintained in
the verification), and non-autonomous parameterized designs. Another interest-
ing difference is that the tools used to check for speed-independence are general
purpose and not constructed specifically for speed-independence. Exactly the
same tools (the Larch Prover [?] and a translator [12]) are used for verifying
other safety properties of design descriptions. The price for the generalization, is
an increased computational complexity of the verification algorithm. However,
the hierarchical verification technique compensates for this. A number of designs
have been verified, including a speed-independent RAM cell, a complex switch
of a data-path, and a number of standard components such as various Muller
C-elements, FIFO registers, and counters.

This paper is organized as follows. Section 2 describes the design language
SYNCHRONIZED TRANSITIONS used for modeling circuits. In Sect. 3 it' is shown
how to define and verify constraints, called invariants and protocols, on a design
and its environment. Section 4 presents the definition of speed-independence, and
informally describes a condition called persistency that guarantees speed-inde-
pendent behavior of a design. Section 5 describes how to check the persistency
condition with a combination of a theorem prover and a simple model-checking
tool. Section 6 demonstrates the application of the method to the mechanical
checking of a recursively described design. The appendix contains a number of
definitions of concepts that are introduced informally in the main text of the

paper.

2 Modeling Circuits

Speed-independence is a property of a physical circuit ensuring that the circuit
operates correctly regardless of the magnitude of delays in all gates of the cir-
cuit. To make formal analysis of speed-independence possible, a model of the
physical circuit is required. In this paper formal transition systems described in
the design language SYNCHRONIZED TRANSITIONS are used to model physical
circuits. As an example, consider a circuit component for a Muller C-element,

this is described as follows:

<< a - - b - > y : = a > > .

In this example, a, b, and y are boolean state variables, and whenever a = b, it is
possible to assign the value of a to y. If a ~ b, then y keeps its current value. This

149

construct is called a t rans i t ion , and it models a single independent component
of a circuit. A circuit with many components (operating in parallel) is described
by composing a number of such transitions (one for each component).

<< a # b - > y := a >> II << a := N O T y >> II << b :-- y >>

This describes a simple oscillator, ff initialized in any state then the oscillator
describes a computation where the three state variables a, b, and y alternate be-
tween T R U E and F A L S E indefinitely. The boolean expression appearing before
- > in a transition is called the precondition, when this is the constant T R U E ,

it can be omitted as exemplified by the last two transitions. State variables are
introduced by a variable declaration.

S T A T E y : B O O L E A N

The name of the state variable (y) denotes the value of the variable. The type
of the state variable (given after the ":") specifies its domain, i.e., the set of
possible values. The state variable y can, for example, take the boolean values
T R U E and F A L S E . The value of a state variable is changed by executing a
transition where the name of the state variable (e.g., y) appears on the left-hand
side of an assignment (:=).

SYNCHRONIZED TRANSITIONS has a number of additional constructs that
are not explained here, see [16] for a comprehensive introduction. The appendix
defines the concepts used in this paper.

2.1 O p e r a t i o n a l M o d e l

A design specifies a set of transitions (fixed throughout the computation) each
of which may execute whenever it is enabled. Although a design description in
SYNCHRONIZED TRANSITIONS has some similarity with a program in a high-level
programming language, the interpretation is very different. An assignment state-
ment in a high-level program is only executed when the control of the program
is at the point of the statement. There is no similar global control flow deter-
mining the computations of a design in SYNCHRONIZED TRANSITIONS, which
just specifies a fixed set of transitions. Unlike a Pascal or C program, the order
in which transition descriptions are written does not influence the computation.
SYNCHRONIZED TRANSITIONS is similar to UNITY [2] which describes a com-
putation as a collection of conditional data-flow actions without any explicit
control-flow. Operationally, the computation can be modeled as repeated non-
deterministic selection and execution of an enabled transitions. In this model,
transitions axe executed:

- one at a t ime , i.e., only one active transition is executed in any state t
- repeatedly, each time it has been executed, it is immediately ready to be

selected again,

- independent ly , of the order it appears in the design description.

i This corresponds to an interleaving semantics of parallel processes.

150

It is not required that a transition is executed immediately after it becomes
enabled, because other enabled transitions may be selected. In fact, there is no
upper bound on when a transition is selected. This corresponds to the unbounded
gate delay in logic circuits [10]. For example, the transition << y := a O R b >>
describes an OR-gate. The implicit precondition, TRUE, specifies that it is al-
ways allowed to set the output, y, to the logical OR of the inputs, a and b;
however, an arbitrary delay may elapse between a change of the inputs and the
changing of the output.

SYNCHRONIZED TRANSITIONS can be used to model circuits at different level
of abstraction. The examples given above show modeling at the gate level. How-
ever, the same language is also used at higher levels, for example, a multiplier
can be described as follows:

< < z : = s * t >>.

Here s, t, and z are state variables of type integer and the transition describes a
state change where the product of s and t is assigned to z.

By modeling a circuit as a design in SYNCHRONIZED TRANSITIONS, it is pos-
sible to formally verify properties of the design, for example functional properties
or refinement. In this paper, the emphasis is on verifying speed-independence,
and the next sections describe how to capture this property as a condition on

the transition system.

3 I n v a r i a n t s a n d P r o t o c o l s

To verify a certain property formally, it is necessary to formulate it rigorously
in such a way that it can be determined unambiguously whether a given design
has the property or not. In this paper, the focus is on formally expressing the
property that a design is speed-independent, however, this is only a special case,
and one can envision many other properties that a designer may wish to verify.
In general, the verification tools for SYNCHRONIZED TRANSITIONS support two
ways of rigorously specifying properties that are to be verified.

Invariants: are predicates over the state variables. They define a restriction on
the allowable subset of the state space (the states for which the predicate

holds).
Protocols: are predicates on pairs of states, Fre,post, defining a restriction on

the allowable transitions between states (to ones where the pre- and post-

state satisfy the predicate).

The language has constructs for writing invariants and protocols. As an illus-
tration, consider an invariant stating that two state variables z and y are never
TRUE simultaneously (mutual exclusion for z and !/).

I N V A R I A N T N O T (z AND y)

The following is an example of a protocol which states that whenever z changes,

it gets the value of either y or z.

151

PROTOCOL x.pre ~ x.post ~ x.post=y.pre OR x.post=z.pre

z./we denotes the value of z immediately before the transition (the pre-state),
and similarly z.post is the value of z immediately afterwards (the post-state).
The same notation is used to write the value of an expression E in the pre-state
as E./we and in the post-state as E.post.

Invariants and protocols are typically used for verifying safety properties of a
design, for example, mutual exclusion, or that variables in the interface follow a
convention such as four-phase signaling (hence the name protocol). An in depth
treatment is given in [16]. Establishing a safety property involves the following
steps:

- finding a way to express a property as an invariant or /and a protocol;
- verifying that the invariant holds in any initial state of the design;
- checking that the invariant holds in all states reachable from the initial states;
- verifying that the protocol holds for any possible transition between reach-

able states.

Notice that invariants and protocols are stated by the designer, and that they
express important safety properties that should hold for any computation of
the design. It is the aim of the verification to check whether they really hold,
i.e., whether they hold for any reachable state of the design and for any possi-
ble transition between reachable states. In section 4 it is is shown how speed-
independence can be expressed as a protocol which may then be verified as any
other protocol.

3 . 1 E n v i r o n m e n t a n d N o n - d e t e r r r d n l s m

In general, the computation of a design depends on the behavior of the en-
vironment. Therefore, to verify the design one needs a way of specifying the
environment. In [3, 4] the behavior of the environment is expressed by the set of
possible signal traces, i.e., using the same model used for specifying the inter-
nal behavior. In [1, 8] the verification is done on an autonomous circuit that is
constructed by composing the original circuit with an environment making the
composition autonomous. This makes it difficult to express a non-deterministic
behavior of the environment. Here we describe behavior of the environment im-
plicitly by defining protocols and invariants constraining the state space and
possible transitions of external state variables.

By making invariants and protocols express information about permissible
environments, it becomes feasible to verify a component in isolation, i.e., with-
out checking the global behavior of the entire design. When combining several
components, it is of course necessary to check that their invariants and protocols
are consistent, i.e., that they have a consistent view of their interface. In [16, 17]
it is shown how such a verification is clone in a localized manner using the same
techniques and tools that are used in this paper for checking speed-independence.

152

ai

Di
LATCH

a o

...__ Do

Di.O

ai
,1

Di.1

Do.O

Do.1

(a) (b)

Fig. 2. The interface to the latch (a), its gate-level realization (b).

E x a m p l e : A P i pe l i ne La t ch . A simple speed-independent pipeline latch is
used to illustrate how to specify a non-deterministic environment. The interface
to the latch consists of four state variables: two boolean acknowledgments, ai, ao,
and two duals, Di, Do, modeling a one bit data-path, see Fig. 2.a. The domain
for the data-path variables contains three possible values of a data bit: {E, T, F}
("empty", "true", and "false"). The variables ao (the output acknowledgment)
and Di (input data) are changed by the environment. Fig. 2.b shows a possible
gate-level realization of a latch based on two C-elements and one NOR-gate [14].
The latch is described in SYNCHRONIZED TRANSITIONS as follows:

CELL latch(ai, ao: BOOLEAN; Di, Do: dual)
BEGIN

<< a i -= empty(Do) >> II << ao # empty(Di) -> Do:= Di >>
END latch

The boolean function empty returns the value TRUE when the value of its dual
parameter is equal to E.

The environment of the latch supplies the dual input, Di, and one can imagine
different behaviors of the environment, it may for example, follow the return-to-
empty-convention where Di has the value E between any two valid values. This
external behavior is described by the following protocol (the predicate same(E)
is a shorthand for E.pre = E.post):

PEt -- (NOT same(Di)) =r
((ai.post ~ empty(Di.post)) AND (ai.post = empty(Di.pre)))

This expresses that whenever Di changes (NOT same(Di)) then its empty sta-
tus must change to the opposite value of the acknowledge ai. Even though this
is a very restrictive protocol, it allows the environment to non-deterministically
choose between the two valid values T and F.

Below a less restrictive protocol is specified where Di is allowed to change
directly from one of the valid values to the other.

PE2 -- (NOT same(Di)) ~ (ai.post # empty(Di.post))

In both eases, ao, must behave as follows:

153

(NOT same(no)) =:~ (no.post : empty(Do.post))

To describe a pipeline latch for a wider data-path, e.g., a 16 bit word, the only
change in the design description is replacing the type dual with another type.
However, the gate level realization of a wider data-path would require a signifi-
cant change (to compute empty).

4 C h a r a c t e r i z i n g S p e e d - i n d e p e n d e n c e

This section gives an informal description of the persistence condition which is a
protocol that must be met by a design ff is going to be realized as a speed-inde-
pendent circuit. In David Muller's original work, speed-independence was defined
through the notion of "final classes" of behavior [13]. This paper follows the more
recent trend defining a circuit to be speed-independent if its correct operation
is independent of gate delays. A practically useful check for speed-independence
cannot be based directly on this definition, because that would require checking a
possibly infinite number of different combinations of gate delays. Instead, we have
found a condition, called the persistency condition, which is both mechanically
checkable and sufficient to ensure speed-independence.

A transition t is persistent, if once it becomes active, it remains active, pro-
viding the same post-value for the write variable, while other transitions occur.
A design meets the persistency condition, if it can be shown that all transitions
are persistent both with respect to changes made by other transitions and with
respect to transitions made in the environment. In the appendix it is shown how
to formulate the persistency condition as a protocol which makes it possible to
check that a design meets the protocol mechanically.

As an illustration, consider again the simple oscillator presented in Sect. 2.

<< a # b - > y : : a >> [[<< a : : N O T y >> I[<< b := y >>

The first transition is persistent because once it is active, it must be the case
that y # a and y = b. The second and third transitions are not active when this
is the case, hence neither a nor b can change value. Similarly, it can be argued
that the other two transitions are persistent.

To illustrate a non-persistent design consider the following modified oscilla-
tor:

<< y : : a OR N O T b>> [[<< a : : N O T y >> I] << b : : y >>

Consider a state where a, b, y : FALSE, FALSE, FALSE. The second transition
is active, but so is the first, ff the first transition changes y to TRUE, then the
second is no longer active, and hence it is not persistent.

Example: T h e P i p e l i n e L a t c h (c o n t i n u e d) . To illustrate the use of the
persistency condition on a non-autonomous design, consider again the pipeline
latch from Fig. 2. It turns out that the speed-independence of the latch depends
on how strong assumptions can be made about the environment. To show that
the latch design satisfies the implementation condition persistency, it is necessary

154

to verify the persistency protocol for each of the two transitions; for brevity only
the protocol for last one is shown below:

(ao.pre r empty(Di.pre)) A (Do.pre r Di.pre) A same(Do)
=r (ao.post r empty(Di.post)) A (Do.post r Di.post) ^ same(Di)

The left side of the implication indicates that the transition is active in the
pre-state. The expression same(Do) makes the condition hold trivially for the
transition itself (as stated in the appendix, this is just a way of encoding the
condition t l ~ t2). The right side of the implication requires that after the state
change from pre to post the transition is still active (in the state post), and
provides the same value for the variable Do (clause same(DO).

It must be shown that for any pair of states (/tee, post) satisfying the pro-
tocol, PE, of the pipeline latch, the persistency protocol holds. In Sect. 3.1 two
different protocols are considered. For the weakest of the two protocols:

PE2 =- (NOT same(Di)) :ez (ai.post r empty(Di.post))
it is not possible to show the persistency protocol, and hence, it cannot be ex-
pected that the pipeline latch is speed-independent when placed in an environ-
ment where only PE~. can be assumed. Consider instead, the stronger assumption
about the environment defined by PEt:

PEt - (NOT same(Di)) =r
((ai.post r empty(Di.post)) AND (ai.post = empty(Di.pre)))

It turns out that with this assumption, it is possible to show that the persistency
protocol is met (see Sect. 5.1), and also that the other parts of the definition are

met.

5 M e c h a n i z i n g t h e C h e c k

This section describes how to mechanize the check of the persistency condition
using a combination of a theorem prover and a simple modal-checker. One of
the possibilities offered by these tools is the ability to check the pipeline latch
separately without giving an explicit circuit realization of the environment.

The tools make it possible to take a design description like the one shown
in Sect. 3.1 and automatically generate verification conditions corresponding to
the persistency condition. These may then be given to the theorem prover for
verification. In some cases, like the two oscillators, no additional information is
needed, however, in more interesting cases, it is necessary to provide an invariant
excluding some or all of the states that the design will never enter. For the latch,

it is for example the case that:
(NOT empty(Do)) AND (NOT empty(D~)) ~ Di=Do

This information may be added as an explicit invariant, and for the simple latch
example it is possible to manually generate the few extra invariants needed (part
of it is shown above), but in larger and more complicated examples, it can be a
significant help to use a model-checking tool to characterize the reachable part
of the state space; this is explained further in the next section.

155

5.1 R e a c h a b i H t y I n v a r i a n t

The reachable state space of a design is usually a small subset of the state space
defined by the cartesian product of the domains of all state variables. A char-
acterization of this reachable state space is useful for almost any kind of formal
verification, and also for verifying speed-independence which is the topic of this
paper. One way to characterize the reachable state space is as an invariant, called
the teachability invariant. Below, it is discussed how to generate this invariant.

Let D be a design in SYNCHRONIZED TRANSITIONS with the set of transitions
t l , ..., t,~, the external invariant I•, and the external protocol PB. Each transi-
tion, t~, defines a state transition predicate t~(Fee, post). In other words, each
transition t~ defines a state transition relation R t ' . The union of these relations
define a state transition relation for the internal state variables of the design.
This relation, R, is defined as follows:

(sl , s2) �9 R I (sl) ^ IE(s) ^ (eE(s , s2) v s2))

Two states S, and $2 are in relation R if they differ either by the value of
an external variable or by the value of the write variable of transition t~. This
variable can change its value from state $1 to state $2 either as defined by
p s (sl , s2) or by , S2).

The transitive closure of R, denoted by R*, is called the teachability relation
of the design. If the initial predicate, U0, is given, then the set of states reachable
from the initial states can be characterized by a predicate, called the teachability
invariant, I~o , that is defined as follows:

Z o(S) �9 u0 s) �9 R"

For simple designs, derivation of this invariant can be done manually, but for
more challenging designs this is too laborious. However, the teachability invariant
can be derived automatically using a model-checking tool. For our experiments
we have used the state generation kernel of the TRANAL system, included in
the FORCAGE system [8]. The algorithm is based on a breadth-first search of
the state transition graph, this is illustrated in Fig. 3. The states of a design are
represented as boolean vectors and transitions as boolean vector representations
of boolean functions. The algorithm proceeds in stages. At the kth stage a kth
layer of states is derived. All states in this layer are reachable from the initial set
of states through k transitions. For the next iteration, the states reachable from
kth layer are found, thus giving the (k + 1)-th layer of states that are reachable
in k + 1 transitions. The algorithm ends when no more new states can be found.
To simplify the check for the fixed point of the generation process, a heuristic is
described in [8] allowing one to compare two layers of the teachability set instead
of performing comparison of the whole set of states in the current layer.

State explosion is a potential danger, of model-checking, however when used
as here to generate invariants of a modular design, we hope to avoid the problem.
The individual cells of a modular design contain relatively few state variables and
model-checking is only used on such limited modules, whereas the composition
of modules is verified using localized verification. However, our experience with
the approach is still limited.

(k+l)-th layer

t_l T t_i
k-th layer t_n I

156

Fig. 3. Breadth-first search for reachability invariant

E x a m p l e : T h e P i pe l i ne L a t c h (c o n t i n u e d) . The following expression char-
acterizes the invariant derived automatically for the pipeline latch:

INVARIANT
(Di -- Do) OR (ai AND empty(Do)) OR ((NOT ai) AND empty(Di))

This invariant, called I below, can be used to verify that the pipeline latch meets
the persistency condition. If the invariant is inserted in the design description for
the pipeline latch and if this is given to the automatic translator, the verification
conditions shown below are generated (they have been simplified a little to make
this presentation more clear). The restrictions on the interface constrains the
environment, but it must also be met by the latch itself, in Sect. 4, this restriction
was defined by the following protocol (PE).

PR 0 TO COL
((NOT same(ao))~ (ao.POST -- empty(Do.POST))) A
((NOT same(DO) (ai.POST r emptyWi.POST)) ̂

(ai.POST = empty(Di.PRE)))

For each (of the two) transitions of the design, it must be shown that it satisfies
the persistency protocol of the other transitions (in this case there is only one),
and the protocol PE describing the environment.

I(pre) A tl (pre, post) ~ PersistenttJ (pre, post)
I(pre) ^ PE(pre, post) ~ PersistenttJ (pre, post)

Where Persisten~i (pre, post) is a protocol describing the persistency condition
for transition tj , i, j E 1, 2. E n d o f e x a m p l e

The verification technique described above has been used to check a number of
designs, for example, a complicated switch of a data-path, various realizations of

157

(* latch *)
<< am:= N O T (p OR q) >> II
<< a = p m O -> p:= a >> []
<< a = qml -> q:= a >> [I

(* OR-gate *) << pmO:= prn OR qrrtO >> II
toggle(qm, qmO, qml) II
{ Iv = 1 I co~.t_o.~(am, p . , , q.~) } II
{ N > l I count_even(am , pro, qm, N DIV ~) }

Fig. 4. The modulo-2"* counter, N = 2'*

a Muller-C element, and a speed-independent RAM design. In the next section,
it is shown how a parameterized recursive design description can be checked for
speed-independence without unfolding the recursion or binding the parameters
to particular values.

6 Verification of Modular Designs

In this section it is shown how localized verification [17] is used to check a
modular, parameterized, and recursively defined design. The modulo-N counter
is an example of such a design; the value of N is left unspecified in the description
which is a recursive composition of a modulo-N/2 counter, a toggle, and a few
simple gates. A 2 '~ counter can be viewed as a composition of a 2 '~-1 counter
and a counter cell, as shown in Fig. 1. The counter cell is composed of a toggle
element, a pipeline latch (from Fig. 2.b), and an OR-gate. A SYNCHRONIZED
TRANSITIONS description of a modulo-2 '~ counter is given in Fig. 4. The complete
counter that works for arbitrary numbers has been designed and verified, it is
omitted in this paper, because it does not show anything substantially new
compared to the modulo-2 '~ counter.

The design shown in Fig. 4 is the same as the one shown in Fig. 1. The
first three transitions correspond to the latch (shown in Fig. 2) and the fourth
transition is the OR-gate. The last three lines describe the sub-cells. The first
is a toggle element. Then follows two conditional instantiations, if N > 1 a new
instance of the count-even cell is made (the modulo-N/2 counter) and if N = 1
the recursion stops by instantiating a simple modulo-1 counter.

Using the approach described in this paper, the verification of the speed-
independence of the modulo-2 '~ consists of the following steps:

1. describe the cell interfaces by protocols (and invariants),
2. generate the persistency protocol for each cell,
3. generate the reachabillty (or another sufficiently strong) invariant of each

cell,
4. generate the verification conditions,
5. verify the verification conditions.

158

The last four steps can be done mechanical]y whereas the first step requires some
insight in the design in order to capture all essential aspects of the environment
of a cell. Each step is now illustrated using the modulo-T* counter as an example.

Protocols for the Cell Interfaces." When the interface variables of the counter
cell change, it is always known what the new value is, e.g., whenever p (or q)
change it becomes equal to a. This is described by the following protocol:

PROTOCOL
NOT same(p) ~ p.post = a.pre AND
NOT same(q) ::~ q.post = a.pre AND
NOT same(a) ~ a.post # (p.pre OR q.pre)

Similar protocols are needed to describe the interfaces to the toggle cell and
the modulo-1 counter. It requires some experience and insight in the design to
come up with these protocols. If they are too weak (does not contain enough
information) it will not be possible to verify the desired properties and the entire
verification cycle must be repeated.

The Pe r s i s t ency P ro toco l . It can be verified that the counter is speed-inde-
pendent by showing that it meets definition 4. This is done by including per-
sistency protocols in the design description, for example, in the cell count_even,
the persistency protocol for the four transitions is:

((am.pre~NOT(p.pre OR q.pre) AND SAME(am)) =~
(am.post-~NOT(p.post OR q.post))) AND

(((a.pre=pmO.'pre) AND (p.pre~a.pre) AND SAME(p))
((a.pos~=pmo.post) A~D (p.post~.post))) AND

(((a.pre=qml.pre) AND (q.preTta.pre) AND SAME(q)) :ez
((a.po,t=qml.post) AlVD (q.post#a.post))) AND

((pmO.pre# (pm.m OR qmO.p,'e) AN" SAME(pmO))
(pmO.post~ (pro.post OR qmO.post)))

Similar protocols are needed in the other cells (toggle and count-one).

The Reachabillty Invarlant. To verify that the design meets the consistency
protocols (and the other protocols formulated by the designer) it is necessary
to find an invariant for each cell. The toggle and the count-one cells are simple
enough that a suitable invariant can be formulated by the designer. However, for
the count-even cell, it is possible to generate the following invariant automatically

as described in section 5.1:

159

INVARIANT
((NOT pro) AND (NOT qmO) AND (NOT p) AND (NOT pmO) AND

((am AND qm AND qml) OR
((NOT am) AND ((NOT qra) AND (NOT qral) OR (q AND qral)))))
oR ((NOT q) aND (NOT qm~) aND (am aND (NOT pro) AND q~ aND

((pmO AND qraO) O_H
((NOT p) aND (NOT pmo)))
OR (pmo AND q.~O aND p AND (NOT .m) AND (NOT pro)) OR
((NOT qm) aND (NOT q.~O) A~D (pro aND pmO AND (~ OR p) OR
(~ aND (NOT p) AND (~OT p,~O)) OR

(p AND (NOT .m) AND (NOT pro))))))

This is by construction an invariant, and hence, it need not be verified again, it is
however included in the design description and utilized to verify the persistency
and other protocols.

T h e Verification Condit ions. To verify that the modulo-N counter meets the
persistency protocols the design description is translated into a number of ver-
ification conditions for the theorem prover. The localized verification technique
embedded in the translator utilizes the modular structure of the design; there-
fore, the number of verification conditions that are generated to verify speed-
independence (or any other safety property that can be described as an invariant
or protocol) is linear in the size of the design description. In case of the modulo-
N counter, the number of verification conditions is independent of N (which
determines the depth of recursion).

First, all transitions of each cell are verified locally by showing that the
(local) invariants and protocols of that cell (including persistency) will hold
after executing the transition, assuming that the invariant held in the pre-state.
This is a standard way of verifying invariance [6].

The second step is to verify that no cell instantiation results in a design where
the invariants and protocols for the instantiated cell are violated by the envi-
ronment and vice versa. This is done using the localized verification technique
[17] without considering the individual transitions of the cell or the environment.
Instead the invariants and protocol of the instantiating cells are assumed to ex-
press sufficient constraints on the state changes of the environment to show an
implication ensuring that the protocols and invariants of the instantiated cell
hold. For example, to verify the instantiation of the cell toggle the following two
implications must be shown:

X..(~.e) ^ I , (~e) ^ [,(po,t) ^ P , (~e . po,t) ~ 1..(post) ^ P . . (~e . po~t)

Zce(~e) ^ h (~ e) ^ Ic,(vost) ^ Po,(we, vo,t) ~ h(r,o,t) ^ P t (~ e , ~ , t)

I and P are the invariants and protocols in the toggle cell (subscript t) and the
count-even cell (subscript ce). Note that the two conditions avoid considering
the individual transitions of the two cells. Two similar conditions axe generated
for each cell instantiation in the design. Note also that the protocol, for example

160

Pt, includes the persistency protocols. Hence, these proof obligations cover part
2 of definition 4.

A more detailed description of the localized verification technique is given in
[17] which also contains a proof of the soundness of the technique.

T h e Veri f ica t ion . The verification of the counter with the mechanical tools
shows that the persistency condition is met; therefore, the counter design is
speed-independent. The complete verification of the counter with the LARCH
PROVER on a DEC Alpha station took approximately 22 rain, and the run time
is independent of the actual size of the counter (parameter N).

A drawback of theorem provers is that they often require intensive human
interaction during the verification. Our translator generates a script that con-
trols the verification and usually only a little additional manual interaction is
needed. To verify speed-independence of the modulo-N counter, it was necessary
to manually help the theorem prover approximately once, for each verification
condition.

7 Conclusion

This paper has described a set of mechanical tools that can be used to assist
a designer in verifying that a design is speed-independent. There are already
model-checking tools available for this. However, as demonstrated above, the
use of general purpose tools gives some new possibilities like checking high-level
and incomplete designs. Furthermore, the use of general purpose theorem provers
avoids the need for constructing specialized tools. Although the run-time for the
method described in this paper is worse than for checking speed-independence
by known model-checking tools, we find that it is still reasonable for practical
applications. For example, all components of a vector multiplier design were
verified within a few hours of run-time on a DEC Alpha station. Several mis-
takes in the design were found. The inherent universality of theorem provers
allows one to verify any properties expressible in the logic theory underlying the
particular theorem prover. The persistency condition is an example of a safety
property, and any other safety property can be mechanically verified using the
same combination of a theorem prover and model-checker.

A p p e n d i x . N o t a t i o n a n d T e r m i n o l o g y

A design consists of a set of state variables, st, s2 , . . . , s,,, and a number of tran-
sitions, t l , t 2 , . . . , t,,~. For a given design, the set of state variables and transitions
are fixed. In this paper, we focus on a subset of SYNCHROnIZeD T~L~,~SITIONS
in which all variables are of finite types, i.e., each variable has a finite set of
possible values from a fixed finite domain (determined by the type).

161

Each transitions, t, has a form <<Ct - > zt :-- Et>>, where Ct - is a predicate
called the precondition, zt is a state variable, and Et is an expression, that has
a unique value in any state. The transition t is enabled (in a state s) if and only
if Ct is satisfied (in s). The transition t is active (in a state s) if and only if
it is enabled and zt ~ Et (in s). For each transition, t, the predicate active t is
defined as follows:

active t =- Ct A (zt ~ Et)

When necessary, this predicate is explicitly applied in a particular state, s, and
then written as active t (s).

A transition defines a set of ordered pairs of states, for each such pair, the
first element is called the pre-state and the second the post-state. More formally,
each transition t defines a predicate t(p~e, post) on the pairs of states such that:
activet(tn'e) and state post differs from the state Im'e only by the value of the
variable zz, i.e., zt.post = Et.tn'e, where zt.post denotes the value of zt in the
post-state, and similarly Et.tn'e is the value of an expression E in the pre-state.
The predefined predicate same(z) is a shorthand for z.pre = z.post, where z
can be any state expression.

A design defines a set of computations that are sequences of states, So, $1 , . . . ,
where So is an initial state, and for each pair, S~, Sr there is a transition, t,
such that t(S~, Si+l), i.e., S~ is a pre-state of t , and S~+1 is a post-state of t . Note,
that there is only a single transition accounting for one step of the computation
(going from S~ to S~+1). Alternatively it might be external variables of the design
that change value between S~ and Si+l according to the external protocol.

The initial state (or set of states) is specified by defining the initial value of
some or all of the state variables.

I N I T I A L L Y a -- F A L S E b -- F A L S E

State variables get their initial value before any transitions are executed, and
they retain this value until a different value is assigned to them. It is not required
that all state variables are given an initial value.

A1. Well-behaved Designs

To ensure a one to one correspondence between a design description in SYN-
CHRONIZV.D TRANSITIONS and its circuit realization, it is necessary to exclude
certain designs, for example, those that contain contradictory assignments to the
same state variables.

The write set, W t, of a transition, t, is the set of state variables appearing
on the left-hand side of assignments. In this paper multi-assignments are not
considered, therefore the write set has a single element: W t = {zt}. Similarly,
the read set, R t, of a transition is the set of state variables that appear in the
precondition and on the right-hand side of the assignment.

162

Definit ion 1. The transitions t l , t 2 , . . . t , meet the ezclusive write condition if
and only if:

vi, j ~ [1..n] : w t' n w ' J # ~ ~ ~(c~, ^ c~j)

This condition ensures that there are no states where different enabled transi-
tions can assign to the same state variable.

D e f i n l t l o n 2 . The transitions t l , t2 , . . . tn meet the unique write condition if
and only if for each state variable z and for each value, v, in the domain of state
variable, z, there is a unique transition that can assign the value v to the state
variable z.

This condition ensures that for each value that a state variable may get, it is
possible to identify a unique transition assigning that value.

De f in i t i on 3. A SYNCHRONIZED TRANSITIONS design is called well-behaved if
it obeys the exclusive write and unique write conditions.

It can be shown that the expressiveness of well-behaved SYNCHRONIZED TRAN-
SITIONS designs is enough to code any asynchronous logic circuit.

A 2 . C h a r a c t e r i z i n g S p e e d - i n d e p e n d e n c e

Let t be a transition of a design. The protocol Persistent t (pre, post) is defined

as follows:

P e,sistent' (pre, post) -- Active' (pre) =~ (Active' (post) ^ same(Et))

Intuitively, Persistent t defines the constraint that transition t stays active, pro-
viding the same post-value for the write variable, while other transitions occur. If
the write variable of the transition t is of type boolean, then the latter conjunct,
same(Et), is redundant.

Def in i t i on 4. Let D be a design with the invariant Itr and the protocol
PE(pre, post). Then D satisfies the persistency condition, if the following can be

shown:

1. for all pairs of transitions t l , t2 in D, t l ~ t2:
t l (pre, post) ^ ./tr (pre) =~ Perslstent t~ (pre, post)

2. for any transition t in D:
PB (10re, post) ^ Itr (pre) ~ Persistent' (pre, post).

When a design meets the persistency condition, it is ensured that no active
variable is disabled by the state changes of other transitions or by the state
changes of the external variables. The justification of the persistency condition is
given in [9], where it is argued that a well.behaved SYNCHRONIZED TRANSITIONS
design is speed-independent, if and only if it satisj~es the persistency condition.

163

The persistency protocol generalizes the notion of a conflict state [8], that is
used for analysis of semi-modular binary circuits.

In the mechanical tools described in this paper the following formulation of
the protocol Persistentt(pre,post) is used:

Per sistentt (pre, post)
Active t (In'e) A same(W t) ::~ (Active t (post) A same(Et))

An additional clause same(W t) guarantees that transition t has not occurred
between states w e and post. This clause ensures that the t l ~ t~ condition holds
as required by definition 4.

References

1. P.A. Beerel and T.H.-Y. Meng. Seml-modularity and testability of speed-
independent circuits. Integration, the VLSI journal, 13(3):301-322, September
1992.

2. K. Mani Chandy and 3ajadev Misra. Parallel Program Design: A Foundation.
Addlson-Wesley, 1988.

3. D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. The MIT Press, Cambridge, Mass., 1988. An ACM Dis-
tinguished Dissertation 1988.

4. Jo C. Ebergen and S. Gingras. A verifier for network decompositions of command-
based specifications. In Proc. Hawaii International Conf. System Sciences, pages
310-318. IEEE Computer Society Press, 1993.

5. Jo C. Ebergen and Ad M. G. Peeters. Design and analysis of delay-insensitive
modulo-N counters. Formal Methods in System Design, 3(3), December 1993.

6. R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Proceed-
ings of the Symposium in Applied Mathematics, volume 19, pages 19-32. American
Mathematical Society, 1967.

7. John V. Guttag, James J. Homing with S.J. Garland, K.D. Jones, A. Modet, and
J.M. Wing. Larch: Languages and Tools for Formal Specification. Sprlnger-Verlag
Texts and Monographs in Computer Science, 1993. ISBN 0-387-94006-5, ISBN
3-540-94006-5.

8. M. A. Kishinevsky, A. Y. Kondratyev, A. R. Taubin, and V. I. Varshavsky. Con-
current Hardware. The Theory and Practice of Self-Timed Design. John Wiley
and Sorts Ltd., 1994.

9. Michael Kishinevsky and J#rgen Staunstrup. Checking speed-independence of
high-level designs. In Proceedings of the Symposium on Advanced Reserch in Asyn-
chronous Cirsuits and Systems, Utah, USA, November 1994. to appear.

10. L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing
of asynchronous circuits. Kluwer Academic Publishers, 1993.

11. Alain J. Martin, Steven M. Burns, T .K . Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The first asynchronous microprocessor: the test results. Computer
Architecture News, 17(4):95-110, June 1989.

12. Niels Mellergaard. Mechanized Design Verification. PhD thesis, Department of
Computer Science, Technical University of Denmark, 1994.

164

13. D. E. Muller and W. C. Bartky. A theory of asynchronous circuits. In Annals of
Computing Laboratory of Harvard University, pages 204-243, 1959.

14. David E. Muller. Asynchronous logics and application to information processing.
In H. Aiken and W. F. Main, editors, Proc. Syrup. on Application of Switching
Theory in Space Technology, pages 289-297. Stanford University Press, 1963.

15. Christian D. Nielsen. Performance Aspects of Delay-Insensitive Design. PhD the-
sis, Technical University of Denmark, 1994.

16. Jcrgen Staunstrup. A Formal Approach to Hardware Design. Kluwer Academic
Publishers, 1994.

17. JCrgen Staunstrup and Niels Mellergaard. Localized verification of modular de-
signs. Formal Methods in System Design, 1994. accepted for publication.

18. Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken, and
Frits Sehallj. A Fully-Asynchronous Low-Power Error Corrector for the DCC
Player. In ISSCC 1994 Digest of Technical Papers, volume 37, pages 88-89, San
Francisco, 1994.

