
Specialization of Recursive Predicates

Henrik BostrSm

Dept. of Computer and Systems Sciences
Stockholm University

Electrum 230, 164 40 Kista, Sweden
henke@dsv.su.se

fax: +46 8 703 90 25 tel: +46 8 16 16 16

A b s t r a c t . When specializing a recursive predicate in order to exclude
a set of negative examples without excluding a set of positive examples,
it may not be possible to specialize or remove any of the clauses in a
refutation of a negative example without excluding any positive exam-
ples. A previously proposed solution to this problem is to apply pro-
grain transformation in order to obtain non-recursive target predicates
from recursive ones. However, the application of this method prevents
recursive specializations from being found. In this work, we present the
algorithm SPECTRE II which is not limited to specializing non-recursive
predicates. The key idea upon which the algorithm is based is that it
is not enough to specialize or remove clauses in refutations of negative
examples in order to obtain correct specializations, but it is sometimes
necessary to specialize clauses that appear only in refutations of positive
examples. In contrast to its predecessor SPECTRE, the new algorithm is
not limited to specializing clauses defining one predicate only, but may
specialize clauses defining multiple predicates. Furthermore, the positive
and negative examples are no longer required to be instances of the same
predicate. It is proven that the algorithm produces a correct specializa-
tion when all positive examples are logical consequences of the original
program, there is a finite number of derivations of positive and negative
examples and when no positive and negative examples have the same
sequence of input clauses in their refutations.

1 I n t r o d u c t i o n

The search for an inductive hypothesis can be performed either top-down, i.e.
f rom an overly general hypothesis to a more specific, or bo t tom-up, i.e. f rom an
overly specific hypothesis to a more general. In the field of inductive logic pro-
gramrning, the top-down search for an inductive hypothesis has been performed
by using various specialization techniques, such as clause removal, addition of
literals and goal reduction [13, 2, 9, 12, 11, 4, 15, 5, 10, 16, 3]. In this work, it is
assumed tha t the overly general hypothesis is given as a logic program.

In [3], the a lgori thm SPECTRE is presented, which specializes logic programs
by applying the t ransformat ion rule unfolding [14] together with clause removal.
One l imitat ion of the algori thm is that it assumes the target predicate to be
non-recursive. The reason for this is tha t when excluding a negative example

93

of a recursive predicate, it may not be possible to specialize or remove any
of the clauses in the refutation of the example without excluding a positive
example. It should be noted that this is a general problem that is not limited
to a particular type of specialization operator, but applies to all specialization
techniques that exclude negative examples by specializing or removing clauses
in their refutations. A solution to this problem that has been proposed in [3] is
to apply the transformation rules definition, unfolding and folding [14] in order
to obtain non-recursive target predicates from recursive ones. The draw-back of
applying this transformation technique is that recursive specializations can not
be obtained, which means that many desired specializations can not be found.

In this work, we present the algorithm SPECTRE II which is not limited to
specializing non-recursive predicates. The key idea upon which the algorithm is
based is that it is not enough to specialize or remove clauses in refutations of
negative examples in order to obtain correct specializations, but it is sometimes
necessary to specialize clauses that appear only in refutations of positive exam-
ples. In contrast to SPECTRE, the new algorithm is not limited to specializing
clauses defining one predicate, but may specialize clauses defining multiple pred-
icates. Furthermore, the positive and negative examples are no longer required
to be instances of the same predicate.

In the next section we give a formal definition of the specialization problem,
and we also give definitions of the three transformation rules according to [14].
In section three, we exemplify the limitation of SPECTRE, and in section four,
we present SPECTRE II, which overcomes this limitation. We also prove that
the algorithm produces correct specializations (under some assumptions). In
section five, we present some experimental results and in section six we discuss
related work. Finally, in section seven we give concluding remarks and point
out problems for future research. In the following, we assmne the reader to be
familiar with the standard terminology in logic programming [8].

2 Prel iminaries

We first give a formal definition of the specialization problem that is studied,
and then define the three transformation rules that are used in this work.

2.1 The Special izat ion P r o b l e m

The problem of specializing a logic program (definite program) w.r.t, positive
and negative examples can be stated as follows:

Given: a definite program P and two disjoint sets of ground atoms E + and
E - (positive and negative examples).
Find: a definite program p i called a correct specialization of P w.r.t. E + and
E , such that MR, CC_ MR, F-, + C Mp, and MR, (3 E - = ~1

1 Mp denotes the least Herbrand model of P.

94

2.2 T rans fo rma t ion Rules

The following rules for transformation of a definite program (below referred to
as P) are taken from [14], where formal definitions can be found as well as proofs
of their meaning preserving properties.

Rule 1. Def ini t ion
Add to P a clause C of the form p(xl,. �9 x~) ~ A1, . . . , Am where p is a predi-
cate symbol not appearing in P, zl, . . . , x . are distinct variables and A1, . . . , A,~
are literals whose predicate symbols all appear in P.

Rule 2. Unfolding
Let C be a clause in P, A a literal in its body and C1, . . . , C, be all clauses in
P whose heads are unifiable with A. Let C~(1 < i < n) be the result of resolving
C with C~ upon A. Then replace C with C~, . . . , C'~.

Rule 3. Folding
Let C be a clause in P of the form A ~ A 1 , . . . , A i + l , . . . , A i + m , . . . , A n and C1
be a clause that previously have been introduced by the rule of definition of the
form B ~ B 1 , . . . , Bin. If there is a substitution 8 such that Ai+ l , . . . , A~+m =
B1, . . . , B,~8 where ~ substitutes distinct variables for the internal variables of C1
and moreover those variables do not occur in A, A1, . . . , Ai or Ai+,r~+l,..., An,
then replace C by the clause A ~ A 1 , . . . , Ai, BO, Ai+m+l, . . . , A~.

3 A p p l y i n g S P E C T R E t o R e c u r s i v e P r e d i c a t e s

The algorithm SPECTRE [3] specializes logic programs with respect to positive
and negative examples by applying unfolding together with clause removal. This
is done in the following way. As long as there is a clause in the program that
covers (i.e. is used as the first input clause in the refutation of) a negative
example, it is checked whether it covers any positive examples or not. If the
clause covers any positive examples, then it is unfolded, otherwise it is removed.
SPECTRE is not guaranteed to obtain correct specializations when specializing
recursive target predicates. For example, assume that the following definition of
the predicate odd(X) is given:

odd(0).
odd(s (X)) : - odd(X).

together with the following positive and negative examples:

E + : { o d d (s (0)) , o d d (s (s (s (0)))) , o d d (s (s (s (s (s (0)))))) }
E- = { odd(O),odd(s(s(O))),odd(s(s(s(s(O))))) }

Then the only clause that is used in the refutation of the first negative ex-
ample is the first clause in the definition. Clearly, this clause cannot be removed

95

or specialized without excluding the positive examples, since it is used in their
refutations. Thus it is not enough to consider removing or specializing clauses
in refutations of negative examples in order to obtain correct specializations.

In order to avoid the problem with recursive predicates in SPECTRE, it is
assumed that recursive target predicates are transformed into equivalent non-
recursive definitions in the following way.

Let T be the recursive target predicate. Then introduce a new predicate T'
by adding a clause T ' ~ T, where the arguments of T' are all variables in T
(definition). Unfold upon T in the clause, and replace each instance TO in the
bodies of the clauses defining T and T' (directly or indirectly) with T'8 (folding).
Then an equivalent definition of T has been obtained which is non-recursive.

For example, a non-recursive definition of odd(X) would then be:

odd(0) .
odd(s(X)) :- rec_odd(X) .
rec odd(O).
rec odd(s(X)):- rec_odd(X).

It should be noted that although it is always possible to avoid the problem
with recursive target predicates, there are cases when SPECTRE is unable to find
the desired specialization. For example, assume that we are given the above
non-recursive definition of odd(X) together with the examples above. Then the
specialization produced by SPECTRE will exclude the negative examples only (i.e.
a maximally general specialization is obtained):

odd(s (0)) .
odd(s(s(s(O)))).
o d d (s (s (s (s (s (X)))))) : - r ec odd(X).
rec_odd(O).
rec_odd(s(X)) :- rec_odd(X).

Removing the third element from E + results in a specialization which includes
the positive examples only (i.e. a maximally specific specialization is obtained).

4 Spec ia l i z ing R e c u r s i v e P r e d i c a t e s

In this section we present the algorithm SPECTRE II, which overcomes SPECTRE's

inability to produce recursive specializations. We first describe the algorithm,
and then illustrate it by some examples. Finally, we prove that the algorithm
produces correct specializations.

4.1 S P E C T R E II

Like SPECTRE, SPECTRE II specializes logic programs by using unfolding and
clause removal. The major difference between the algorithms is that while SPEC-
TRE only applies unfolding upon clauses that appear first in refutations of both

96

positive and negative examples, SPECTRE II may apply unfolding upon any clause
that is used in a refutation of a positive example. This means that in contrast
to SPECTRE, SPECTRE II is not limited to specializing clauses that are used in
refutations of negative examples and to specializing clauses that define the target
predicate only.

The algorithm works in two steps. First, as long as there is a refutation of a
negative example, such that all input clauses are used in refutations of positive
examples, a literal in an input clause is unfolded. Second, for each refutation
of a negative example, one input clause that is not used in any refutation of a
positive example is removed. It is not defined by the algorithm how to make the
choices of which literal to unfold upon and which clause to remove. As will be
shown in section 4.3, these choices can be made arbitrarily without affecting the
correctness of the algorithm. However, they are crucial to the performance of
the algorithm, since the generality of the resulting specialization is dependent
on them. This will be further discussed in section five. A formal description of
the algorithm SPECTRE n is given below.

A l g o r i t h m S P E C T R E I I
I n p u t : a definite program P and two sets of ground atoms E + and E7
O u t p u t : a correct specialization P~ of P w.r.t. E + and E_

LET pi = p .
WHILE there is an SLD-refutation of P~ U {+- e-} , for some e- E E ,
such that each input clause Ci is used in an SLD-refutation of P~ U {+-- e+},
wheree + E E + DO

Let C be a non-unit input clause in an SLD-refutation of P~ U { ~ e+},
where e + E E +
Unfold upon a literal in C.

FOR each e- E E - DO
Remove an input clause in each SLD-refutation of P~ U {+- e-}, that
does not appear in any SLD-refutation of P~U {+-- e+}, where e + E E. +

4.2 E x a m p l e s

Assume that the following definition of the predicate odd(X) is given as input
t o SPECTRE II:

(ci) odd(O).
(c2) odd(s(X)):- odd(X).

together with the following positive and negative examples:

97

E + = { o d d (s (0)) , o d d (s (s (s (0)))) , o d d (s (s (s (s (s (0)))))) }
E- = { odd(0),odd(s(s(0))),odd(s(s(s(s(0))))) }

Then there is a negative example (e.g. odd(0)) for which all clauses in the refu-
tation appear in refutations of positive examples. Let c2 be the selected clause,
and unfolding upon the literal in its body results in the following program:

(Cl) odd(0).
(c3) odd(s (0)) .
(c4) o d d (s (s (X))) : - odd(X).

Then there is no negative example for which all clauses in the refutation appear
in refutations of positive examples, and thus the condition for the while-loop
is false. Then for each refutation of a negative example, a clause that does not
appear in a refutation of a positive example is removed (in this case the clause
Cl is removed for each refutation of the negative examples). Thus the resulting
specialization produced by SPECTRE II is:

(c3) odd(s (0)) .
(c4) o d d (s (s (X))) : - odd(X).

To see how SPECTRE II works when specializing multiple predicates, consider
the following program and examples:

p (a) .
p (f (x)) : - q(X).
q(b).
q (g (X)) : - p(X).

E + = { p (f (b)) , q (g (a)))
E - -- { p(a), q(b))

Note that although a correct specialization can be obtained for each predicate
by simply removing the input clause in the refutation of the negative example,
a correct specialization w.r.t, both predicates can not be obtained in this way.
However, SPECTRE II produces a correct specialization in the following way.

After the first step in the algorithm, in which unfolding is applied twice, the
following program is obtained:

p (a) .
p (~(b)) .
p (~ (g (X))) : - p(X).
q(b).
q (g (a)) .
q (g(f (X))) :- q(X).

98

In the final step of the algorithm, two clauses are removed resulting in the
following correct specialization:

p (f (b)) .
p (f (g (X))) : - p(X) .
q (g (a)) .

q (g (f (X))) : - q(X).

4.3 C o r r e c t n e s s o f S P E C T R E I I

In this section we prove that SPECTRE II produces a correct specialization in a
finite number of steps when all positive examples are logical consequences of the
original program, there is a finite number of derivations of positive and negative
examples (i.e. the program terminates for all examples) and there is no positive
and negative examples that have the same sequence of input clauses in their
refutations.

We first prove a lemma that states that under these assumptions, each refuta-
tion of a negative example will after a finite number of applications of unfolding
have an input clause that is not used in any refutation of a positive example.

L e m n l a
Let E + and E - be two sets of ground atoms and P be a definite program, such
that the number of SLD-derivations of P U { ~ e} are finite for all e E E + U E;-
and there is no e + E E + and e- E E , such that the same sequence Of input
clauses is used both in an SLD-refutation of PU{+- e + } and in an SLD-refutation
of P W { ~ e -} . Let P " = P. Then after a finite number of arbi trary applica-
tions of unfolding upon clauses in P " that are input clauses in SLD-refutations of
p I ' u { ~-- e + }, where e + E E + each SLD-refutation of P"U { ~-- e- }, for all e - 6 E;
has an input clause that is not used in any SLD-refutation of P " to { ~ e+}, for
all e + E E. +

P r o o f i Since the length of at least one SLD-refutation of P" U {+--- e+}, where
e + E E + decreases when applying unfolding, and the number of SLD-refutations
does not increase (proven in [6]), all input clauses in SLD-refutations of P" to {*--
e+}, for all e + E E + will be unit clauses after a finite number of applications of
unfolding. All SLD-refutations of P " to { ~ e -} of length > 1, where e- E E,
have at least one non-unit input clause and thus have at least one clause that
is not used as an input clause in any SLD-refutation of P " U {+--- e+}, for all
e + E E. + Thus it suffices to show that no unit input clause in an SLD-refutation
of P" tO {+--- e - } of length = 1, where e- E E, is used in an SLD-refutation
of P"t0{~--- e+}, where e + E E + Let C be a unit clause in P " , such that
C x {~-- e -} 2 = [:1, for some e- E E7 and C = C1 • . . . x Cn, where each Ci
is a variant of a clause in P. Then there is an SLD-refutation of P U {~--- e - }
with input clauses Ct ,C , , since C1 x . . . x Cs x { ~ e -} = [3. Assume

(7 x D denotes the resolvent of C and D.

99

that there is some e + E E, + such that C • {(-- e + } = []. Then it follows that
there is an SLD-refutation of P U {*--- e+}, with input clauses C 1 , . . . , Cn, since
C1 x . . . • Cn x {(--- e +) = []. This contradicts the assumption that no e + E E +
and e - E E - have the same sequence of input clauses in their SLD-refutations. []

Using this lemma, we can now prove that SPECTRE II produces a correct
specialization under the above assumptions.

T h e o r e m
Let the input to SPECTRE II be two sets of ground atoms E + and E - and a
definite program P, such that E + C Mp, the number of SLD-derivations of
P (3 {*-- e) are finite for all e E E + t3 E - and there is no e + E E + and e - E E ,
such that the same sequence of input clauses is used both in an SLD-refutation
of P tJ {~-- e +) and in an SLD-refutation of P (3 {~-- e -) . Then the algorithm
produces a correct specialization P~ of P w.r.t. E + and E7

P r o o f : According to the lemma, the while-loop in the algorithm terminates
after a finite number of steps resulting in a program P ' , such that each SLD-
refutation of P " U { ~ e -) , for all e - E E , has an input clause that is not used
in any SLD-refutation of P ' U {~-- e+), for all e + E E+ Then P' = P ' \ R , where
R is the set of clauses removed in the last step of the algorithm. Since one input
clause is removed for each SLD-refutation of P " U {*-- e -) , for all e - E E , it
follows that there is no SLD-refutation of P~ t9 {+--- e -} , for any e- E E7 Thus
Mp, f"l E - -- {3. Since MR - Mp,, and thus E + C_ Mp,, and since none of the
clauses in R is used as an input clause in an SLD-refutation of pH U {~-- e+),
for any e + E E + it follows that E + C_ MR,. Since MR = MR,, D MR,, it follows
that P~ is a correct specialization of P w.r.t. E + and E7 []

The condition that no refutations of positive and negative examples should
have the same sequence of input clauses can be relaxed by slightly altering
the algorithm in the following way. Instead of considering all refutations of the
positive examples, only a subset needs to be considered such that each positive
example has at least one refutation in the subset. Then by guaranteeing that
no refutation in the subset has a sequence of input clauses in common with any
refutation of a negative example, the condition can be relaxed to require only
that for each positive example there is at least one refutation that does not have
the same sequence of input clauses as any refutation of a negative example. This
altered version of the algorithm allows that many correct specializations can be
found, which can not be found by the algorithm in its original formulation.

100

5 Experimental Results

The choices of which literal to unfold upon and which clauses to remove when
applying SPECTRE II determine the generality of the resulting specialization.
Moreover, when applying the altered version of the algorithm, the selection of
which refutations to consider for the positive examples are of crucial importance
for the result. In the current implementation of the algorithm, these choices are
made in order to minimize the number of applications of unfolding. However,
since it is computationally expensive to find the optimal choices, the following
approximations are used.

When selecting one of the refutations of a positive example, a refutation that
already has been selected is preferred. If no such refutation exists, a refutation
that does not subsume a refutation of a negative example is preferred. The mo-
tivation for this heuristic is that it is presumably easier to exclude the refutation
of a negative example if it is not included in a refutation of a positive example.

When selecting a (non-unit) clause to apply unfolding upon, the only refu-
tations of negative examples that are considered are those for which all clauses
are used in refutations of positive examples. A clause is preferred that appears
first in one of these refutations, if no other clause in the same refutation is first
in one of the other refutations. If no such clause exists, a non-unit clause that
appears first in a refutation of a negative example is preferred. Finally, if there is
no such clause, a non-unit clause that appears first in a refutation of a positive
example is preferred. The motivation for this heuristic is that it is presumably
easier to find a correct specialization by first excluding the refutations which
only involves one clause that is first in a refutation of a negative example, than
starting with refutations that contain several such clauses.

The leftmost (unfoldable) literal is always selected, and all clauses defining
the target predicate that are not used as input clauses in any refutations of
positive examples are removed.

In order to test the performance of the algorithm together with the above
heuristics, an experiment is performed using the following program as input,
where the predicate t a r g e t (X, Y, Z) can be specialized into various list handling
predicates:

target(X,Y,Z):- comp(X,Y,Z).
target(Xl,Yl,Zl):-

new_lists(X1,Y1,Zl,X2,Y2,Z2), target(X2,Y2,Z2).

comp(X,Y,Z):-
eq_or_neq(X,Y), eq_or_neq(X,Z), eqor_neq(Y,Z),
list(X), list(Y), list(Z).

eq_or_neq(E,E).
eq_or_neq(EI,E2):- EI\==E2.

101

list(D).
list(I_]_]).

new_lists([ElX],Y,[E~Z],X,Y,Z):- check(E,Y).
Rew_Iists([EIX],Y,Z,X,Y,Z):- check(E,Y).

check(E,_).
check(E,X):- member(E,X).
check(E,X):- not member(E,X).

member(X, IX l_]).
member(X, [_IL]) :- member(X,L).

not_member(X, ~).
not _member (X, [Y I L]) : - X\==y, not_member (X, L).

The examples used in this experiment are all instances of t a rge t (X,Y,Z) ,
where the variables are replaced by lists of length < 2, containing the constants
a, b and e (i.e. 2197 instances). When the examples are classified using the pred-
icate append(X,Y,Z) (resulting in that 34 of the instances are positive), and
given as input to SPECTRE n, the following program is produced in 54.6+6.8
seconds: 3

target([], [] , []) : -
l i s t ([]) , l i s t ([]) .

t a r g e t ([A] B] , [] , [A1B]) : -
[A [B] \== [] , [] \ = = [A I B] , l i s t ([A I B]) .

target([3 ,A,A) :-
D\=:A, []\:=A, list(A), list(A).

t a r g e t ([BI C] ,D, [BIA]) : -
check(B,D), target (C,D,A).

It can be seen that the resulting program is in fact equivalent to the definition
of append(X,Y, Z), although it contains a redundant clause and some redundant
literals.

When the examples are classified using the predicate i n t e r s e c t i o n (X , Y, Z)
(resulting in that 169 of the instances are positive), and given as input to SPEC-
TRE n, the following (correct) program is produced in 49.6+5.8 seconds:

3 The algorithm was implemented in SICStus Prolog 2.1 on a Sun SPARCstation 5.
The first number shows the time taken to find all refutations, and the second number
shows the time taken to find a correct spedMization, given the refutations.

102

target (A,A,A) :-
eq_or_neq(A,A), list(A), list(A), list(A).

target([] ,A, [1) :-
[]\==A, A\==[], list(A), list(I]).

target([AIB], [], [1) "-
[A I B] \== [] , [A I B] \== [] , list([]).

target([BIC],D,[BIA]) :-
member(B,D), target (C,D,A).

target ([A I B] ,C,D) :-
not_member(A,C), target(B,C,D).

When the examples are classified using the predicate d i f fe rence(X,Y,Z)
(resulting in that 169 of the instances are positive), and given as input to SPEC-
TKE n, the following (correct) program is produced in 50.8+8.3 seconds:

t a r g e t ([] , [] , [3) : -
l i s t ([]) , l i s t (I]) .

target([A[B], [A[B], []) :-
[A I B] \ = = [] , [A I B] \ = = [] .

t a r g e t ([] ,A, []) : -
[]\==A, A\==[], l i s t (A) , l i s t ([]) .

t a r g e t ([A I B] , [] , [AIB]) : -
[AIB]\ :=[] , []\==[AIB], l i s t ([A IB]) .

target([B IC] ,D, [BIA]) :-
not_member(B,D), target(C, D, A).

target ([AIB],C,D) :-
member(A,C), target(B, C, D).

The following experiment illustrates how the computation time grows with
the number of examples given as input to the algorithm. The entire example set
is randomly split into two halves, where one half is used for training and the
other for testing. The number of examples in the training sets that are given as
input to the Mgorithm is varied, representing 1%, 5%, 10%, 20%, 30%, 40% and
50% of the entire example set, where the last subset corresponds to the entire
set of training examples and a greater subset always includes a smaller. Each
experiment is iterated 50 times and the mean time to find a correct specialization
for the given examples is presented in Fig 1. It can be seen that the computation
time grows linearly with the number of examples. In Fig 2, the accuracy of the
produced hypothesis on the test examples is presented. The accuracy is above
99% for all three example sets, when using 20% of the examples as input to
SPECTRE II.

103

35 , , , ,

(.9

30

25

20

15

10

5

0

~

Append x.

0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Fig. 1. Time taken for SPECTRE II to find correct specializations.

100 , i ,

99

98

97

~ 96

~ 95

94

93 I-I! Append x
I[~ Intersection []

91
0 5 10 15 20 25 30 35 40 45 50

Size of training set (%)

Fig. 2. Accuracy of the resulting specializations on the test examples.

104

6 R e l a t e d Work

In this section, we discuss other specialization techniques, and in particular how
they work when specializing recursive predicates.

In contrast to S P E C T R E II, the techniques in [7, 1] attempt to minimally
specialize logic programs. However, as pointed out in [16], the specializations
produced by these techniques are not always minimal. That is the case when the
specialized predicate appears in bodies of clauses, and this is true in particular
when specializing a recursive predicate. For example, given the following pro-
gram and the negative example p(a , a):

p(X,X).
p(f(X),g(Y)):- p(X,Y).

Then the specialization produced by the technique in [1] will be:

p(K,X):- not(pl(X)).
p(f(X),g(Y)):- p(X,Y).
p l (a) .

Note that not only is the negative example excluded, but also p (f (a) , g (a)) ,
p (f (~ (a)) , g (g(a))), ..., and thus the resulting specialization is certainly not
minimal. However, this problem cail be solved by applying the same transforma-
tion technique as was presented in section three, namely define a new predicate
to be equivalent to the target predicate and then replace each occurence of the
original predicate in bodies of clauses with the appropriate instances of the new
predicate before applying the specialization technique.

In [16] a technique for incremental specialization is presented, called MBR
(Minimal Base Revision). It uses clause removal and addition of literals to pre-
vent negative examples from being derived. The aim of this technique is not
to specialize a program with respect to positive and negative examples, but to
make a minimal revision of the program in the sense that a minimal set of clause
applications is prevented from being used. This should be contrasted to SPEC-
TRE II, which may produce specializations that ate not minimal in this sense.
Another difference is that the only clauses that are considered for being special-
ized by MBR are those appearing in refutations of negative examples, since this
is sufficient when specializing a program with respect to negative examples only.

The only specialization operator that is used in [9, 15] is clause removal.
These approaches are limited to removing clauses that appear in the original
program that is to be specialized. As a consequence, these approaches will not
be able to produce correct specializations when all input clauses in a refutation
of a negative example are used in refutations of positive examples. However, the
condition for when correct specializations can be obtained by clause removal can
be relaxed significantly, if combined with program transformation, as shown by
S P E C T R E II .

In [13, 2, 12, 11, 10], clauses are specialized by adding literals to their bodies.

105

The literals considered for being added are in these approaches restricted to those
whose predicate symbols are defined in the original program. Various restrictions
are also put on the variables in the literals (e.g. at least one of the variables should
appear elsewhere in the clause [12]). It should be noted that literal addition is in
general not sufficient to obtain correct specializations of logic programs. Consider
again the program defining the predicate odd(X):

odd(0).
odd (s (X)) : - odd(X).

The only way to exclude the negative example odd(0) by literal addition is to
add a false literal to the body of the first clause. But the resulting specialization
will not be correct if there are any positive examples, since these are excluded
as well.

A number of previous specialization techniques u s e goal reduction to special-
ize clauses (ML-SMART [2], ANh-EBL [4], FOCI, [11], QaENDEL [5], FOCL-FRONTIER
[10]). One major difference between SPECTRE II and these techniques is the way
in which the search for a specialization is performed. The algorithms ANA-EBL,
FOCL, GRENDEL and EOCL-FRONTIER, like MIS [13] and FOIL [12], use covering
methods for finding correct specializations, i.e. the resulting definition is found
by repeatedly specializing an overly general definition and for each repetition
adding a clause to the resulting definition. This contrasts to SPECTRE II and
ML-SMART, which do not specialize the same definition more than once. The
most important difference is however, that the previous techniques specialize
only one predicate at a time in contrast to SPECTRE II, which may specialize
multiple predicates. In section 4.2 it was shown that this capability can be cru-
cial in order to obtain correct specialization w.r.t, multiple predicates.

7 C o n c l u d i n g R e m a r k s

We have presented the algorithm SPECTRE II, which is based on the observation
that in order to obtain correct specializations of recursive predicates it is not
in general sufficient to specialize clauses that are used in refutations of nega-
tive examples, but it is sometimes necessary to specialize clauses that are used
in refutations of positive examples only. The main properties of the algorithm
are the ability to produce recursive specializations and to revise multiple pred-
icates. In contrast to its predecessor SPECTRE, the algorithm does not require
the examples to be instances of the same predicate.

The main problem for future research is to develop more sophisticated heuris-
tics than what is used in the current implementation of the algorithm, i.e. heuris-
tics for how to select which refutations of positive examples to consider and what
literals to apply unfolding upon. Other directions for future research are to in-
vestigate how to handle cases when all refutations of a positive example have the
same sequences of input clauses as refutations of negative examples, and when
some positive examples are not included in the meaning of the original program.

106

Acknowledgements

This work has been supported by the European Community ESPRIT BRA 6020
ILP (Inductive Logic Programming). Thanks to the anonymous reviewers and
Robert Engels for comments and suggestions for improvement on the article.

References

1. Barn M. and Muggleton S., "Non-Monotonic Learning", in Mugg[eton S. (ed.),
Inductive Logic Programming, Academic Press, London (1992) 145-161

2. Bergadano F. and Giordana A., "A Knowledge Intensive Approach to Concept In-
duction", Proceedings of the Fifth International Conference on Machine Learning,
Morgan Kaufmann, CA (1988) 305-317

3. BostrSm H. and Idestam-Almquist P., "Specialization of Logic Programs by Prun-
ing SLD-Trees", Proceedings of the 4th International Workshop on Inductive Logic
Programming, volume 237 of GMD-Studien, Gesellschaft fiir Mathematik und
Datenverarbeitung MBH (1994) 31-48

4. Cohen W. W., "The Generality of Overgenerality", Machine Learning: Proceedings
of the Eighth International Workshop, Morgan Kaufmann (1991) 490-494

5. Cohen W. W., "Compiling Prior Knowledge Into an Explicit Bias", Machine Learn-
ing: Proceedings of the Ninth International Workshop, Morgan Kaufmann (1992)
102-110

6. Kanamori T. and Kawamura T., "Preservation of Stronger Equivalence in Un-
fold/Fold Logic Program Transformation (ii),,, ICOT Technical Report TR-403,
Japan (1988)

7. Ling C. X., "Non-Monotonic Specialization", Proceedings of International Work-
shop on Inductive Logic Programming, Portugal (1991) 59-68

8. Lloyd J. W., Foundations of Logic Programming, (2nd edition), Springer-Verlag
(1987)

9. Ourston D. and Mooney R. J., "Changing the Rules: A Comprehensive Approach
to Theory Refinement", Proceedings of the Eighth National Conference on Artificial
Intelligence, MIT Press (1990) 815-820

10. Pazzani M. and Brunk C., "Finding Accurate Frontiers: A Knowledge-Intensive
Approach to Relational Learning", Proceedings of the Eleventh National Confer-
ence on Artificial Intelligence, Morgan Kaufmann (1993) 328-334

11. Pazzani M., Brunk C. and Silverstein G., "A Knowledge-Intensive Approach to
Learning Relational Concepts", Machine Learning: Proceedings of the Eighth In-
ternational Workshop, Morgan Kaufmann (1991) 432-436

12. Quinlan J. R., "Learning Logical Definitions from Relations", Machine Learning 5
(1990) 239-266

13. Shapiro E. Y., Algorithmic Program Debugging, MIT Press (1983)
14. Tamaki H. and Sato T., "Unfold/Fold Transformations of Logic Programs", Pro-

ceedings of the Second International Logic Programming Conference, Uppsala Uni-
versity, Uppsala, Sweden (1984) 127-138

15. Wogulis J., "Revising Relational Domain Theories", Machine Learning: Proceed-
ings of the Eighth International Workshop, Morgan Kaufmann (1991) 462-466

16. Wrobel S., "On the Proper Definition of Minimality in Specialization and Theory
Revision", Proceedings of the European Conference on Machine Learning, Springer-
Verlag (1993) 65-82

