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Abs t rac t .  This paper outlines some problems that may occur with Re- 
duced Error Pruning in rule learning algorithms. In particular we show 
that pruning complete theories is incompatible with the separate-and- 
conquer learning strategy that is commonly used in propositional and 
relational rule learning systems. As a solution we propose to integrate 
pruning into learning and examine two a]gorithlns, one that prunes at 
the clause level and one that prunes at the literal level. Experiments 
show that these methods are not only much more efficient, but also able 
to achieve small gains in accuracy by solving the outlined probleln. 

1 Introduction 

Most rule learning algorithms deal with noise in the data during learning, i.e. 
they employ pre-pruning. In relational learning systems like FOIL [Quinlan, 1990] 
pre-pruning is commonly used in the form of so-called slopping crileria. An 
alternative way for dealing with noise - -  posi-pruning - -  is to first learn a 
theory that  overfits the data and then prune this theory to an appropriate level 
of generality. 

2 REP 

The most common post-printing algorithm, Reduced Error Pruuing (RED), has 
been adopted from propositional decision tree learning to relational rule learning 
[Brunk and Pazzani, 1991]. After splitting the training set into a growing and 
a pruning set according to some user-specified ratio, a concept description that 
covers all of the positive and none of the negative examples of the growing set 
is learned with a separate-and-conquer rule, learning algorithm like the propo- 
sitional learner CN2 or the relational learner FOIL. This intermediate theory is 
then simplified by deleting literals and clauses until any further deletion would 
lead to a decrease of accuracy on the pruning set. 

The major  shortcomings of this straightforward adaptation of REP for rule 
learning are its inefficiency and its incompatibility with the separate-and-conquer 
search strategy that is cornmonly employed in propositional and relational rule 
learning algorithms. REP is very inefficient, because the overfitting theory it 
generates in its first pass can be much more complex than the final theory that 
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is left after the post-pruning phase. A lot of work is wasted in learning and 
subsequently pruning superfluous literals and clauses. This argument has been 
formalized in [Cohen, 1993], where it was shown that the growing phase of REP 
has a time complexity of a"2(n 2 log n) and that its pruning phase has a time 
complexity of a'2(n 4) (where n is the size of the training set). 

[Fiirnkranz and Widmer, 1994] point out another problem with REP that 
is caused by the differences between'the divide-and-conquer approach used for 
decision tree learning and the separate-and.conquer strategy commonly used 
for rule learning. Although the two approaches share many similarities, there 
is one important difference: Pruning of branches in a decision tree will never 
affect the neighboring branches, whereas pruning of literals of a rule will affect 
all subsequent rules. One way of looking at this problem may be to view a 
PROLOG program as a binary decision tree that allows conjunctive tests at 
each interior node, and where at least one of the two successors of each node 
is a leaf. The body of each clause of the program corresponds to a node in the 
decision tree. If the body is true, the head is proven and we arrive at a leaf node. 
Otherwise we try the next node in the tree, i.e. the next clause in the program. 
Classical decision tree pruning would only allow to prune the nodes bottom up, 
i.e. only allow to delete clauses fi'om the end of the program. REP, however, not 
only allows to prune any (instead of only the last) node, but also to prune the 
conditions of the rules associated with each node by deleting literals. Changing 
the test associated with a node in a decision tree will in general change the split 
it induces on the examples and thus could lead to the generation of different 
subtrees for its children. However, as the test is changed at pruning time (after 
learning), REP has to keel) the subtree that has been previously learned from 
a different set of examples, although there might be a better subtree to explain 
this new set of examples. 

3 I - R E P  

Incremental Reduced Error Pruning (I-REP) [Fiirnkranz and Widmer, 1994] 
was motivated by the observation that REP is incompatible with the separate- 
and-conquer learning strategy as we have discussed in Sect. 2. Its basic idea 
is that instead of first growing a complete concept description and l)runing it 
thereafter, each individual clause will be pruned right after it has been gener- 
ated. This ensures that the algorithrn can remove the training examples that are 
covered by the pruned clause before subsequent clauses are learned. Thus it can 
be avoided that these examples influence the learning of the following clauses. 

Before learning a clause, the current set of training examples is split into a 
growing (usually 2/3) and a pruning set (usually 1/3) as in many post-pruning 
algorithms. After learning a clause fi'orn the growing set, literals will be deleted 
from tiffs clause in a greedy fashion until any flarther deletion would decrease 
the accuracy of this clause on the pruning set. The resulting rule will then be 
added to the concept description and all covered positive and negative examples 
will be removed fi'om the t r a i n i n g -  growing a~ el pruning - -se t .  The remaining 
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training instances are then redistributed into a new growing and a new pruning 
set to ensure that  each of the two sets contains the predefined percentage of the 
remaining examples. From these sets the next clause will be learned. When the 
predictive accuracy of the pruned clause is below the predictive accuracy of the 
empty clause (i.e. the clause with the body f a i l ) ,  the clause will not be added 
to the concept description and I-REP returns the learned clauses. 

Most of the efficiency of the I-REP algorithm conies from the integration 
of pre-pruning and post-pruning by this definition of a stopping criterion based 
on the accuracy of the pruned clause on the pruning set. Thus I-REP does 
not need REP's  de:].ete-c:].auso operator [Brunk and Pazzani, 1991], because 
the clauses of the final theory are constructed directly and learning stops when 
no more useful clauses can be found. However, this may also cause problems: 
Whenever the pruned clause does not have an accuracy above the accuracy of the 
empty clause, no more clauses will be learned. If this accuracy is not estimated 
accurately, either because there are not ellough remaining examples or because 
of a bad split, I-REP will be prone to over-generalization. 

4 P - R E P  

I-REP still has to learn overfitting clauses which we tried to avoid with a new 
algorithm. Just as I-REP improves upon REP by pruning oll the clause level 
instead of the theory level, we tried to improve I-REP by pruning on the literal 
level instead of the clause level. 

As in pre-pruning algorithms I2-REP tries to select only the right literals in 
tile first place and to decide when to stop adding literals to the theory. However, 
it uses a typical post-pruning method (evaluation on a separate pruning set) to 
do so. For this purpose the set of training examples is split into two subsets of 
equal size. A literal that maxirnizes sorne heuristic fimction is found for each of 
the two sets. These two literals are then compared and tile one that has a higher 
accuracy on the entire set of exarnples is chosen to extend tile current clause. 
This is repeated until the clause covers no negative examples in one of tile two 
sets or until the chosen literal does not improve the accuracy of this clause. In 
that  ease the learned clause is compared to the clause with the body f a i l  and if 
its accuracy is higher, it will be added to the theory and the next clause will be 
learned from the examples that are not yet covered. If the current clause cannot 
improve upon the empty clause, learning stops as in I-REP. 

One of the problems with I-REP is that a bad split of the training examples 
into a growing and a pruning set can cause over-generalisation, because I-REP 
would either learn an incorrect clause from a bad growing set or evahlate a correct 
clause on a bad pruning set. In both cases the learned clause may appear worse 
than the empty clause and I-REP will stop. This can lead to tile learning of over- 
general domain theories, in particular in dornains with only a lirnited amount  
of noise or domains with low example set sizes. I~-R.EP having two literals to 
chose from, will hopefidly be less likely to prematurely stop learning if one of 
them is a bad choice or a good choice that is badly evaluated. Besides, I2-REP's 
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procedure for selecting a literal is very similar to 2-fold cross-validation which 
has recently been shown to be a reliable procedure for comparing cla.ssifiers, in 
particular at low training set sizes [Weiss and Indurkhya, 1994]. Therefore we 
hope that I2-REP will be able to irnprove Ul)On 1-REP in these cases. 

5 R e s u l t s  

We have tested REP, I-REP, and I2-REP on the relational KRK chess endgame 
domain and on several propositional domains from the UCI repository of Ma- 
chine Learning databases. The results can be found in [Fiirnkranz, 1995] which 
is available via anonymous f t p  from f t p .  a• u n i v i e ,  ac .  a t .  I-REP and ]2-REP 
are both significantly fa~ster than REP. In the KRK domain they also learn sig- 
nificantly better  theories, in l)articular at high training set sizes. In addition, 
I2-REP improves upon I-REP on small training set sizes. The price that has to 
be paid for this is that I2-REP is a little slower than I-REP. Nevertheless the 
experiments showed that both algorithms have about the same subquadratic 
asymptotic time complexity, while REP's  asymptotic time complexity has been 
confirmed to be a2(n4). 
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