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1 Introduct ion 

Data dependencies are the most common type of semantic constraints in rela- 
tional databases which determine the database design. Despite the advent of 
highly automated tools, database design still consists basically of two types of 
activities: first, reasoning about data types and data dependencies and, second, 
normalizing the relations. Automatic database design may serve as a process to 
support database designers with a dependencies proposing system, which may 
help to design optimal relation schemes for those cases where data dependen- 
cies are not obvious. The so called dependency inference problem is described in 
[Mannila and R~iihs 1991] as: Given a relation r, find a set of data dependencies 
which logically determines all the data dependencies which are valid in r. 

Unfortunately, it is impractical to enumerate all data dependencies and to 
try to verify each of them. Alternatively, a second approach to discovery is to 
avoid unnecessary queries by inferring as much as possible from already verified 
data dependencies. A third approach is to draw inferences not only from ver- 
ified data dependencies but also from invalid data dependencies, the so called 
independencies. In this paper we will follow this approach. A second problem is 
that real world databases are known to be very large. Therefore they only can 
be accessed via a database management system. 

We present a rough sketch of our main algorithms and in the last section a 
comparision with some similiar approaches. 

Our system can be seen at the first glance as an optimized version of CLAU- 
DIEN regarding fnnctional dependencies, [Dehaspe et al., 1994]. But there are 
differences: first, in CLAUDIEN the relationship between the dependencies is 
based on t~-subsumption and the verification of the hypotheses on theorem prov- 
ing. In our approach, the relationship of the dependencies is based on an axiom- 
atization of FDs and UINDs. The verification is done by the database man- 
agement system which groups the rows. This offers several advantages: First, 
theorem proving is for this purpose too powerful and we can infer dependencies 
by transitivity which is really simple. Second, we can find dependencies in re- 
lational databases, which can not be stored in the main memory as PROLOG 
assertions. 

* The full paper is available from the authors. 
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2 Discovering Data Dependencies 

2.1 Value Res t r ic t ions  

Value restrictions are the upper and lower bounds of attribute domains. We select 
the minima and maxima for all attributes in all relations with the corresponding 
SQL statements. The SQL statement uses the normal order on numbers for nu- 
merical attributes and the lexicographic order on the character set for attributes 
of a symbolic type. Since it is possible to compute the two values in one query, 
the overall costs are O ( n .  m). Throughout this section n denotes the number of 
attributes in all tables and m the maximal number of tuples in the table which 
possesses the most. 

2.2 U n a r y  Inclus ion Dependencies 

A naive algorithm for computing inclusion dependencies has a time complexity 

of ~9(n2. m~). It generates exactly ~ database queries, if the corresponding 2 
UINDs are valid or not. In contrast our algorithm has a overall time complexity 
of O ( n  4 + n 2 �9 m~). 

At a first glance, this result looks strange because of the O-notation. But our 
algorithm has one very important property. Given a fixed sequence of attributes 
for hypotheses testing, our algorithm always poses a minimal number of database 
queries for the discovery of UINDs, by exploiting discovered UINDs and the 
transitivity of UINDs, and hence it saves all superfluous queries to the database, 
cf. [Brockhausen, 1994]. The correctness of the algorithm is considerably based 
on the axiomatization of UINDs and UINIs, cf. [Bell, 1995]. 

2.3 Functional Dependencies 

To determine functional dependencies we have integrated two main ideas, namely 
to exploit the transitivity of FDs and to concentrate on the computation of 
most-general FDs. For a discussion in full detail on the algorithm and the design 
choices being made see [Brockhausen, 1994]. Our algorithm uses a top-down and 
breadth-first search strategy. We should mention that we also use information of 
the database system on primary keys, indexes and null values and the discovered 
inclusion dependencies to reduce the search space in our algorithm. 

Figure 1 lists the statement and the condition which must hold. The clue 
is the GROUP BY instruction. The computational costs of this operation are 
dependent on the database system, but it can be done in time O(m*log m). How- 
ever, the worst case time complexity of every such an algorithm is exponential, 
due to the results of [Mannila and R~ih~, 1991]. 

3 Evaluation and Conclusions 

We compared our algorithm with two approaches presented at the AAAI work- 
shop on knowledge discovery in databases in 1993. Savnik and Flach call their 
method "bottom-up induction of functional dependencies from relations", see 
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SELECT SUM 'COUNT (DISTINCT A1)), 
SUM 'COUNT (DISTINCT B)) 

FROM R 
GROUP BY A1 . . . ,  A,~ ---: al, b 

a l  = b :::~. A I . . . A , ~  ---* B 

Fig. 1. A SQL-statement for the Computation of Functional Dependencies 

[Savnik and Flach, 1993]. Briefly, they start with a bo t tom-up  analysis of the 
tuples and construct a negative cover, which is a set of FIs. Therefore they have 
to analyze all combinations between any two tuples. 

In the next step they use a top-down search approach similar to ours in order 
to discover the functional dependencies. They check the validity of a dependency 
by searching for FIs in the negative cover. Schlimmer also uses a top-down 
approach, but in conjunction with a hash-function in order to avoid redundant 
computations [Schlimmer, 1993]. 

Algorithm by 

Savnik and Flach 
Schlimmer 

Bell and Brockh. Lymphography 150 
Bell and Brockh. Breast Cancer 699 
Bell and Brockh. Breast Cancer 699 

Table 1. Comparison of the Experimental Results 
[Schlimmer, 1993] with the algorithln FUNCTIONAL 

Database ][r[ ][R[][X[] Time 

I Breast Cancer1699 11 4 1 h 14 rain. 

19 7 > 33 h 
11 11 8 Min. 53sec. 
11 4 4 Min. 19 sec. 

from [Savnik and Flach, 1993] and 
DEPENDENCIES .  

But in contrast to our algorithm, in both articles mentioned, the authors 
do not use a relational database like OracleV7 or any other commercial DBMS. 
They  even do not use a database at all. And this has some important  effects 
on the results, which will be discussed in the next paragraph. Table 1 shows a 
summary of their results, where Ir[ denotes the number of tuples, IR[ the number 
of attributes, [XI the maximal number of attributes on the left-hand side of a 
FD and time is the time needed for the discovery of a most-general-cover.  For 
comparison reasons we introduced such a bound on the number of attributes in 
our algorithm. 

First, our algorithm cannot detect the FDs in the lymphography domain in 
reasonable time, because we do not hold the data  in main memory like Savnik 
and Flach. And since most of the FDs are really long, for some attributes the 
shortest most-general  FDs have already seven attributes on the left side, the 
search space and the overhead for the communication with the database is to 
big. But it cannot be said that  our approach is inferior to the one of Savnik 
and Flach, because the circumstances are to different, namely the presence or 
absence of a database for the storage of the tuples. 

Second, in the breast cancer domain our algorithm is really fast, more than 
seventeen times faster than Schlimmer's algorithm. Even without any bound on 
the length of the FDs it is still eight times faster and it uses a database. 
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Time 

h 40 min.lz~l 
h 10 min. ~[z_~ 

Table 2. Summary of the results of the algorithm FUNCTIONAL DEPENDENCIES. 

But of course the two domains above are not typical database applications. 
Table 2 shows the results of our algorithm with respect to a real database, the 
library database of the computer science department. Here it becomes obvious 
that  our pruning criterions are efficient, because with a bound of six attributes 
and without any bound the time needed is nearly the same. The differences are 
neglectable because there are many more users working on the network and the 
results are only reproducible within some bounds. But apart from the known 
primary key of the database the discovered FDs are semantically meaningless. 

In summary, one can say that the algorithm which we present in our work 
has one important advantage over the two approaches mentioned above. The 
algorithm is capable of dealing with great amounts of data, because we use a 
real database for the storage. And as a side effect, because we use standard 
SQL-statements for the discovery of FDs, our approach is portable and we can 
use any database which "understands" SQL as a query language. 
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