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Abstract

The performance of a theorem prover crucially depends on the speed of the basic

retrieval operations, such as finding terms that are unifiable with (instances of,

or more general than) a given query term. In this paper a new indexing method

is presented, which outperforms traditional methods such as path indexing,

discrimination tree indexing and abstraction trees. Additionally, the new index

not only supports term indexing but also provides maintenance and efficient

retrieval of substitutions. As confirmed in multiple experiments, substitution

trees combine maximal search speed and minimal memory requirements.
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2 1 INTRODUCTION

1 Introduction

Searching for a proof, most automatic reasoning systems will accumulate enormous amounts

of data – terms, substitutions, clauses, and sometimes also formulae [LO80]. These data

must be stored and accessed in various ways. As in standard database technology, indexing

is the key to efficiently retrieving data from large databases.

The structure of logical data, e.g. the structure of terms, is much more complicated

than the structure of data stored in a relational database. Furthermore, queries to a logical

database [BO94] are also more complex than queries to standard databases.

Typical queries which arise in the context of resolution theorem proving [Rob65] are:

Given a database D containing terms (literals) and a query term t, find all terms in D

which are unifiable with, instances of, or more general than t. Most deduction systems

currently in use or under development employ sophisticated term indexing techniques

in order to increase the speed of this access and thereby to accelerate the search as a

whole. Hitherto, the most often applied strategies have been path–indexing [Sti89, McC92,

Gra92, Gra94], discrimination tree indexing [McC92, Chr93, BCR93], and abstraction tree

indexing [Ohl90a, Ohl90b].

In this paper substitution tree indexing is presented as a new indexing technique which

combines the advantages of discrimination and abstraction tree indexing. Memory require-

ment and retrieval times being the main criteria for judging an indexing technique, this

paper will show that substitution tree indexing is superior to all known strategies in these

points. Substitution trees can represent any set of idempotent substitutions. In the sim-

plest case all these substitutions have identical domains and consist of a single assignment,

which implies that the substitution tree can be used as a term index as well. Figure 1 shows

an index for the three substitutions {u 7→ f(a, b)}, {u 7→ f(y, b)}, and {u 7→ f(b, z)} which

obviously represents a term index for the terms f(a, b), f(y, b), and f(b, z). As the name

already indicates, the labels of substitution tree nodes are substitutions. Each branch in

the tree therefore represents a binding chain for variables. Consequently, the substitutions

of a branch from the root node down to a particular node can be composed and yield an

instance of the root node’s substitution.

Σ2 = {x1 7→ a}

Σ1 = {x2 7→ b}

Σ3 = {x1 7→ ∗1}

�����
XXXXX

Σ0 = {u 7→ f(x1, x2)}

Σ4 = {x1 7→ b, x2 7→ ∗1}

�����
XXXXX

Figure 1: Substitution tree

Before substitutions are inserted into the index, their codomain is renamed. This

normalization changes all variables in the codomain of a substitution. Renamed variables

are called indicator variables and are denoted by ∗i. The substitutions inserted to the

index in Fig. 1 therefore were {u 7→ f(a, b)}, {u 7→ f(∗1, b)}, and {u 7→ f(b, ∗1)}. This

renaming has two main reasons: There is more sharing in the index if the substitutions
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are normalized and, when searching for instances in the index, indicator variables must

not be instantiated.

Consider the substitution Σ = {u 7→ f(a, b)} which is represented by the chain of

substitutions Σ0 = {u 7→ f(x1, x2)}, Σ1 = {x2 7→ b}, and Σ2 = {x1 7→ a}. The original

substitution Σ can be reconstructed by simply applying the substitution Σ2Σ1Σ0 to u.

The result of this application is Σ = {u 7→ Σ2Σ1Σ0(u)} = {u 7→ Σ2Σ1(f(x1, x2))} =

{u 7→ Σ2(f(x1, b))} = {u 7→ f(a, b)}.
The retrieval in a substitution tree is based on a backtracking algorithm in addition

to an ordinary representation of substitutions as lists of variable–term pairs. This algo-

rithm also needs a backtrackable variable binding mechanism, similar to the one used in

PROLOG.

The search for substitutions compatible with {u 7→ f(a, x)} is presented, i.e. substitu-

tions τ are searched such that τ(u) is unifiable with f(a, x). We begin with binding the

variable u to the term f(a, x) and start the retrieval: The substitution tree is traversed by

testing at each node marked with the substitution Σ = {x1 7→ t1, . . . , xn 7→ tn} whether

under the current bindings all xi are unifiable with their appropriate ti. At the root node

in our example we unify the terms f(a, x) and f(x1, x2) which yields the two bindings

x1 7→ a and x 7→ x2. Consider the first son of the root node marked with Σ1 and unify x2
with b, because x2 hasn’t been bound yet. The resulting binding is x2 7→ b and the leaf

node Σ2 is the next node to be investigated. As x1 is bound to a, the unification problem

is trivial and therefore the substitution represented by this leaf node is compatible with

{u 7→ f(a, x)}. After backtracking node Σ3 is found to represent another solution, because

the variable ∗1 is unifiable with a. Backtracking deletes the bindings of ∗1 and x2 and

then proceeds with node Σ4. Obviously, retrieval can be stopped at this point, because a,

which is the binding of x1, is not unifiable with b.

Substitution trees provide maximal search speed paired with minimal memory require-

ments. Additionally, they do not only work for term sets but also for sets of substitutions.

These substitutions don’t even need to have identical domains. The structure is very

simple, just a tree of substitutions has to be maintained.

2 Preliminaries

2.1 Terms, Substitutions, and Unifiers

The standard notions for first order logic are used. Let V and F be two disjoint sets of

symbols. V denotes the set of variable symbols and V ∗ ⊂ V is the set of indicator variables.

The set of n-ary function symbols is Fn and F = ∪Fi. Furthermore, T is the set of terms

with V ⊆ T and f(t1, . . . , tn) ∈ T if f ∈ Fn and ti ∈ T . The variables occuring in a term

or a set of terms are denoted by V (t). Function symbols with arity 0 are called constants

. In our examples the symbols u, v, w, x, y, z ∈ V , ∗i ∈ V ∗, f, g, h ∈ F\F0 and a, b, c ∈ F0

are used.

A substitution σ is a mapping from variables to terms represented by the set of
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assignments {x1 7→ t1, . . . , xn 7→ tn}. The set DOM(σ) = {x ∈ V |σ(x) ̸= x} is

called domain of σ, the set COD(σ) = {σ(x) |x ∈ DOM(σ)} the codomain of σ, and

I(σ) = V (COD(σ)) is the set of variables introduced by σ. The composition of sub-

stitutions σ = {x1 7→ s1, . . . , xn 7→ sn} and τ = {y1 7→ t1, . . . , ym 7→ tm} is defined

as (στ)(x) := σ(τ(x)) for all x. It can be computed as στ = {y1 7→ σ(t1), . . . , ym 7→
σ(tm)} ∪ {xi 7→ si |xi ∈ DOM(σ)\DOM(τ)}. The join of the substitutions σ and τ is

defined as σ • τ := {y1 7→ σ(t1), . . . , ym 7→ σ(tm)} ∪ {xi 7→ si |xi ∈ DOM(σ)\I(τ)}. Obvi-

ously, for σ = {x 7→ a, y 7→ c} and τ = {z 7→ f(x)} we have στ = {z 7→ f(a), x 7→ a, y 7→ c}
and σ • τ = {z 7→ f(a), y 7→ c}.

A unifier for two terms s and t is a substitution σ such that σ(s) = σ(t). If such a

unifier exists s and t are called unifiable. Terms may be non–unifiable for different reasons.

Clashes occur when two non-variable symbols are not identical. In contrast to indirect

clashes and failures resulting from occur–checks, a direct clash can be detected without

considering partial substitutions. A direct clash is detected when unifying f(a, x) and

f(b, y), an indirect clash when unifying f(x, x) and f(a, b), and the occur–check detects

the failure when unifying f(x, x) and f(y, g(y)).

2.2 Normalization

A position in a term is a finite sequence of natural numbers or the empty position ε. The

subterm of a term t at position p is denoted by t/p and t/ε = t. Note that ε◦p = p◦ε = p

with the function ◦ representing the concatenation of positions. The set of positions of the

term t = f(t1, . . . , tn) is recursively defined by O(t) = {ε}∪{i◦p | p ∈ O(ti), t /∈ F0, t /∈ V }.
For example, O(h(a, g(b), x)) = {ε, 1, 2, 2◦1, 3}. For constants and variables the set of

positions is {ε}, In order to properly define the normalization of terms, a total ordering

≺ on positions is needed.

Definition 2.1 (Total Ordering ≺ on Positions) Let p = p1◦ . . . ◦pn and q = q1◦ . . . ◦qm
be two different positions with n,m > 0. Then

p ≺ q ⇐⇒ ∃i.1 ≤ i ≤ min(n,m) : pi < qi ∧ ∀j.1 ≤ j < i : pj = qj

For example, 1◦1 ≺ 1◦2, 1◦1 ≺ 2, and 1◦2 ≺ 1◦2◦1. Finally, the notion of a normalized

term s for a term s is introduced. Normalization renames the variables of terms s and t

such that for terms equal modulo variable renaming s = t holds.

Definition 2.2 (Normalization of Terms) Let s = f(s1, . . . , sn) be a term and F =

{ p | p ∈ O(s), s/p ∈ V (s), ∀q ∈ O(s). q ≺ p : s/q ̸= s/p} the set of first occurrences of

variables in s. If p1, . . . , pm ∈ F and m = |F | and pi ≺ pj for 1 ≤ i < j ≤ m then the

substitution σ = {s/p1 7→ ∗1, . . . , s/pm 7→ ∗m} is called normalization and

s := {s/p1 7→ ∗1, . . . , s/pm 7→ ∗m}(s)

The condition m = |F | in Def. 2.2 ensures that all variables in the term are renamed.

For example, f(x) = f(y) = f(∗1) and h(x, x, y) = h(z, z, x) = h(∗1, ∗1, ∗2). The next

definition extends the normalization of terms to the normalization of substitutions.
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Definition 2.3 (Normalization of Substitutions) Let σ = {x1 7→ t1, . . ., xn 7→ tn}
be a substitution and fn ∈ Fn an n–ary function symbol. Additionally, let < be a fixed

total ordering on variables and x1 < . . . < xn. The normalized substitution σ is defined

as

σ := {x1 7→ fn(t1, . . . , tn)/1, . . . , xn 7→ fn(t1, . . . , tn)/n}

For example, if σ = {x 7→ f(u, v), y 7→ f(a, v)} and x < y then σ = {x 7→ f(∗1, ∗2),
y 7→ f(a, ∗2)}. However, if we had chosen y < x we would have normalized σ to σ = {x 7→
f(∗2, ∗1), y 7→ f(a, ∗1)}.

3 Indexing Techniques Related to Substitution Trees

It has been mentioned, that substitution trees combine features of discrimination and

abstraction tree indexing. In this section a brief sketch of these fundamental techniques is

presented. Discrimination trees contribute the idea of normalized terms and abstraction

trees configurate the terms according to their instance relation. Indexing techniques which

don’t serve as a perfect filter, like Path–Indexing and some versions of Discrimination tree

indexing, are not discussed. These indexing techniques don’t check bindings of variables

for failures resulting from occurs–check and indirect clashes.

3.1 Discrimination Tree Indexing

Structure. In this technique the index is a single tree representing the structure of the

indexed terms. Pointers to these terms are stored in the leaves of the tree. Each path from

the root to a leaf of the discrimination tree corresponds to a set of terms which are equal

modulo variable renaming. All these terms are represented by the unique normalized form

of the terms. Figure 2 shows a discrimination tree.

f
�������

PPPPPPP∗1
�

��
@
@@∗2∗1

a

g

∗1

g
�

��
@

@@∗1

g

∗1

d

g

∗1

f(x,x)

f(y,y)

f(x,y) f(a,g(z)) f(g(x),g(x)) f(g(d),g(x))
?? ? ? ?

Figure 2: Discrimination tree



6 3 INDEXING TECHNIQUES RELATED TO SUBSTITUTION TREES

Retrieval. To answer a query one has to traverse the tree using a backtracking algo-

rithm. Let us take the retrieval of generalizations of a query term as an example: The

query term is transformed into a structure which is compatible with the discrimination

tree, a so–called query tree, by simply inserting the query term into an empty discrim-

ination tree. The backtracking algorithm has to consider that a subterm of the query

term can match the ∗i–nodes and non–variable nodes in the discrimination tree. Both

cases must be considered. Additionally, in case of a ∗i–node the variable ∗i is bound to

the corresponding subterm of the query term. In case the variable ∗i is processed again,

the binding of ∗i will be checked by testing whether the binding is equal to the current

corresponding subterm of the query term.

Finding instances of a query term is also fairly simple: During retrieval of instances,

a variable in the query term can match all children of a node in the discrimination tree.

However, this time the variable occurs in the query term. Nevertheless, the test whether

the bindings of identical variables in the query tree are identical still can’t be omitted.

The retrieval of unifiable terms searches for generalizations as well as for instances

of subterms. Additionally, an occur check has to be performed and a regular unification

routine has to be called in case a xi has been bound.

Remarks. Since discrimination trees are deterministic, they don’t depend on the order

of term insertion. Insertion of entries is very fast. The memory requirement depends on

whether the target terms stored in the index share initial “substrings”. In our example

there are three terms which end on g(∗1). The whole tree consists of 14 nodes. Abstraction

trees consist of less nodes due to a better configuration of the terms.

3.2 Abstraction Tree Indexing

Structure. Abstraction tree indexing [Ohl90a] exploits the lattice structure of terms.

An abstraction tree is based on the usual instance relation on terms which forms a partial

ordering.

The tree’s nodes are labeled with termlists so that the free variables of the termlists

at node N and the termlists of N ’s subnodes form the domain and codomain of a set of

matchers. The abstraction tree in Fig. 3 contains several matchers like {x1 7→ y, x2 7→ y}
and {x1 7→ x3, x2 7→ g(x4)} which may be applied to f(x1, x2). If all matchers from the

root to a leaf of the abstraction tree are applied to the termlist in the root of the tree the

resulting term is the one which is represented by this path. Note that abstraction trees

are not deterministic. Their structure depends on the order in which terms are inserted.

Retrieval. The procedure for accessing unifiable terms takes a node N and a termlist.

It unifies the termlist with N ’s label and applies the unifier to N ’s variables yielding a

new termlist. With each termlist the search for unifiable terms goes down recursively into

all subnodes of N until the leaves of the tree are reached.

Generalizations of a query term are found in the same way, except that matching has

to be used to prevent instantiation in the query terms.
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f(x1, x2)
[x1, x2]�������
�

��
@
@@

XXXXXXXXXX
x, x y, y x, y x3, g(x4)

[x3, x4]
Q
Q
QQ

�
�

��
a, z g(x5), x6

[x5, x6]

�
��

@
@@

x, x d, x

f(x,x) f(y,y) f(x,y) f(a,g(z)) f(g(x),g(x)) f(g(d),g(x))
? ? ? ? ? ?

Figure 3: Abstraction tree

Finding instances is also similar to finding unifiable terms. The only difference is that

matching is used instead of unification at the leaf nodes. Note that it is not possible to

use matching on all nodes.

Remarks. Compared to the discrimination tree in Fig. 2 the abstraction tree for the

same indexed set consists of 9 nodes only. Additionally, the fact that there are three

terms ending on g(∗1) is represented in the tree. However, abstraction tree indexing has

some disadvantages: First of all, the trees contain lots of variable renamings which are not

necessary. In our example tree the variable x1 is renamed to x3 just to have a consistent

tree. Secondly, variables of indexed terms may occur in leaf nodes of the tree only. This

implies that an algorithm looking for instances of a query term at an inner node of the tree

cannot exploit the fact that a variable in an indexed term must not be instantiated. The

consequence is that it will have to use unification instead of matching at inner nodes – and

visit more nodes. As a consequence of these disadvantages our abstraction tree contains

16 assignments.

4 Substitution Tree Indexing

Substitution trees were developed to increase the performance of indexing. The main

difference compared to abstraction trees lies in the representation of variables of indexed

substitutions. Additionally, variable renamings are avoided. To this end the structure of

the nodes of trees was simplified such that substitutions are stored in contrast to termlists

and lists of variables. Variables of indexed terms are represented by indicator variables just

like in discrimination trees and may now occur at arbitrary positions in the substitution

tree. Figure 4 shows our standard term set. We only need three auxiliary variables and the

whole tree contains only 9 assignments in contrast to the 16 assignments of the abstraction

tree in Fig. 3. However, the main advantages of abstraction trees are preserved. We can

also perform a merge on two trees, for example. Essentially, substitution trees unify the
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advantages of abstraction and discrimination trees and result in an outstanding indexing

technique.

u 7→ f(x1, x2)�����

HHHHH
x1 7→ ∗1
�

��
@
@@

x2 7→ ∗1 x2 7→ ∗2

x2 7→ g(∗1)
Q
Q
QQ

�
�

��
x1 7→ a x1 7→ g(x3)

�
��

@
@@

x3 7→ ∗1 x3 7→ d

u 7→f(x,x)

u7→f(y,y)

u 7→f(x,y) u7→f(a,g(z)) u 7→f(g(x),g(x)) u7→f(g(d),g(x))
?? ? ? ?

Figure 4: Substitution tree

In our example, we have stored 6 substitutions in the substitution tree. The domains of

all these substitutions are identical, but this is not necessary. Substitution trees may also

contain substitutions with different domains, which is shown later. We use a backtracking

algorithm to find substitutions in the tree with specific properties. All retrieval algorithms

are based on backtrackable variable bindings and algorithms for unification and matching

which take variable bindings into account. Insertion of a substitution into the index

is a complex operation. In contrast to insertion, the deletion of entries is much more

straight forward and even complex deletion operations, like the deletion of all compatible

substitutions in a substitution tree, can easily be accomplished.

Definition 4.1 (Substitution Tree) A substitution tree is either an empty tree ε or it

can be described by a tuple (Σ,Ω) where Σ is a substitution and Ω is a set of substitution

trees. The following two conditions hold:

1. A node in the tree is either a leaf node (Σ, ∅) or an inner node (Σ,Ω) with |Ω| ≥ 2.

2. For every path (Σ1,Ω1), . . . , (Σn,Ωn) from the root to a leaf of a non–empty tree we

have

(a) I(Σn • . . . • Σ1) ⊂ V ∗.

(b) DOM(Σi) ∩ (DOM(Σ0) ∪ . . . ∪DOM(Σi−1)) = ∅.

Additionally, Subst(N) denotes the set of all substitutions contained in the substitution

tree N . We define

Subst((Σ,Ω)) := {Σ} ∪
∪

N ′∈Ω
Subst(N ′).

In the following we will need the definition of variables which are open at a specific

node in the tree.
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Definition 4.2 (Open and Closed Variables) A variable x is called open at node Nn

in a substitution tree if (Σ0,Ω0), . . ., (Σn,Ωn) is the path from the root of the tree to node

Nn and

x ∈ (
∪

0≤i≤n

I(Σi) \
∪

0≤i≤n

DOM(Σi)).

Variables which are not open are called closed .

The condition I(Σn • . . .•Σ1) ⊂ V ∗ in Def. 4.1 implies that all non–indicator variables

are closed at leaf nodes in the tree.

5 Standard Retrieval

As stated in the introduction, the retrieval of substitutions providing specific properties

is very important in the field of theorem proving. In this section a general approach to

retrieval in substitution trees is presented. Such a retrieval is able to support the search for

complementary literals in a large set of clauses for resolution, for example. Additionally,

indexing can be used to support subsumption [WOL91, Vor94]. The retrieval of compatible

substitutions as well as the search for instances or generalizations of substitutions have

a very important feature in common: The search in the index is started for a single

substitution which in this context is called query. In contrast to the merge which is

introduced in Section 6 such a retrieval is called standard retrieval.

5.1 Theoretical Foundations

Retrieval in substitution trees is very simple. Generally, the retrieval algorithm checks each

node of the tree for some special conditions. If the conditions are fulfilled the algorithm

proceeds with the subnodes of the node that has been successfully tested. On its way

down to the leaf nodes of the tree, the set of passed nodes is collected.

There are three different tests which have to be performed: Find more general sub-

stitutions, compatible substitutions, and instances. The functions G, I, and U support

the tests at the nodes of the tree. For each assignment xi 7→ ti of the current node’s

substitution the functions test whether the variable xi or whatever it is bound to is more

general, an instance of, or unifiable with ti. Each of these functions can be used as a

parameter for the retrieval function search.

Definition 5.1 (Substitution Functions) Let N = (Σ,Ω) be a substitution tree and ρ

a substitution. Then

G(N, ρ) := {σ | ∀xi ∈ DOM(Σ). σρΣ(xi) = ρ(xi) and σ is most general}
U(N, ρ) := {σ | ∀xi ∈ DOM(Σ). σρΣ(xi) = σρ(xi) and σ is most general}
I(N, ρ) := {σ | σ ∈ U(N, ρ) and DOM(σ) ∩ V ∗ = ∅}

The retrieval function search is defined. It takes the substitution Σ which is stored at

node N = (Σ,Ω) in the tree and tests Σ against the current variable bindings ρ using one
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of the substitution functions. Although, one might only be interested in leaf nodes found

in the substitution tree, the definition of search will produce a set of nodes which have

successfully passed the test, no matter if they are leaf nodes or not.

Definition 5.2 (Retrieval Function) Let N = (Σ,Ω) be a node in a substitution tree,

ρ a substitution, and X one of the functions U , I, or G. The retrieval function search is

recursively defined as

search(N, ρ,X) :=

{
{N} ∪

∪
N ′∈Ω search(N ′, σρ,X) if ∃σ ∈ X(N, ρ)

∅ otherwise

The next lemma is essential for the soundness of the retrieval operation for compatible

substitutions. It states, that two unifiable terms remain unifiable even if a substitution is

applied to one of them. However, this substitution has to fulfill some extra conditions.

Lemma 5.1 Let s and t be two unifiable terms, ρ an idempotent most general uni-

fier such that ρ(s) = ρ(t), Σ a substitution with DOM(Σ) ∩ V (t) = ∅, and ∃τ∀x ∈
DOM(Σ). τρΣ(x) = τρ(x). Then

τρΣ(s) = τρ(t)

Proof: As the terms s and t are unifiable by applying the unifier ρ = {x1 7→ t1, . . . , xn 7→
tn}, we have to show that for all assignments xi 7→ ρ(xi) of ρ the equation τρΣ(xi) =

τρΣρ(xi) holds. Then τρΣ(s) = τρΣ(t) and as DOM(Σ) ∩ V (t) = ∅ we have τρΣ(s) =

τρ(t). In order to prove that τρΣ(xi) = τρΣρ(xi), we have to distinguish four cases:

Case 1: (DOM(Σ) ∩ V (ρ(xi)) = ∅ ∧ xi ∈ DOM(Σ))

As xi ∈ DOM(Σ) we use the precondition ∃τ∀x ∈ DOM(Σ). τρΣ(x) = τρ(x) to

simplify the equation τρΣ(xi) = τρΣρ(xi) to τρ(xi) = τρΣρ(xi). As DOM(Σ) ∩
V (ρ(xi)) = ∅ this is equivalent to τρ(xi) = τρρ(xi), which holds, because ρ is

idempotent.

Case 2: (DOM(Σ) ∩ V (ρ(xi)) = ∅ ∧ xi /∈ DOM(Σ))

As xi /∈ DOM(Σ) we can simplify each occurrence of Σ(xi) to xi. Therefore the

equation τρΣ(xi) = τρΣρ(xi) also simplifies to τρ(xi) = τρΣρ(xi). Proceed as in

Case 1.

Case 3: (DOM(Σ) ∩ V (ρ(xi)) ̸= ∅ ∧ xi ∈ DOM(Σ))

The equation τρΣ(xi) = τρΣρ(xi) simplifies to τρ(xi) = τρΣρ(xi), if the precondi-

tion ∃τ∀x ∈ DOM(Σ). τρΣ(x) = τρ(x) is used. The equation τρ(xi) = τρΣρ(xi)

is equivalent to τρρ(xi) = τρΣρ(xi), because ρ is idempotent. We consider the

variables yj in ρ(xi). Again we distinguish two cases: First, if yj ∈ DOM(Σ) we

may apply the precondition ∃τ∀x ∈ DOM(Σ). τρΣ(x) = τρ(x) to the variables yj in

ρ(xi) and get τρ(xi) = τρ(xi). Second, if yj /∈ DOM(Σ) the term Σρ(xi) simplifies

to ρ(xi) and therefore τρρ(xi) = τρρ(xi). By induction on the structure of the terms

the equation τρρ(xi) = τρΣρ(xi) holds.
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Case 4: (DOM(Σ) ∩ V (ρ(xi)) ̸= ∅ ∧ xi /∈ DOM(Σ))

Again, we can simplify each occurrence of Σ(xi) to xi, because xi /∈ DOM(Σ).

Therefore the equation τρΣ(xi) = τρΣρ(xi) also simplifies to τρ(xi) = τρΣρ(xi).

Proceed as in Case 3. 2

Theorem 5.1 (Compatible Substitutions) Let N0, . . . , Nn be a path from the root

N0 = (Σ0,Ω0) to a node Nn = (Σn,Ωn) of a substitution tree and φ a query substitu-

tion. Then

Nn ∈ search(N0, φ,U) ⇐⇒ ∃σ∀x ∈ V. σΣn . . .Σ0(x) = σφ(x)

Proof: Soundness is shown by induction on depth of the node in the tree and completeness

is proved by contradiction.

⇒: n = 0: In case N0 is a root node and N0 ∈ search(N0, φ,U) the definition of search

implies ∃σ = U(N0, φ). The definition of U yields

∃σ∀x ∈ DOM(Σ0). σφΣ0(x) = σφ(x)

In substitution trees we always have DOM(φ) ∩ I(Σ0) = ∅ and therefore

∃σ∀x ∈ V. σΣ0(x) = σφ(x)

n > 0: In case Nn+1 ∈ search(N0, φ,U) and Nn+1 ̸= N0 we can directly conclude

from the definition of search that for the father node Nn of Nn+1 we have Nn ∈
search(N0, φ,U) and by the induction hypothesis

∃ρ∀x ∈ V. ρΣn . . .Σ0(x) = ρφ(x)

As Nn+1 ∈ search(N0, φ,U) we can conclude that ∃τ = U(Nn+1, ρ) which is equiv-

alent to

∃τ∀xi ∈ DOM(Σn+1). τρΣn+1(xi) = τρ(xi)

Application of Lemma 5.1 to the induction hypothesis yields

∃ρ, τ∀x ∈ V. τρΣn+1 . . .Σ0(x) = τρφ(x)

The induction is finished by setting σ = τρ which yields

∃σ∀x ∈ V. σΣn+1 . . .Σ0(x) = σφ(x)

⇐: Assume that Nn /∈ search(N0, φ,U) and ∃σ∀x ∈ V. σΣn . . .Σ0(x) = σφ(x). Then

there is a path N0, . . . , Ni−1, Ni, . . . Nn such that either Ni /∈ search(N0, φ,U) and

∀j. 0 ≤ j < i : Nj ∈ search(N0, φ,U) or Nn is the root node. The case that Nn is the

root node can directly be excluded as it contradicts the definition of U . We consider

the first case: Ni /∈ search(N0, φ,U) and ∀j. 0 ≤ j < i : Nj ∈ search(N0, φ,U)
implies that

U(Ni, σi−1 . . . σ0φ) = ∅
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This is equivalent to U(Ni, σφ) = ∅, because one can set σi = σ and for idempotent

σ we have σσ = σ. Thus,

¬∃σ∀x ∈ DOM(Σi). σφΣi(x) = σφ(x)

which yields

¬∃σ∀x ∈ DOM(Σi). σφΣi . . .Σ0(x) = σφ(x)

because the definition of substitution trees states that DOM(Σi) ∩ (DOM(Σ0) ∪
. . . ∪DOM(Σi−1)) = ∅. Additionally, DOM(φ) ∩ I(Σi) = ∅ and therefore

¬∃σ∀x ∈ DOM(Σi). σΣi . . .Σ0(x) = σφ(x)

As the variables x ∈ DOM(Σi) don’t occur in the substitutions of the nodes

Ni+1, . . . Nn this is equivalent to

¬∃σ∀x ∈ DOM(Σi). σΣn . . .Σ0(x) = σφ(x)

which contradicts our assumptions. 2

The proof of the soundness and completeness of the retrieval of more general substitu-

tions is very similar to the one for compatible substitutions. Again a lemma is presented

first.

Lemma 5.2 Let s and t be two terms, ρ a matcher such that ρ(s) = t, Σ a substitution

with DOM(Σ) ∩ V (t) = ∅, and ∃τ∀x ∈ DOM(Σ). τρΣ(x) = ρ(x). Then

τρΣ(s) = t

Proof: It has to be shown that for all variables x ∈ V (s) the condition τρΣ(x) = ρ(x)

holds, because ρ doesn’t instantiate t and DOM(Σ) ∩ V (t) = ∅. Two different cases

have to be considered. In the first case x ∈ DOM(Σ) we can use the condition ∃τ∀x ∈
DOM(Σ). τρΣ(x) = ρ(x) to prove τρΣ(x) = ρ(x). In the second case x /∈ DOM(Σ) which

implies that Σ(x) simplifies to x. However, the equation τρ(x) = ρ(x) is fulfilled if τ is

set to the empty substitution. 2

Theorem 5.2 (More General Substitutions) Let N0, . . . , Nn be a path from the root

N0 = (Σ0,Ω0) to a node Nn = (Σn,Ωn) of a substitution tree and φ a query substitution.

Then

Nn ∈ search(N0, φ,G) ⇐⇒ ∃σ∀x ∈ V. σΣn . . .Σ0(x) = φ(x)

Proof: Using Lemma 5.2 the theorem can be proved in analogy to Theorem 5.1. 2

The definitions of the functions U and I are identical except for I doesn’t bind indicator

variables. This fact is employed by the next theorem.

Theorem 5.3 (Instances) Let N0, . . . , Nn be a path from the root N0 = (Σ0,Ω0) to a

leaf node Nn = (Σn,Ωn) of a substitution tree and φ a query substitution. Then

Nn ∈ search(N0, φ, I) ⇐⇒ ∃σ∀x ∈ V. Σn . . .Σ0(x) = σφ(x)
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Proof: We have Nn ∈ search(N0, φ, I) if and only if Nn ∈ search(N0, φ,U) and

DOM(σ) ∩ V ∗ = ∅ where ∃σ∀x ∈ V. σΣn . . .Σ0(x) = σφ(x) if and only if ∃σ∀x ∈
V. Σn . . .Σ0(x) = σφ(x) and DOM(σ) ∩ V ∗ = ∅, because the definition of substitution

trees contains I(Σn • . . . • Σ0) ⊂ V ∗. 2

Note that the theorem is valid only for leaf nodes Nn.

5.2 Implementing Standard Retrieval

Now that soundness and correctness of the definition of the retrieval have been shown, we

can describe an efficient implementation. In our implementations we used the following

technique: The algorithm is based on a stack of variable bindings. Variables are pushed

on the stack by the function unify(N,STACK,BINDINGS), for example. This function

checks for each assignment xi 7→ ti of N ’s substitution Σ = {. . . , xi 7→ ti, . . .} whether

xi is unifiable with ti. The bindings of variables to terms which are necessary to make

the terms identical are pushed on the STACK and counted in BINDINGS. Obviously, this

unification has to consider variable bindings in the terms to be unified. All occurrences

of a variable can easily be changed if the variable is stored just once and shared in all oc-

currences. Additionally, the function backtrack(STACK, BINDINGS) pops BINDINGS

bindings from the STACK. Therefore, this function resets the stack to the state before the

unification. A retrieval algorithm based on these functions is presented in Fig. 5.

algorithm search (input N, STACK; output HITS)

begin

HITS = ∅;
if (unify(N, STACK, BINDINGS))

HITS = HITS ∪{N};
forall (N ′ ∈ ΩN )

HITS = HITS ∪ search(N ′, STACK);

backtrack(STACK, BINDINGS);

return HITS;

end;

Figure 5: Algorithm for retrieval function search

5.3 Example

Figure 6 depicts a sequence of stacks resulting from the search for substitutions compatible

with {u 7→ f(a, y)}. Originally, the stack is empty. Before we start the retrieval algorithm,

all variables in the domain of the query substitution are bound to their corresponding

codomain, i.e. the bindings are pushed on the stack (compare stack “Init”). The recursive

retrieval algorithm starts with the root node. In case it succeeds, the resulting stack is

marked with “Success”. If the corresponding node in the tree is a leaf node, “Success”

is written boldface.
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Empty

u 7→ f(a, y)

Init

Success

x2 7→ y

x1 7→ a

u 7→ f(a, y)

Node 1

Success

∗1 7→ a

x2 7→ y

x1 7→ a

u 7→ f(a, y)

Node 2

Success

y 7→ a

∗1 7→ a

x2 7→ y

x1 7→ a

u 7→ f(a, y)

Leaf 3

BackTrack 3

Success

∗2 7→ y

∗1 7→ a

x2 7→ y

x1 7→ a

u 7→ f(a, y)

Leaf 4

BackTrack 4,2

Success

y 7→ g(∗1)
x2 7→ y

x1 7→ a

u 7→ f(a, y)

Node 5

Success

y 7→ g(∗1)
x2 7→ y

x1 7→ a

u 7→ f(a, y)

Leaf 6

BackTrack 6

Fail

y 7→ g(∗1)
x2 7→ y

x1 7→ a

u 7→ f(a, y)

Node 7

BackTrack 7,5,1

u 7→ f(a, y)

Init

Reset Init

Empty

Figure 6: Stack of bindings during retrieval for {u 7→ f(a, y)}

In the example the three leaf nodes 3, 4, and 6 are found. They correspond to the

substitutions {u 7→ f(x, x)}, {u 7→ f(y, y)},{u 7→ f(x, y)}, and {u 7→ f(a, g(z))}. Due

to the renaming of the variables in the substitutions inserted the retrieval in substitution

trees does not identify the variable y in the query substitution {u 7→ f(a, y)} with the y

occurring in the inserted substitutions.

6 Merge

An advanced operation on substitution trees is merging. The merge computes the set

of compatible substitutions stored in two different trees. Substitutions are compatible if

the codomains of identical variables in the two substitutions are simultaneously unifiable.

For example, the substitutions {x 7→ f(u, b), z 7→ h(w)} and {x 7→ f(a, v), y 7→ g(v)}
are compatible and the result of the merge of the two substitutions is {x 7→ f(a, b), y 7→
g(b), z 7→ h(w)}.

An application of the merge operation is hyperresolution. In this context a simulta-

neous unifier has to be found for a set of literals. To this end we maintain a substitution

tree for each literal of the nucleus which contains all unifiers with literals of the electrons.

By merging the substitution trees attached to the literals of the nucleus a simultaneous

unifier can be computed efficiently.

6.1 Theoretical Foundations

The merge operation is very similar to an ordinary retrieval except that two trees are

traversed in parallel. To this end we alternately test nodes in both of the trees.
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Definition 6.1 (Merge) Let M = (ΣM ,ΩM ) and N = (ΣN ,ΩN ) be two substitution

trees, ρ a substitution. The retrieval function merge is recursively defined as follows:

merge(M,N, ρ) :=



{(M,N ′) | N ′ ∈ search(N, σρ,U)}
if ΩM = ∅ and ΩN ̸= ∅ and ∃σ ∈ U(M,ρ)

{(M ′, N) | M ′ ∈ search(M,σρ,U)}
if ΩM ̸= ∅ and ΩN = ∅ and ∃σ ∈ U(N, ρ)

{(M,N)} ∪
∪

M ′∈ΩM

∪
N ′∈ΩN merge(M ′, N ′, τσρ)

if ∃σ ∈ U(M,ρ) and ∃τ ∈ U(N, σρ)

Theorem 6.1 (merge is Sound and Complete) Let M0, . . . ,Mm be a path from the

root M0 = (ΣM
0 ,ΩM

0 ) to a node Mm = (ΣM
m ,ΩM

m ) of a substitution tree and N0, . . . , Nn be a

path from the root N0 = (ΣN
0 ,ΩN

0 ) to a node Nn = (ΣN
n ,ΩN

n ) of another tree. Additionally,

I(Subst(M0)) ∩ I(Subst(N0)) = ∅. Then

(Mm, Nn) ∈ merge(M0, N0, ∅) ⇐⇒ ∃σ∀x ∈ V. σΣM
m . . .ΣM

0 (x) = σΣN
n . . .ΣN

0 (x)

Proof: We proof soundness by nested induction on m and n. Completeness is shown by

contradiction.

⇒: m = 0:

n = 0: We have (M0, N0) ∈ merge(M0, N0, ∅) if ∃ρ ∈ U(M0, ∅) and ∃τ ∈ U(N0, ρ).

∃ρ ∈ U(M0, ∅) implies ρ = ΣM
0 . As ∃τ ∈ U(N0,Σ

M
0 ) we have

∃σ∀x ∈ V. σΣM
0 (x) = σΣN

0 (x)

n > 0: We have (M0, Nn) ∈ merge(M0, N0, ∅) if ∃ρ ∈ U(M0, ∅) and additionally

Nn ∈ search(N0, ρ, U). Again ∃ρ ∈ U(M0, ∅) implies ρ = ΣM
0 . Theorem 5.1

yields the equivalence of Nn ∈ search(N0,Σ
M
0 ,U) and

∃σ∀x ∈ V. σΣM
0 (x) = σΣN

n . . .ΣN
0 (x)

m > 0:

n = 0: We have (Mm, N0) ∈ merge(M0, N0, ∅) if ∃ρ ∈ U(N0, ∅) and additionally

Mm ∈ search(M0, ρ, U). Again ∃ρ ∈ U(N0, ∅) implies ρ = ΣN
0 . Theorem 5.1

yields the equivalence of Mm ∈ search(M0,Σ
N
0 ,U) and

∃σ∀x ∈ V. σΣM
m . . .ΣM

0 (x) = σΣN
0 (x)

n > 0: The fact that (Mm+1, Nn+1) ∈ merge(M0, N0, ∅) implies that the father

nodes (Mm, Nn) ∈ merge(M0, N0, ∅). The induction hypothesis therefore yields

∃ρ∀x ∈ V. ρΣM
m . . .ΣM

0 (x) = ρΣN
n . . .ΣN

0 (x). Additionally, (Mm+1, Nn+1) ∈
merge(M0, N0, ∅) implies that ∃ρ′ ∈ U(Mm+1, ρ) and ∃τ ∈ U(Nn+1, ρ

′ρ). We

apply Lemma 5.1 twice to the induction hypothesis and finally get

∃σ∀x ∈ V. σΣM
m+1 . . .Σ

M
0 (x) = σΣN

n+1 . . .Σ
N
0 (x)
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⇐: Assume that (Mm, Nn) /∈ merge(M0, N0, ∅) and

∃σ∀x ∈ V. σΣM
m . . .ΣM

0 (x) = σΣN
n . . .ΣN

0 (x).

Then there is a path M0, . . . , Mij−1 , Mij , . . .Mm in the tree M0 and a path N0,

. . . , Nij−1 , Nij , . . . Nn in the tree N0 such that (Mij , Nij ) /∈ merge(M0, N0, ∅)
and (Mij−1 , Nij−1) ∈ merge(M0, N0, ∅). This implies that either U(Mij , σ) = ∅ or

U(Nij , σ) = ∅.

Case 1: (U(Mij , σ) = ∅)
We have

¬∃σ∀x ∈ DOM(ΣM
ij ). σΣ

M
ij (x) = σ(x)

which is equivalent to

¬∃σ∀x ∈ DOM(ΣM
ij ). σΣ

M
m . . .ΣM

0 (x) = ΣN
n . . .ΣN

0 σ(x)

as I(Subst(M0)) ∩ I(Subst(N0)) = ∅ and DOM(ΣM
ij
) ∩ (DOM(ΣM

0 ) ∪ . . . ∪
DOM(ΣM

ij−1
)) = ∅ in substitution trees.

Case 2: (U(Nij , σ) = ∅)
Then

¬∃σ∀x ∈ DOM(ΣN
ij ). σΣ

N
ij (x) = σ(x)

which corresponds to

¬∃σ∀x ∈ DOM(ΣN
ij ). σΣ

M
m . . .ΣM

0 (x) = ΣN
n . . .ΣN

0 σ(x)

for analogous reasons.

In both cases we have a contradiction to our assumptions. 2

6.2 Implementing the Merge

An efficient implementation for the merge of two substitution trees is presented. It is based

on the same functions and ideas as the algorithm for standard retrieval. The algorithm

presented in Fig. 7 has some very special features. First of all, the substitutions of M are

tested before each call of the function merge(M,N,STACK). This approach minimizes

backtracking on bindings made in context with node M . As a consequence, however, the

first unification of the root of M has to be done before merge is called. Second, the roles

of the trees M and N are swapped in case N is a leaf node and M is not. Third, in case

one of the trees is a leaf node, the function merge does a retrieval identical to the one

performed by search.

In Def. 6.1 the result of the merge operation is a set of tuples. In many applications,

however, the user is interested in the common instances which are produced during unifi-

cation of the substitutions. These instances can easily be stored in another substitution

tree which then represents the result of the merge. The procedure in order to compute this

resulting tree is straight forward: The common instance found by the merge is normalized

and inserted. Note that the variable bindings done in context with the renaming have to

be reset before the merge is continued.
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algorithm merge (input M, N, STACK; output HITS)

begin

HITS = ∅;
if (unify(N, STACK, BINDINGSN ))

HITS = HITS ∪ {(M,N)};
if (is leaf(M) and not is leaf(N))

forall (N ′ ∈ ΩN )

HITS = HITS ∪ merge(M,N ′,STACK);

else if (is leaf(N) and not is leaf(M))

forall (M ′ ∈ ΩM )

HITS = HITS ∪ merge(N,M ′,STACK);

else

forall (M ′ ∈ ΩM )

if (unify(M ′, STACK, BINDINGSM ))

forall (N ′ ∈ ΩM )

HITS = HITS ∪ merge(M ′, N ′,STACK);

backtrack(STACK, BINDINGSM );

backtrack(STACK, BINDINGSN );

return HITS;

end;

Figure 7: Algorithm for retrieval function merge

6.3 Example

This example shows how an implementation of the merge function computes all pairs of

compatible substitutions in the two substitution trees depicted in Fig. 8.

1: u 7→ f(x1, x2)
�����

HHHHH
2: x1 7→ ∗1

�
��

@
@@

3: x2 7→ ∗1 4: x2 7→ ∗2

5: x2 7→ g(∗1)
Q
Q
QQ

�
�

��
6: x1 7→ a 7: x1 7→ g(x3)

�
��

@
@@

8: x3 7→ ∗1 9: x3 7→ d

u 7→f(x,x)

u 7→f(y,y)

u 7→f(x,y) u7→f(a,g(z)) u7→f(g(x),g(x)) u 7→f(g(d),g(x))
?? ? ? ?

A: u 7→ f(y1, y2)
����
HHHH

B: y2 7→ g(y3)

�
�

@
@

C: y1 7→ ∗3
y3 7→ b

?
u 7→f(z,g(b))

u 7→f(y,g(b))

D: y1 7→ c
y3 7→ d

?
u 7→f(c,g(d))

E: y1 7→ a
y2 7→ b

?
u 7→f(a,b)

Figure 8: Trees to be merged

Note that all variables introduced in the codomains of the substitutions in the trees

are disjoint. The tree in Fig. 4 uses the variables xi and the indicator variables ∗1 and ∗2.
The tree in Fig. 8 uses yi and the indicator variable ∗3.

The merge in our example finds the following compatible substitutions: The substitu-

tions represented by leaf 3 are compatible with the substitutions represented by leaf C.
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Success

y3 7→ b

∗3 7→ g(y3)

∗1 7→ g(y3)

y2 7→ g(y3)
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u 7→ f(x1, x2)
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Fail
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x1 7→ y1
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Success

y3 7→ b
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Success
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BackTrack D,4,B

Success
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y2 7→ b
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Fail
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BackTrack 3

Success
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x1 7→ y1
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BackTrack 4,E,2

Success
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Node 5

• • •

Empty

Figure 9: Stack of bindings during merge of two substitution trees
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Additionally, we have the pairs 4–C, 4–D, 4–E, 6–C, 8–C, and 9–D.

7 Insertion

The insertion of new entries to a substitution tree is more difficult than the retrieval or

the deletion of entries. In this section the insertion function and the central notion of the

most specific common generalization are introduced. These generalizations are needed if

the insertion of new entries produces a new inner node in the tree.

7.1 Theoretical Foundations

Definition 7.1 (Most Specific Common Generalization) Let Σ1 and Σ2 be two sub-

stitutions. If there exist substitutions µ, σ1, and σ2 such that σ1 •µ = Σ1 and σ2 •µ = Σ2

and there is no substitution λ such that λµ has these properties, then

mscg(Σ1,Σ2) := (µ, σ1, σ2)

The substitution µ is called the most specific common generalization (mscg). The substi-

tutions σ1 and σ2 are called specializations.

The definition is illustrated by the following example: Suppose Σ = {x 7→ g(b), y 7→ a}
and ρ = {x 7→ g(a), y 7→ b}. Then mscg(Σ, ρ) := ({x 7→ g(x1)}, {x1 7→ b, y 7→ a},
{x1 7→ a, y 7→ b}). The original substitution Σ can be reconstructed by {x1 7→ b, y 7→
a} • {x 7→ g(x1)} and ρ = {x1 7→ a, y 7→ b} • {x 7→ g(x1)}, respectively. Note that x1 is

a new auxiliary variable . Obviously, these auxiliary variables represent the parts of the

substitutions which differ from each other.

Generally spoken, the insertion process is very similar to finding variant entries in the

tree. To this end we define the function V which tries to match the codomain of the

substitutions of a tree to the terms which have to be inserted.

Definition 7.2 (Variant Nodes) Let N = (Σ,Ω) be a substitution tree and ρ a substi-

tution. Then

V(N, ρ) := {σ | ∀xi ∈ DOM(Σ). σ(ρ(Σ(xi))) = ρ(xi) ∧ DOM(σ) ∩ V ∗ = ∅}

When looking for variant nodes, indicator variables are not bound. However, since the

substitution which is inserted has to be normalized before adding it to the substitution

tree, the test for variant nodes will succeed in matching two identical indicator variables,

because no binding will have to be made.

A heuristic select subnode is used for descending into the tree instead of traversing all

possible subnodes of a node in the tree. This heuristic has to cope with three different

situations: First of all, the heuristic has to select a variant subnode of the current node

for descending if such a variant exists. Second, the heuristic selects a non–variant subnode

which will yield a non–empty mscg if a variant couldn’t be found. Third, if neither a
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variant nor a subnode which yields a non–empty common generalization could be found,

the heuristic has to select the empty tree for insertion. In this case our insertion function

will create a new leaf node.

The insertion function ins returns a tuple (N,M) where N is the modified tree and M

is the leaf node which has been found or inserted, respectively. We chose this approach for

the following purpose: Usually, people don’t just want to store substitutions, but use the

index as a means for accessing data. To this end it has to be possible to store additional

information at the leaf nodes of the search tree. Therefore, we also return the leaf node

M to enable the user to perform some extra operations on this node.

Definition 7.3 (Insertion Function ins) Let N = (Σ,Ω) be a substitution tree, ρ a

substitution which is supposed to be inserted and OV the set of open variables at node N .

Then

ins(N, ρ,OV ) :=



(M,M)

if N = ε and M = (ρ|OV , ∅) (1)

(N,N)

if ∃σ ∈ V(Σ, ρ) and Ω = ∅ (2)

((µ, {(σ1,Ω),M}),M)

if ¬∃σ ∈ V(Σ, ρ) and mscg(Σ, ρ) = (µ, σ1, σ2)

and M = (σ2 ∪ ρ|OV \DOM(Σ), ∅) (3)

((Σ,Ω\N ′ ∪M ′),M)

if ∃σ ∈ V(Σ, ρ) and Ω ̸= ∅ and

N ′ = select subnode(N) and

(M ′,M) = ins(N ′, σρ,OV \DOM(Σ) ∪ I(Σ)) (4)

To insert a substitution ρ into a tree (N,M) = ins(N, ρ,DOM(ρ)) is called. Note

that the substitution ρ has to be normalized in advance. Rule (1) creates a new leaf node

in case a substitution is inserted into an empty tree, while Rule (2) returns a leaf node

which corresponds to a variant substitution which has been inserted yet. Rule (3) creates

a new inner node and a new leaf in case the substitution in the tree is not a variant of

the substitution which has to be inserted. The set of open variables OV is needed for

completely describing the inserted substitution in case a new leaf node is created. Finally,

Rule (4) uses a heuristic to find a subnode of the current node where the insertion will

be continued. Depending on the subnode selected by the heuristic Rule (4) can cause

different insertions.

7.2 Examples

Consider the exemplifying insertion sequence in Fig. 10. Rule (1) works on empty trees

and the insertion of {x 7→ f(z, g(b))} into an empty tree yields leaf A marked with {x 7→
f(∗1, g(b))}.

The substitution {x 7→ f(y, g(b))} is inserted into tree A. The tree is non–empty and

f(∗1, g(b)) is a variation of the substitution in the root node. In this case no new leaf is

created and tree B is identical to tree A.
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The substitution {x 7→ f(a, b)} is inserted into tree B yielding tree C. As f(∗1, g(b)) is
not a variant of f(a, b), Rule (3) adds a new root and a new leaf node to the tree. The new

root represents the common parts of f(∗1, g(b)) and f(a, b). Such a most specific common

generalization contains auxiliary variables at the positions where the original terms are

different. In our example the root is marked with {x 7→ f(x1, x2)}. Additionally, the new

leaf contains the bindings which are needed to completely represent the substitution being

inserted.

Insertion of the substitution {x 7→ f(c, g(d))} to tree C employs the heuristic mentioned

in Rule (4). As the substitution to be inserted is a variant of the root of the tree, the

heuristic has to select the subnode of the tree where the insertion process will be continued.

Assume that the node marked with {x1 7→ ∗1, x2 7→ g(b)} is selected. Again Rule (3) is

applied; the resulting tree D contains a new leaf node and a new inner node marked

with {x2 7→ g(x3)}. This substitution is the most specific common generalization for the

substitutions {x1 7→ ∗1, x2 7→ g(b)} and {x1 7→ c, x2 7→ g(d)}.
Eventually, {x 7→ f(b, g(a))} is inserted into tree D, thus yielding tree E. In this case

Rule (4) is applied two times in a row. Assume that the heuristic in the first application

selects node {x2 7→ g(x3)} for insertion. However, the heuristic applied to this node

cannot find a subnode which is either a variant or at least would produce a non–empty

mscg if Rule (3) was applied. Therefore, our heuristic selects the empty tree, and Rule (1)

produces a single leaf which then is added to the leaf nodes of the current node by Rule

(4).

A: x 7→ f(∗1, g(b))

?
x7→f(z,g(b))

B: x 7→ f(∗1, g(b))

?
x7→f(z,g(b))

x7→f(y,g(b))

C: x 7→ f(x1, x2)
����
HHHH

x1 7→ ∗1
x2 7→ g(b)

?
x7→f(z,g(b))

x7→f(y,g(b))

x1 7→ a
x2 7→ b

?
x 7→f(a,b)

D: x 7→ f(x1, x2)
����

HHHH
x2 7→ g(x3)

�
�

@
@

x1 7→ ∗1
x3 7→ b

?
x7→f(z,g(b))

x7→f(y,g(b))

x1 7→ c
x3 7→ d

?
x7→f(c,g(d))

x1 7→ a
x2 7→ b

?
x 7→f(a,b)

E: x 7→ f(x1, x2)
����
HHHH

x2 7→ g(x3)
����
HHHH

x1 7→ ∗1
x3 7→ b

?
x7→f(z,g(b))

x7→f(y,g(b))

x1 7→ b
x3 7→ a

?
x7→f(b,g(a))

x1 7→ c
x3 7→ d

?
x7→f(c,g(d))

x1 7→ a
x2 7→ b

?
x7→f(a,b)

Figure 10: Insertion sequence for substitutions with identical domains

So far, all nodes in our substitution trees have been marked with non–empty substi-

tutions, which is not the case in general! The insertion of the substitutions {x 7→ a} and

{x 7→ b} into an empty tree, for instance, will yield a root node marked with the empty

substitution, as the constants a and b actually have very little in common. The same thing

happens if substitutions with non–identical domains are inserted into our index. The in-
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sertion sequence in Fig. 11 shows more details: First, the substitution {x 7→ g(a), y 7→ b}
is inserted into the empty tree and a single leaf is created. Insertion of {x 7→ g(b), z 7→ b}
produces a root marked with {x 7→ g(x1)}. The substitution {z 7→ a} is neither a variant

of {x 7→ g(x1)} nor is there a non–empty common generalization for the two substitutions;

an empty root is created. Finally, {x 7→ g(a)} is added to the tree. However, this substi-

tution is part of a substitution which has been inserted. As a consequence the new leaf

node is also marked with an empty substitution. Note that inner nodes never have empty

substitutions.

A: x 7→ g(a), y 7→ a

?
x7→g(a),y 7→a

B: x 7→ g(x1)
����
HHHH

x1 7→ a
y 7→ a

?
x7→g(a),y 7→a

x1 7→ b
z 7→ b

?
x7→g(b),z 7→b

C: ∅
����

HHHH
x 7→ g(x1)

�
�

@
@

x1 7→ a
y 7→ a

?
x7→g(a),y 7→a

x1 7→ b
z 7→ b

?
x7→g(b),z 7→b

z 7→ a

?
z 7→a

D: ∅
����
HHHH

x 7→ g(x1)����
HHHH

x1 7→ a

�
�

@
@

y 7→ a

?
x 7→g(a),y 7→a

∅

?
x7→g(a)

x1 7→ b
z 7→ b

?
x7→g(b),z 7→b

z 7→ a

?
z 7→a

Figure 11: Insertion sequence for substitutions with different domains

7.3 Computing the Most Specific Common Generalization

The next two definitions 7.4 and 7.5 are rather technical. They show how the mscg is

derived in detail. In Def. 7.4 the function mscgt which computes the mscg for two terms

is defined. Definition 7.5 extends mscgt to substitutions.
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Definition 7.4 (MSCG for Terms) Let s and t be two terms and σ1 and σ2 be two

substitutions. Then

mscgt(s, t, σ1, σ2) :=



(f(cg1, . . . , cgn), σ1, σ2)

if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) and

∀1≤i≤n (cgi, σ1, σ2) = mscgt(si, ti, σ1, σ2) (1)

(s, σ1, σ2)

if s ∈ V ∗ and s = t (2)

(s, σ1, σ2 ∪ {s 7→ t})
if s ∈ V \V ∗ and s ̸= t (3)

(y, σ1, σ2)

if ∃y ∈ DOM(σ1) ∩DOM(σ2) and

σ1(y) = s and σ2(y) = t (4)

(xj , σ1 ∪ {xj 7→ s}, σ2 ∪ {xj 7→ t})
where xj is a new auxiliary variable. (5)

Rules (1) and (2) extract identical symbols from the two terms with Rule (1) handling

constant and function symbols and Rule (2) treating indicator variables as if they were

constants. Note that the substitutions σ1 and σ2 in Rule (1) are changed by every call

of mscgt. In case there is a non–indicator variable in term s it can also be used in the

specialization for the new leaf node, which is stated by Rule (3). Rule (4) describes

how the assignments will be reused in the found specializations, resulting in a non–linear

mscg. However, to achieve generalizations this rule may be omitted. The effect on the

substitution tree is minimal, because most of the non–linear generalizations in a tree are

changed to linear generalizations by further insertions. Changes in memory requirements

and retrieval times are minimal. Finally, Rule (5) introduces new non–indicator variables

in case none of the other rules could be applied.

When solving mscgt(f(a, ∗2, x1, ∗1, ∗1), f(a, ∗2, c, b, b), ∅, ∅), for instance, all five Rules

of the definition of mscgt are applied. The result is (f(a, ∗2, x1, x2, x2), {x2 7→ ∗1},
{x1 7→ c, x2 7→ b}).

Definition 7.5 (MSCG for Substitutions) Let Σ be a substitution in a substitution

tree, ρ the current variable bindings. The most specific common generalization µ and the
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specializations σ1 and σ2 are computed using the following recursive definition.

mscgσ(Σ, ρ, µ, σ1, σ2) :=



mscgσ(Σ\{xi 7→ ti}, ρ, µ, σ1 ∪ {xi 7→ ti}, σ2)
if xi 7→ ti ∈ Σ and xi = ρ(xi) (1)

mscgσ(Σ\{xi 7→ ti}, ρ, µ ∪ {xi 7→ ti}, σ1, σ2)
if xi 7→ ti ∈ Σ and ti = ρ(xi) (2)

mscgσ(Σ\{xi 7→ ti}, ρ, µ, σ1 ∪ {xi 7→ ti},
σ2 ∪ {xi 7→ ρ(xi)})

if xi 7→ ti ∈ Σ and top(ti) ̸= top(ρ(xi)) (3)

mscgσ(Σ\{xi 7→ ti}, ρ, µ ∪ {xi 7→ cg}, σ1, σ2)
if xi 7→ ti ∈ Σ and top(ti) = top(ρ(xi))

and ti ̸= ρ(xi) and (cg, σ1, σ2) =

mscgt(ti, ρ(xi), σ1, σ2) (4)

(µ, σ1, σ2)

if Σ = ∅ (5)

The function mscgσ considers every assignment xi 7→ ti ∈ Σ. We have seen, that

during the insertion variable bindings are established by the function V. These current

bindings are stored in ρ. Rule (1) handles assignments in Σ which map variables that

don’t occur in the substitution which is inserted. Rule (2) detects assignments where the

binding of xi is identical to what it has to be bound. In case the terms under consideration

don’t even have the same top symbol, Rule (3) completely splits the information to the

specializations. Finally, Rule (4) initiates calls to mscgt in all other cases.

For example, we have mscgσ({y 7→ a, x1 7→ a, x2 7→ b, x3 7→ f(c)}, {x1 7→ a, x2 7→
c, x3 7→ f(a)}, ∅, ∅, ∅) = ({x1 7→ a, x3 7→ f(x4)}, {y 7→ a, x2 7→ b, x4 7→ c}, {x2 7→ c, x4 7→
a}).

7.4 Reusing non–indicator Variables

In Rule (5) of Def. 7.4 we introduced new auxiliary variables for representing the differences

of the terms in the mscg. However, such a non–indicator variable doesn’t really have to

be a new variable: In tree D in Fig. 10 we introduced the new variable x3. Obviously, the

variable x3 could be used again if we had to create another mscg in the right subtree of the

root. Generally spoken, let N0 = (Σ0,Ω0), . . ., Ni = (Σi,Ωi) be a path in a substitution

tree and Ni a node which has to be extended. In this situation the set of non–indicator

variables which can be reused is the set of all non–indicator variables in the tree minus

the domain variables on the path from N0 to Ni minus the domain variables that occur

in the subtree Ni. More formally, this set can also be described as

DOM(Subst(N0)) \
∪

0≤j<i

DOM(Σj) \ DOM(Subst(Ni)).

Reusing non–indicator variables is an advantage both for memory requirements and for

the speed of the retrieval. Using the above definition the reusable variables can easily be

computed during insertion if the set DOM(Subst(N0)) is maintained, which implies that
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it doesn’t have to be recomputed for each insertion. In our implementation of substitution

tree indexing, this technique of variable reusing was able to reduce the number of variables

by a factor of 40 in the average case.

7.5 Insertion Heuristics

As mentioned, an insertion heuristic is used for descending into the tree and the heuristic

has to cope with three different situations: Either it selects a variant subnode of the

current node for descending or it selects a non–variant subnode which will yield a non–

empty mscg if a variant couldn’t be found. If such a node doesn’t exist either, the empty

tree is selected. In this case the insertion function will create a new leaf node. In our

implementation we used a very simple first–fit heuristic: We chose the first1 variant son

for descending. If such a son doesn’t exist the first non–variant son which produces a

non–empty mscg is selected.

In general, using a more complex insertion heuristic implies the necessity of traversing

the tree finding all possible insertion positions. Finally, the different positions found

are rated by the insertion heuristic and the substitution is inserted at the best position.

However, this technique has some disadvantages compared to the first–fit technique:

• The whole tree has to be traversed.

• The variable bindings found in the traversal either have to be stored for each insertion

position or have to be recomputed for the insertion position that was considered to

be best.

• Further insertions to the index are not known at the moment the selection of the

best node is taken. This implies that the decision to insert the substitution at a

specific position could be “wrong”.

• Most insertion heuristics cause the computation or the storage of additional infor-

mation like the depth of a subtree and such.

For all these reasons using insertion heuristics doesn’t guarantee best results. Trying

several heuristics which minimize

• size of the index,

• number of auxiliary variables xi in the index,

• number of sons for inner nodes of the tree, or

• depth of indicator variables ∗i in the tree

when inserting new substitutions confirmed our suspicion: Insertion was very slow and,

although the resulting trees were a little smaller with some heuristics, the retrieval times

didn’t change significantly. Due to this experience, using a complex insertion heuristic

cannot be recommended.
1In the definition of substitution trees the subtrees of an inner node are represented by a set of subtrees.

A real implementation, however, will store these subtrees in some order.
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8 Deletion

The deletion of entries in a substitution tree is based on two facts. First, the substitution

which has to be deleted from the index doesn’t need to be normalized if we keep on looking

for variants until we find a leaf node in the tree. Second, just like the insertion function,

the deletion has to cope with additional information which is stored in the leaf nodes

of the tree, if the tree is used to access a database by substitutions. To this end, the

deletion uses a predicate ∆ in order to determine whether a specific node really has to

be deleted. Assume the user stores different pointers at the leaf nodes of the tree. If a

leaf only contains the pointer which was searched, the whole leaf node has to be deleted.

If the leaf contains more than this pointer, the pointer has to be deleted from the list of

pointers stored at the leaf node, but the node itself is left unchanged.

Definition 8.1 (Deletion Function del) Let N be a substitution tree and ρ a substitu-

tion which is supposed to be deleted. Function del deletes nodes which represent variants

of ρ if the predicate ∆ evaluates to true at specific leaf nodes in the tree.

del(N, ρ,∆) :=



ε if ∃σ ∈ V(Σ, ρ) and either Ω = ∅ and ∆(N)

or Ω ̸= ∅ and
∪

Ni∈Ω del(Ni, σρ,∆) = ∅ (1)

N if ∃σ ∈ V(Σ, ρ) and Ω = ∅ and ¬∆(N) (2)

(Σ,
∪

Ni∈Ω del(Ni, σρ,∆))

if ∃σ ∈ V(Σ, ρ) and Ω ̸= ∅
and |

∪
Ni∈Ω del(Ni, σρ,∆)| ≥ 2 (3)

(Σ′ • Σ,Ω′)

if ∃σ ∈ V(Σ, ρ) and Ω ̸= ∅
and

∪
Ni∈Ω del(Ni, σρ,∆) = {(Σ′,Ω′)} (4)

N otherwise (5)

Rule (1) is applied either if N is a leaf node and ∆ decides to delete the leaf or if all

subtrees of an inner node are deleted by recursive calls of del. Leaf nodes where ∆(N)

evaluates2 to false are left unchanged, as stated by Rule (2). Rule (3) describes the deletion

of subnodes of an inner node where at least two subtrees remain. The join in Rule (4)

is needed in case just one subtree is left over, because our definition of substitution trees

demands that every inner node has to have at least two subtrees. In case the current node

N is not a variant of the current variable bindings ρ the node is left unchanged, which is

stated by Rule (5). Obviously, Fig. 10 and Fig. 11 also represent deletion sequences if the

trees are read in reverse order.

Deleting the Results of a Retrieval. The function del can easily be modified so it

will delete all instances, generalizations, or unifiable entries from the index. Simply change

all occurrences of V(Σ, ρ) to I(Σ, ρ), G(Σ, ρ), or U(Σ, ρ), respectively. Additionally, ∆(N)

has to be true for all nodes N .

2Maybe after having performed some side effects on the data stored at the leaf.
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9 Experiments

In this section substitution trees are compared to other indexing methods. As most of

the other techniques don’t serve as an indexing mechanism for substitutions, we use our

implementation of substitution trees as a term index.

9.1 The Term Sets

For the experiments special term sets were used. Part of them have been introduced in

[McC92]. These sets were taken from typical OTTER applications. As the sets are paired,

there is a set of positive literals and a set of negative literals in each pair. Unifiable terms

are searched in order to find resolution partners and to detect unit conflicts. The sets EC–

pos and EC–neg consist of 500 terms each and are derived from a theorem in equivalential

calculus. Two representative members of EC–pos and EC–neg are

P (e(e(x, e(y, e(z, e(e(u, e(v, z)), e(v, u))))), e(y, x)))

and

¬P (e(e(x, e(e(y, e(z, x)), e(z, y))), e(e(u, e(e(v, e(w, u)), e(w, v))), e(e(v6,

e(e(v7, e(v8, v6)), e(v8, v7))), e(e(v9, e(e(e(b, a),

e(e(e(a, e(b, c)), c), v9)), v10)), v10))))).

The sets CL–pos and CL–neg have 1000 members and are derived from a theorem in

combinatory logic. Two representative members of CL–pos and CL–neg are

g(x, g(g(g(g(g(B,B), y), z), u), v)) = g(g(g(B, x), g(y, z)), g(u, v)

and

g(f(g(g(N,x), y)), g(g(g(N,x), y), f(g(g(N, x), y)))) ̸=
g(g(g(x, f(g(g(N,x), y))), y), f(g(g(N,x), y))).

The sets BOOL–pos and BOOL–neg are derived from a theorem in the relational formu-

lation of Boolean algebra and consist of 6000 terms each. Two representative members of

BOOL–pos and BOOL–neg are

Sum(x, p(x, y), p(x, s(x, y)))

and

¬Sum(p(c2, n(x)), p(c2, x), c4).

The other part of the term sets was produced randomly. All of these sets contain 10000

terms. Three different function symbols with varying arities and three different constants

have been used. The terms contain at most three different variables with possibly multiple

occurrences.
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The set WIDE-10000 contains function symbols with an arity of at least 3. In the

other sets the maximal arity of function symbols is 2.

The maximal depth of all terms is 3 except for the set DEEP-10000 where the maximal

term depth is 6.

Terms in LIN–10000 contain each variable at most once and the set GND-10000 con-

tains no variables at all. All other sets contain linear as well as non–linear terms.

For example, a representative member of the set AVG-10000 which contains linear and

non–linear terms with a maximal depth of 3 and a maximal arity of 2 is

g(f(g(x14, a), g(a, c)), g(h(x14), f(b, c))).

9.2 Memory Requirements

In Fig. 12 the memory requirements of discrimination trees (DT), abstraction trees (AT),

and substitution trees (ST) are compared. Additionally, a survey on the times needed

to build the index and the times needed to delete all entries of the index one by one is

presented.

Memory Requirements [KBytes]

Indexed Set DT AT ST

EC–pos 108 153 88

EC–neg 539 483 252

CL–pos 612 505 318

CL–neg 2113 1116 797

BOOL–pos 685 780 610

BOOL–neg 958 1090 858

AVG–10000 969 1278 935

WIDE–10000 13402 9312 8056

GND–10000 846 1015 831

LIN–10000 1020 1265 950

DEEP–10000 6191 4312 3766

100%

97%

70%

DT AT ST
Figure 12: Memory requirements

First of all, our experiments show that substitution trees require the least memory

space. This result was expected, because the information sharing is best in this index.

In the average case a substitution tree consumes 70% of the memory occupied by the

worst of the three techniques. This fact is illustrated in Fig. 12. For each of the three

indexing techniques we have three bars. The white bar represents the average behavior,

for example discrimination tree indexing is most greedy in memory consumption. The

gray bar shows the best result of the experiments and the black bar the worst behavior.

Consider the bars for abstraction tree indexing: In the average case, the trees need 97%

of the memory needed by the most greedy technique. However, there was an experiment

where abstraction trees occupied just 53% of the memory occupied by the worst technique.

Nevertheless, the black bar tells us that abstraction trees also have at least once been the

most memory consuming index.
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9.3 Insertion

The creation of discrimination trees is fastest, because these indexes are deterministic. To

insert a term we just have to normalize it and to insert it at the only possible position in

the index. The other two indexing techniques are slower at adding entries to the index,

because these indexes are non-deterministic and a position for insertion has to be found

using a more or less complex algorithm. In contrast to substitution trees the abstraction

tree technique doesn’t require a normalization of the entries to be inserted, and therefore

abstraction trees are faster at inserting new entries as shown in Fig. 13.

Insertion [Seconds]

Indexed Set DT AT ST

EC–pos 0.3 0.3 0.3

EC–neg 1.0 0.9 1.3

CL–pos 0.8 0.9 1.3

CL–neg 2.4 2.4 3.2

BOOL–pos 1.1 1.6 2.4

BOOL–neg 1.7 2.3 3.6

AVG–10000 1.7 6.4 4.2

WIDE–10000 9.0 13.6 17.7

GND–10000 1.5 2.6 4.0

LIN–10000 1.8 6.0 4.3

DEEP–10000 5.3 11.3 9.3

41%

68%

100%

DT AT ST
Figure 13: Experiments with insertion

9.4 Deletion

Figure 14 shows, that substitution trees are appropriate also for dynamic data, because

entries are deleted most quickly although insertion is slow.

Deletion [Seconds]

Indexed Set DT AT ST

EC–pos 0.4 0.2 0.1

EC–neg 1.6 1.2 0.2

CL–pos 1.6 1.0 0.1

CL–neg 4.1 3.1 1.5

BOOL–pos 1.9 2.2 2.7

BOOL–neg 2.7 2.1 3.0

AVG–10000 2.7 6.6 4.7

WIDE–10000 19.2 16.9 13.3

GND–10000 2.4 2.4 4.0

LIN–10000 2.7 6.2 4.6

DEEP–10000 9.9 11.0 7.6

100%
96%

80%

DT AT ST
Figure 14: Experiments with deletion

The wide range of the values for deletion in substitution trees is striking; the best
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deletion takes just 6% of the time of the worst while there are examples where the deletion

in substitution trees itself is slowest. When no indicator variables occur in the terms, as

in GND–10000, deletion of entries is slow, because the treatment of indicator variables is

the main advantage of substitution tree indexing. Deletion in substitution trees performs

extremely well in case the terms are deep as in EC–neg, CL–pos, and DEEP–10000.

9.5 Retrieval Times

The experiments were run on a Sun SPARCstation SLC computer with 16 MBytes of

RAM. In all but the merge experiments the set in column Index was stored in an index.

Then for all members of the set Query we were looking for more general substitutions,

instances, and compatible substitutions. Similar tests using discrimination tree indexing

and path–indexing have been reported in [McC92].

Generalizations [Seconds]

Index Query DT AT ST

EC–pos EC–pos 0.6 0.4 0.3

EC–pos EC–neg 1.7 0.8 0.4

EC–neg EC–pos 0.4 0.1 0.1

EC–neg EC–neg 2.1 0.7 0.6

CL–pos CL–pos 3.4 0.8 0.8

CL–pos CL–neg 4.0 0.2 0.3

CL–neg CL–pos 1.3 0.1 0.1

CL–neg CL–neg 5.6 1.7 1.5

BOOL–pos BOOL–pos 3.3 3.5 3.4

BOOL–pos BOOL–neg 3.6 3.1 3.0

BOOL–neg BOOL–pos 1.7 0.9 0.8

BOOL–neg BOOL–neg 3.6 2.3 2.1

AVG–10000 AVG–10000 13.5 28.0 13.3

WIDE-10000 WIDE-10000 27.9 16.2 18.0

GND–10000 GND–10000 4.6 4.1 3.7

LIN–10000 LIN–10000 13.0 25.5 12.8

DEEP–10000 DEEP–10000 22.7 28.2 14.8

100%

66%

53%

DT AT ST

Figure 15: Retrieval of more general terms

By the way, in all experiments path–indexing was much slower than substitution tree

indexing. For the merge experiments an index for the set Index and an index for the Query

set was created. Then the two indexes were merged. The retrieval times exclude the time

for the creation of indexes. First of all, in the average case substitution tree indexing is

the fastest of the techniques. Discrimination trees are slowest. Abstraction trees seem to

work well on “wide” terms. The merge of discrimination trees is not defined.

There are only three experiments in which substitution tree indexing is not the fastest

technique for the retrieval of more general entries. Due to the introduction of indicator

variables, the search for instances using substitution trees takes just 1% of the time of

discrimination or abstraction trees in case of the sets EC–neg and EC–pos which contain

lots of variables. Substitution trees provide fastest retrieval of instances in all examples.

There are only two experiments where substitution trees don’t find unifiable entries

most quickly. In eight experiments, the retrieval time using abstraction trees for the merge
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Instances [Seconds]

Index Query DT AT ST

EC–pos EC–pos 6.5 6.0 1.0

EC–pos EC–neg 3.8 6.0 0.8

EC–neg EC–pos 42.8 14.9 0.3

EC–neg EC–neg 76.4 18.6 1.4

CL–pos CL–pos 17.9 4.6 1.7

CL–pos CL–neg 3.2 3.5 0.1

CL–neg CL–pos 100.0 11.9 6.7

CL–neg CL–neg 5.2 5.1 3.1

BOOL–pos BOOL–pos 6.1 7.5 5.2

BOOL–pos BOOL–neg 2.6 4.2 2.3

BOOL–neg BOOL–pos 18.7 2.4 1.8

BOOL–neg BOOL–neg 3.7 3.5 2.6

AVG–10000 AVG–10000 60.8 50.6 32.2

WIDE-10000 WIDE-10000 550.3 60.0 46.7

GND–10000 GND–10000 5.0 5.5 4.3

LIN–10000 LIN–10000 49.0 44.3 30.0

DEEP–10000 DEEP–10000 643.1 70.4 52.8

100%

67%

33%

DT AT ST

Figure 16: Retrieval of instances

Unifiable Terms [Seconds]

Index Query DT AT ST

EC–pos EC–pos 27.9 32.1 11.8

EC–pos EC–neg 28.6 60.6 21.8

EC–neg EC–pos 99.9 89.2 5.8

EC–neg EC–neg 308.8 211.1 46.1

CL–pos CL–pos 50.2 12.7 6.8

CL–pos CL–neg 42.7 17.6 4.8

CL–neg CL–pos 309.4 22.5 16.9

CL–neg CL–neg 19.1 7.3 6.8

BOOL–pos BOOL–pos 11.1 10.0 9.2

BOOL–pos BOOL–neg 4.9 5.5 5.3

BOOL–neg BOOL–pos 23.9 2.4 2.3

BOOL–neg BOOL–neg 4.0 3.5 3.3

AVG–10000 AVG–10000 100.2 86.5 61.5

WIDE-10000 WIDE-10000 672.7 84.3 110.3

GND–10000 GND–10000 4.6 5.1 4.5

LIN–10000 LIN–10000 74.7 71.1 52.2

DEEP–10000 DEEP–10000 736.6 142.3 138.6

100%

67%

42%

DT AT ST

Figure 17: Retrieval of unifiable terms
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Merge [Seconds]

Index Query AT ST

EC–pos EC–pos 34.9 12.1

EC–pos EC–neg 89.1 8.9

EC–neg EC–pos 88.5 6.1

EC–neg EC–neg 226.3 25.9

CL–pos CL–pos 11.7 4.3

CL–pos CL–neg 19.7 9.5

CL–neg CL–pos 19.2 8.3

CL–neg CL–neg 5.8 4.4

BOOL–pos BOOL–pos 9.7 8.7

BOOL–pos BOOL–neg 3.0 3.9

BOOL–neg BOOL–pos 3.7 5.0

BOOL–neg BOOL–neg 1.7 1.6

AVG–10000 AVG–10000 93.6 57.9

WIDE-10000 WIDE-10000 173.4 290.0

GND–10000 GND–10000 2.8 3.8

LIN–10000 LIN–10000 76.3 48.0

DEEP–10000 DEEP–10000 184.9 99.7

100%

65%

AT ST

Figure 18: Retrieval of unifiable terms using the merge operation

is slower as the standard retrieval for compatible substitutions. With substitution trees

this happened just four times.

9.6 Implementation

Substitution trees, abstraction trees, discrimination trees, and (extended) path–indexing

are implemented in C and are available via anonymous ftp. They are as well as implemen-

tations of other indexing techniques part of “A Collection of Indexing Data Structures

(ACID)” developed at MPI. Some of the techniques support subterm retrieval. In the

future ACID which is a library for efficient data structures and algorithms for theorem

provers will be further improved. Our implementations do not depend on term data struc-

tures and can very easily be embedded into other software. For more information send

e-mail to acid@mpi-sb.mpg.de.

10 Conclusion

The new data structure of substitution trees for indexing substitutions was presented.

Substitution trees are based on a simple data structure. Experiments showed, that sub-

stitution trees perform very well on completely different tasks. They are stable also for

large sets of entries and memory requirements are low. Additionally, retrieval is fastest.

The disadvantage of relatively slow insertion is compensated by a very fast and powerful

deletion procedure.
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