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Preface 

The SECOND EUROPEAN CONFERENCE ON COMPUTATIONAL LEARNING THE- 
ORY (EuroCOLT'95), held March 13-15, 1995, in Barcelona, Spain, consolidated 
a new series of conferences aimed at fundamental studies of all computational 
aspects of artificial and natural learning systems. The previous and inaugural 
European Conference on Computational Learning Theory was held December 
20-22, 1993, at Royal Holloway, University of London. (At the first EuroCOLT, 
preliminary abstracts were distributed at the meeting and the final proceedings 
was published afterwards as Proceedings of the First European Conference on 
Computational Learning Theory: EuroCOLT'93, J. Shawe-Taylor and M. An- 
thony, Eds., Oxford University Press, 1994.) 

Continuation of the event is supervised by the EuroCOLT Steering Commit- 
tee, consisting of: M. Anthony (LSE, Univ. London, UK), R. Gavaldk (UPC, 
Barcelona), W. Maass (TU Graz, Austria), J. Shawe-Taylor (RHBNC, Univ. 
London, UK), H.-U. Simon (Univ. Dortmund, Germany), P. Vits (CWI & 
Univ. Amsterdam). 

The topics discussed in these meetings potentially cover all aspects of analy- 
sis of learning algorithms and the theory of machine learning, including artificial 
and biological neural networks, genetic and evolutionary algorithms, robotics, 
pattern recognition, inductive logic programming, inductive inference, informa- 
tion theory, decision theory, Bayesian/MDL estimation, statistical physics, and 
cryptography. Experimental results are welcome, but are expected to be sup- 
ported by theoretical analysis. In response to our Call for Papers, 46 full draft 
papers in these areas were submitted by September 21, 1994. Following three 
rounds of email meetings of the Program Committee, on October 31, 1994, in 
Amsterdam, 28 submissions were selected for presentation at the conference. In 
addition, R.J. Solomonoff, J. Rissanen, and A. Macintyre were invited to give 
lectures and contribute a written version to these proceedings. 
The Program Committee for EuroCOLT'95 consisted of: 

M. Anthony (LSE, Univ. London, London, United Kingdom); 
E. Baum (NEC Research Inst., Princeton, USA); 
N. Cesa-Bianchi (Univ. Milano, Milan, Italy); 
J. Koza (Stanford Univ., Palo Alto, USA); 
M. Li (Univ. Waterloo, Waterloo, Canada); 
S. Muggleton (Oxford Univ., Oxford, United Kingdom); 
W. Maass (TU Graz, Graz, Austria); 
J. Rissanen (IBM Almaden Research Center, Almaden, USA); 
H.-U. Simon (Univ. Dortmund, Dortmund, Germany); 
K. Yamanishi (NEC Research, Princeton, USA); 
L. Valiant (Harvard Univ., Cambridge, USA); 
P. Vits (CWI & Univ. Amsterdam, Amsterdam, Netherlands, chair); 
R. Freivalds (Univ. Riga, Riga, Latvia). 
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The Local Arrangements Chairs were: 

Ricard Gavald~ (UPC, Barcelona, Spain); 
Felipe Cucker (Univ. Pompeu Fabra, Barcelona, Spain). 

The EuroCOLT'95 conference is sponsored by the EATCS, by the European 
Union through NeuroCOLT ESPRIT Working Group Nr. 8556, by IFIP through 
SSGFCS WG 14.2, and by the Universitat Polit~cnica de Catalunya. 

We want to thank everybody who helped to make this meeting possible: the 
authors for submitting papers, the Program Committee and referees for their 
effort in composing the program, the Steering Committee, the sponsors, the 
local organizers, and Springer-Verlag. The Program Committee wishes to thank 
the following persons, who acted as subreferees for EuroCOLT'95: 

Naoki Abe 
Peter Bartlett 
Dan Boneh 
Harry Buhrman 
Zhixiang Chen 
Scott Decatur 
Claudio Ferretti 
Paul Fischer 
Lee Giles 
Adam Grove 

Peter Gr~nwald 
Leonid Gurvits 
Tom Hancock 
Sanjay Jain 
Tao Jiang 
Michael Kearns 
Joe Kilian 
Pascal Koiran 
Kevin Lang 
Nick Littlestone 

Jeroen van Maanen 
David Page 
Stefan P51t 
Dan Roth 
Carl Smith 
John Tromp 
Peter Yianilos 

Amsterdam, January 1995 Paul Vit£nyi 
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E d i t o r ' s  F o r e w o r d  

Advances in algorithmics, computational feasibility, and computer technology, 
have caused the emergence of learning algorithms in a plethora of computational 
learning models. This approach can be contrasted with the traditional work in 
Artificial Intelligence which is logic and semantics based, rather than computa- 
tion and statistics based. 

For industrial applications, it is essential that a unified theory be developed 
and that techniques be identified to translate this theory into practical appli- 
cations. For example, it has become apparent that the approach of knowledge- 
based expert systems, because of the sheer size and complexity of the data, has 
reached the functional limits of being directly programmed by entering the ex- 
tracted wisdom of the experts as a full-fledged object (rather like Pallas Athena 
springing fully armored from the head of Zeus). Future such systems need to 
learn directly from the experts or experience. 

Recent developments in recursion-theory based theories of learning, Bayesian 
learning, MDL or minimum description length, Kolmogorov (descriptional) com- 
plexity, probably approximately correct (PAC) learning, and mathematical ap- 
proaches to artificial neural learning and genetic learning are emerging as a 
new general discipline of mathematical foundations underlying practical learn- 
ing by machines. This has led to the formation of numerous university research 
groups and commercial laboratory groups, to the 'Annual ACM Conference on 
Computational Learning Theory (COLT)' (1987-) and other meetings, and to 
the 'Machine Learning' journal and other more specialized journals. The second 
EuroCOLT starts a new thread in the Springer-Verlag LNAI series. In these 
proceedings the invited papers stress historical foundations of the subject and 
long-term trends while the contributed papers often present probing cutting edge 
research. 

Forecasting and Prediction in On-Line Learning 

In Session 1 Ray Solomonoff in his invited paper gives a detailed account of 
his discovery of algorithmic probability, and as a side product some form of 
Kolmogorov complexity. These notions are at the heart of all learning: it is 
always a matter of compression of observations or data into a compact theory. 
Such compression is only possible if there is a regularity in the data which 
can be used to compress. Roughly speaking, there is something to be learned 
from a body of data if and only if that data possesses a regularity which allows 
us to compress it. This regularity then can be viewed as a theory explaining 
(or a model for) the data. It is a general feature which is difficult to formally 
express that the more one compresses the data, the more the resulting theory 
will generalize and predict. This is the road to true induction: generalizing from 
the particular to the general. Essentially, Solomonoff's method will forecast all 
probabilistic phenomena with a constant bounded expected cumulative error. 
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Solomonoff's result can be viewed as an absolute and objective form of applying 
Occam's razor 'entities should not be multiplied beyond necessity' by identifying 
'simplest' theories with those having the 'shortest effective descriptions', that is, 
least Kolmogorov complexity. 

Since the Kolmogorov complexity of an object is a recursively invariant prop- 
erty, this approach (seemingly casually) also resolves one of the central problems 
in philosophy, namely to find an objective basis for both the possibility of in- 
duction at all and the way to do it. 

Unfortunately, among other things, algorithmic probability is not computable. 
Nonetheless, Solomonoff's approach has proven fundamental in the sense that 
both Gold-style learning (sometimes called by the general name 'inductive in- 
ference') and statistical inference methods like the minimum description length 
principle (minimum message length principle) are a form of computable ap- 
proximation to Solomonoff's procedure, as we have argued elsewhere [JCSS, 
44:2(1992), 343-384]. (A general overview of algorithmic probability and Kol- 
mogorov complexity is M. Li and P. Vit£nyi, An Introduction to Kolmogorov 
Complexity and Its Applications, Springer-Verlag, New York, 1993.) 

The next two papers in Session 1 essentially follow up on Solomonoff's original 
approach in that they investigate strategies to minimize forecasting errors with 
respect to an optimal clairvoyant strategy. They estimate the loss with respect 
to discrepancy between prediction and outcome, which essentially means that 
one deals with deterministic phenomena. The paper by Freund and Schapire will 
be especially valuable at the race track, and, moreover, gives (in its particular 
context) a technique to boost a marginal forecasting strategy into an accurate 
one. Ben-David, Kushilevitz, and Mansour show to what extent the order in 
which the data are presented influences the amount of mistake the forecaster 
makes. 

Seminal work by V.G. Vovk [Inform. Comput., 96(1992), 245-277] formulated 
a more tractable strategy of forecasting of phenomena in the spirit of Solomonoff. 
In Session 2 this style of work is represented by Haussler et al. who continue a 
series of papers following Vovk's lead. They determine (in particular settings) the 
correct value of the worst-case total loss incurred by the forecasting algorithm 
for a variety of loss functions such as square loss, logarithmic loss, and Hellinger 
loss. They show by establishing a lower bound that this value is asymptotically 
tight. 

Yamanishi introduces a new family of deterministic and stochastic on-line 
predictors. He approaches the problem of on-line learning by iterative prediction- 
outcome-adapt predictor cycles in a more general stochastic setting. The pre- 
dicted phenomenon is viewed as a parametric probabilistic model, and the al- 
gorithm iteratively estimates the probabilistic model using maximum likelihood 
and constructs an optimal predictor minimizing the average loss with respect to 
the probabilistic model. The next outcome is predicted by this optimal predictor. 
This method allows us to  analyze upper bounds on expected instantaneous and 
cumulative losses with respect to a large family of loss functions and conditions 
on the parametric probabilistic models. Its novelty is that the method designs 



×Ill 

and analyzes on-line prediction algorithms with respect to expected loss bounds 
for large classes of toss functions simultaneously. 

Inductive Inference and Recursion Theoretic Learning 

There is a strong tradition based on recursion theory in the theoretical learning 
community which goes back at least to Gold's paradigm of 'learning in the limit' 
and 'learning by enumeration'. We have argued elsewhere [JCSS, 44:2(1992), 
343~384] that if not historically, then at least logically, Gold's paradigm can be 
viewed as a special case of Solomonoff's approach. In learning by enumeration 
we start with an enumeration of hypotheses and eliminate inconsistent hypothe- 
ses from the beginning of the list up to the first hypothesis consistent with the 
evidence received up till now. This idea can be elaborated with all sorts of embel- 
lishments. For example, suppose the learner outputs a sequence of hypotheses in 
the learning process. Each time the learner outputs a hypothesis different from 
the previously output hypothesis he experiences a 'mind change'. By procras- 
tination the learner can possibly reduce the number of mind changes. To for- 
malize inference with procrastination constructive ordinals are used. Previous 
research left open the question how the notation of these ordinals can influence 
the power of inference. This question is investigated in Section 3 by Ambainis. 
In the same section Lange and Zeugmann consider the relation between mono- 
tonicity demands on the sequence of output hypotheses (formalized notions that 
the consecutive output hypotheses are better and better generalizations) versus 
number of mind changes. 

In Section 4 Case et at. introduce the idea of learning recursive programs in 
the limit from not only input/output examples of the target computable func- 
tion but also varieties of approximate information about the target function (like 
frequency counts). Freivalds et al. introduces a more structured abstract view 
of the interrelations between learnability classes by introducing natural notions 
of reducing one class to another. This is done in the setting of inductive infer- 
ence much like the traditional field of so-called 'structures in (computational) 
complexity theory' where such notions are studied with respect to time- and 
space-bounded complexity classes of problems like the ubiquitous classes P and 
NP. They establish hierarchies of more and more difficult-to-learn concepts and 
completeness results. The results indicate (the authors state) that the complexity 
notion captured in their novel approach differs dramatically from the traditional 
study of computational complexities of the algorithms performing learning tasks. 
This introductory paper is followed immediately by a further exploration of the 
new concepts by Jain and Sharma. 

Another aspect of inductive inference is to identify a 'minimal length' or al- 
most minimal length program for a target function. This depends on the expres- 
sion of the programs, which can be done via GSdel numbering. Freivalds and Jain 
investigate properties of minimal identification in Kolmogorov numberings--in 
some sense optimal numberings. Relating back to another fundamental notion 
due to Kolmogorov, in Section 3 Balc£zar et at. show that circuit expressions of 
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low time-bounded Kolmogorov complexity are polynomial time learnable from 
membership queries in the presence of an NP oracle. 

In Section 6, the paper by Martin and Osherson establishes the interesting 
and seemingly paradoxical fact that the successful strategy for a learner who 
is constrained to effective computation (like a Turing machine) may not be to 
compute (and act on) the conditional probabilities of hypotheses given the data 
received so far (even if he could do so). In contrast, for learners using some non- 
effective computational capabilities the successful strategy is always to compute 
the conditional probabilities. This counterintuitive result is couched in very ab- 
stract terms. It would be interesting to see whether it can be translated to more 
directly appealing exemplary 'paradoxes'. 

In Section 10 Koshiba shows how to identify typed pattern languages in the 
limit from positive examples and related results. 

Stochastic Phenomena and MDL Learning 

Algorithmic probability in the sense of Solomonoff, and shortest effective descrip- 
tion length in the sense of Kolmogorov, have influenced approaches in statistics 
based inductive inference. Rather than trying to estimate a 'true' data gener- 
ating distribution, whose existence may be entirely m~¢hical, as in traditional 
statistics, one considers the (almost) objective notion of minimizing the code 
length of the data given a model (hypothesis) class and the code length of the 
model. This is the so-called minimum description length (MDL) principle. Re- 
placing the troublesome notion of applicable 'probability' (variously identified 
with frequencies of mass events, or initial belief of the learner) with a more 
objective and tangible notion as 'code length' one hopes to escape epistemolog- 
ical quicksand. To avoid noncomputability we settle for codes whose lengths are 
some computable upper bound on the noncomputable Kolmogorov complexity. 
In the form of 'minimum message length' this idea was invented separately by 
C.S. Wallace and J. Rissanen, the last of whom coined the name MDL. Rissanen 
also formulated the notion of 'stochastic complexity', an approximation of Kot- 
mogorov complexity relative to the constraints of a given model class as follows. 
The stochastic complexity is a lower bound on the mean of the code lengths and 
almost surely on the code length induced by each individual model, the possi- 
ble exceptions being restricted to cases when the string is generated by models 
in a subset of the model class of measure zero. In an expository invited paper 
starting Session 5, Jorma Rissanen explains the notions involved, including the 
most recent explicit expression of stochastic complexity in a satisfactory form. 
He provides applications to problems arising in machine learning such as giving 
improved designs for MDL decision trees. 

In Section 6, remarkably, Vovk shows one does not always need to be bothered 
by the noncomputability of the Kolmogorov complexity. (Rather, as is more 
appropriate here, the prefix-free version of it associated with the names of Levin 
and Chaitin.) He shows that for some standard statistical models one can find 
computable minimum description length estimators in the sense of Kolmogorov 
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complexity. The paper by Kilpel~inen et al. gives an example of an MDL learning 
algorithm (for pattern languages). 

PAC Learning and Query Learning 

The Solomonoff procedure (apart from being noneffective as well) and identi- 
fication by enumeration have an unpracticM drawback. The learning program 
never knows when to stop. Moreover, in many cases it is required that all ex- 
amples must appear eventually, although this is not required for some concept 
classes (which can be uniquely determined by a finite set of examples). Given a 
new example, finding the first or minimum rule consistent with the data usually 
requires time which is exponential in the size of the rule. 

The model of distribution-free learning introduced in 1984 by L.G. Valiant 
[CACM, 27(1984), 1134-1142] had the purpose of describing 'feasible' learning. 
According to common views in the theory of computation, 'feasibility' is identi- 
fied with the requirement that the learning algorithm should run in polynomial 
time and use a polynomial number of examples. This requirement implies that 
not all examples can turn up. Hence, it is impossible to infer a concept pre- 
cisely. This means that we can only hope to learn the concept approximately. 
But we also have to account for where the examples originate. We could be pre- 
sented with unrepresentative examples for the concept to be inferred. It seems 
reasonable to assume that the examples are drawn randomly from a sample 
space according to a probability distribution. The approximation between the 
target concept and the learned concept can then be expressed in terms of the 
total probability of the set of examples on which the two concepts disagree: the 
expected classification error. 

As long as the learner does not see all examples, he can always err badly. 
The key is to make sure that happens with very small probability. In practice, 
the speed of learning is realized only because learning is just 'approximately 
correct' with 'high probability'. For example, after a child is given several sample 
apples, he likely forms an approximately correct concept of apple. In this model 
the learner passively gets examples drawn from a probability distribution. This 
learning model has been termed 'probably approximately correct (PAC) learning' 
by D. Angluin. 

In Section 2 Ben-David and Lindenbaum essentially analyze a notion of clus- 
ter learning and relate it to PAC learning. Their task is to learn unsupervised 
from unlabeled examples. The only information about their membership is indi- 
rectly given to the student through the sampling distribution. This means that 
one infers information about the underlying distribution from the random ex- 
amples it generates. They develop a learning model for such problems, and show 
that a class is learnable in this setting if and only if the Vapnik-Chervonenkis 
dimension is finite. 

In Section 5 Anthony and Bartlett consider PAC learning of real-valued func- 
tions from random argument-value pairs (interpolations). This also yields appli- 
cations to learning functions in the presence of malicious noise. Also in Section 5, 
Gurvits and Koiran show that the scale-sensitive version of the pseudo-dimension 
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has proved crucial in an understanding of function and p-concept learnability, 
and the authors provide a construction of function classes having bounded scale- 
sensitive dimension. Of particular relevance is the material where function classes 
corresponding to simple neural nets axe discussed. These are among the first non- 
trivial results estimating scale-sensitive dimensions of interesting concept classes 
like neural networks and function classes considered by A. Barron. 

In Section 7 Schuurmans resolves the problem that according to a known 
mathematical result the learning curve of the smallest expected classification 
error in the worst case converges like l i t  for a training sample size t, while in 
experimental settings often an exponential convergence like exp(-t)  can be ob- 
served. This discrepancy is shown to occur due to the fact that for finite concept 
classes consistent learners can expect exponential convergence, while for contin- 
uous concepts no learner can exhibit subrational (below l / t )  convergence in all 
circumstances. In Section 9 Golea analyzes the learning curve for the average 
case of a learning algorithm for #-DNF formulas under the fixed uniform dis- 
tribution (rather than distribution-free). He obtains a square average sampling 
complexity, a cube root improvement over the known PAC analysis result for 
the same problem. Empirical evidence is also provided. 

A related model is D. Angluin's notion of learning by membership and/or 
equivalence queries. Here there is no distribution the examples come from, but 
the learner can ask a teacher questions. Such a question can either be 'is this 
example a positive or a negative example', resulting in a correct identification of 
the type by the teacher, or the question can be 'is this hypothesis the looked-for 
target concept', resulting either in the answer 'yes' if it is or in a counterexample 
if the answer is 'no'. The first type is called a 'membership query ~ and the second 
type is called an ~equivalence query'. 

In Section 8 Ameur demonstrates an equivalence query learning algorithm 
which learns axis parallel boxes in less space than other known algorithms at 
the cost of a moderate increase in time complexity. Also for equivalence queries, 
Simon shows that decision lists and decision trees of bounded rank are polyno- 
mially learnable. 

In Section 9 Shamir and Shwartzman introduce yet another learning model. 
This time we do not poll for example membership queries, nor do we query 
whether our current choice of hypothesis is the target concept (obtaining a coun- 
terexample if it is not), the equivalence query model, but now we consider statis- 
tical queries. That is, we can ask for the expected value of expressions involving 
the unknown target concept. The paper extends Kearns et al.'s statistical query 
model in order to be able to cast known efficient PAC learning algorithms in 
statistical query format. 

In Section 10 Bergadano and Varrecchio show how to learn certain extensions 
of finite automata exactly in polynomial time using equivalence queries. Also in 
Section 10, Domingo and Lav~n show relations (with respect to alternations) 
between membership queries and equivalence queries to learn certain classes of 
restricted context-free languages. 



XVll 

Artificial Neural Network Learning 

Artificial neural networks are widely used in practice and are starting to be 
thoroughly investigated as to the fundamental mathematics underpinning their 
workings. Relatively little was known about the computational power of polyno- 
mially sized feed-forward neural networks with smooth (sigmoid) gate functions 
or the tradeoff between size and number of layers in such networks. In his invited 
paper in Section 9, Angus Macintyre (with co-author Marek Karpinski) surveys 
the area and describes their recent result of a polynomial bound on the Vapnik 
Chervonenkis dimension of sigmoid neural networks (thresholded at the output). 

In Section 7 Muselli revisits a fundamental problem in training threshold node 
circuits (perceptrons). When the concept involved is not linearly separable, then 
there is no assignment of weights which allow the perceptron to correctly identify 
all examples. Moreover, while for linearly separable concepts there are known 
algorithms which converge fast, for nonlinearly separable concepts there does 
not seem to be any other algorithm that converges to an optimal separation 
(minimal number of errors) than the so-called 'pocket algorithm'. Hence this 
algorithm may play a basic role also in training multinode neural networks. 
The current paper analyzes more carefully than was done before the conditions 
under which the pocket algorithm converges (restricting the range of validity of 
the original statement of this result) and eliminates some formal problems with 
the original proof. 

Also in Section 7 van den Berg and Bioch consider general stochastic binary 
Hopfield models from the viewpoint of statistical mechanics, and derive some 
theorems expressing the amount of free energy of such networks. 

Learning from Patterns 

In Section 10 Br~zma exhibits simple procedures to learn regular expressions 
from example patterns which are 'good' in the particular sense described by the 
author. 

Paul Vit£nyi 


