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Abstract. This paper presents some empirical results on simplification methods 
of decision trees induced from data. We observe that those methods exploiting an 
independent pruning set do not perform uniformly better than the others. Furthermore, 
a clear defmition of bias towards overpruning and underpraning is exploited in 
order to interpret empirical data concerning the size of the simplified trees. 

1 Introduction 
A major problem in top-down induction of decision trees (TDIDT) is the determination 
of the leaves [ 1]. One way to cope with it consists in keeping on growing a tree T in any 
case, and then retrospectively removing those branches that seem superfluous with 
respect to predictive accuracy. The final effect is that in this way the intelligibility of a 
decision tree is improved, without really affecting its predictive accuracy. Many methods 
have been proposed for simplifying decision trees; in [3] a review of some of them that 
employ pruning operators is presented. Informally, a pruning operator cuts a branch at a 
node t and removes the descendants of t itself. However, another complementary 
simplification operator, that we named grafting, has been employed in a well-known 
TDIDT system: C4.5 [9]. Briefly, a grafting operator substitutes a sub-branch of a node 
t onto the place of t iself, thus removing only some of the nodes of the subtree rooted in 
t. Simplification methods that use pruning and grafting operators are denoted with the 
general term of pruning methods. 

In this paper we present the results of a wide experimentation on nine different pruning 
methods. In this empirical study, eleven databases taken from the UCI machine learning 
repository are considered. In order to detect possible biases of the methods towards 
underprtming or overpruning, we generate the smallest optimally pruned grown/trained 
tree for each experiment, and we compare the size of optimally pruned trees with the size 
of trees returned by the pruning method. 

2 Experimental Design 
The need of repeating experiments on some pruning methods arises from the fact that the 
experimental procedure designed by Mingers [6] to compare several pruning methods, in 
our opinion, presents some problems (see [3] for a detailed discussion). 

In Table 1, the main characteristics of the data sets considered in our experiments are 
reported. Some of them have already been used to compare different pruning methods 
[6,8]. The database Heart is actually the join of four data sets on heart diseases, with the 
same number of attributes but collected in four distinct places (Hungary, Switzerland, 
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Table 1. 

database 

Iris 

Glass 

Led 
~Iyp~ 

P..gene 

Hepa~ 

Cleveland 

Hungary 

Switzerland 

Long l~each 
Heart 

Main characteristics of the databases used for the experimentation. 

No. NO. N o .  Continuous i Multi-valut~l % Base Noise : Uniform 
Cases Classes Attributes attributes attributes Null values Error level distrib. 

150 3 4 4 0 no 66.67 tow yes 

214 7 9 9 0 no 64.49 low no 

lO00 I0 7 0 0 no 90 10% yes 

3772 4 29 7 1 yes 7.7 no no 

106 2 57 0 57 no 50 no yes 

155 2 19 6 0 yes 20.65 no no 

303 2 14 5 5 yes 45.21 low yes 

294 2 14 5 5 yes 36.05 low no 

123 2 14 5 5 yes 6.5 low no 

200 2 14 5 5 yes 25.5 low no 

920 2 14 5 5 yes 44.67 low yes 

Cleveland and Long-Beach). Only 14 out of the 76 original attributes have been selected, 
since they are the only ones deemed useful for the classification task. Moreover, examples 
have been assigned to two distinct classes: no presence (value 0 of the target attribute) and 
presence of heart diseases (values 1, 2, 3, 4). 

In Table 1, columns headed "Continuous" and"Multi-valued" concern the number of 
attributes that are treated as real-valued and multi-valued discrete attributes respectively. 
All other attributes are binary. In the column "Null values", we simply report the presence 
of null values in at least one attribute of any observation. In fact, the system C4.5 used for 
building decision trees in our experiments provides us with a way of managing null values 
[9]. The column on base error refers to the percentage error obtained if the most frequent 
class is always predicted. We expect that good decision trees show a lower error rate than 
the base error. The last column states whether the distribution of examples per class is 
uniform or not. 

In our experimental setup, each data set is randomly split into three subsets, according 
to the following criterion: growing set (49%),pruning set (21%) and test set (30%). The 
union of the growing and pruning set is called training set, and its size is just 70% of the 
whole data set. The growing set contains the 70% of cases of the training set, while the 
pruning set the remaining 30%. The growing set and the training set are used to learn two 
decision trees, which are called grown tree and trained tree respectively. The former is 
used by those methods that need an independent set in order to prune a decision tree, 
namely the reduced error pruning (REP) [8], the minimum error pruning (MEP) [2,7], the 
critical value pruning (CVP) [5], as well as those versions of the error complexity pruning 
based on a pruning set and adopting the 1SE rule (1SE) or not (0SE) [1]. Conversely, the 
trained tree is used by those methods that exploit the training set only, such as pessimistic 
error pruning (PEP) [8], error-based pruning (EBP) [9], as well as the cost-complexity 
pruning based on 10 cross-validation sets and adopting either the 0SE rule (CV-0SE) or 
the 1SE rule (CV-1SE). The evaluation of the error rate is always made on the test set. 

For each data set employed, 25 trials are repeated by randomly partitioning the data set 
into three subsets. Moreover, for each trial two statistics are recorded:the number of leaves 
(size) of the resultant tree, and the error rate (e.r.) of the tree on the test set. This is done 
for pruned, grown and trained trees, so that a two-tailed paired t-test can be used to 
evaluate the significance of the error rate and size differences between trees. 
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As to MEP, the following m values have been chosen: 0.5, 1, 2, 3, 4, 8, 12, 16, 32, 64, 
128, 512 and 1024. Experiments on the CVP are made by setting a maximum critical value 
equal to 1.0 and a step equal to 0.01. The only selection measure considered is the gain 
ratio [9]. 

3 Results and Conclusions 

In order to study the effect of pruning on predictive accuracy of decision trees, we 
compare the error rates of the pruned trees with those of the corresponding trained trees. 
In practice, we compare two tree induction strategies: a sophisticated strategy that, in a 
way or another, prunes a large tree T constructed through recursive splitting, and a 
naive strategy that simply returns T . The main goal of this comparison is that of 
understanding whether tree simplification techniques are beneficial or not, at least for 
various databases considered in our experiments. Table 2 reports the results of the t-tests 
with a 0.1 confidence level. A (+) means that the application of the pruning method 
actually improves, on average, the predictive accuracy of the decision tree, while a (-) 
indicates a significant decrease in predictive accuracy. When the effect of pruning is 
neither good nor bad, a 0 is reported. It is easy to see that pruning does not generally 
decrease predictive accuracy. The only exception is represented by the application of the 
1SE rule with cross-validation sets. Moreover, there is no clear indication that methods 
exploiting a pruning set perform definitely better than the others, as claimed in [5]. 

Another interesting characteristic of pruning methods is their tendency to overprune 
decision trees. In order to study such a problem, we produced two decision trees for each 
experiment, called optimally pruned grown-tree (OPGT) and optimally pruned trained- 
tree (0lifT) respectively. The former is a grown tree that has been pruned by using the 
reduced error pruning on the test set. Thus, it is the best pruned tree we could produce from 
the grown tree because of a property of optimality of the reduced error pruning [3]. 
Similarly, the OPTT is the best tree we could obtain by pruning some branches of the 
trained tree. Obviously, OPGTs are suitable to compare trees obtained with pruning 
methods that do use an independent pruning set, while OP'ITs are more appropriate to 
compare results ofpruning methods that do not needa pruning set. Therefore, by comparing 
the size of trees produced by a pruning method with the size of the corresponding optimal 
tree, we can have an indication of the tendency of each method. In Table 3, a summary 

Table 2. Error rate variations for different Table 3. Tree size variations for different 
pruning methods (significance level: 0.10) pruning methods (significance level: 0.10) 
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of the two-tailed paired t-tests at a significance level 0.1 is shown. Here, (u) stands for 
significant underpruning, (o) for significant overpruning, while (.) means no significant 
difference. At a glance, we can immediately conclude that MEP, CVP and EBP tend to 
underprune, while REP, 1SE and CV-1SE tend to overprune. We would be tempted to 
conclude that the predictive accuracy is improved whenever a pruning method does not 
produce trees with significant difference in size from the corresponding optimally pruned 
tree. However, this is not true for two reasons. First of all, it is not always true that an 
optimally pruned tree is more accurate than the corresponding grown/trained tree. In other 
words, pruning may help to simplify trees without improving its predictive accuracy. 
Secondly, tree size is a global feature that can provide us with an idea of what is 
happening, but it is not detailed enough to guarantee that only over or underpruning 
occurred. For instance, ifa method overprunes abranch but underprunes another one, then 
it is actually increasing the error rate with respect to the optimal tree, but not necessarily 
the size. This problem can be observed with the database Glass and the method CV-0SE. 
Indeed, in this case there is a decrease in accuracy (see Table 2) but the size of pruned trees 
is close to the optimal value (see Table 3). 

By ideally superimposing Tables 2 and 3 it is also possible to draw some other 
interesting conclusion. For instance, in some databases, such as Hungary and Heart, 
overpruning produces better trees than underpruning. This latter surprising result con- 
firms Holte's observation that even simple rules perform well on most commonly used 
data sets in the machine learning community [4]. In any case, we have also indications 
that overpruning may have undesirable effects when too extremist, as in the case of the 
application of the rule 1SE. 
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