
Discovery of Constraints and Data
Dependencies in Relational Databases

(Extended Abstract)*

Siegfried Bell & Peter Brockhausen
Informatik VIII University Dortmund

44221 Dortmund Germany
em~il: {bell, brockh }@lsS.informatik.uni-dortmund.de

1 Introduct ion

Data dependencies are the most common type of semantic constraints in rela-
tional databases which determine the database design. Despite the advent of
highly automated tools, database design still consists basically of two types of
activities: first, reasoning about data types and data dependencies and, second,
normalizing the relations. Automatic database design may serve as a process to
support database designers with a dependencies proposing system, which may
help to design optimal relation schemes for those cases where data dependen-
cies are not obvious. The so called dependency inference problem is described in
[Mannila and R~iihs 1991] as: Given a relation r, find a set of data dependencies
which logically determines all the data dependencies which are valid in r.

Unfortunately, it is impractical to enumerate all data dependencies and to
try to verify each of them. Alternatively, a second approach to discovery is to
avoid unnecessary queries by inferring as much as possible from already verified
data dependencies. A third approach is to draw inferences not only from ver-
ified data dependencies but also from invalid data dependencies, the so called
independencies. In this paper we will follow this approach. A second problem is
that real world databases are known to be very large. Therefore they only can
be accessed via a database management system.

We present a rough sketch of our main algorithms and in the last section a
comparision with some similiar approaches.

Our system can be seen at the first glance as an optimized version of CLAU-
DIEN regarding fnnctional dependencies, [Dehaspe et al., 1994]. But there are
differences: first, in CLAUDIEN the relationship between the dependencies is
based on t~-subsumption and the verification of the hypotheses on theorem prov-
ing. In our approach, the relationship of the dependencies is based on an axiom-
atization of FDs and UINDs. The verification is done by the database man-
agement system which groups the rows. This offers several advantages: First,
theorem proving is for this purpose too powerful and we can infer dependencies
by transitivity which is really simple. Second, we can find dependencies in re-
lational databases, which can not be stored in the main memory as PROLOG
assertions.

* The full paper is available from the authors.

268

2 Discovering Data Dependencies

2.1 Value Res t r ic t ions

Value restrictions are the upper and lower bounds of attribute domains. We select
the minima and maxima for all attributes in all relations with the corresponding
SQL statements. The SQL statement uses the normal order on numbers for nu-
merical attributes and the lexicographic order on the character set for attributes
of a symbolic type. Since it is possible to compute the two values in one query,
the overall costs are O (n . m). Throughout this section n denotes the number of
attributes in all tables and m the maximal number of tuples in the table which
possesses the most.

2.2 U n a r y Inclus ion Dependencies

A naive algorithm for computing inclusion dependencies has a time complexity

of ~9(n2. m~). It generates exactly ~ database queries, if the corresponding 2
UINDs are valid or not. In contrast our algorithm has a overall time complexity
of O (n 4 + n 2 �9 m~).

At a first glance, this result looks strange because of the O-notation. But our
algorithm has one very important property. Given a fixed sequence of attributes
for hypotheses testing, our algorithm always poses a minimal number of database
queries for the discovery of UINDs, by exploiting discovered UINDs and the
transitivity of UINDs, and hence it saves all superfluous queries to the database,
cf. [Brockhausen, 1994]. The correctness of the algorithm is considerably based
on the axiomatization of UINDs and UINIs, cf. [Bell, 1995].

2.3 Functional Dependencies

To determine functional dependencies we have integrated two main ideas, namely
to exploit the transitivity of FDs and to concentrate on the computation of
most-general FDs. For a discussion in full detail on the algorithm and the design
choices being made see [Brockhausen, 1994]. Our algorithm uses a top-down and
breadth-first search strategy. We should mention that we also use information of
the database system on primary keys, indexes and null values and the discovered
inclusion dependencies to reduce the search space in our algorithm.

Figure 1 lists the statement and the condition which must hold. The clue
is the GROUP BY instruction. The computational costs of this operation are
dependent on the database system, but it can be done in time O(m*log m). How-
ever, the worst case time complexity of every such an algorithm is exponential,
due to the results of [Mannila and R~ih~, 1991].

3 Evaluation and Conclusions

We compared our algorithm with two approaches presented at the AAAI work-
shop on knowledge discovery in databases in 1993. Savnik and Flach call their
method "bottom-up induction of functional dependencies from relations", see

1.

2.

269

SELECT SUM 'COUNT (DISTINCT A1)),
SUM 'COUNT (DISTINCT B))

FROM R
GROUP BY A1 . . . , A,~ ---: al, b

a l = b :::~. A I . . . A , ~ ---* B

Fig. 1. A SQL-statement for the Computation of Functional Dependencies

[Savnik and Flach, 1993]. Briefly, they start with a bo t tom-up analysis of the
tuples and construct a negative cover, which is a set of FIs. Therefore they have
to analyze all combinations between any two tuples.

In the next step they use a top-down search approach similar to ours in order
to discover the functional dependencies. They check the validity of a dependency
by searching for FIs in the negative cover. Schlimmer also uses a top-down
approach, but in conjunction with a hash-function in order to avoid redundant
computations [Schlimmer, 1993].

Algorithm by

Savnik and Flach
Schlimmer

Bell and Brockh. Lymphography 150
Bell and Brockh. Breast Cancer 699
Bell and Brockh. Breast Cancer 699

Table 1. Comparison of the Experimental Results
[Schlimmer, 1993] with the algorithln FUNCTIONAL

Database][r[][R[][X[] Time

I Breast Cancer1699 11 4 1 h 14 rain.

19 7 > 33 h
11 11 8 Min. 53sec.
11 4 4 Min. 19 sec.

from [Savnik and Flach, 1993] and
DEPENDENCIES .

But in contrast to our algorithm, in both articles mentioned, the authors
do not use a relational database like OracleV7 or any other commercial DBMS.
They even do not use a database at all. And this has some important effects
on the results, which will be discussed in the next paragraph. Table 1 shows a
summary of their results, where Ir[denotes the number of tuples, IR[the number
of attributes, [XI the maximal number of attributes on the left-hand side of a
FD and time is the time needed for the discovery of a most-general-cover. For
comparison reasons we introduced such a bound on the number of attributes in
our algorithm.

First, our algorithm cannot detect the FDs in the lymphography domain in
reasonable time, because we do not hold the data in main memory like Savnik
and Flach. And since most of the FDs are really long, for some attributes the
shortest most-general FDs have already seven attributes on the left side, the
search space and the overhead for the communication with the database is to
big. But it cannot be said that our approach is inferior to the one of Savnik
and Flach, because the circumstances are to different, namely the presence or
absence of a database for the storage of the tuples.

Second, in the breast cancer domain our algorithm is really fast, more than
seventeen times faster than Schlimmer's algorithm. Even without any bound on
the length of the FDs it is still eight times faster and it uses a database.

270

Time

h 40 min.lz~l
h 10 min. ~[z_~

Table 2. Summary of the results of the algorithm FUNCTIONAL DEPENDENCIES.

But of course the two domains above are not typical database applications.
Table 2 shows the results of our algorithm with respect to a real database, the
library database of the computer science department. Here it becomes obvious
that our pruning criterions are efficient, because with a bound of six attributes
and without any bound the time needed is nearly the same. The differences are
neglectable because there are many more users working on the network and the
results are only reproducible within some bounds. But apart from the known
primary key of the database the discovered FDs are semantically meaningless.

In summary, one can say that the algorithm which we present in our work
has one important advantage over the two approaches mentioned above. The
algorithm is capable of dealing with great amounts of data, because we use a
real database for the storage. And as a side effect, because we use standard
SQL-statements for the discovery of FDs, our approach is portable and we can
use any database which "understands" SQL as a query language.

A c k n o w l e d g m e n t : This work is partly supported by the European Com-
munity (ESPRIT Basic Research Action 6020, project Inductive Logic Program-
ruing) and the Daimler-Benz AG, Contract No.: 094 965 129 7/0191.

References

[Bell, 1995] Bell, S. (1995). Inferring data independencies. Technical Report 15, Uni-
versity Dortmund, Informatik VIII.

[Brockhausen, 1994] Brockhausen, P. (1994). Discovery of functional and unary in-
clusion dependencies in relational databases. Master's thesis, University Dortmund,
Informatik VIII. in german.

[Dehaspe et al., 1994] Dehaspe, L., Laer, W. V., and Raedt, L. D. (1994). Applica-
tions of a logical discovery engine. In Wrobel, S., editor, Proc. of the Fourth Inter-
national Workshop on Inductive Logic Programming, GMD-Studien Nr. 237, pages
291-304, St. Augustin, Germany. GMD.

[Mannila and 1K~ih~, 1991] Mannfla, H. and RKihs K.-J. (1991). The design of rela-
tional databases. Addison-Wesley.

[Savnik and Flach, 1993] Savnik, I. and Flach, P. (1993). Bottum-up indution of func-
tional dependencies from relations. In Piatetsky-Shapiro, G., editor, KDD-93: Work-
shop on Knowledge Discovery in Databases. AAAI.

[Sehlimmer, 1993] Schlimmer, J. (1993). Using learned dependencies to automatically
construct sufficient and sensible editing views. In Piatetsky-Shapiro, G., editor,
KDD-93: Workshop on Knowledge Discovery in Databases. AAAI.

