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Abstract .  In this paper, we propose the PARIS approach for impro- 
ving complex problem solving by learning from previous cases. In this 
approach, abstract planning cases are learned from given concrete ca- 
ses. For this purpose, we have developed a new abstraction methodology 
that allows to completely change the representation language of a plan- 
ning case, when the concrete and abstract languages are given by the 
user. Furthermore, we present a learning algorithm which is correct and 
complete with respect to the introduced model. An empirical study in 
the domain of process planning in mechanical engineering shows signifi- 
cant improvements in planning efficiency through learning abstract cases 
while an explanation-based learning method only causes a very slight im- 
provement. 

1 Introduct ion  

Improving complex problem solving (i.e. planning, scheduling, design, or model- 
based diagnosis) by reusing past problem solving experience is one of the major 
topics addressed by machine learning research. Although a lot of methods for sy- 
stematically solving complex problems are known from the literature on search, 
e.g. [20, 22] and planning [12, 38, 39, 45, 46, 26] most of them are intractable for 
solving problems in real-world applications due to basic search oriented nature of 
the algorithms. Learning from past experience promises to automatically acquire 
knowledge, useful to guide problem solvers so that they can improve their efficien- 
cy and competence. Most prominent are methods like explanation-based learning 
[33, 9, 37, 29, 31, 40, 10, 32, 23, 17] and analogical or case-based reasoning [7, 
16, 42, 41]. While in explanation-based learning a control rule or a schema is 
generalized from an example problem solving trace, case-based approaches store 
detailed problem solving cases, index them appropriately and reuse and modify 
the cases according to the new problem to be solved. 

In this paper we propose an alternative approach to improve complex 
problem solving. Instead of using learning methods which are based on ge- 
neralization, we present a learning approach which computes abstractions 
of planning cases. As already pointed out by Michalski and Kodratoff [28, 
27] abstraction has to be clearly distinguished from generalization. While gene- 
ralization transforms a description along a set-superset dimension, abstraction 
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transforms a description along a level-of-detail dimension. In general, abstracti- 
on requires changing the complete representation language while generalization 
usually maintains the representation language and introduces new variables for 
several objects to be generalized. 

As the mMn contribution of this paper, we present an abstraction methodo- 
logy and a related learning algorithm in which abstract cases are automatically 
derived from given concrete planning cases. Based on a.given concrete and ab- 
stract language together with a generic abstraction theory, this learning approach 
allows to change the whole representation of a case from a concrete to abstract. 
Abstract cases learned from several concrete cases are then organized in a case- 
base for efficient retrieval during novel problem solving. This approach is realized 
in PARIS (Plan Abstraction and Refinement in an Integrated System), which is 
fully implemented. PARIS is an integrated architecture for learning an problem 
solving [36] in which besides the abstraction mechanism described in this paper 
also an explanation-based approach is included. This allows to comprehensively 
investigate the different nature of abstraction and generalization as well as their 
integration. 

The presentation of this approach is organized as follows. The next section 
describes the basic idea behind case abstraction and introduces the architecture 
of the PARIS system. The following three sections of the paper formalize the 
abstraction approach. After introducing the basic terminology, section 4 defines 
a new formal model of case abstraction. Section 5 gives a detailed description of 
a correct and complete learning algorithm for case abstraction. An experimental 
evaluation of the presented approach in a real-world domain is given in section 
6. Finally, we discuss the presented approach in relation to similar work in the 
field. 

2 M o t i v a t i o n :  C a s e  A b s t r a c t i o n  a n d  R e f i n e m e n t  

This section wants to motivate the approach of learning abstract cases. The 
general approach is sketched and demonstrated by a real-world example. Fur- 
thermore, the PARIS architecture which realizes the presented approach is in- 
troduced. 

2.1 I m p r o v i n g  P r o b l e m  Solving 

Our main goal of learning is to improve the efficiency of a problem solver. We 
rely on the largely accepted view of problem solving which can be described 
as the task of transforming a given initial state into a given goal state by a 
sequence of available operators [34, 12, 8, 29, 41]. Thereby, initial state and goal 
state together constitute the problem description while the sequence of operators 
(plan) is the aspired solution. A definition of a problem solving domain usually 
consists of a description of the representation of the states which can occur during 
problem solving (usually a set of first order sentences) and a description of the 
available operators. An operator is usually described as a function which maps a 
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certain starting state into a successor state, if certain conditions on the starting 
state hold. Efficiency is one of the major problems of this kind of problem solving 
because usually large search spaces need to be searched until a solution can be 
found. 

2.2 The  Basic  Idea  

Unlike well-known methods for improving problem solvers such as explanation- 
based learning [29, 31, 10, 32, 17] and analogical or case-based reasoning [7, 16, 
42, 41] we propose an abstraction approach. 

While the main goal of generalization is to extend the set of objects to 
which a certain piece of knowledge relates to, abstraction reduces the level 
of detail of a piece of knowledge. Unlike generalization, abstraction usually 
requires changing the representation language of an example or case [28, 15, 
27] during learning. Several distinct concrete level objects need to be grouped 
into a smaller set of objects (out of the new representation language) at the 
abstract level. Abstraction must drop certain details of a description which are 
not useful for the kind of reasoning aspired. However, the most important re- 
lations between the concrete objects at the abstract level must be maintained. 
The advantage of abstraction is that it allows to simplify the representation 
and consequently speeds-up a reasoning process. Irrelevant details must not be 
considered anymore. 

Our approach deals with the abstraction of planning cases. Thereby, a case 
consists of a problem description (initial state and goal state) and a related 
solution (operator sequence). The goal of abstraction is to reduce the level of 
detail of the problem description and solution in a consistent manner, i.e. the 
abstract solution must sill be a solution to the abstracted problem. 

As a prerequisite, our approach requires that the abstract language and the 
concrete language are given by a domain expert. The abstract language itself 
is not constructed by the learning approach. This has the additional advantage 
that abstract cases are expressed in a language that the user is familiar with. 
Consequently, understandability and explainability, which are always important 
issues when applying a system, can be achieved much easier. 

During a learning phase, a set of abstract cases is generated from each availa- 
ble concrete case. Different abstract cases may be situated at different levels of 
abstraction or may be abstractions according to different aspects. Usually, sever- 
al concrete cases may share the same abstractions. The set of all abstract cases 
is the organized in a case-base. 

When a new problem must be solved, the problem solving phase is entered. 
During this phase, the case base is searched until an abstract case is found which 
contains an abstract problem description which is an abstraction of the current 
concrete problem at hand. During further problem solving, the abstract solution 
(abstract plan) found in the retrieved abstract case must be refined (specialized) 
to become a solution to the current problem. During this process, this abstract 
solution serves as a decomposition of the original concrete problem into several 
smaller sub-problems, i.e. the sub-problems of refining the abstract steps. The 
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sum of these sub-problems can usually be solved much more efficiently than 
the original problem as a whole [21, 19]. This effect leads to the desired overall 
improvement of problem solving. 

2.3 A Rea l -Wor ld  Example  

To enhance the understanding of the following sections, we present an exam- 
ple now. This example is a simplification of the real-world domain of process 
planning in mechanical engineering. 

Doma in  Descr ipt ion.  As a real-world example domain we have selected a sub- 
task from the field of process planning in mechanical engineering. 1 The goal is to 
generate a process plan for the production of a rotary-symmetric workpiece on 
a lathe. The problem description contains the complete specification (especially 
the geometry) of the desired workpiece (goal state) together with a specification 
of the piece of raw material (called mold) it has to be produced from (initi- 
al state). Rotary parts are manufactured by putting the mold into the fixture 
(chucking) of a lathe. The chucking fixture, together with the attached mold is 
then rotated with the longitudinal axis of the mold as rotation center. While the 
mold is rotated, a cutting tool moves along some contour and thereby removes 
certain parts of the mold until the desired goal workpiece is reached. Within 
this pro'eess, it is very hard to determine in which sequence the specific parts of 
the workpiece can be removed and which cutting tools must be used therefor. 
These decisions are *ery much influenced by the specific geometric shape of the 
workpiece. 

A Case. In Figure 1, case C1 shows an example of a rotary-symmetric workpie- 
ce which has to be manufactured out of a cylindrical mold. 2 The left side of the 
picture of case C1 shows the drawing of the inital state (outer cylindrical form) 
together with the goal state (inner contour). The representation of this drawing 
contains the exact geometrical specification of each element of the contour. Se- 
veral areas of this contour are named by the indicated coordinates (e.g. #2, #2) 
for further reference. The right side of the case specifies the concrete plan which 
solves the problem. The solution plan consists of a sequence of 7 steps. In the 
first step, the workpiece (cylindrical mold) must be chucked at its left side. Then 
a cutting tool must be selected which can be used to cut the area specified by 
(#2, #2) from the workpiece in the next step. In step 4, a different tool must 
be selected which allows to process the two small groves named (#1, :/p2) and 
(~1, ~3). These groves are removed in step 5 and 6. Finally, the workpiece must 
be unchucked. 

1 This domain was adapted from the CAPLAN-System [35], developed at the University 
of Kaiserslautern. 

2 Note, that this figure shows a 2-dimensional drawing of the 3-dimensional workpiece. 
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--Concrete Case: C 1 

Problem: 
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--Abstract Case: 

Abstract problmn: 

I 
Initial state: 

cylindical_piece 

Goal state: 
rawelements(right) 
fine_elements(right) 

Problem Abstraction 

-- Com~uted Concrete Case: C 2 

New Problem P2 : 
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B o l u t i o n :  

C o ~ o r e t e  P l a n  

1 .  c h u c k ( l e f t )  

2 .  set_tool(right,rawtool) 
3. cut(#2,#2} 

4. set_tool(center,finetool) 
5. cut(#1,#2) 

6. cut(#1,#3) 

7. unchuck 

~ C a s e  A b s t r a c t i o n  

Abstract solution: 

I. fix(left) 
II. process_raw(right) 
III. process fine(right) 
IV. remove fixation 

Solution Refinement I 

Derived Solution: 
r 

Concrete Plan 

1. chuck(left) 
2. set_teol(rlght,rawtool) 
3. cut(#3,#3) 

4. cut(#2,#4) 

5. set_tool(radial,finetoel) 
6. cut(#3,#2) 

7. set_toel(center,finetool) 
8. cut(#1,#4) 

9. unchuck 

Fig. I. Demonstration of the approach for a mechanical engineering example 

Case  A b s t r a c t i o n .  The demonstrate the abstraction approach, we assume that 
case C1 is available for learning. Case C~ shows an abstraction which we may 
want to learn from C1. The left side of this case shows a problem description with 
a reduced level of detail. The exact geometrical specification of the workpiece is 
omitted and replaced by qualitative description. The workpiece is divided into a 
left and a right side, and only raw and fine processing elements are distinguished. 
The right side of the description of case C~ shows the abstracted plan which only 
consists of 4 abstract steps. The workpiece must be fixed at its left side, the raw 
parts on the right side must be processed, the fine parts on the right side must be 
processed, and finally the fixation must be removed. By this abstraction process, 
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the concrete step 1 is turned into the abstract step I, the concrete steps 2 and 3 
are turned into the abstract step II, the concrete steps 4,5, and 6 are abstracted 
towards step III, and step 7 is turned into the abstract step IV. Please note 
that in order to achieve the abstraction including a change of the representation 
language, the abstract language itself must be given in addition to the concrete 
language. In this example, the abstract language specifies how an abstract state 
can be described (e.g. my a term such as raw-elements(right)) and what abstract 
operators are available (e.g. process-raw) and how those abstract operators are 
specified. 

P r o b l e m  Solving The learned abstract case C~' can be used to solve the new 
problem P2 shown in the bottom of Figure 1. Although this problem is completely 
different at the concrete level from the problem in case C1, it is identical at the 
abstract level. Both pieces have to be manufacture from a cylindrical mold even 
if the dimensions of the mold are quite different. Both goal pieces contain raw 
and fine elements on the right side of the workpiece. However, the detailed shape 
of those elements is completely different. Since the abstract problem as stated in 
the abstract cases C~ matches the abstraction of the new problem P2 completely, 
the abstract solution from C~ can be used to solve the concrete problem. This 
abstract solution determines already the overall structure of the solution plan to 
be computed. Instead of solving the complete problem as a whole, the problem 
solver can now solve the four subproblems separately, i.e. determine a fixation, 
determine how to process the raw parts of the piece, determine how to process 
the fine parts of the piece, and finally determine how to remove the fixation. 
These four subproblems can be solved much more efficiently than the complete 
problem as a whole. For solving P2, the abstract step II must be refined towards 
a sequence of the three concrete steps 2,3, and 4 as shown in the bottom of Figure 
1. The abstract step III must be refined to a sequence of the four concrete steps 
5,6,7, and 8. 

Please note that except for the first two steps and the last step, the resul- 
ting concrete solution to problem P2 is completely different from the solution 
contained in case C1. However, an abstract case is still very helpful to find the 
new solution to the problem. Explanation-based or case-based approaches would 
not be able to learn knowledge from case C1 to solve the problem P2, because 
they cannot change the representation language appropriately. Neither a useful 
generalization can be derived nor can the case be reused directly. 

2.4 The  PARIS  Arch i t ec tu re  

PARIS (Plan Abstraction and Refinement in an Integrated System) is a fully 
implemented system for learning and problem solving which realizes the sketched 
approach to case abstraction. Figure 2 shows an overview of the whole system and 
its components. Besides case abstraction and refinement, PARIS also includes an 
explanation-based approach for generalizing cases during learning and for spe- 
cializing them during problem solving. Furthermore, the system includes several 
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indexing and retrieval mechanisms for organizing and accessing the case-base of 
abstract cases, ranging from simple sequential search, via hierarchical clustering 
up to a sophisticated approach for balancing a hierarchy of abstract cases accor- 
ding to the statistic distribution of the cases within the problem space. This also 
includes methods for evaluating different abstract cases according to their ability 
to improve problem solving. More details on the generalization procedure can be 
found in [1], while the indexing and evaluation mechanisms are reported in [5, 
44]. The whole multi-strategy system including the various interactions of the 
described components will be the topic of a forthcoming article, while first ideas 
can already be found [2, 4]. However, as the target of this paper we will con- 
centrate on the core of PARIS, namely the abstraction approach. A detailed 
presentation of the related refinement approach can be found in [6]. 

Fig. 2. The Components of the PARIS-System 

3 Basic terminology 

In this section we want to introduce the basic formal terminology followed 
throughout the rest of this paper. Following a STRIPS-oriented representation 
[12], the domain of problem solving l) = (s s O, 74) is described by a language 
s a set of essential atomic sentences [24] ~ of/~, a set of operators O with 
related descriptions, and additionally, a set of Horn clauses 74 out of s A state 
s E ,q describes the dynamic part of a situation in a domain and consists of a 
finite subset of ground instances of essential sentences of g. With the symbol ,.q, 
we denote the set of all possible states descriptions in a domain, which is defined 
as S = 2 e ' ,  with s = {er E g and r is a substitution such that e~ is ground}. 
In addition, the Horn clauses 74 allow to represent static properties which are 
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true in all situations. These Horn clauses must not contain an essential sentence 
in the head of a clause. 

An operator O(Xl , . . . ,  Xn) E 0 is described by a triple (Preo, Addo, Delo), 
where the precondition Preo is a conjunction of atoms of L:, and the add-list 
Add~ and the delete-list Delo are finite sets of (possibly instantiated) essential 
sentences of E. Furthermore, the variables occuring in the operator descriptions 
must follow the following restrictions: { X l , . . . ,  xn} _D Var(Preo) D Var(Delo) 
and { X l , . . . ,  x~} __D Yar(mddo). 3 

An instantiated operator is an expression of the form o ( t l , . . . ,  tn), with ti 
being ground terms of s  For notational convenience, we define the instantiated 
precondition as well as the instantiated add-list and delete-list for an instantiated 
operator as follows: Preo(tl ..... t~) := PreoC% Addo(tl .... ,t~) := {acrla E Add~ 
Oelo(tl ..... t~) := {dald  E Delo}, with (Preo,Addo, Delo) is the description of 
the (uninstantiated) operator O(Xl, . . .  ,x,~), and cr = { x l / t l , . . . , x n / t ~ }  the 
corresponding instantiation. 

An instantiated operator o is applicable in a state s if and only if sUTt ~- Preo 
holds. 4 An instantiated operator o transforms a state Sl into a state s2 (we write: 

s~ -A~ s2) if and only if o is applicable in sl and sz = (s~ \ Delo) U Add~ h 
problem description p = (s~, sa) consists of an initial state sl together with a 
final state sa. The problem solving task is to find a sequence of instantiated 
operators (a plan) 6 = ( o l , . . . ,  or) which transforms the initial state into the 
final state (si ol) . . .  o!~ sa). A case C = (p, 5) is a problem description p 
together with a plan 5 that  solves p. 

4 A F o r m a l  M o d e l  o f  C a s e  A b s t r a c t i o n  

In this section, we present a new formal model of case abstraction which allows 
to change the representation language of a case from concrete to abstract. As 
already stated, we assume, that in addition to the concrete language, the abstract 
language is supplied by a domain expert. Following the introduced formalism, 
we assume that  the concrete level of problem solving is defined by a concrete 
problem solving domain :De = {s 8c, Oc,7~c} and the abstract level of (case- 
based) problem solving is represented by an abstract problem solving domain 
~)a : (s In the remainder of this paper, states and operators 
from the concrete domain are denoted by s * and o *, respectively, while states 
and operators from the abstract domain are denoted by s ~ and o ~, respectively. 
The problem of case abstraction can now be described as transforming a case 
from the concrete domain 7)r into a case in the abstract domain/)~ (see Figure 
3). This transformation will now be formally decomposed into two independent 
mappings: a state abstraction mapping c~, and a sequence abstraction mapping/3 
[3]. 
3 These restrictions can however be relaxed such that { x l , . . . ,  x~} _D Var(Preo) is 

not required. But the introduced restriction simplifies the subsequent presentation. 
4 In the following, we will simply omit the parameters of operators and instantiated 

operators in case they are unambiguous or not relevant. 
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abstract Da ~ O] ~ 1  0~.~,.. 
domain: 

co.c .  

domain." De ~ " ' "  

13(o) = o 13d) = 3 

O md- l 

~ ( j )  = i ~ ( m )  -- n 

Fig. 3. General Idea of Abstraction 

4.1 S t a t e  A b s t r a c t i o n  

A state abstraction mapping translates states of the concrete world into the 
abstract world. For this translation, we require additional domain knowledge 
about how an abstract state description relates to a concrete state description. 
We want to assume that  this kind of k~wledge can be provided in terms of a 
domain specific generic abstraction theory .4 [14]. In our model of case abstrac- 
tion, such a generic abstraction theory defines each essential sentence Ea E g~ in 
terms of the concrete domain by a set of horn-rules of the form ea ~-- a l , . . .  , ak, 
where ea = Eac~ for a substitution c~ and ai are atoms out of s 

Based on such a generic abstraction theory, we can restrict the set of all 
possible state abstraction mappings to mappings that are deductively justified 
by the generic abstraction theory: 

D e f i n i t i o n  1 ( D e d u c t i v e l y  J u s t i f i e d  S t a t e  A b s t r a c t i o n  M a p p i n g )  
A deductively justified state abstraction mapping which is based on a generic 
abstraction theory .4, is a mapping a : Sc --+ Sa for wh&h the following conditi- 
ons hold: 

- i f e E a ( s  c) then s c u T t c u A k r  and 
- i f r  E a(s c) then for al lU such that ; c U n ~ U A k  r holds, r E ~(U) is also 

fulfilled. 

In this definition, the first conditions assures that  every abstract sentence 
reached by the mapping is justified by the abstraction theory. Additionally, the 
second requirement guarantees that if an abstract sentence is considered in the 
abstraction of one state, it is also considered in the abstraction of all other 
states. Please note that  a deductively justified state abstraction mapping can 
be completely induced, with respect to a generic abstraction theory, by a set 
o:  _C s as follows: c~(s c) := {r E ~*[s c U ~ c  U-4 I- r  

To summarize, the state abstraction mapping transforms a concrete state 
description into an abstract state description and thereby changes the represen- 
tation of a state from concrete to abstract. 
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4.2 Sequence Abs t r ac t ion  

The solution to a problem consists of a sequence of operators and a correspon- 
ding sequence of states. To relate an abstract solution to a concrete solution, the 
relationship between the abstract states (or operators) and the concrete states 
(or operators) must be captured. Thereby, each abstract state must have a cor- 
responding concrete state, but not every concrete state must have an associated 
abstract state. To select those states of the concrete problem solution that have 
a related abstract state, the sequence abstraction mapping is defined as follows: 

Def in i t ion  2 (Sequence Abs t r ac t ion  Mapping)  A sequence abstraction 
8 a mapping ~ : IN ~ N relates an abstract state sequence ( s~ , . . .  , m) to a con- 

crete state sequence ( sS , . . .  , s~) by mapping the indices j E {1 , . . . ,  m} of the 
abstract states s~ into the indices i E {1 , . . . ,  n} of the concrete states s~, such 
that the following properties hold: 

- fl(O) -- 0 and ~(m) = n: The initial state and the goal state of the abstract 
sequence must correspond to the initial and goat state of the respective con- 
crete state sequence. 

- /~(u) < ~(v) if  and only i fu  < v: The order of the states defined through the 
concrete state sequence must be maintained for the abstract state sequence. 

Note that the defined sequence abstraction mapping formally maps indices from 
the abstract domain into the concrete domain. However, an abstraction mapping 
should better map indices from the concrete domain to indices in the abstract 
domain such as the inverse mapping fl- t  does. But such a mapping is more 
inconvenient to handle formally, since the range of definition of/3-1 must always 
be considered. Therefore, we stick to presented definition. 

4.3 Case Abs t r ac t ion  

Based on the two introduced abstraction functions, our intuition of case abstrac- 
tion is captured in the following definition. 

Def in i t ion  3 (Case Abs t rac t ion)  A case Ca = ( (s~, S~n), (0~ , . . . , O~n)) iS an 
abstraction of a case Cc = ((s~,s~) ,(o~, . . .  ,o~)) with respect to the domain 

c. a 

descriptions (T)a,~9c) if  s~_ t "%) s~ for all i E {1,. . .  ,n} and s]_ 1 % ,  s] for all 
j E {1, . . .  ,m} and if there exists a state abstraction mapping c~ and a sequence 
abstraction mapping such that: s; = for all j {0 , . . . ,  m} 

This definition of case abstraction is demonstrated in Figure 3. The concrete 
space shows the sequence of n operations together with the resulting state se- 
quence. Selected states are mapped by the ~ into states of the abstract space. 
The mapping j3 maps the indices of the abstract states back to the corresponding 
concrete states. 

In [6] we have discussed the generality of presented case abstraction me- 
thodology. We formally showed that hierarchies of abstraction spaces as well 
as abstractions with respect to different aspects can be represented using the 
presented methodology. 
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5 C o m p u t i n g  C a s e  A b s t r a c t i o n s  

Now we present the PABS-algorithm [3, 43] for automatically learning a set of 
abstract cases from a given concrete case. Thereby, we assume that  a concre- 
te domain / ) c  and an abstract domain Da are given together with a generic 
abstraction theory ,4. 

Roughly speaking, the algorithm consists of four separate phases or sub- 
procedures. In the first sub-procedure, the sequence of concrete states which 
results from the execution of the concrete solution is computed. The second sub- 
procedure derives for each concrete state all possible abstract essential sentences 
justified by the generic abstraction theory. In the subsequent procedure, a graph 
of all applicable abstract operators is constructed, in which each edge leads from 
an abstract state to an abstract successor state. Finally, all consistent paths, 
starting at the abstract initial state and leading to the final abstract state are 
determined. Each of these paths represents a case which is an abstraction of 
the concrete case. In the following, we will present these phases in more detail. 
We presuppose a procedure for determining whether a conjunctive sentence in 
some language is a consequence of a set of clauses. More precisely, we assume a 
SLD-refutation procedure [25] which is given a set of clauses (a logic program) C 
together with conjunctive sentence G (a goal clause). The refutation procedure 
determines a set of answer substitutions f2 such that C t- Gcr for all c~ E ~2. 
This set of answer substitutions is empty if C ~- G~ does not hold. We also 
require the derivation tree in addition to the answer substitutions. Then we 
w r i t e / I  = SLD(C, G) and assume, t h a t / / i s  a set of pairs (cr, r), where cr is an 
answer substitution and r is a derivation of C ~- Ga. 

5.1 Phase-I: Computing the Concrete State Sequence 

As input to the case abstraction algorithm, we assume a concrete case Cc = 
((s~, s~), ( o~ , . . . ,  o~)). Note that  (o~ , . . . ,  o~) is a sequence of instantiated ope- 
rators. In the first phase, the state sequence which results from the simulation 
of problem solution is computed as follows: 

Algorithm 1 (Phase-I: Computing the concrete state sequence) 
s8 := 
for i := 1 to  n do 

i f  SLD(s~_ t U T/c, Preo~) = O t h e n  STOP "Failure: Operator not applicable" 
s~ := (s$_ 1 \ DeloT)UAddo7 
end 

i f  s~ ~ s~ then STOP "Failure: Goal state not reached" 

c 

c By this algorithm, the states s i are computed such that  s ic_l o ,  sic holds 
for all i E {1 , . . .  , n) .  If a failure occurs, the plan is not correct and the case is 
rejected. 
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5.2 P h a s e - I I :  D e r i v i n g  A b s t r a c t  E s s e n t i a l  S e n t e n c e s  

Using the derived concrete state sequence as input, the following algorithm com- 
putes a sequence of abstract state descriptions (s~) by applying the generic ab- 
straction theory separately on each concrete state. 

A l g o r i t h m  2 ( P h a s e - I I :  S t a t e  a b s t r a c t i o n )  
f o r i : = 0 t o n  do  

:=0 
fo r  e a c h  E E g~ do  

s := SLD(s~ U T~ U A, E)  
fo r  e a c h  c~ E ~2 do  

S i :---- S i 

e n d  
e n d  

e n d  

Within the introduced model of case abstraction, we have now computed a 
superset for the outcome of possible state abstraction mappings. Each deduc- 
tively justified state abstraction mapping ~ is restricted by ~(s~) C_ s~ = {e E 
$~ls~ UT~c UA ~- e} for all i E {1 , . . .  n}. Consequently, we have determined all 
abstract sentences that  an abstract ease might require. 

Fig. 4. An example of abstract states computed in phase-II. The abstract essen- 
tial sentences are abbreviated as follows: cylindr = cylindrical_piece, raw_el(r) = 
raw_elements(right), fine_el(r) = fine_elements(right), fixed(l) = fixed_piece(left). 

Figure 4 gives an example of the 8 abstract states s~ computed during the 
abstraction of case C 1 shown in Figure 1. The abstract sentences used in these 
cases are a subset of the abstract sentences that  occur in the abstract problem 
solving domain D~ and which are defined in terms of the concrete sentences by 
the generic abstraction theory provided by the user. 

5.3 P h a s e - I I I :  C o m p u t i n g  Pos s ib l e  A b s t r a c t  S t a t e  T r a n s i t i o n s  

In the next phase of the algorithm, we search for instantiated abstract operators 
which can transform an abstract state ga C s~ into a subsequent abstract, state 
s-] C_ s~ (i < j ) .  Therefore, the preconditions of the instantiated operator must 
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at least be fulfilled in the state U and consequently in also s~. Furthermore, all 
added effects of the operator must be true in sj and consequently also in s j .  

A l g o r i t h m  3 ( P h a s e - I I I :  A b s t r a c t  s t a t e  t r a n s i t i o n s )  
G:=O 
f o r i : = 0 t o n - l d o  

f o r j : = i + l  t o n  do 
for  each  o(x l , . . . , x~ , )  E Oa do 

le t  (Preo, Delo, Addo) be the description of o (x l , . . .  , xu) 
/ / : =  SLD(s a U T~a, Preo) 
for  each  (cq v) E H do 

letAdd~o = {atria E Adda} 
(* Compute all possible instantiations *) 
(* of added sentences which hold in s~ *) 
M := {A} with )~ = O is the empty substitution. 
(* M is the set of possible substitutions *) 
(* initially the empty substitution *) 
for  each  a E Add~o do 

M ' : = O  
for  each  0 E M do 

for  each  e E s~ do 
if there is a substitution fl such that aOp = e then M ~ := M t U {Op) 
e n d  

e n d  
M := M I 
e n d  
(* Now, M contains the set of all possible substitutions *) 
(* such that  all added sentences are contained in s~ *) 
for  each  0 E M do 

G := G U {(i, j, o ( x l , . . . ,  xu)(rO, ~')} 
e n d  

e n d  
e n d  

e n d  
e n d  

The set of all possible operator transitions are collected as directed edges of 
a graph which vertexes represent the abstract states. In the algorithm, the set 
G of edges of the acyclic directed graph is constructed. For each pair of states 
(s~,s~) with i < j it is checked, whether there exists an operator o ( x l , . . . ,  x~)c~ 
which is applicable in s~. For this purpose, the SLD-refutation procedure com- 
putes the set of all possible answer substitutions (r such that  the precondition 
of the operator is fulfilled in s~. The derivation r which belongs to each answer 
substitution is stored together with the operator in the graph since it is required 
for the next phase of case abstraction. This derivation is an "and-tree" where 
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each inner-node reflects the resolution of a goal literal with the head of a clause 
and each leaf-node represents the resolution with a fact. Note that  for proving 
the precondition of an abstract operator, the inner nodes of the tree always refer 
to clauses of the Horn rule set 7~a, while the leave-nodes represent facts stated 
in T~a or essential sentences contained in s a. Then, each answer substitution ~ is 
applied to the add-list of the operator, leading to a partially instantiated add-list 
Add' .  Note that  there can still be variables in Add" because the operator may 
contain variables which are not contained in its precondition but may occur in 
the add-list. Therefore, the set M of all possible substitutions ~ is incrementally 
constructed such that  a~9 E saj holds for all a E Add'~ The completely instan- 
tiated operator derived thereby is finally included as a directed edge (from i to 
j)  in the graph G. 

By the algorithm it is guaranteed that  each (instantiated) operator which 
leads from s a to s~ is applicable in s a and that  all essential sentences added 
by this operator are contained in s~. Furthermore, if we claim that  the applied 
SLD-refutation procedure is complete (it always finds all answer substitutions), 
then every instantiated operator which is applicable in s a such that  all essential 
sentences added by this operator are contained in s~ is also contained in the 

9 

graph. From this follows immediately that  if c~(s~(i_l) ) o ,  ~(s~(i)) holds for 
an arbitrary deductively justified state abstraction mapping a and a sequence 
abstraction mapping fl, then (fl(i - 1), fl(i), o~, v) E G. 

process_raw(r) process_fine(r) 

process, complete(r) 

Fig. 5. An example of a transition graph computed in phase-III. The operator- para- 
meters I and r abbreviate left and right, respectively. 

Figure 5 gives an example of the graph G computed in phase-III during the 
abstraction of ease C 1 shown in Figure 1. The lables at the edges denote the 
respective instantiated operators that  are determined by the algorithm. 

5.4 Phase-IV: Determining Sound Paths 

a derived in phase-II and on the graph G corn- Based on the state abstractions s i 
puted in the previous phase, phase-IV selects a set of sound paths from the 
initial abstract state to the final abstract state. During the construction of each 
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path, a set of significant abstract sentences a* and a sequence abstraction map- 
ping fl are also determined. While the construction of the sequence abstraction 
mapping is obvious, the set a* represents the image of a state abstraction map- 
ping a and thereby determines the set of sentences that have to be reached in 
order to assure the applicability of the constructed operator sequence. Note that  
from a* the state abstraction mapping a can be directly determined as follows: 

= (e u u.A F e}. 
The idea of the algorithm is to start with an empty path. In each iteration 

of the algorithm, one path is extended by an operator from G. In this operator, 
new essential sentences a '  may occur in the proof of the precondition or as 
added effects. The path constructed so far must still be consistent according to 
the extension of the state description and, in addition, the new operator must 
transform the sentences of a* correctly. 

A l g o r i t h m  4 ( P h a s e - I V :  Sea rch ing  s o u n d  p a t h s )  
Paths  := {(0, •, (/?(0) =0) )}  
w h i l e  it exists ( (o f , . . .  o a'l Ct* R\ ' k/' , ~ . / 6 P a t h s w i t h ~ ( k ) < n d o  

Pa ths  := Paths  \ ( ( o f , . . . ,  o~), ~*, ~) 
for  each  (i, j, o ~, r) 6 a with i =/~(k) do 

le t  r~ be the set of essential sentences contained in the derivation 7" 
l e t  a '  = r~ U Add~176 U a* 
i f  for  all  t~ 6 {1, . . .  ,k} holds: 

h a ' )  s a > (~(~) f3 a I) a n d  
a Oct 

(sp(k) n a ' )  .~ (s~ f3 a ' )  t h e n  

Paths  := P a t h s U  { ( ( o f , . . . , o ~ , o a ) , a ' , f l U  {fl(k + 1) = j}) } 
e n d  

e n d  
C a s e S A b s  : :  

0 a . .  a * for  each  (( 1, " , ~  , ~ ) 6 P a t h s  w i t h ~ ( k ) = n d o  
CasesAb  := U n a*, n .*) ,  (of , . . . ,  oDD 
e n d  

r e t u r n  CaSesAbs 

As a result, phase-IV returns all cases that are abstractions of the given 
concrete input case, with respect to concrete and abstract domain definitions 
and the generic abstraction theory. Depending on the domain theory, more than 
a single abstract case will be learned from one concrete case. 

For the abstraction of case C 1, the algorithm determines four consistent paths 
from the initial abstract state to the final abstract state. Three of these paths 
lead to one abstract case, namely the abstract case C~ which had been already 
shown in Figure 1. The fourth path leads to a different abstract case which con- 
sists of the abstract operator sequence fix(left), process_complete(right), 
remove, f i x a t i o n .  This abstract cases differs from the other in that  it is more 
abstract. The operator process_complete  is an operator which completely pro- 
cesses one side of the workpiece, including raw and fine elements. This abstract 
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cases is also valuable in situations in which no fine elements need to be processed 
for solving a problem. 

5.5 Correc tness ,  Comple teness ,  and  Complex i ty  of the  A l g o r i t h m  

In [6] we have shown the strong connection between the formal model of case 
abstraction and the presented algorithm. We have proven that the algorithm is 
correct, that is every abstract case computed by the PABS algorithm is a case 
abstraction according to the introduced model. If the SLD-refutation procedure 
applied in PABS is complete, than every case which is an abstraction according 
to definition 3 is computed by PABS. 

The complexity of the algorithm is mainly determined by the phases III and 
IV. The overall complexity of the complete PABS-algorithm is O(n . 2 (~-1)) 
where n is the length of the concrete level plan. The exponential factor comes 
from possibly exponential number of paths in a directed acyclic graph with n 
nodes if every state is connected to every successor state. However, such a graph 
is really unrealistic in real applications. In particular, this worst-case complexity 
did not lead to a problem in our application domain. 

6 E m p i r i c a l  E v a l u a t i o n  a n d  R e s u l t s  

In this section, we want to present the results of an empirical study of the presen- 
ted approach in the domain of mechanical engineering, introduced in section 2. 
This evaluation was performed with the fully implemented PARIS-system using 
the described abstraction component and the explanation-based plan generali- 
zation component (not described in this paper) separately for comparison. The 
problem solver is a depth-first iterative-deepening search procedure [20]. 

6.1 E x p e r i m e n t a l  Se t t ing  

We have randomly generated a case base of 100 planning cases. From the 100 
available cases, we have randomly chosen 10 training sets of 5 cases and 10 
training sets of 10 cases. These training sets are selected independently from 
each other. For each training set, a related testing set is determined by choosing 
those of the 100 cases which are not used for training. By this procedure, training 
set and test set are completely independent. We trained PARIS with each of the 
training sets separately and measured the time for problem solving on the related 
testing sets. The time for learning a set of abstract cases from one concrete cases 
is between 30 and 180 seconds in our domain, depending on the length of the plan 
in the concrete cases. For problem solving, a time-bound of 200 CPU seconds was 
used for each problem. If the problem could not be solved within this time limit, 
the problem solver was aborted and the problem remained unsolved. The number 
of unsolved problems was also evaluated. For each training/testing set, PARIS 
was run in three different modes: a) using the abstraction approach, b) using 
the explanation-based generalization approach, and c) without any learning. 
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6.2 Resu l t s  

Table 1 shows the average number of solved problems for the training sets of 
the two different sizes and the different modes of PARIS. These average num- 
bers are computed from the 10 training and testing sets for each size. We can 
see that learning explanation-based generalizations sligI~tly improves problem 
solving through a slightly increased number of solved problems that could be 
solved. Learning abstractions, however, leads to really significant improvements 
in the number of problems which could be solved and drastically outperforms 
the generalization approach. 

Table 1. Percentage of solved problems after different training sets 

Size oftraining sets Percentage of Solved Problems 
(cases) Abstraction Generalization No Learning 

5 83 37 29 
10 86 37 29 

A similar result can be found when examining the average time for solving 
a problem. Table 2 shows the average problem solving time for the different 
training sets in the three different modes of PARIS. Here, we can also see only a 
slight speed-up caused by learning generalizations but a much more significant 
speedup when the proposed abstraction approach is used. 

Table 2. Problem solving time after different training sets 

Size of training sets Average problem solving time (see.) 
(cases) Abstraction Generalization No Learning. 

5 59 t42 156 
10 56 141 156 

Additionally, all of the above mentioned speedup results were analyzed with 
the maximally conservative sign test as proposed in [11]. When using abstraction, 
it turned out that 19 of the 20 training sets lead to highly significant speedups 
(p < 0.0005) of problem solving. Only one training set caused a significant 
speedup result for p < 0.075. Altogether, the reported experiment showed that 
even a small number of training cases (i.e. 5% and 10%) can already lead to 
strong improvements on problem solving in our domain. 

Additionally, we made comparisons with ALPINE [18] which is part of PRO- 
DIGY [31] and automatically generates abstractions by dropping conditions. It 
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maintained. Otherwise, our abstraction approach would not work either. For the 
construction of a planning system, the concrete world descriptions must be ac- 
quired anyway, since they are the 'language' of the problem description (essential 
sentences) and the problem solution (operators). An appropriate abstract world 
and a generic abstraction theory must be acquired additionally. We feel that this 
is indeed the price we have to pay to make problem solving more tractable by 
learning in certain practical situations. 

7.2 R e l a t e d  W o r k  

T h e o r y  of  A b s t r a c t i o n .  Within Giunchiglia and Walsh's [15] theory of ab- 
straction, the PARIS approach can be classified as follows: The formal system of 
the ground space Z1 is given by the concrete problem solving domain 7)c, and 
the abstract formal system Z2 is given by the language of the abstract problem 
solving domain :Da. However, the operators of :Da are not turned into axioms of 
Z2. Instead, the abstract cases build the axioms of Z2. Moreover, the generic 
abstraction theory ,4 defines the abstraction mapping f : Z1 =~ ~2. Within this 
framework, we can view PARIS as a system which learns useful axioms of the 
abstract system, by composing several smaller elementary axioms (the opera- 
tors). However, to prove a formula (the existence of a solution) in the abstract 
system, exactly one axiom (case) is selected. So the deductive machinery of the 
abstract system is restricted with respect to the ground space. Depending on the 
learned abstract cases, the abstractions of PARIS are either theory decreasing 
(TD) or theory increasing (TI). If the case-base of abstract cases is comple- 
tely empty, then no domain axiom is available and the resulting abstractions 
are consequently TD. But if the case-base contains the maximally abstract case 
({true, true}(nop)} 5 then this case can be applied to every concrete problem and 
the resulting abstraction is consequently TI. Even if this maximally abstract 
case does not improve problem solving, it should be always included into the 
case-base to ensure the TI property, that is not losing completeness. 

Skele ta l  P lans .  The PARIS approach was inspired by the idea of skeletal plans 
[13]. A abstract cases can be seen as a skeletal plan, and our learning algorithm 
is a means to learn skeletal plans automatically out of concrete plans. Even if the 
idea of skeletal plans is intuitively very appealing, to our knowledge, this paper 
contains the first comprehensive experimental support of usefulness of planning 
with skeletal plans. Since we have shown that skeletal plans can be acquired 
automatically, this planning method can be applied more easily. 

A L P I N E .  ALPINE [19, 18] automatically learns hierarchies of abstraction 
spaces from a given domain description or from a domain description together 
with a planning problem. ALPINE relies on abstraction by dropping sentences. 

5 nop is the 'no operation' operator which is always applicable and does not change 
the abstract state. 
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turned out that for our domain, ALPINE was not able to improve problem sol- 
ving at all because no useful abstractions could be built by dropping sentences 
as performed by ALPINE (see [6] for details). 

7 Discussion 

7.1 Conclus ion  

In this paper, we have presented a new approach to improving problem solving 
through reasoning from abstract cases. A methodology for abstracting planning 
cases and a sound and complete learning algorithm has been presented. An empi- 
rical evaluation in a real-world domain shows significant efficiency improvements 
of the problem solver while an explanation-based generalization approach leads 
to much slighter improvements. 

Even if we have shown an advantage of abstraction over generalization in 
one specific application example, we clearly do not want to claim that ab- 
straction is always better than generalization. In particular, explanation-based 
generalization has already proven useful in a couple of domains [29, 10, 40, 
17]. However, the reason why it works so poorly in our domain is twofold. First 
of all, the representation of our domain requires a very detailed and complex 
representation of operators and states. Typically, a single concrete level state is 
described by over 200 ground facts. Moreover, the operator descriptions contain 
a large set of different preconditions. The well-known methods for explanation- 
based generalization of plans lead to rules or schemas which contain a very large 
set of conjunctively combined preconditions. This causes very high matching 
costs to determine the applicability of a rule or schema, because in the worst 
case the matching costs are exponentiM in the number (not on their size) of 
conditions. In our domain, these matching costs mostly exceed the savings cau- 
sed by the application of the rules. Consequently, no overall speedup occurs. 
This problem is very much related to the utility-problem [30]. Our abstraction 
approach reduces the required level of detail in the descriptions that have to 
be matched to determine the applicability of an abstract case. Consequently, 
the matching process at the abstract level is much more efficient. However, the 
reused abstract plans must still be refined to come to a concrete solution, so 
that the potential speedup is obviously smaller than when reusing a concrete 
solution as in an explanation-based approach. But the key to success is that the 
matching costs at the abstract level are much smaller than the gain in efficiency. 

The second reason for the advantage of abstraction over generalization in our 
domain is caused by the high flexibility of reusing abstract solutions. As already 
shown in section 2.3, an abstract case can be reused in a situation in which the 
concrete case or even a generMization of it is of no use. In particular if only a 
small number of cases is available for training, this flexibility is of high value. 

Nevertheless, the availability of an adequate abstract domain theory is cruci- 
al to the success of the approach. This theory must allow to significantly simplify 
the representation of a case while the most important solution properties can be 



74 

However, this enables ALPINE to generate abstraction hierarchies automatical- 
ly. For the stronger abstraction framework we follow in PARIS, the automatic 
generation of abstraction hierarchies (or abstract domain descriptions) does not 
seem to be realistic due to the large (infinite) space of possible abstract spaces. 
To use our powerful abstraction methodology, we feel that  we have to pay the 
price of losing the ability to automatically construct an abstraction hierarchy. 
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