
Automatic Correctness Proof of the
Implementation of

Synchronous Sequential Circuits
Using an Algebraic Approach

Junji Kitamichi, Sumio Morioka, Teruo Higashino and Kenichi Taniguchi

Department of Information and Computer Sciences, Osaka University
Machikaneyama 1-3, Toyonaka, Osaka 560, Japan

Tel: +81-6-850-6607 Fax: +81-6-850-6609
E-mail: {kitamiti,morioka,higashino,t aniguchi} @ics.es.osaka-u.ac.j p

WWW: http: //sunfish.ics.es.osaka-u.ac.jp/

Abs t r ac t . In this paper, we propose a technique for proving the cor-
rectness of the implementations of synchronous sequential circuits au-
tomatically, where the specifications of synchronous sequential circuits
are described in an algebraic language ASL, which we have designed,
and the specifications are described in a restricted style. For a given ab-
stract level's specification, we refine the specification into a synchronous
sequential circuit step by step in our framework, and prove the correct-
ness of the refinement at each design step. Using our hardware design
support system, to prove the correctness of a design step, we have only
to give the system some invariant assertions and theorems for primitive
functions. Once they are given, the system automatically generates the
logical expressions from the invariant assertions and so on, whose truth
guarantees the correctness of the design step, and tries to prove those
truth using a decision procedure for the prenex normal form Presburger
sentences bounded by only universal quantifiers. Using the system, we
have proved the correctness of the implementation of a GCD circuit,
the Tamarack microprocessor, a sorting circuit and so on, in a few days.
The system has determined the truth of each logical expression within a
minute.

1. I n t r o d u c t i o n

Recently, many hardware description languages such as VHDL [8], Verilog
HDL [17] and SFL [13] have been proposed. In order to develop reliable cir-
cuits, the specifications must be described formally, and the semantics of the
specification languages and the correctness of the refinements should also be de-
fined formally. Formal description techniques (FDT), which have those features,
are studied widely [1-3, 5, 9, 14]. In the fields related with FSM, for example,
the verification using Larch Prover for proving the correctness of the design of
pipelined CPU's has been described in [15]. Some properties of sequential cir-
cuits have been verified in [16]. We describe the functions of a sequential circuit
as a requirement specification. For example, as the requirement specification of
a G C D circuit, we describe that the output of circuit must be the greatest com-
mon divisor of two inputs. Here we want to prove that synchronous sequential

166

circuits satisfy their functional requirements, and we don't treat the verification
for timing, temporal properties such as liveness property and so on. To specify
and verify such properties, the higher order logic approaches or the temporal
logic approaches are suitable.

In this paper, we propose a technique for proving the correctness of the imple-
mentations of synchronous sequential circuits automatically, where the specifi-
cations of synchronous sequential circuits are described in an algebraic language
ASL, which we have designed [10] 1. We have developed a hardware design sup-
port system using ASL. For a given abstract level's specification, we refine the
specification into a synchronous sequential circuit step by step in our frame-
work, and prove the correctness of the refinement at each design step using o u r
hardware design support system automatically.

In our approach, the specifications and implementations of synchronous se-
quential circuits are described as sequential machine style specifications that
correspond to FSMs with registers. The control flows of the circuits may depend
on not only the current control state but also the current values of the registers.

We introduce a type state representing the abstract state of the system. Each
transition corresponds to the action for changing the values of the registers and
is treated as the state transition function which returns the next abstract state
from the current abstract state. The content of each register is expressed by the
state component function which returns the value of the register at the current
abstract state. In the abstract levels' specifications, a complicated action may
be specified as a transition.

At each level (denoted as level k), the relations between the current registers'
values and those values after each transition is executed are described as the
axioms (Dk). The order and execution conditions of the transitions are also

described as the axioms (Ck) ~
At the next level (denoted as level k + 1), such a complicated action is refined

as the execution of a sequence of some more concrete actions and its repetitions.
The correspondence from the functions (state components and state transitions)
in level k + 1 to the functions in level k is also described as the axioms. The cor-
rectness of the refinement is proved by showing that each axiom in level k holds
as the theorem on level k + 1 description ((Dk+l, Ck+l)), the correspondence
(Mk) and the theorems for primitive functions/predicates (PRM). We repeat
those refinements until we can get a synchronous sequential circuit 3

In this paper, we adopt a restriction for describing each level's specification.
The restriction is as follows: we only use a variable s of sort state in the axioms
for describing the relations between the current registers' values and those values

a The name "ASL" is also used in [18]. Of course, these two languages are different.
2 On the concrete level's specification, the definitions of the registers (including the

state register in the controller) and the combinatorial circuits are described. The
connection between these components are also described.
After some repetitions of the refinements, the redundant transitions may be gener-
ated in the concrete level's circuit. However, such redundant transitions are deleted

using our system [11].

167

after the transition is executed. We don't use other variables. For example, let
MEM(T(s)) denote the contents of a memory after the transition T is executed,
and let I I (s) and I2(s) denote the pointers for the memory before the transition
T is executed. If we want to describe the property that the contents of the
memory MEM(T(s)) are arranged in ascending order from position I I (s) to
position I2(s), then we describe the axiom as follows.

0 _</ l (s) _< I2(s) < g
imply ordered(MEM(T(s)), II(T(s)), I2(T(s))) = = T R U E

where ordered(a, i, j) is a primitive predicate which represents that the contents
of memory a are arranged in ascending order from position i to position j .
We don't use, for example, the following description style because it includes a
variable i other than s.

0 < I I (s) < i < I2(s) < g
imply MEM(T(s))[i] < MEM(T(s))[i + 1] = = T R U E

Under the restriction of description style, the verification of a refinement can be
done as follows.

(1) If a transition of level k is refined using some repeated executions of the
transitions at level k + l , we use a N6therian induction on transitions to prove
the correctness of the implementation. In the induction, first, we assign the
invariant asserlions for some intermediate states. We don't use any variable
except the variable s of sort state for describing the assertions.

(2) At the each step of the induction, we construct a logical expression P rep-
resenting that the assertion (or the property to be proved) holds after a
transition t of the lower level k + 1 is executed if the assertion holds before
the transition is executed. The constant S is substituted for the variable s
in the assertions and so on, therefore P doesn't contain any variables.

(3) Consider the proof of the expression P. First, we make a precondition R cor-
responding to both the axioms A X representing the content of the transition
t and the theorems for primitive functions/predicates P R M . The following
is an example of theorems for the primitive predicate ordered:

0 < i < j < g A a[i] < a[i A- 1] A ordered(a, i + 1, j)
imply ordered(a, i, j) == T R U E

The constant S is substituted for the variable s in the expressions corre-
sponding to AX. The terms such as f (S) or f (t (S)) representing the values
of the state components at state S or state t (S) are substituted for the vari-
ables in the expressions corresponding to P R M . Therefore, the expression
R doesn't contain variables. Then, we construct the expression R imply P.

(4) Assume that R imply P consists of Boolean operators, integer operators
and some terms whose sorts are integers or Booleans. If R imply P is true
regardless of the values of those terms, that is, if R imply P is true for
any integer values of those integer terms and any Boolean values of those
Boolean terms, then we conclude that P is true.

(5) If the operators among those terms are restricted to '%, V, ~, +, - , =,
>", then the condition that the expression R imply P is true regardless

168

of the values of the terms can be expressed in a prenex normal form Pres-
burger sentence bounded by only universal quantifiers. (The form is like
VVlVV2...Vvn EXP(v l , v 2 , . " , Vn).) It is decidable whether the Presburger
sentence is true [7] 4 For example, Presburger sentence which corresponds
to an expression

(r l (S) + r2(S) = r l (S) x r2(S) Vpred(rl(S)) A . . .) imply (r l (S) > 0 V . . .)

is as follows.
VvlVv2Vv3Vv4...((vl + v2 = v3 V v4 A . . .) imply (vl > 0 V. . .))

The variables Vl, v2, v3 and v4 correspond to the terms r l (S) , r2(S), r l (S) x
r2(S) and pred(rl(S)), respectively. Here, Vl, v~ and v3 are integer variables,
and v4 is a Boolean variable.

We have developed a verification support system (verifier) where the above veri-
fication method is used. The verifier has a routine to decide efficiently whether a
given prenex normal form Presburger sentence bounded by only universal quan-
riflers is true 5

Under this verification method, we have proved the correctness of the imple-
mentations for the GCD circuit given as the TPCD94 benchmark, the Tamarack
microprocessor used as a verification example in [9] and a maxsort circuit we
have designed. The design and verification of the GCD circuit have been car-
ried out within two days which contain the time used for trial and error in the

verification.
As we mentioned above, when we prove the correctness of a refinement using

this verifier, one have only to give the system some invariant assertions, theorems
for the primitive functions and the substitutions for the variables of the theorems.
Once they are given, the verifier automatically tries to prove, and one need not
send the system many commands interactively.

The paper is structured as follows. The description style of synchronous se-
quential circuits is explained in Section 2. In Section 3, we describe a stepwise
refinement. In Section 4, we define the correctness of the refinement in our frame-
work formally and explain basic techniques for verifying the correctness of the
refinements. In Sections 2, 3 and 4, we use the GCD circuit as an example for
explanation. The experimental results of the verification of the GCD circuit are
given in Section 4, and those of the CPU and maxsort circuit are also given in
Section 5. In Section 6, we give the concluding remarks.

2. A l g e b r a i c L a n g u a g e A S L a n d D e s c r i p t i o n s o f S y n c h r o n o u s

Sequential Circuits
In general, the synchronous sequential circuits can be modeled as the finite

state machines with registers. The specification S of a synchronous sequential

-4 Usually thePresburger sentence doesn't contain any Boolean variable. However, the
truth of the sentences w~ch contain some Boolean variables is decidable. In this
paper, we also call such sentences "Presburger sentences".
The routine can decide the truth of the sentences which have some Boolean variables.
We have implemented the routine by integrating the tautology checking algorithm
for the propositional logic into the Cooper's algorithm given in [4].

169

circuit consists of a pair (D, C) of a description D of the contents of transitions
and a state diagram C. In D, the relations between the current registers' (mem-
ories') values and those values after the transition is executed are described. In
C, the condition to execute each transition at each finite state is described, and
the next finite state after the transition is executed is also specified.

Here, we describe the specifications of synchronous sequential circuits in our
algebraic language ASL [10]. A specification in ASL is a tuple t = (G, A X) ,
where G is a context free grammar without a starting symbol, and A X is a
set of axioms. In ASL, we assume that the (infinite) axioms for primitive func-
tions/predicates are given as the definition tables which represent the values of
functions/predicates for all input values. An ASL text (specification) can include
such definition tables.

Here, we explain a requirement description (level l ' s description) of the GCD
calculator shown in Table 1. (The descriptions of the grammar are omitted. They
are also omitted in the other tables of this paper.) We introduce ttl, R2 and R4
as the registers in the level l ' s circuit. These registers correspond to the registers
M a x , M i n and X2 given in Fig. 14-1 of the TPCD94 benchmarks, respectively.
Then we introduce the abstract transitions c a l cg cd and hop. For example, by
executing the transition ca lcgcd, the value of the GCD of R1 and R2 is calculated
and transferred to R4. We use the following primitive functions.

- M a z M e m b e r (s i) : A function which represents the maximum value in a set
si of integers. This function is defined only when si isn't empty.

- Div i sorSe t (i) : A function which represents the set of divisors of an integer
i. This function is defined only when i isn't zero.

- Intersect ion(s i , s j) : A function which represents the set of intersection of
two sets si and s j of integers.

Table 1. Description of GCD level 1 (D1 and C1)
i n i t l : Rl (in i t (A,B)) == Max(A,B);
init2: R2(init(A,B)) =-- Min(A,B);
gcdl :

(I <= R2(s) and R2(s) <= Rl(s) and Rl(s) <= N) imply
R4 (calcgcd(s))

= MaxMember (Intersection(DivisorSet (R2 (s)), DivisorSet (RI (s))))== TRUE;
nopl: R4(nop(s)) == R4(s) ;

validl : VALID(init (A,B)) == TRUE;

valid2: VALID(calcgcd(s)) == VALID(s) and CONTROL(s)=INIT;

valid3: VALID(nop(s)) == VALID(s) and CONTROL(s)=END;
controll: CONTROL(init(A,B)) --= INIT;

control2: CONTROL(calcgcd(s)) == if CONTROL(s) -- INIT then END;

c,ontrol3: CONTROL(nop(s)) =-- if CONTROL(s) = END then END;

Using the primitives above, we describe the contents of transitions (D1).
For example, the axiom gcdl means that R 4 (c a l c g c d (s)) should be the max-
imum number of the intersection of the divisor sets of R l (s) and R2(s) un-
der the assumption R l (s) is greater than or equal to R2(s) 6. The values of

6 In this example, we use a formal parameter N as the maximum value of the registers.
The results of our verification are valid for any positive integer value of N.

170

R1(calcgcd(s)) and R2(calcgcd(s)) aren't specified and hence any values of
these terms are permitted. The axioms don't have any variable other than s.

We also describe the state diagram (C1) as the axioms using both the pred-
icate VALID and the function CONTROL. The predicate VALID represents the ex-
ecution condition of each transition. The function CONTROL represents the state
name. (At the concrete level, the function represents the value of the state reg-
ister.) For example, the axiom valid2 means that the execution condition of
calcgcd is CONTROL(s) = INIT 7. The axiom control2 means that the value of
controller after the execution of calcgcd at state INIT is END.

3. Stepwise Refinements

In this section we explain how to refine a specification.
Let Sk = (Dk, Ck) denote a level k's specification. In our framework, the

specification Sk+1 = (Dk+1, Ck+1) is obtained as follows.

(1) We introduce the primitive functions at level k -{- i.

(2) We introduce some state component functions at level k + I.

(3) We introduce some state transition functions at level k -{- I and describe
Dk+l using the primitive/transition functions. (In the concrete level (circuit
level), we describe both the definition of the components in the circuit and
the connections between the circuit's components as Dk+l. Sec Section 3.3.)

(4) We give the correspondence M~ (mapping functions) as follows.

(4-1) We give the correspondence from the state components functions at level
k + 1 to those at level k.

(4-2) We give the correspondence from the state transitions functions at level
k + 1 to those at level k. Each transition at level k is implemented as
the execution of a sequence of some transitions at level k + 1 and its
repetitions 8

We don't give the mapping explicitly if a function F in the level k corresponds
to the same function F in the level k + 1.

(5) The system can automatically synthesize the level k + l 's state diagram Ck+l
from both the level k's state diagram Ck and the correspondence M~. (In
the concrete level, we describe the circuit's controller as Ck+l. See Section

3.3.)
(6) For the derived level k+ l 's specification Sk+l, we prove that Sk+l is a correct

implementation of Sk under the correspondence Mk. The proof method is
summarized in Section 4.

(7) Some redundant state transitions may be included in S~+I, even if Sk+l is
a correct implementation of Sk. For example, we may be able to merge two
consecutive transitions into one transition. Such an optimization is carried
out using our hardware design support system.

r In general, the execution condition of a transition is written as a sum of products
(current state and selection condition).

s The mapping is written by mutual recursive expressions with only tail recursions, so
that the controller can be implemented by a finite state control.

171

The process described above is continued until a concrete circuit is derived. In
the concrete level, the state component functions (including C01~TROL) correspond
to the hardware components such as the registers, memories, flip-flops and so on.
The state transition functions correspond to the data calculations and transfers
among those hardware components caused by one machine clock. The details
are explained in Section 3.3.

3.1 E x a m p l e o f r e f i n e m e n t t o level 2 o f G C D c i rcu i t

In this section, we explain how we have refined the level l ' s specification.

R4toR3andMODtoR4
net E q u ~

R ltoR3andR2toR4 EqmlZero(MOD(R3,R4))

init R4toR3andMODtoR4 n o v

Level 2 ~ r LOOP n END

R ltoR3andR2toR4 EqmdZem(MOD(R3,R4))

init' R4toR3andMODtoR4 nov ~, End

Level 3

S T A ~ T ~ ~ , START

Fig. 1 State diagram of each level of GCD circuit

At first, we have decided to use the Euclid's algorithm to calculate the value
of GCD. Then, we have introduced the following primitive function and predicate
in the level 2.

- M O D (i , j) : A function which represents the value of i mod j where i and j
are both integers. This function is defined only when the integer j isn't zero.

- EquaIZero(i) : A predicate whose value is t rue if and only if an integer i is
equal to zero.

We have introduced R3 as a new register in the level 2. This register corresponds
to the register X1 in Fig.14-1 of the TPCD94 benchmarks. The circuit also has
three registers R1, R2 and R4 which are the same as the those in the level 1.

We have introduced the following transitions (Table 2). We call the descrip-
tion of the contents of these transitions as D2.

- RltoR3andR2toR4 : A transition to execute parallel data transfers; the trans-
fer from R1 to R3, and that from R2 to R4.

- R4toR3andHODtoR4 : A transition to execute parallel data transfers and cal-
culation; the transfer from R4 to R3, the calculation of the value of HOD (R3, R4)
and its transfer to R4.

172

We have described both the order of the execution of transitions and the exe-
cution conditions for their executions (Table 3). This is also a description of the
correspondence from the transitions in the level 2 to the transition c a l c g c d in
the level 1. We call this description M1. All of the axioms in M1 and D2 don't
have other variables than s.

Then the system automatically derived the state diagram C2 (Fig. 1) from
C1 and M1. Here, let L be the state diagram for ca lcgcd. The L has three states
STO, ST1 and ST2. STO is the initial state of L and ST2 is the end state of
L. The states I N I T , L O O P and E N D in Fig. 1 correspond to STO, ST1 and
ST2 , respectively.

Table 2. Description of the contents of the transitions in GCD level 2 (D2)

R3(RltoR3andR2toR4(s)) == Rl(s);
R4(RltoR3andR2toR4(s)) == R2(s);
R3(R4toR3andNODtoR4(s)) == R4(s);
R4(R4toR3andHODtoR4(s)) == MOD(R3(s),R4(s));

Table 3. Description ofthe correspondence (MI)

calcgcd(s) =-- Sl(RltoR3andR2toR4(s)) ;
Sl(s) == if (EqualZero (NOD(R3 (s), R4(s))))

then hop(s)
else S1 (R4toR3andMODtoR4 (s)) ;

3.2 Refinement to level 3 of GCD circuit

We have designed level 3's specification as follows.

(a) We have introduced an additional new state UNDEF so~,that the total
number of states becomes four, since we assume that the controller is imple-

mented by using two D Flip Flops.
(b) We introduced the input signal S T A R T . Whenever S T A R T signal becomes

true, the transition init ' will be executed and the circuit enters I N I T 9

(c) We added the output signal End as follows.
End(s, START, A, B) ==

(-~ S T A R T A CONTROL(s) = LOOP A EqualZero(MOD(R3(s), R4(s))))

V (-1 S T A R T A CONTROL(s) = END)
V (-1 S T A R T ^ CONTROL(s) = UNDEF);

The state diagram of the level 3's specification is shown in Fig. 1.

3.3 C o n c r e t e i m p l e m e n t a t i o n o f t h e G C D circuit
The concrete implementation (level 4's specification) is the same as the im-

plementation of the TPCD94 benchmark 10
We have defined the circuit's components such as registers (including the

state register of the controller) and combinatorial logic circuits (Table 4). For

8 Since the GCD circuit in [12] uses this S T A R T signal, we have also introduced it at
the level 3. In our circuit, the circuit enters state E N D and outputs End signal, if
S T A R T signal isn't given at state UNDEF. These are based on [12].

10 We have found some errors in the Tables 15-2,15o3 and 15-4 of TPCD94 benchmarks
vl.0.0 during the verification using our verifier, and we have corrected the errors.

173

example, the axiom r eg is the definition of the state component function REG
(register). The state transition r of the register corresponds to the transition
caused by a clock signal.

Table 4. Definition of logical components of GCD circuit
reg: REG(CK_r(r_s,ctl ,data)) == i f c t l then data e lse REG(r_s);
q: Q(CK q(d_s,d)) == d;
m u l : M u l (n , m , u) == i f u t h e n n e l s e m;

The circuit has four registers and two D-FFs. (These D-FFs compose a state
register of the controller.)

The state of the total circuit is described as the tuple of the state of each
component. The state of the i-th component can be refered by the primitive
function proj_i .

The data path between the registers is shown in Fig. 2. In the Table 5, the
content of the transition CK under the data path shown in Fig. 2 are described.
The transition CK is caused by a machine clock. The content of CK are determined
by the current values of registers, the values of the control signals for the circuit's
each component and the values of the circuit's input signals. The description D4
of the content of transition in level 4 consists of the descriptions shown in Table 4
and Table 5.

StoreVergl SeleetLoop StoreLoop EqualZero

MinMax

A = nA

B = [nB nMul R 1 nMul

1 / n R E G
0 n O ~ - - ~ nl n C ~

I
CK

Fig. 2 Data path of GCD circuit

Table 5. Description of data path of GCD circuit
def ine 'outMod' :-- 'Mod(REG(proj_a(s)),RgG(proj_4(s))) ' ;
CK (s, A, B, START, St oreVergl, St oreLoop, Select Loop, q 1, q2)
== [CK-r(proj_l(s),StoreVergl,Mul(A,B,GT(A,B)))

Cg_r (pro j_2 (s) , StoreYergl ,Mul (B ,A,GT (A,B)))
CKr (pro j_3 (s) , StoreLoop,

Mul (REG (pro j_4 (s)) , REG (pro j_ 1 (s)) , Select Loop))
CKr (pro j_4 (s) , St oreLoop, Mul (outMod, REG (proj _2 (s)) , Select Loop))

(* -- note -- the following line is controller ,)
Cg_q(proj_5(s) ,ql) CK_q(proj_6(s),q2)];

174

Then we gave the correspondence M3 (Table 7). The correspondence consists
of the followings: (1) correspondence from the state components in level 4 to
those in level 3 (including state assignment), and (2) correspondence from state
transition function in the level 4 to those in level 3.

The controller is shown in Fig. 3. The connections of the logical gates in the
controller is described in Tbl 6. The description corresponds to C4.

~._~ p37

S 7 1 •P35 l

EqualZero I

-...t-- I

CK

StoreVergl

Selec_tLoop

StoreLoop

End

Fig. 3 Implementation of controller of GCDcircu i t

Table 6. Description of controller of GCD circuit
VALID(CK(s,A,B,START,StoreVergl,StoreLoop,SelectLoop,Q1,Q2))
== VALID(s) and StoreVergl = BUF(START)

and StoreLoop = p32

and Q1 = p32
and Q2 = p29 ;

def ine 'p37' := 'BUF(START)'
def ine 'p32' := ,0R(p49,AND3(p35,NOT(eq0),QZ(proj_5(s))))';
def ine 'p29' := ,0R(AND(p35,q(proj_5(s))),AND3(p35,eq0,Q(proj-6(s)))) ' ;
def ine 'p35' := 'NOT(START)';

Table 7. Correspondence ~omlevel 4 to level 3

RI(e) == REG(proj_l(s));

R2(s) == REG(proj_2(s));

CONTROL(s) ==[Q(proj_S(s)) , Q(proj_6(s))];

INIT == [FALSE , FALSE];

LOOP = = [FALSE , TRUE];

(* Note: ,,--" means " don't care" *)
(, A, B,START,StoreVergl,StoreLoop,SelectLoop, QI, Q2 *)

RltoR3andR2toR4(s,START)
== CK(s,--,--,START, FALSE, TRUE, TRUE,FALSE,TRUE);

R4toR3andMODtoR4(s,START)
== CK(s,--,--,START, --, TRUE, FALSE,FALSE,TRUE);

nop(s,START) == �9 ;
init'(s,A,B,START) == �9 ;

175

4. C o r r e c t n e s s P r o o f o f I m p l e m e n t a t i o n s

In this section, we define the correctness of the refinements formally, and
explain how to prove the correctness algebraically.

4.1 Ve r i f i ca t i on t e c h n i q u e s

Let t ~ denote a specification which contains all sorts and functions in a speci-
fication t. We say that t ~ is a correct refinement of t if and only if c~ =t fl implies
c~ =t, fi where =~ denotes the congruence relation defined by specification 7-.
Let (r(~) denote a substitution of ground terms for the variables in the term ~. If
c~(a) and ~(/~) are congruent for any substitution or, then we describe as a ~t fl,
and " a ~t ~" is called a theorem. If I ~ , r holds for any axiom I == r in t, then
t ~ is a correct refinement of t [6,10]. If we can prove that all of the axioms in Sk
hold as theorems on Sk+l, Mt and theorems for primitive functions/predicates
(we call the set of these theorems P R M) , then we conclude that St+l is a correct
implementation of St .

Under our frame work, the use of the axioms in Ct+l is unnecessary for the
proof of Dr.

The proof of Ct is unnecessary if Ct+l is derived from Ct and Mt automat-
ically. So if the proof of Dt succeed, then St+l is a correct implementation of
St . If the designer gives Ct+l directly, then the proof of Ct is necessary.

The followings are used to prove a theorem [6].
(A) term reduction by regarding each axiom as a rewrite rule
(B) case analysis of conditional branches
(C) the decision procedure for Presburger sentences :

Let ~(Xl , . - . , z,~) denote a term consisting of only integers, integer (or Boolean)
variables x l , . . . , x ,~ and operators "A, V, -~, +, - , =, >". An algorithm to de-
termine the truth of the following formula is given in [4].

(c-1) v~l,..., ~,[~(~1,..., ~,)]
If the formula (C-l) is true and all of the values (constructor terms) of terms
t l , . . . , t~ are defined in t, then we can conclude that ~ (t l , . . . ,t~) ~t true.
(D) the use of the theorems for primitive functions/predicates
(E) Nbtherian induction

4.2 Ver i f i ca t ion o f r e f i n e m e n t f r o m level 1 to level 2

Now, we'll explain how to prove that the axiom gcd l hold as a theorem on
D2, M1 and P R M . We should prove the followings.

- P a r t i a l c o r r e c t n e s s : After the execution of the state diagram L, the value
of the register R4 should be equal to the value of the GCD of R1 and R2
before its execution.

- T e r m i n a t i o n : The execution of the state diagram L should terminate.

4.2.1 P r o o f o f p a r t i a l c o r r e c t n e s s
In order to prove the partial correctness, we use the N6therian induction.

In the induction, first, we assign the invariant assertion IAsT1 (Table 8) to the
intermediate state ST1 in L. Let Pre and Post (Table 8) be the precondition
and the postcondition from the axiom gcdl , respectively. Then we prove that
the following conditions hold under the precondition Pre.

176

- f i r s t : IAsTi should hold immediately after reaching the state ST1 from
the state STO by executing the transition RltoR3andR2toR4.

- indue: IAsT1 should hold immediately after reaching the state ST1 from
the same state ST1 by executing the transition R4toR3aztdM{:}DtoR4.

- l a s t : Post should hold immediately after reaching the state ST2 from the
same state ST1 by executing the transition hop.

Table 8. Assertions used for proof
< Precondition ol gcdl: Pre(S0) >

1 <= RI(S0) <= R2(S0) <= N
< Invariant assertion for ST1: IASTI(s,S0) >

1 <= R3(s) <= RI(S0) and
I <= R4(s) <= R2(S0) and
R4(s) <= R3(s) and
SameSet (Intersection(DivisorSet (R1 (SO)), DivisorSet (R2 (SO))),

Intersect ion (DivisorSet (R3 (s)), DivisorSet (R4 (s))))
< Postcondition of gcdl: Post(s,S0) >

R4(s) = MaxMember(Intersection(DivisorSet (RI(S0)),

DivisorSet (R2 (SO))))

Using our verifier, the proof work is carried out as follows.

S t e p 1: The system displays a figure of L graphically on the X Window (see
Fig. 4) automatically by analyzing the description M1. This figure provides
a facility of the user interface where the user can point the state to assign
the invariant assertions by clicking the state in the figure directly.

S t e p 2: The system automatically generates Pre(SO) and Post(s, SO), which
correspond to the precondition part and the postcondition (conclusion) part
of the axiom gcdl , respectively.

S t e p 3: We assigned the invariant assertion IAsTI(s, SO) to the state ST1.
(The proof may succeed even if another assertion is given.) This assertion
expresses that the set of the common divisors of R3 and R4 at ST1 should
be equal to that of the common divisors of R1 and R2 at STO. The relation
between the values of R3 and R4 which should hold at ST1 is also expressed

in IAsT1.
We don't use other variables except s in the invariant assertions.

S t e p 4: The system automatically generates three expressions (conditions)
Pfirst, Pinduc and Plast corresponding to first, indue and last, re-
spectively. The general form for these expressions is as follows. (Here, we

consider a path PT from the state S~ to STj through a transition T where

condVT denotes a condition for executing PT, IAi denotes an assertion as-
signed to ST/ and IAj denotes an assertion assigned to STj.)

Pre(SO) imply
(IAi(S, SO) A condpT(S)imply IAj(T(S), SO))

For example, the expression P induc is as follows.

Pre(SO) imply
(IAsT1 (S, SO) A -~ EqualZero(MOD(R3(S), R4(S))))

imply IAsTI(R4toR3andMODt~ SO))

177

We should prove that the conditions P: f i rs t , Pinduc and P l a s t hold under
D2, M1 and P R M . Now, we'll explain how to prove one of these conditions,
using Pinduc as an example.

Fig. 4 Display of our verifier
Step 5: The system automatically rewrites each expression by treating the ax-

ioms of D2 as the rewrite rules. Let Pinduc be an expression obtained from
P• by the term rewriting.

Step 6: The system automatically selects from D2 the axioms which describe
the content of the transition R4toR3andRODtol~4 but were not used in the
term rewriting at Step 5. Then the system substitutes the constant S for the
variable s in these axioms, replace "==" in the axioms with "=" and make
their logical products. Let A X be an expression obtained in this way.

Step 7: We write some statements for primitive functions/predicates which are
thought to be included in P R M . We call the set of the statements T H (see
Table 9). Each statement is written in the same form as the axiom.
We substituted the values of the registers such as R3(S) and
R4(tt4toR3andModtoR4(S)) for the variables of each statement in T H 11
Then the system replace "==" in the axioms of T H with "=" and make
their logical products. Let T H ' be an expression obtained in this way.

Step 8: The system automatically constructs the logical expression T H ' A A X
imply Pinduc" Let Q• be this expression.

Step 9: The system automatically determines the truth of each logical expres-
sion (now Qinduc) as follows.

At first, the system gets, from Qinduc, an expression Qinduc consisting of
, >" and integer (Boolean) variables which satisfies the "A, V,-7 § - , _--,

following conditions.

11 The system can find the candidates of the substitution, that is, most general unifiers
of the logical expression A X imply Pinduc and the statement in TH.

178

Table 9. Statements for primitive functions/predicates (TH)

priml: EqualZero(nl) imply nl = 0 == TRUE;
prim2: nl = 0 imply EqualZero(nl) == TRUE;
prim3: SameSet (nsl ,ns l) == TRUE;
prim4: SameSet (nsl ,ns2) and SameSet (ns2,ns3)

imply SameSet(nsl,ns3) == TRUE;
prim5 : SameSet (nsl ,ns2) and SameSet (nsl ,ns3)

imply SameSet(ns2,ns3) == TRUE;

prim6 : SameSet (Intersection(ns i ,ns2), Intersection(ns2 ,nsl))=ffi TRUE ;

primT: SameSet (nsl,ns2) imply MaxMember(nsl) ffi MaxMember(ns2) == TRUE;

primS: (I <ffi n2 and n2 <= nl and nl <-- N)

imply (0 <= MOD(nl,n2) and MOD(nl,n2) <= n2 - I) == TRUE;

prim9: (I <= n2 and n2 <-- nl and nl <-- N and (not EqualZero(MOD(nl,n2))))

imply I <= MOD(nl,n2) =ffi TRUE;

priml0: (i <ffi nl and nl <ffi n2 and n2 <= N and EqualZero(MOD(n2,nl)))

imply MaxMember (Intersection(DivisorSet (nl) ,DivisorSet (n2)))
ffi nl =ffi TRUE;

p r i m 1 1 : (1 <= nl and nl <= n2 and n2 <= N and not EqualZero(MOD(n2,nl)))
imply SameSet (I n t e r s ec t i on (Di v i s o rS e t (n2), DivisorSet (n l)) ,

I n t e r s e c t i o n (D i v i s o r S e t (n l) , DivisorSet (MOD (n2 ,nl))))
== TRUE;

- e =duc must be obtained by replacing the integer (Boolean) sub-terms
in Qinduc with the integer (Boolean) variables. The same terms must
be replaced with the same variable, and the different terms must be
replaced with the different variables.

- The outermost operator (or function symbol) of the subterm replaced

must be other than "A, V, -,, +, - , --,
! The system gets, f rom Q i n d u c ' a prenex normal form Presburger sentence

Q" by bounding all of the variables by the universal quantifiers.
induc

Then the system applies the decision procedure for the prenex normal form
Presburger sentences bounded by only universal quantifiers to Q~nduc" If the

result of the decision is "true", then P induc holds on D2, M1 and T H 12.
Therefore, if the result is "true" then we conclude that P induc holds on D2,
M1 and P R M under the assumption T H is a subset of P R M . (Statements
in T H are "correct" theorems for primitive function/predicates.)
We have implemented a decision procedure for the prenex normal form
Presburger sentences bounded by only universal quantifiers. The procedure
uses the t ransformation rule called "quantifier elimination" which is used in
Cooper 's algorithm [4]. For the speed-up of the algorithm, we have devised
a way to decide the ordering for deleting variables depending on the form of

a given expression 13.

12 It 's necessary to show that the terms replaced have their own values under the
assumption that the values of the state component functions at states S0 and S are

determined.
13 For example, in the syntax tree of a given expression, a variable close to the root

will be deleted first.

179

The truth of Q~nduc has been determined about 1 second by Sun Classic
(see Table 10). In the table, the column "length of Presburger sentences"
describes the total number of occurrences of the variables and operators in
each Presburger sentence.

S tep 10: Trial and error will be needed until the proof for all of the steps of the
induction succeeds. In many cases, the proof failures have been caused by
the lack of the relations of the state components in the invariant assertions,
the lack of the statements for the primitive functions, and so on.

The system automatically manages which Steps of the induction are already
proved, and which steps aren't proved yet. And the system automatically changes
the attributes of the proper steps from "Already proved" to "Not yet proved" if
the user modifies an invariant assertion.

Table 10. CPU time used for deciding the truth of Presburger sentences

]path length of Presburger sentence CPU time

ST0 ---. ST1 186 0.45 sec
ST1 ---* ST1 207 1.18 sec
ST1 ---* ST2 186 0.18 sec

Sun Classic

4.2.2 P r o o f of t e r m i n a t i o n

In order to prove the termination for the axiom gcdl, we proved the following
two conditions.

- At the state ST1, the value of R4 should be always positive.

- After an execution of the transition R4toR3andHODtoR4, the value of R4 must
be less than the value before the execution.

To show these two conditions hold, we proved the following condition hold under
D~, M1 and PRM.

Pre(SO) imply
(IAsTI(S, SO) A execution condition of R4toR3andMODtoR4

imply 1 _< R4(S) h R4(R4toR3andMODtoR4(S)) < R4(S))
Here, the condition IAsTI(S, SO) can be used in the precondition part, because
it has been already proved that IAsTI(S, SO) is the invariant at ST1 under D2,
M1, PRM and the precondition of gcdl.

The proof was carried out using the same verification method written in
Section 4.2.1. (We applied Step 5 .~ Step 9 to the condition.) The CPU time
used for the verification was 1 second (Sun Classic).

4.3 Verif icat ion of r e f inement f rom level 2 to conc re t e imp lemen ta -
t ion

The level 3's specification satisfies the level 2's specification, because $3 is
obtained by adding some axioms to $2. But the implementation of transition
init doesn't obey our framework.

At the proof of the correctness of the refinement from level 3 to level 4, we

180

proved that each axiom of $3 holds as theorem on the $4, Ms and P R M t4
The proof was carried out automatically using the term rewriting facility and
decision procedure for the prenex normal form Presburger sentences bounded by
only universal quantifiers in our verifier. The CPU time used for the verification
was 11 seconds (Sun Classic).

5. O t h e r E x a m p l e s o f V e r i f i c a t i o n

5.1 T h e T a m a r a c k M i c r o p r o c e s s o r

We have designed the Tamarack microprocessor in [9] and proved the correct-
ness of the implementation. In the level 1, we described the same requirement
(the same instruction set as that of [9]). In the level 3, we have used the same
architecture and microprograms as those given in Fig.3 and Appendix of [9].

Our verifier has proved the correctness of each refinement automatically with-
out trial and error, using the term rewriting and the decision procedure for the
prenex normal form Presburger sentences bounded only by universal quantifiers.
The CPU time used for the verification from level 1 to level 2 was 93 seconds
(Sun Classic), and that from level 2 to level 3 was 55 seconds (Sun Classic).

The major reasons why the proofs were carried out without trial and error

are as follows.

(1) We had no need to use any invariant assertion at the proofs, because there
are no loops in the state diagram.

(2) We had no need to use the theorems for primitive functions/predicates at

the proofs.

For such a case, the verification could also be carried out automatically by the
symbolic simulation such as [9]. However, our verifier can treat even the case
that the relations between the values of the current state component functions
and those values at the next state are described as the predicates. This is a merit

of our approach.

5.2 M a x s o r t C i r c u i t

We have implemented a sorting circuit and proved the correctness of the

implementation.
The requirement of the sorting circuit is described in Table 11. The predicate

seteq(a, i, j, b, k, l) represents that the set of elements between the positions i and
j of array a is equal to the set of elements between the positions k and I of array
b as the multi set. The predicate arrayeq(a , i , j ,b) represents that the integer
elements between the positions i and j of array a are the same as that of array

b in order.
The axiom s o r t l represents that the elements between the positions I1 (INIT)

and I2(I~IIT) (both I1 and I2 are registers) of the memory MEM(sort(INIT))
after the transition $o r t are sorted where INIT is the initial state.

14 At this proof we had to prove that each axiom of C3 holds as theorem on the $4, M3
and PRM, since we gave C4 (the definition of the components of the state register
and the connection of the components in the circuit) directly.

181

The state diagram of each level is shown in Fig. 5.
We have implemented the transition sor t using max-sort algorithm. In the

level 2, the new registers max, maxpt and bound are introduced. The register
bound denotes the next position of the lowest position in the sorted area.

Table 11. Requirement of sort circuit
sortl: O<=II(INIT)<=I2(INIT)<=N imply

ordered(MEM(sort(INIT)),II(INIT),I2(INIT))== TRUE
sort2: O<=II(INIT)<=I2(INIT)<=N imply

seteq(MEM(INIT), II(INIT),I2(INIT),
MEM(sort(INIT)),II(INIT),I2(INIT)) == TRUE

sort3:O<=II(INIT)<=I2(INIT)<=N imply
((O<II(INIT)imply

arrayeq(MEM(INIT),O,II(INIT)-I,MEM(sort(INIT),O,II(INIT)-I)))
and (I2(INIT)<N imply

arrayeq(MEM(INIT),I2(INIT)+I,N,MEM(sort(INIT),I2(INIT)+I,N)))
) == TRUE

Level 1 ~ sort , (~

Level 2

setmaxpt&incpt

Level 3 ~

~ setmaxpt&incpt

setmaxpt&incpt~mem[bound]~otmp_.~
U '~ . . ~t~tmptum~mtmnxptj
"%[92t, P3"-'~C~ m axSom~m[bound]

Level 4 st~.~, i n i t b o u n ~ lop :_'~..~c[,)

Conditions to execute each transition are omitted

Fig. 5 State diagram of each level of maxsort circuit
The new transitions initbound, f• setmax and hop are also intro-

duced. By executing the transition ~indmaxpt, the maximum value in the un-
sorted area is stored into max and the position of the maximum value is stored
into maxpt. By executing the transition setmax, the content at the position
pointed by raaxpt in HEM is replaced by the content at the position pointed by
bound, the content at the position pointed by bound becomes equal to the content
of max, and the value of bound is decreased by one.

In the verification of the correctness of the refinement from level I to level
2, we have used the NStherian induction. To prove that the axiom SORT1 holds,
we have assigned the following invariant assertion to the state Sl.

182

II(s) = Ia(s0) A I2(s) = I2(S0) A
n(s) < bou.d(s) < Ie(s) ^

(bouna(s) < Z:(s) im~tu
ordered(MEM(s), bound(s) + 1, I2(S0)) A

isMaxPos(MEM(s), I1(S0), bound(s) + 1, bound(s) + 1))

Predicate isMaxPos(a,i , j , k) represents that a[k] is greater than or equal to
any of a[i], a[i + 1], . . . , a[j].

In the level 5, we have described both the data path (Fig. 6) and the controller
(Fig. 7) of the circuit.

A D D R t e S S - B U S 1

M E ~ M ~ ~ . | D A T A - B U S J r t 0, CUll Ctll2 ICI'tm~lCtlmaxl

~ . . ~ -] ~ m a ~ pt

)4. , JJ J

~'ig. 6 Data path of maxsort circuit

to control inputs for registers, counters and gates data
comparator Ctlmaxpt ct"

ctl I tlCtli1 ~mPg~ 1 g31 g51 g32 g7d
b o u n d ~ C pt ctli2Ct~ g 1 g 11 g12 g6d 8d

01 LD ~ HI) Oiqr OFt OFIr OFIP ON ~ OfF O1~ OlPr OFF
11 HD HI) BD OFF OFF 01~' 0H OFF ON OFF O T F O F F O I F

21 Bit) - - LI) l i d UD O F F Olqr 0 1 ~ 011 OlqP I)FI e ~ 0 I F O T F 0 I F
3, H I) L D § HID l id I . D - - Olq~ OFF (~ i OlqP OFF OltT O1~ O , , OFF Oil
41]lD ~B ~ El) HI)]~B - - OFIP ON Ot~ ' Otqr O 1 ~ O ~ ON Olqr o 1 ~ o] ~ r

"/I +1 HD HD - - OI I ! ' OFlt' OFF OFf F O F F O f F O F F

$1 HD - - HO HD LD OFF O11~1 t' OFF O1t'1 ' O F F OFF OFF
91 HD HI) - - l id]lid l id HD OltT ON O!13 ' O1~' O F t OI'F OFF 1~1 O1~' OFV

101 - 1 ~ - - liE) HD mr) ~ ON OFF o r r OlFlr orlp OlF7 OFF o p t ~ O1~'
13.1 HD IRD l id HD miD l id OFF o n OFF OFF OIglF O / F O / t o n o n olfll F

O: micro-code which implements transition initbound
1: micro-code for the branch of the condition I 1 <bound

ctlmem

+ 1 - -

+ 1 1 ~ .
BRI~ 8 l i d

l ILT RD

address
comparator

adr I ~ctl micro-pc

Fig. 7 Implementation of controller of maxsort circuit

The experimental results for the verification are described in Table 12. In the
verifications of the correctness of the refinement from the level 1 to level 2, totally
20 theorems for the primitive functions were used. Therefore the sizes of the

183

prenex normal form Presburger sentences bounded by only universal quantifiers
to be checked became rather large. (There were some sentences whose length
exceeds 1000 with more than 40 different variables.) However, our verifier could
decide their t ruth within about 1 minute. If the value of a given Presburger
sentence is false, then the result ' false' will be obtained very quickly (within a
second in most case). The design and verification were carried out in three days
including trial and error.

Table 12. Data of the verification of the sorting circuit

CPU Time ILength of
(Sun Classic)! expression

Levell to Level2
(proof of sortl) 64.85 sec

(sort2) 28.30 sec
(sort3) 15.67 sec

(termination) 2.2 sec
Level2 to Level3
(partial correctness)

(termination)
19.17 sec

1.9 sec
Level3 to Level4 17.45 sec
Level4 to Level5 8.80 sec

1093
645
511

Number o~
variables

42
31
29

Number of theorems
(substitutions)
of primitives

16 (27)
10 (16)

4 (8)

"Length of expression" and "Number of variables" mean the length and the number
of different variables of the longest Presburger sentence (that corresponds to the path
$1 --* $2 ---* $1), respectively. CPU Time in Level2 to Level3, Level3 to Level4 and
Level4 to Level5 means the sum of CPU time used at the verification for all axioms.

6. C o n c l u s i o n

In this paper, we have proposed a method for refining a given specification to
a synchronous sequential circuit and verifying the correctness of the refinements
automatically. We have developed a hardware design support system based on
algebraic methods. We also gave three examples of implementat ion verifications.

In the method proposed here, the specifications and invariant assertions must
be written in a restricted style. (As the variables, only the use of a variable of sort
state is permitted.) In the verification, it is proved that rather strong sufficient
conditions hold. However, for the GCD circuit, CPU and the maxsort circuit
used in this paper as examples, we succeeded in proof.

After giving the assertions and theorems for primitive functions/predicates
and the substitutions for the variables of the theorems, the verification is carried
out automatical ly although it may fail under those assertions and theorems.
The design and verification of those circuits were carried out in a few days,
respectively, including trial and error. This depends on the features that our
verifier has many user friendly verification facilities and an efficient decision
procedure for the prenex normal form Presburger sentences bounded by only
universal quantifiers.

184

References

1. S. Bose and A. Fisher : "Automatic Verification of Synchronous Circuits Using
Symbolic Logic Simulation and Temporal Logic", Proc. IMEC-IFIP Int. Workshop
on Applied Formal Methods for Correct VLSI Design, pp.759-764, 1989.

2. M. Browne,'E. M. Clarke, D. Dill and B. Mishra : "Automatic Verification of Se-
quential Circuits using Temporal Logic", IEEE Trans. on Computer, Vol. C-35, No.
12, pp.1035-1044, 1986.

3. H. Busch : "Transformational Design in a Theorem Prover", IFIP Conf. on Theorem
Provers in Circuit Design, North-Holland, pp.175-196, 1992.

4. D.C.Cooper : "Theorem Proving in Arithmetic without Multiplication", Machine
Intelligence, No.7, pp. 91-99, 1972.

5. M. J. C. Gordon : "HOL : A Proof Generating System for Higher Order Logic",
in VLSI Specification, Verification and Synthesis, G. Birtwistle and P. A. Subrah-
manyam ed-s., Kluwer Academic Publishers, pp.73-128, 1988.

6. T. Higashino and K. Taniguchi : "A System for the Refinements of Algebraic Speci-
fications and their Efficient Executions", Proc. of the IEEE 24-th Hawaii Int. Conf.
on System Sciences (HICSS-24), Vol. II, pp.186-195 (Jan. 1991).

7. :I.E. Hopcroft and :I.D. Ulhnan : "Introduction to Automata, Theory, Languages,
and Computation", Addison-Wesley, 1979.

8. IEEE : "IEEE Standard VHDL Language Reference Manual", IEEE,1988.
9. :I. :I. :Ioyce : "Formal Verification and Implementation of a Microprocessor", VLSI

Specification, Verification and Synthesis, Kluwer Academic Publishers, pp.129-157,
1988.

10. T. Kasami, K. Taniguchi, Y. Sugiyama and H.Seki : "Principles of Algebraic Lan-
guage ASL/*", Trans. of IECE Japan, Vol.69-D, No.7, pp.1066-1074, July 1986 (in
Japanese).

11. J. Kitamiti, T. Higashino, K. Taniguchi and Y. Sugiyama : "Top-Down Design
Method for Synchronous Sequential Logic Circuits Based on Algebraic Technique",
Trans. of IEICE Japan, Vol.77-A, No.3, March 1994 (in Japanese).

12. T. Kropf : "Benchmark-Circuits for Hardware - Verification : v.l.0.0", the
Benchmark-Circuits for 2nd Conf. on Theorem Proving in Circuits Design, FTP
from Univ. of Karlsruhe (129.13.18.22), Germany, 1994.

13. Y. Nakamura : "An Integrated Logic Design Environment Based on Behavioral De-
scription", IEEE Trans. on Computer-Aided Design Integrated Circuits & Systems,
Vol. 6, No. 3, pp.322-336, May 1987.

14. V. Stavridou, J. A. Goguen, A. Stevens, S. M. Eker, S. N.Aloneftis and K. M. Hob-
ley : "FUNNEL and 2OBJ : Towards as Integrated Hardware Design Environment",
IFIP Conf. on Theorem Provers in Circuit Design, North-Holland, pp.197-223, 1992.

15. :i.B.Saxe S.J.Garland, J.V.Guttag and J.J.Horning,
"Using Transformations and Verification in Circuits Design", Designing Correct
Circuits, North-Holland, pp.l-25, 1992.

16. G. Thuau ,B.Berkane, "Using the Language LUSTRE for Sequentiai Circuit Veri-
fication", Designing Correct Circuits, North-Holland, pp.81-96~ 1992.

17. Open Verilog International : "Verilog Hardware Description Language Reference
Manual", 1991.

18. M. Wirsing : "Structured Algebraic Specifications : A Kernel Language", Tech.
Report, TU Mchen, 1984.

