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Abs t rac t .  In order to learn more about the behaviour of case-based 
reasoners as learning systems, we formalise a simple case-based learner 
as a PAC learning algorithm. We show that the case-based representa- 
tion (CB, a) is rich enough to express any boolean function. We define a 
family of simple case-based learning algorithms which use a single, fixed 
similarity measure and we give necessary and sufficient conditions for the 
consistency of these learning Mgorithms in terms of the chosen similarity 
measure. Finally, we consider the way in which these simple algorithms, 
when trained on target concepts from a restricted concept space, of- 
ten output hypotheses which are outside the chosen concept space. A 
case study investigates this relationship between concept space and hy- 
pothesis space and concludes that the case-based algorithm studied is a 
less than optimal learning algorithm for the chosen, small, concept space. 

1 Introduct ion 

The performance of a case-based reasoning system [13] will change over time as 
new cases are added to the case base by the problem-solving process. A prudent 
knowledge engineer might wonder whether the performance will necessarily im- 
prove, how quickly the performance of the system might change, or how many 
exemplars would be required to reach some specific level of accuracy in problem 
solving. 

A simple model of a case memory system is presented here as a basis for 
answering these questions analytically. The model used is a functional one in 
that  the knowledge content of the case memory system is modelled as a mapping 
between input and output  domains. The analysis applied to this model is a 
probabilistic, worst case analysis, in that  we apply the PAC learning framework 
[3] [10] to case-based learning. 

For the moment,  a number of restrictions are made in order to gain leverage 
on the problems in hand. To focus on the learning behaviour of the systems, 
the model abstracts away from many aspects of case-based reasoning systems 
which are of interest in other contexts such as interactive properties, details of 
the reasoning process at conceptual and implementation levels and knowledge 
representation issues such as the choice of abstract indices. Additionally, this 
paper focuses only on case-based classifiers whose task is to decide whether or 
not the input description is an instance of some concept. 
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2 D e f i n i t i o n s  

Our model is of a case-based classifier operating over the space of N-bit bin- 
ary vectors. Thus the example space in the current work will be referred to as 
DN ~ {0, 1} N. (d)i will be used to stand for the i-th bit of a vector de DN. 
The set of {0, 1}-valued total functions defined over this domain will be denoted 
BN ~- (DN -~ {0, 1}). 

By hypothesis space we refer to the set of possible hypotheses that might be 
output by the case-based learning algorithm over all possible training samples. 
The term concept space on the other hand will be used to refer to some specific 
subset of BN from which target concepts for the learning algorithm might be 
drawn. In particular, section 5 considers the set of monomial functions as the 
concept space for a case-based learning algorithm. A monomial expression U is a 
combination of no more than N literMs chosen without replacement from the set 
{ u l , . . . ,  uN}; additionally each chosen literal may be negated before being added 
to U. The classification function for the expression interprets U as a conjunction 
of the (possibly negated) literals: 

h (a) = /; 01 il w.  . = 1))A (<eU ((a), =0)) 
otherwise O) 

The function hu N (d) is therefore a {0, 1 }-valued function on DN whose value is 
decided by a conjunction of the bits of d. The space of such functions will be 
referred to as MN. Further, Mg,k is defined as the set of monomials with exactly 
k literals (#U = k). 

3 C a s e - B a s e d  L e a r n i n g  A l g o r i t h m s  

Following the work of Jantke [11], a case memory system is modelled as the pair 
(CB, or) where CB is the case-base, or set of stored exemplars, assumed here 
to be free from observational error, and ct is a similarity measure defined for 
the space DN. Using the terminology of Dearden's model [7], the case-base is 
modelled as a set of pairs of 'descriptions' and 'reports'. As indicated above, 
a description is an N-bit vector from the space DN. A report is a single bit 
denoting the classification of that exemplar, making CB an object of type: 

CB : 7:' (ON x {0, 1}) 

The similarity measure a is a function over pairs of descriptions returning 
a normalised real value indicating the degree of similarity between the two in- 
stances: 

Or: (ON • DN) -'+ [0, 1] 

The pair (CB, a) is treated as the representation of a function from BN, 
according to the following interpretation related to the 'standard semantics' for 
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a case-based classifier of Jantke and Lange [12]. The function represented by 
<CB, a) is defined as: 

1 i f  3(dpo~, 1) e C B .  V(dneg, O) e CB" a(d, dpo~) > a(d, d~9) 
h~B,~)(d) = O otherwise 

(2) 
N Informally, a point d from DN is positively classified by h(cB,~) if and only 

if there is a stored positive exemplar dpos which is strictly more similar to d 
according to the chosen similarity measure a than any of the stored negative 
exemplars d~eg. In relation to other semantics discussed by Jantke [11], this 
interpretation resolves 'ties' between equally similar near neighbours by imposing 
a preference ordering on the 'report' part of retrieved cases. Negative exemplars 
are preferred over positive ones in inferring the classification of a new problem 
instance, i.e. if the set of exemplars which are most similar to d contains both 
positive and negative exemplars, d will be classified negatively. 

Since the interpretation of a case-based representation (CB, a) depends on 
the interaction between the available cases and the similarity measure, a 'case- 
based' or 'instance-based' learning algorithm may alter its hypothesis by manip- 
ulating either of the two components [15, p.79]. The algorithms IB2 [1], VS-CBR 
[15] and PEBLS [5], for example, each show different ways of adjusting the rep- 
resented hypothesis via changes to the case-base and/or the similarity measure. 
In the current paper, we restrict our study to the following family of very simple 
case-based learning algorithms. 

Definition 1. CBI(a) Learning Algorithm for Case-Based Classifiers 

set  C B  = 0 

fo r  i : 1 to  m do 
set  CB -- CB U {(di, bi)} 

set  CBI(#)(~) = h(cs,a) 

CB 1 (a) learns by adding each and every member of the training sample ~ (a 
series of m pre-classified examples (d~, bi)) to the case base, and constructs each 
hypothesis using a single, fixed similarity measure a. Clearly the usefulness of 
CBI(c)  will depend on the choice of a; a similarity measure that assigns high 
similarity to arbitrary pairs of descriptions will not be of much use in defining a 
viable learning algorithm. 

The best understood learning algorithms are those which consistent, i.e. those 
which are able to classify correctly at least the exemplars in their training sample. 
In the following section we demonstrate precisely which choices of similarity 
measure allow CB1 (~) to behave consistently. 

4 C o n s i s t e n c y  o f  C B I ( e r )  

Theorem 4 below gives necessary and sufficient conditions over ~ to make CB1 (~) 
a consistent consistent learning algorithm. Results elsewhere [12, Lemma 3] [14, 
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Lemma 7] formalise the intuition that  a 'reasonable' similarity measure [14], 
which recognises that  an object is more similar to itself than any other object, 
will be sufficient for consistency. This property is here called 'definiteness' after 
Day and Faith [6, p.183]. 

De f in i t i on  2. De f in i t enes s  of  a S imi l a r i ty  M e a s u r e .  A similarity measure 
a is definite iff the comparison of two distinct objects yields a score strictly less 
than the score given to the comparison of an object to itself. 

Vd, d ' :  ON. d ~ d ~ --+ a(d, d ~) < aid, d) (3) 

This property ensures a consistent hypothesis since any exemplar in the case 
base will be judged strictly most similar to itself, and therefore those exemplars 
at least will be classified correctly by equation (2). Definiteness is not however a 
necessary condition for consistency. The exemplars in the case base will still be 
classified correctly as long as the most similar object to a positive exemplar is 
any positive exemplar and the most similar object to a negative exemplar is any 
negative one. In other words, two distinct objects may be assigned maximal sim- 
ilarity only if they are classified the same by all relevant classification functions 
f .  This is recognised informally as a necessary condition by Wess and Globig [15, 
p.86]. We express it within our framework in our definition of predictivity and 
prove it a necessary and sufficient condition over a to make CBI ( a )  a consistent 
learning algorithm. 

D e f i n i t i o n 3 .  P r e d i c t i v i t y  of  a S imi l a r i ty  M e a s u r e  w i t h  r e s p e c t  to  a 
c o n c e p t  space  C. A similarity measure is predictive of a concept space C iff, 
for any concept ce C: 

1. When d is a positive instance of c, the comparison of d and d ~ yields a score 
at least as large as the comparison of d to itself only if d ~ is also a positive 
instance. 

VceC.Vd,  d' eDN.~(d,d ' )  > a(d,d) --+c(d) = l -~c(d ' )  = l (4) 

2. When d is a negative instance of c, the comparison of d and d ~ yields a score 
strictly greater than the comparison of d to itself only if d r is also a negative 
instance. 

VceC.Vd,  d' e D N . a ( d , d  ~) > a ( d , d )  ~ c ( d )  = O ~ c ( d ' )  = 0  (5) 

Note how this relates to equation (2) in that  the property of definiteness is 
relaxed precisely where no misclassification will occur under our chosen classifica- 
tion function (2). The asymmetry in equations (4) and (5) reflects the preference 
given to negative exemplars in the classification function. Hence we emphasise 
that  choosing a different semantics in (2) would entail a slightly different form 
of the following theorem. 

T h e o r e m  4. C o n s i s t e n c y  of  CBl(cr). For any concept space C C BE, CBI(cr) 
is a consistent learning algorithm for C if and only if the chosen similarity meas- 
ure a is predictive of C. 
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Proof. Let CBI(r  infer a hypothesis from some training sample ~ -- ((di, bi)) 
for a target concept c. According to the definition of CBI(a ) ,  the case-base 
will contain exactly those labelled examples presented in the training sample; in 
the absence of observational error we can assume (di, n)e  C B  ~ c(dl) = n, for 
n e {0, 1 }. a) Sufficiency: Assume a is predictive of the concept space C. Taking 
positive and negative exemplars in the case base separately, consider first di such 
that bi = 1. For any negative exemplar (dneg,0)eCB, we have c(d,~eg) = 0 and 
hence by equation (4) V d e D N .  V ( d ~ 9 , 0 ) e C B .  a(d,d,~g) < a(d,d) V c(d) = 
0. Since c(d~) = 1, we conclude V ( d , ~ 9 , 0 ) e C B .  a(d~,d~g) < a(di ,di) ,  and 
thus h<cs,~)(di) = 1 by equation (2). By a similar argument, for some di such 
that bi = 0 we derive from equation (5), V(dpos, 1)e C B .  a(di, dvo8 ) < a(di, di), 
and hence h<cB,~)(di) = 0 by equation (2). Thus for any example dl in an 
arbitrary training sample, h(cB,~)(di) = bl, making CB1 (a) a consistent learning 
algorithm, b) Necessity. It will be shown that for any similarity measure a' 
which violates either of equations (4) & (5), there is a target concept c' from the 
specified concept space for which a training sample can be constructed which 
will be mis-classified by CBI(a) .  The consistency of CBI(a)  would therefore 
require a similarity measure satisfying both equations. If equation (4) does not 
hold, then there must be two descriptors dl and d2 and a target concept c' such 
that: 

~r'(dl,d2) > a ' (d l ,d l )  A c'(dl) = 1 A c'(d2) = 0 (6) 

Thus ((dl, 1), (d2,0)) will be a training sample for c'. Given the case base C B  
constructed by CBl(cr') from this sample, note that hcB,~,(dx) = 0 since equa- 
tion (6) indicates that the negative exemplar d2 will be at least as similar to 
dl as dl is to itself. Hence h<cB,~> disagrees with the training sample. In a 
similar way, if it assumed that equation (5) is relaxed, then there is a train- 
ing sample ((dl, 0), (d2, 1)) resulting in a hypothesis such that hicB,~, ) (dl) = 1. 
Thus CBI(o')  will be a consistent learning algorithm for a concept space C if 
and only if ~r is predictive of C. [] 

The close relationship between definition 2 (definiteness) and definition 3 
(predictivity) means that the following additional result can be easily estab- 
lished: 

Coro l la ry  5. CBI(a)  is a consistent learning algorithm for the space BN of all 
total functions on DN if and only if a is a definite similarity measure. 

As a further corollary, we can also state the following. 

Coro l la ry  6. Given a similarity measure ~r which is predictive of a concept space 
C, then for any target concept c e C  there is a case-base C B  s.t. h(cB,~, ) = c. 

Proof. For some ~ and C s.t. a is predictive of C, take any c e C and any training 
sample ~ for c which contains an exemplar for every point in the example space 
DN. Since Theorem 4 guarantees that the output of CBI(a)  will be consistent 
with ~, clearly the function h(cB,a) output by CBI (a )  on ~ will be exactly c. [] 
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Finally we observe that it is a basic result in the PAC framework that a 
learning algorithm which is consistent with respect to some concept space and 
which learns using a finite hypothesis space is a PAC-learning algorithm for 
that concept space [3, p.41]. Since the number of distinct boolean functions 
that can be defined on DN is 22N the hypothesis space of CBI(a) must be 
finite. Hence, trivially, a similarity measure predictive of any concept space C C 
BN is sufficient to make CBI(~)  a PAC learning algorithm for C (c.f. PAC- 
Learnability results for case-based classifiers for concepts defined on real-valued 
attributes in [1] [2]). PAC learnability answers one of our original questions 
(w 1): the performance of a consistent case-based reasoning system will eventually 
improve if enough exemplars are presented. What is more interesting however, 
is to ask how many examples must be processed to guarantee a good hypothesis. 

5 S a m p l e  C o m p l e x i t y  i n  C a s e - B a s e d  L e a r n i n g  

The sample complexity of a learning algorithm with respect to some concept 
space is defined within the PAC learning framework as the size of training 
sample which will ensure, to some level of confidence and accuracy, that the 
hypothesis chosen by the learning algorithm is a good approximation, for any 
target concept in the chosen concept space. Theorem 7 gives an upper bound on 
sample complexity in terms of the VC dimension of the hypothesis space used 
by an algorithm. The VC dimension of a space of {0, 1}-valued functions is a 
quantity related to the size of the function space, being defined as the size of the 
largest possible sample from the example space for which every possible dicho- 
tomy into positive and negative examples can be generated by some function in 
the set ('shattering') [4, p.934] [9, p.189]. Note the relationship of this theorem 
to the results of the previous section in that it refers specifically to consistent 
learning algorithms. 

T h e o r e m T .  [4, Thin 2.1(ii)(a)] [9, Theorem 4.4] Suppose that an hypothesis 
space H has finite VC dimension dye(H). Then any consistent learning al- 
gorithm L which uses hypothesis space H is PAC with sample complexity: 

mL(H'~'~) <-- [kl'dvc(H) l~ ( ~ )  + ~ l~ ( ~ )  

where 6 eJ r are the required levels of confidence and accuracy, and ki constant. 

In giving an upper bound on sample complexity, Theorem 7 shows that the 
size of training sample that can be processed before a consistent learning al- 
gorithm necessarily outputs a good hypothesis with high probability will in- 
crease with the VC dimension. In what follows, we assume that the converse 
also holds, and that as the VC dimension increases, the sample complexity of 
the learning algorithm also must increase. Although strictly this depends on the 
specific properties of the learning algorithm using the hypothesis space, we hold 
that, in general, the larger the hypothesis space, the more training examples the 
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learner must see in order to discriminate between the available hypotheses, and 
choose a hypothesis that is accurate with high probability [10, p.1103]. 

Any such discussion, however, requires us to characterise the hypothesis space 
of our case-based learners. The hypothesis space of CBI(a)  with respect to some 

concept space C will be referred to as H~ m(~). The simplicity of CBI(a)  means 
that, for a given target concept t, all possible case-bases CB C t are reachable 
by the learning algorithm. This allows the following to be stated about the 
hypothesis space of CB 1 (~): 

Propos i t i on8 .  A function f is a member of the hypothesis space of CBI(a)  
with respect to the concept space C c_ BN if and only if there is some target 
concept c eC  for which there is a case base C B  C c s.t. h(cB,~) = f . 

_ ~ .  ~ c B l ( a )  V C C B N . V f e B N . j ~ . . C  + + 3 c e C . 3 C B C c . h ( c B , ~ ) = f  

As a corollary of proposition 8: 

HCBI(a) c = U hyp ,. (7) 
t e C  

where hypt,~ = {h(cB,~)ICB C t} 

These statements show how the hypothesis space of CBI(a)  depends on the 
choice of both the similarity measure and the concept space. For smaller concept 
spaces, since we restrict the possible target concepts and hence the allowable 
training samples, only a restricted number of the possible functions in BN may 
be output as hypotheses. On the other hand, it will not be uncommon that a 
case base CB which is extensible to some target concept c e C will be interpreted 
by equation (2) as a function from outside of the concept space C. In general 

~rcm(-) then, the hypothesis space --c does not necessarily contain all functions 
f e By ,  but may well contain functions from outside the chosen concept space. 

Our contribution in the remainder of the paper is to establish a lower bound 
on the VC dimension of the hypothesis space of CBI(a)  for particular instances 
of C and a. Specifically, we will consider the (highly restricted) set of functions 
MN,k as concept space and the 'unweighted feature count' ~rF defined in equation 
(8) as similarity measure. 

1 1 aF(dl,d2) = ~ # { i ]  < i < NA (dl), = (d2)i} (8) 

Proposition 15 below reports a surprising result which partly characterises 
the space of functions r~CSl(=F) Corollary 16 re-expresses this result in terms 

~ M N , k  
of the VC dimension to give the promised lower bound. The following defini- 
tions and results, whose proofs are omitted for brevity, are given as necessary 
preliminaries to Proposition 15 and its corollary. 
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Def in i t i on  9. E x t r a p o l a t i o n s  of  m o n o m i a l  func t ion .  The extrapolations of 
a monomial function h N e MN are the functions h N+I e MN+I such that  U' e 
{v, u u u u } 

h N+I eextrN(h N) ~ (V' = V V V' = V U {~tNq_l} V U '  ~-- V [-J {~--"~'~}) 

P r o p o s i t i o n  10. The union of the extrapolations of the functions f e MN is 
equal to the class of functions MN+I. 

VN > O. U extrN(f)  = MN+I 
f eMN 

Def in i t i on  11. P r o j e c t i o n s  of  a desc r ip t ion .  The projections of a descrip- 
tion are constructed by extending the description by a single new bit. 

V d e D N , d  ~eDN+t �9 d 'eprojN(d ) ++ V1 < i < N .  (d)i = (d')i 

De f in i t i on  12. P r o j e c t i o n s  of  a case-base .  The projections of a case-base are 
constructed by adding a new bit, set to one specified wlue, to the description of 
each exemplar in the case-base. 

p N ( C B )  = {(d', n)l(d,n ) e C B  A d' eprojN(d ) A (d')N+l = i} 

P r o p o s i t i o n  13. Given a function fN+l e BN+I defined on DN+I and a second 
function h~ ~MN defined on DN, it is concluded that fN+l = hN+l, i.e. fN+l 
is the function on DN+I represented by the same monomiaI expression U, if it 
can be shown that for any description de DN, hN (d) will return the same value 
as fN+l(d ' ) ,  where d' is either of the projections of d in DN+I. 

VN >_ 1 �9 V f  N+I e BN+I, h~ e MN �9 Vd e DN, d' e DN+I" 

d' eprojN(d ) ~ [(hN(d) = 1 ~ fN+l(d')  = 1)) -+ fN+l  = h~+l]  

P r o p o s i t i o n  14. For a given case base C B  containing exactly one positive ex- 
emplar, if there is a function f eMN,k s.t. C B  C f ,  then for any larger k' s.t. 
k < k' < N ,  there is some f ' e  MN,k, so that also C B  C f ' .  

VN _> 1 .V1 < k < N . V C B e P  (DN x {0,1}). 

(#{dpos : DN I(dpos, 1) e C B }  = 1 

V f  e Mlv,k ' C B  C f --~ Vk <_ k' <_ N . 3 f '  e MN,k, �9 C B  C f ' )  

The following result can now be established: 

e~r ,~  D/CBl(crF) P r o p o s i t i o n  15. The effective hypothesis oe . . . . .  Mink of the case-based learn- 
ing algorithm CBI(aF) ,  defined with respect to the 'unweighted feature count' 
similarity measure aF and the set of k-literal monomial functions MN,~, contains 
the set of all monomial /'unctions MN defined on DN. 

HcBI(aF) VN :> I " VI < k < N " MN C- Mink 
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Proof. By induction on N. Proposition 8 shows that the required result is equi- 
valent to requiring that for each f e  MN, there is a 'target concept' t e MN,k for 
any value 1 _< k _< N, and some case base CB C_ t, such that h N(CB,~) = f" 
Therefore, it will be sufficient to show VN >_ 1 �9 H(N),  defining H as below. In- 
troducing the extra restriction that case bases contain a single positive exemplar 
will allow reference to proposition 14 in subsequent argument: 

N H(N) ~ V f eMN . V1 < k < N .3 t~MN,k  .3CB C_ t .p+ (CB) Ah(cB,~F ) = f 

where p+(CB) ~- #{dpo~ : DN](dpo~, 1)eCB} = 1. 

Base Case H(1). M~ = {{}, {u~}, {~-~1}}. h({(1,1)},~F) ---- h{}, h({(~j),(0,0)},~F) = 
h{~, G and h({(t,o),(0,t)),~F) = h{~7}. Hence H(1). 

Inductive Step H(p) -+ H(p + 1). We make the inductive hypothesis H(p): 

Vf e Mp. Vl < k < p. 2t ~ Mp,k. 2CB C t .  p+ (CB) A hP(cB,~F) = f (9) 

Proposition 10 indicates that it will be sufficient to infer from equation (9) 
that for any monomial function f ~ Mp each extrapolation of f is a member of 
the hypothesis space with respect to Mp+l,k for values 1 < k < p +  1. Proposition 
14 in turn shows that it will be sufficient to derive from the inductive hypothesis 
that for each f '  ~ extrv(f) there is a t e Mp+l,1 and a case-base CB C t containing 
just one positive exemplar which represents ]~, which will entail the results for 
all other values of k. 

Hence it will be shown equation (9) entails that for each h~] e Mp there are 
functions tl, t2 and t3 and case bases CB1, CB2 and CB3 satisfying: 

_ h p+I = h ~  +1 ( 1 0 )  Yh~ eMp. 3tl eMp+t,l �9 3CB1 C tl .p+(CBt) A <CB~,~F) 

Vh~ e Mp. ~t2 e Mp+l,1 " 3CB2 C ts" p+(CBs) A h p+I = h p+I (11) - -  ( C B 2 , c r F )  U U { u . + I }  

VhPu e Mp. 2t3 e Mp+l,1 �9 3CB3 C t3 �9 p+ (CB3) A ~v+t -- h p+I (12) - '~(CB3,~F)- UU{--777} 

For any function h~ e Mp, equation (9) asserts there must be some case base 
P CB s.t. there is some h~, e Mp,1 where CB C_ h~ and h(cB,~F ) = hPu . It will be 

shown that there are case-bases defined in terms of CB and T which will satisfy 
each of equations (10) to (12): 

a) Case-based representation of hPg +1. 
It will be shown that either projection of CB (definition 12), P~(CB) and 

P~(CB) is a case-based representation of h~+l; clearly either projection also has 
a single positive exemplar. It will first be shown that for any function h~cB,~F ) (d) 
defined on DN the functions represented by the projections of CB will classify 
the projections of d positively iff h~cB,~F)(d ) = 1: 

V g > l  ViE {0, 1} g _ �9 �9 V h ( c B , a F  ) e B y "  

h N+I [~'~ 1) (13) Vd e DN, d' ~ proj N (d). (h~cB,~F)(d) = 1 ++ ,,(pN(c,),~F) ~ j = 
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Assume there is some deDN such that h(cB,~F)(d) = 1, and let d' be a 
projection of d in DN+I. There must be a positive exemplar in CB satisfying 
equation (2). For any dl, d.~, d3 e DN where aF(dl, d2) > ~rF(dl, d3), consider the 
projections of dl in DN+I, d~ eprojg(dl ). Consider also projections of d2 & d3, 

! ! d~eprojN(d~),d~aeprojN(d3), such that (ds)y+l  ----- (d3)N+l. Let ~fi,j stand for 
the number of bits which di and dj agree on; similarly, let yi',j' stand for the 
number of bits agreed on by d~ and d~.. Since the extending bit (d~)y+l will 
either agree or disagree with the bit extending d2 and ds, we have ~v,2, - ~/1,2 = 
~1, ,a, - ~1,3 = ~, where 5 e {0, 1 }. Therefore we also have aF  (d~, d~) > aF (d~, d~), 
and, letting d' = d~, any dpo~ from the projection of the case-base = d~ and any 
d,~g = d~: 

Vie{O, 1}.3(dpo~,I)epN(cB).V(d,~g,O)epN(cB) ' d �9 aF(d, po~) > aF(d',dneg) 
(14) 

h N + I  ( r f f~  and ,~(pN(cB), :F)~,  = 1, i e {0, 1}. Similarly h~cB,,F)(d ) = 0 -+ 
hN+l (py(cB),~F)(d') = 0; hence (13). 

We have shown that for any function h~c B,~F), either projection of CB (defin- 
ition 12) will represent a new function defined on DN+I which classifies the 
projections of d positively iff fN (d) =- 1. Therefore by proposition 13: 

hP+~ = hP+p 1 - h ~  +1 (15) <P~ (cB),~> <P~ (ca),~-> -- 

It remains only to show P~(CB) r h~ +1. For any ( d ' , n ) e P P ( C B ) ,  there is a 
unique d such that d'e projp(d) and (d, n)e CB (definition 12). Since CB C_ h~, 
(d,n) e CB -+ h~(d) = n. Since d & d' agree on their first p bits and also 
h~ e Mp,k so that  T refers only to the first p bits of representation, h~(d) = 
1 ~ h~+l(d ') = 1. Hence also h~+l(d ') = n and therefore (d',n)ePP(CB) -+ 
h~ +1 (d') = n. Hence the following result, concluding (10): 

P~(CB) C h~, +1 (16) 

h p+I It will be shown that the case base b) Case-based representation of uu{~,+~}" 

P~(CB) U { ( d ~ ,  0)} is a case-based representation of h p+I where d,~r is vu {~,,+1 }' 
defined as follows: 

= I1 - ( d p o . ) , l  

(dn~. ) i  = (dpo~)i where 1 < i < p A i r = 

( d , ~ . ) p + l  = 0 

dpo~ is the description of the unique positive exemplar in P~ (CB), inherited from 
CB, and x is the smallest value s.t. u~ eT V ~ e T ,  T being the representation 
of the target function h~ e Mp,1. 

By equation (2), we have hPp+~ B = f p + l  where: ( 1 ( c ) u ( ( d  ...... o ) } , ~ )  

hp+l 1 if (p~(CB),~F)(d) = 1 A aF(d, dpos) > ~F(d, dnr (17) 
fp+l(d) = 0 otherwise 
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From the definition of d , ~ ,  we have aF(d, dpos) > aF(d, d ~ )  iff d agrees 
with dpo~ on a strict majority of the bits {u~,up+l}; note (dpo~)p+l = 1 since 
(dpo~, 1) e P~(CB), while (d ,~)p+l  = 0 by definition. (All other bits are irrelev- 
ant to the comparison since they are common to both dpo, and dn~) .  Hence: 

aF(d, dpos) > ~ F ( d , d ~ )  ++ ((d), = (d~o~)~ A (d)p+l = 1) (18) 

Substituting (15) and (18) in (17): 

hp+l = fp+l = hp+l ( PP ( C B )u{  ( d . . . . . .  O)},aF) VU{u,,+l} (]9) 

since h~] +t (d) = 1 implies that (d), must have the same value as (dpos),. 
Clearly, the new case-base still contains a single positive exemplar; to satisfy 

equation (11), it must only be shown PiP(CB) U {(dn~, 0)} c h~, +1. From (16), 
_ . h p + I  ~ d  we have P~(CB) C h~ +~ Note also T 1 n ~ )  = 0 since by definition, d ~  

will fail to satisfy T. Hence (d~e~, 0)e h~, +1 and PP(CB) U { ( d , ~ ,  0)} C h~. +1. 

h p+I Equally, the case base P~(CB) U c) Case-based representation of uu{~-777}" 
! 

atne~o ! {(d~e~, 0)}, where = d,~e~ as defined as above except (d'~)p+l = 1, is an 
equivalent representation to U 0 {u-'~'T}. Hence (12). [] 

H cst(r The VC Di- Corol la ry  16. Lower  b o u n d  on VC Dimens ion  of  MN,k " 

of H CBI(~F) the effective hypothesis space of CBl(erF ) with respect to mension j MN,k 
the concept space MN,k, is at least O(N). 

Proof. ~CBI(~F) contains MN (proposition 15). Therefore any sample shattered 
"Lz MN, k 

~rCS1(~F) will H CBI(=F) and the VC dimension of,,MN.k by MN will be shattered by MN,k ' 
be at least that of MN, which is O(N) [3, p.76] [9, p.193]. [] 

In contrast to corollary 16, note the following result: 

P r o p o s i t i o n  17. U p p e r  b o u n d  on VC Dimens ion  of  MN,k. The VC Di- 

Proof. Let �9 be a sample of size v, which orders the set of examples X and is 
shattered by MN,k. Consider that there are 2 "-1 subsets of X which contain 

aparticularx~eX, a n d a l s o t h a t t h e r e a r e e x a c t l y ( f )  functionsfeMN,k 

that classify xi positively. Since each subset of X must be labelled by a distinct 

memberofMN,k, w e h a v e 2 ~ - l < ( f ) , a n d h e n c e v < _ l + l o g 2 ( N )  [] 

Hence, while the VC dimension of the hypothesis space of CBI(aF) with 
respect to the set of functions MN,k is at least CO(N) (Corollary 16), the VC 
dimension of MN.k itself is C0(log N) (Proposition 17). Theorem 7 leads us to 



172 

believe that this qualitative difference, reflecting the presence of a number of 
spurious functions in the hypothesis space of CB 1 (a) in this instance, indicates 
that CBI(crF) is a less than optimal learning algorithm (with respect to sample 
complexity) for the space MN,k. That is, as N increases, we would expect the 
number of examples CB 1 (ap) needs to reach an accurate hypothesis will rapidly 
outgrow the number needed by a learning algorithm whose hypothesis space 
represents exactly the functions contained in MN,k. 

Finally, we note that Proposition 15 is very much a partial characterisation 
of the hypothesis space in this instance. In addition to that formal result, direct 
enumeration establishes the presence of functions such as ul + u2.ua and ul.us + 
ut.u3 + u2.u3 in H c ~  1(~), and in addition shows that only a fraction of BN 

~vl3,1 
is output as hypotheses on training samples for functions in MN,k and that 
~Cm(~) 
~'*MN~k I varies for different values of k. 

6 C o n c l u s i o n s  

CBI(aF) is a general purpose learning algorithm with a rich hypothesis lan- 
guage. Specifically, for any fixed predictive similarity measure (Definition 2) 
such as (rE, corollaries 6 and 5 indicate that there is a case-based representation 
(CB, aF) for any {0, 1}-valued total function on DN. In addition we have ex- 
plored the nature of the hypothesis space of CBl(crF). Considering the possible 
hypotheses that might be output on training samples for functions in specific 
concept spaces MN,k, it has been shown here (Proposition 15) that the hypo- 
thesis space of CBI(aF)  with respect to the concept space Mg,k includes not 
only MN,k but also all monomial functions MN. Arguments related to Theorem 7 
lead us to believe in addition that the presence of these spurious hypotheses will 
make CBI(c~F) a relatively inefficient learning algorithm for MN,k (with respect 
to sample complexity) compared to a consistent learning algorithm which can 
represent only the functions MN,k. We suggest that this is a natural corollary of 
the generality of CB1 (crp). 

In contrast, Wess and Globig have already pointed out and ably demonstrated 
that "the [similarity] measure (respectively the way to modify the measure) is 
the bias of case-based reasoning" [15, p.90]. That is, with some prior knowledge 
of the concept space to be learnt, the similarity measure can be manipulated so 
that the hypotheses output by the case-based learner are more likely to be close 
to the possible target concepts. Such strategies demonstrably improve efficiency 
with respect to sample size [8] [15], although performance will obviously be 
degraded outside the chosen concept space. 

Where more sophisticated case-based learning algorithms outperform a simple 
but universM algorithm such as CB 1 (ap), this must be seen as the result of some 
bias in the learning algorithm to the target concepts that the algorithms are be- 
ing tested on. We believe that the formalisation presented here and its attention 
to the hypothesis space of the case-based learner provide a tool for the rigor- 
ous comparison of the many possible case-based learning algorithms and the 
different forms of bias they embody. Much work remains in carrying out these 
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comparisons and in extending the model, for example to allow for the possibility 
of observational error in the cases of the case base. 
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