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Abs t r ac t .  Chu spaces have found applications in computer science, 
mathematics, and physics. They enjoy a useful categorical duality analo- 
gous to that of lattice theory and projective geometry. As natural math- 
ematics Chu spaces borrow ideas from the natural sciences, particularly 
physics, while as rational mechanics they cast Hamiltonian mechanics in 
terms of the interaction of body and mind. 
This paper addresses the chief stumbling block for Descartes' 17th-century 
philosophy of mind-body dualism, how can the fundamentally dissimilar 
mental and physical planes causally interact with each other? We ap- 
ply Cartesian logic to reject not only divine intervention, preordained 
synchronization, and the eventual mass retreat to monism, but also an 
assumption Descartes himself somehow neglected to reject, that causal 
interaction within these planes is an easier problem than between. We 
use Chu spaces and residuation to derive all causal interaction, both 
between and within the two planes, from a uniform and algebraically 
rich theory of between-plane interaction alone. Lifting the two-valued 
Boolean logic of binary relations to the complex-valued fuzzy logic of 
quantum mechanics transforms residuation into a natural generalization 
of the inner product operation of a Hilbert space and demonstrates that 
this account of causal interaction is of essentially the same form as the 
Heisenberg-SchrSdinger quantum-mechanical solution to analogous prob- 
lems of causal interaction in physics. 

1 Cartes ian  D u a l i s m  

The Chu construction [Bar79] strikes us as extraordinarily useful, more so with 
every passing month.  Elsewhere we have described the application of Chu spaces 
to process algebra [GP93], me tamathemat ic s  [Pra93, Pra94a], and physics 
[Pra94b]. Here we make a first a t t empt  at applying them to philosophy. 

I t  might seem tha t  tradit ional philosophical questions would be beyond the 
scope of TAPSOFT.  Bear in mind however tha t  Boolean logic as the basis for 
computer  circuits was born of philosophy (and a little statistics). Only slightly 
more recently~ program verification has drawn heavily on more sophisticated 
logics such as first order, modal,  and higher order. Computers  being thinking 
machines, computer  science should not neglect the philosophical li terature on 
thinking. I t  is easy to dismiss "all tha t  stuff" as obsoleted by technology. However 
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good truths, like good wine, must be served at the proper time. We would like 
to think of our application of Chu spaces to Descartes' inspiring yet short-lived 
theory of mind-body dualism as a convincing example. 

Cartesianism is a "philosophy of everything" founded by Rend Descartes in 
the 1630's. Its point of departure was to reject all authority and question every- 
thing including the questioner's existence. Descartes resourcefully bootstrapped 
himself back into existence with an instance of the liar paradox, the absurdity of 
questioning his own questioning, constructivized as Cogito, ergo sum. Embold- 
ened by this success, Descartes posed many more questions whose imaginative 
answers formed the basis of Cartesianism. This rationalist philosophy flourished 
for half a century until the march of science contradicted too many of its answers 
for it to remain a viable grand unified theory of anything. Some of the questions 
however remain philosophically challenging even today. 

A central tenet of Cartesianism is mind-body dualism, the principle that mind 
and body are the two basic substances of which reality is constituted. Each can 
exist separately, body as realized in inanimate objects and lower forms of life, 
mind as realized in abstract concepts and mathematical certainties. According 
to Descartes the two come together only in humans, where they undergo causal 
interaction, the mind reflecting on sensory perceptions while orchestrating the 
physical motions of the limbs and other organs of the body. 

The crucial problem for the causal interaction theory of mind and body was 
its mechanism: how did it work? 

Descartes hypothesized the pineal gland, near the center of the brain, as 
the seat of causal interaction. The objection was raised that the mental and 
physical planes were of such a fundamentally dissimilar character as to preclude 
any ordinary notion of causal interaction. But the part about a separate yet joint 
reality of mind and body seemed less objectionable, and various commentators 
offered their own explanations for the undeniably strong correlations of mental 
and physical phenomena. 

Malebranche insisted that these were only correlations and not true inter- 
actions, whose appearance of interaction was arranged in every detail by God 
by divine intervention on every occasion of correlation, a theory that naturally 
enough came to be called occasionalism. Spinoza freed God from this demanding 
schedule by organizing the parallel behavior of mind and matter as a preordained 
apartheid emanating from God as the source of everything. Leibniz postulated 
monads, cosmic chronometers miraculously keeping perfect time with each other 
yet not interacting. 

These patently untestable answers only served to give dualism a bad name, 
and it gave way in due course to one or another form of monism: either mind 
or matter but not both as distinct real substances. Berkeley opined that matter 
did not exist and that the universe consisted solely of ideas. Hobbes ventured 
the opposite: mind did not exist except as an artifact of matter. Russell [Rus27] 
embraced neutral monism, which reconciled Berkeley's and Hobbes' viewpoints 
as compatible dual accounts of a common neutral Leibnizian monad. 

This much of the history of mind-body dualism will suffice as a convenient 
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point of reference for the sequel. R. Watson's Britannica article [Wat86] is a 
conveniently accessible starting point for further reading. 

The thesis of this paper is that  mind-body dualism can be made to work 
via a theory that  we greatly prefer to its monist competitors. Reflecting an era 
of reduced expectations for the superiority of humans, we have implemented 
causal interaction not with the pineal gland but  with machinery freely available 
to all classical entities, whether newt, pet rock, electron, or theorem (but not 
quantum mechanical wavefunction, which is sibling to if not an actual instance 
of our machinery). 

2 D u a l i s m  v i a  C h u  S p a c e s  

We propose to reduce complex mind-body interaction to the elementary interac- 
tions of their constituents. Events of the body interact with states of the mind. 
This interaction has two dual forms. A physical event a in the body A impresses 
its occurrence on a mental state x of the mind X,  writ ten a~x.  Dually, in state 
x the mind infers the prior occurrence of event a, writ ten x ~ a. States may 
be understood as corresponding more or less to the possible worlds of a Kripke 
structure, and events to propositions that  may or may not hold in different 
worlds of that  structure. 

With regard to orientation, impression is causal and its direction is that  
of time. Inference is logical, and logic swims upstream against time. Prolog's 
backward-chaining strategy dualizes this by viewing logic as primary and time 
as swimming upstream against logic, but  this amounts to the same thing. The 
basic idea is tha t  t ime and logic flow in opposite directions. 

Can a body meet a body? Only indirectly. All direct interaction in our ac- 
count of Cartesian dualism is between mind and body. Any hypothesized inter- 
action of two events is an inference from respective interactions between each of 
those events and all possible states of the mind. Dually, any claimed interaction 
of two states is inferred from their respective interactions with all possible events 
of the body. 

The general nature of these inferences depends on the set K of values that  
events can impress on states. The simplest nontrivial case is K = 2 = {0, 1}, 
permitt ing the simple recording of respectively nonoccurrence or occurrence of a 
given event in a given state. In this case body-body and mind-mind interactions 
are computed via a process called residuation. Specifically, event a necessarily 
precedes event b when every state x witnessing the occurrence of b also witnesses 
a. This inferred relationship is calculated formally by left residuation, which 
we describe in detail later. The dual calculation, right residuation, permits a 
transition from state x to state y when every event a impressing itself on x does 
so also on y. That  is, any transition is permit ted just  so long as it forgets no 
event. These simple-minded criteria are the appropriate ones for the small set 
K = 2 .  

For K = 3 more complex rules for inferring necessary precedence and possible 
transition obtain, including the possibility of forgetting (to be written up) . 'At  
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K "- 8 we have groups and semigroups, the latter embedding all abstract category 
theory [PT80]. For K the set (not field) of complex numbers, right and left 
residuation are naturally taken to be the respective products (~01r } or qo*r and 
Ir or r  corresponding to respectively inner product  and its dual outer 
product  in a Hilbert space. 

This conveys the flavor of our proposal. We now equip these general ideas 
with enough algebraic structure and properties to make the proposal interesting, 
useful, and we hope convincing. 

The following analogy serves to fix ideas. The numbers +1 are connected in 
two ways, algebraic and geometric. The algebraic connection is via the operation 
of negation, an involution ( -  - x = x) that  connects them logically by inter- 
changing them. The geometric connection is via the interval [ -1 ,  1] of reals lying 
between these numbers, a closed convex space connecting them topologically. 
We refer to these connections as respectively the duality and interaction of - 1  
and 1. The connections themselves might respectively be understood as mental 
and physical, but  this takes us beyond our present story. 

We regard each point of the interval as a weighted sum of the endpoints, 
assuming nonnegative weights p, q normalized via p + q ---- 1, making each point 
the quantity p - q. An important  property of interaction is that  it includes the 
endpoints, namely as the special cases where one of p or q is zero. An important  
property of duality is tha t  it extends to interaction, namely via the calculation 
q - p  = - ( p -  q). 

We shall arrange for Cartesian dualism to enjoy the same two basic connec- 
tions and the two associated properties, with mind and body in place of - 1  
and 1 respectively. Ideally the duality would be a negation-like involution that  
interchanges their roles; no information is lost in this transformation, and the 
original mind or body is recovered when the transformation is repeated. And ide- 
ally the interaction would turn out to be the long-sought solution to dualism's 
main conceptual hurdle. Chu spaces achieve both of these in a very satisfactory 
way. 

The counterparts to +1 in our Chu space formulation of Cartesian dualism 
are the respective categories Se t  and Se t  ~ That  is, at 1 we place the class of 
all sets, each understood as a pure body. At - 1  we place what would appear at 
first sight to be the same sets, which we propose to construe as pure minds. 

Our first distinction between body and mind will be the trivial one of using 
different variables to range over these sets: A, B over bodies, X, Y over minds. 
The second distinction will be in how the two kinds of sets transform into each 
other. Later we make a third distinction within the objects themselves by re- 
alizing the two kinds as Chu spaces with dual form factors: sets tall and thin, 
antisets short and wide. 

Bodies transform with functions. We turn the class of bodies into Se t  by 
first superimposing on it the graph whose edges comprise all functions, with 
each function f : A ~ B connecting the set A to the set B. We then promote 
this graph to a category by equipping it with the standard composition rule 
for functions, as an instance of composition of binary relations, along with an 



112 

identity function 1A : A ~ A at every set A. 
Minds transform with antifunctions. An antifunction g• : X ---* Y is a binary 

relation from X to Y whose converse is a function g : Y ~ X.  Adopting the 
composition rule for binary relations as with Set  then yields a category dual to 
Set ,  one that  is equivalent, in fact isomorphic, to Se t  ~ (the result of merely 
reversing all the edges of Set ) ,  which we simply identify with Se t  ~ 

These graphs are not isomorphic, even without their respective compositions. 
A quick way to tell them apart is to look for a vertex whose only edge to it is a 
self-loop. This vertex occurs only in Set ,  namely as the empty set. Or look for 
a vertex whose only edge from it is a self-loop; this too is the empty set, but  in 
Se t  ~ The reader will think of other tests. 2 

We now argue that  sets are physical and antisets mental. Since the only 
difference is in how they transform, any distinction between mental  and physical 
must be either dynamic in the sense of being transformational, or algebraic 
in the sense that  structure regulates transformation. We present bo th  types of 
argument (which themselves can be understood as respectively operational hence 
mental and denotational hence physical). 

Functions identify and adjoin. The function F : A ~ B identifies just when 
it fails to be injective: f (a )  = f (b)  means that  f identifies a and b. It adjoins 
just when it fails to be surjective: f : A ---* B first transforms A onto f ( A ) ,  then 
adjoins to it B - f ( A )  to become into. 

Antifunctions copy and delete. The antifunction g• : X --~ Y makes multiple 
copies just  when its converse g : Y --~ X fails to be injective: g(y) = g(y') means 
that  g• sends copies of g(y) to bo th  y and yl, inter alia. It deletes just  when g 
fails to be surjective: g• : Y ~ X deletes exactly Y - g (X) .  

Identifying and adjoining are canonically denotational tasks that  mathemati-  
cians are accustomed to performing on their spaces, groups, and other algebraic 
objects. This is the realm of the physical. 

Copying and deleting are canonically operational tasks that  logicians and 
computer scientists are accustomed to performing on their proofs, spreadsheets, 
and other symbolic objects. This is the realm of the mental. 

In additional to these transformational arguments we can contrast the dis- 
crete or dust-like physical structure of sets with the rigidly intermeshed mental  
structure of Boolean algebras. 

A set is an algebra with no language at all, and no equational theory beyond 
the equational tautologies x -- x. There is therefore no mental plane to speak of 
in sets, making them the most physical of all the objects of traditional concrete 
(set-based) mathematics, if not of all category theory (and perhaps even there, 
cf. [Rw941). 

Se t  ~ is equivalent to the category of complete atomic Boolean algebras 
(CABA's). But the free CABA generated by the set X is the power set 2 2x . 
Hence the Boolean operations of each arity X,  X empty, finite, or infinite, con- 

2 Example: look for any vertex having exactly one edge to it from each vertex, and 
infinitely many edges out. There are lots of these in Set, namely the many singletons, 
all isomorphic, but none in Set ~ 
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sist of all functions from 2 X to 2. This is the maximum possible language com- 
patible with CABA homomorphisms; not only is every arity represented but  
every operation of tha t  arity. 3 Furthermore the equational theory of CABA's is 
maximally consistent in the sense that  no new equation can be added without 
collapsing the entire algebra to a singleton. A CABA as the ult imate know-it-all 
is as mental  as any object of traditional concrete mathematics  can be. 

We have thus established that  the two isolated points Se t  and Se t  ~ represent 
respectively the physical and the mental. We now proceed with the promised 
construction. At this point the situation is as for +1 on their own: we have two 
isolated graphs, and we seek a duality and an interaction. 

The duality analogous to negation is simply the converse operation for binary 
relations, which evidently interchanges Se t  and Se t  ~ 

The interaction analogous to the interval [ -1 ,  1], which includes the points 
it connects as part  of the interval, consists of all Chu spaces and a graph su- 
perimposed on them, which includes as subgraphs Se t  and Se t  ~ That  is, the 
interaction consists of adding further vertices and edges, in addition to those 
already present, to populate an interval from Se t  ~ to Set .  

A Chu space A = (A, X,  ~ )  over a set K consists of a set A of points, an 
antiset X of states, and an X • A matr ix  ~ with entries drawn from K.  4 These 
provide the vertices of the interval. 

This ontogeny of the Chu space recapitulates the phylogeny we are working 
towards. A and X are respectively the body or object and mind or menu of the 
space, ~ is their interaction, and matr ix  transposition is the duality interchang- 
ing mind and body to yield the dual Chu space .4 • = (X, A, ~ v). 

Points have necessary existence, all being present simultaneously in the physi- 
cal object A. States are possible, making a Chu space a kind of a Kripke structure 
[Gup93]: only one state at a t ime may be chosen from the menu X of alternatives. 

Lafont and Streicher [LS91] were the first to single out Chu spaces as a case of 
the more general Chu construction Chu(V, k) [Bar79, Bar91], namely V = Set ,  
worthy of separate at tention as a natural  model of linear logic [Gir87] embedding 
topological spaces, vector spaces, and coherent spaces. They  referred to these 
objects as games, understanding ~ as the payoff matr ix  of a von-Neumann- 
Morgenstern two-person game. 

There is a chicken-and-egg question here as to whether Chu spaces are more 
naturally understood as a game or a player of a game. As players, the spaces 
,4 and B play the interaction game ,4 | B, their tensor product.  This interac- 
tion has featured prominently in our own research as an operation we called 
orthoeurrence [Pra85, Pra86]. We originally identified orthocurrence as ordinary 
product  in a cartesian closed category of partially ordered multisets (pomsets), 
but  subsequently generalized it to the tensor product of any closed category 
[CCMP91, Pra93, GP93, Pra94a]. In all cases we took as our basic example 

3 One can add further operations, for example modal logic adds O. However CABA 
homomorphisms respect none of these additional operations whatsoever. 

4 Contrast this with a vector space over a field k, which requires k to be equipped 
with the four rationals; here K is simply a set with no additional structure. 
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the- interaction of trains and stations described on the train station wall by the 
daily schedule. Whereas ordinary product must be capable of being projected 
consistently onto either component, tensor product  requires only that  each row 
or column of the resulting rectangular body of the space (how stations appear 
to conductors, and trains to stationmasters) meet all the constraints imposed 
on each of the two constituents of the product,  the concept of bilinearity. The 
tensor product  constitutes a larger Chu space, which can in turn be a player in 
a yet larger game. 

The representation ,4@ B takes the physical viewpoint. The logic of the game 
may be understood in terms of its dual (`4|  • which is equivalent to either of 
,4-oB • or B - o A  • In the former, we take Alice's point of view as our premises 
and view Bob as the goal. This view dualizes Bob to make his body, which Bob 
proudly thinks of as his strong points, appear to Alice as Bob's possible Achilles' 
heels (wrists, etc.). At the same time Bob's mind, which Bob thinks of as his 
possible options, are seen by Alice as Bob's tricks, all of which she must be 
simultaneously on her guard against. 

A Chu transform ( f ,  g) : (A, X, ~ )  --* (A', Z ' ,  ~ ' )  consists of a function 
f : A ---* A r and an ant• gZ : X --* X' ,  namely the converse of a function 
g :  X '  --* X,  satisfying the continuity condition g(x')  ~ a = x'  ~ '  f (a )  for all 
a E A and x I E X I. These provide the edges of the graph on the interval of all Chu 
spaces running from Se t  ~ to Set .  They compose via ( f ' ,  g ' ) ( f ,g )  = ( f ' f ,  gg') 
to make the graph a category, denoted C h u g .  

The function f transforms the body of the space denotationally, identifying 
some points and adjoining others, but  neither deleting nor duplicating any. At 
the same t ime the ant• g transforms the mind of the space operationally, 
i.e. as a symbolic object such as a program or a proof, deleting some states to 
further constrain the degrees of freedom of the space and copying some as needed 
so as not to infringe on the degrees of freedom of the newly adjoined points 
(transformations need only preserve the structure of what they transform and 
cannot be held responsible for what goes on in the adjoined points). However 
g never identifies states, which would be logically inconsistent for states having 
distinct rows, and never adjoins states having new rows, which would be logically 
unsound (the image could enter a state not permit ted its source). 

To understand bet ter  this last point, let row : X -~ (A ~ K)  and dually col : 
A --* (X --* K)  denote the functions satisfying row(x)(a) = x ~ a  = col(a)(x). 
Continuity may then be rephrased in terms of rows: row(g(x')) = row'(x')  o f ,  
verified viarow(g(x ' ) ) (a)  = g ( x ' ) ~ a  = x ' ~ '  f ( a )  -- (row'(x')o f ) (a ) .  That  is, 
every row of B when composed with f must be some row of A, with g a function 
selecting a suitable row index. When K = 2 this is equivalent to requiring that  
g behave as f - 1  on rows viewed as characteristic functions of subsets of # .  But 
then the requirement that  every row of `41 be mapped by f - 1  to some row of .4 
is recognizable as the condition for a flmction between topological spaces to be 
continuous, where rows are understood as open sets. 

For technical reasons Chu transforms are usually associated with a fixed K,  
calling for a distinct category C h u g  of Chu spaces for each set K.  A set theorist 
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should have no difficulty with Chu spaces over different K ' s  transforming into 
each other, but  the resulting category would to begin with lack a tensor unit, 
an annoying omission when one begins to press the rich algebraic structure of 
C h u g  into service. 

The structure of C h u g  is that  of linear logic [Gir87], which can be under- 
stood as the logic of four key structural properties of C h u g :  it is concrete, 
complete, closed, and self-dual (which therefore makes it also cocomplete and 
coconcrete). The  associated linear logic connectives are respectively !A, A @ B 
(and unit 0), A - o B  (and left unit 1), and A m, which form a complete basis 
for linear logic. C h u g  is complete but perhaps for syntactic simplicity linear 
logic weakens completeness to finite products. Furthermore it is not yet agreed 
whether induction is a necessary element of concreteness. 

Just  as { - 1 ,  1} C_ [ -1 ,  1], so are sets and antisets made part  of the category of 
Chu spaces, as follows. The set A is identified with the Chu space ,4 = (A, g A, ~/) 
where for each x : A --* K,  ~'(x, a) denotes the application x(a). The function 
f :  A ~ A' is identified with the pair ( f , f •  : (A, K A , 7 )  -~ (A ' ,KA ' , 7 )  where 
f •  g A' ~ K A is defined by f •  = g(f(a)) .  When g -- 2, f •  can be seen 
to be the usual inverse-image function f - 1  making this topology's continuity 
condition as remarked earlier. We call the Chu space .4 a realization 5 of the set 
A in Chu2.  

Dually the antiset X is identified with ( K  X, X ,  ~/v) where ~/~ is converse ap- 
plication, satisfying 7~(x, a) = a(x), and the antifunction g• : X ~ X '  (i.e. the 
function g : X ~ ~ X)  is identified with the pair (f ,  g) where f : K x --~ K x '  is 
defined at each h :  X --~ g by f (h) (x ' )  = h(g(x')).  This constitutes a realization 
of Se t  ~ in Chu2.  

Just as the duality of +1 extended to [ -1 ,  1], so does the mind-body duality of 
Se t  and Se t  ~ extend to C h u g .  The dual o f . 4  = ( A , X ,  ~ )  is .4• = ( X , A ,  7 ) ,  
while the dual of the Chu transform (f ,  g) is (g, f ) .  Moreover the duality of sets 
and antisets achieved via converse of their transforming binary relations is also 
achieved via Chu duality for their realizations in C h u g .  

To each finite Chu space .4 we associate integers P and Q measuring respec- 
tively the discipline and versatility of .4, in terms of the amount by which the 
space fails to be a set or an antiset respectively. Write [[A[[ for the number of 
distinct columns of the matrix, and likewise [[X[[ for the number of distinct rows. 
Let P ---- K HAll -[[X[[ and Q = KHxII_ [[A[[, both  nonnegative. For g > 2 these 

cannot vanish simultaneously or we would have an integer solution to K KA ~- A. 
Hence we can safely define nonnegative reals p = P / ( P  + Q), q = Q / ( P  + Q) 
satisfying p + q -- 1. We take p - q as the location of .4 in the interval [ -1 ,  1] 
itself, giving a sense in which C h u g  lies between Se t  ~ and Set .  Notice that  
this procedure assigns sets and antisets to 1 and - 1  respectively, while exactly 
square Chu spaces are sent to 0. 

5 A representation is a full embedding of one category in another, i.e. a full and faithful 
functor F : C ~ D. A realization is a concrete representation; that is, C and D are 
concrete categories, meaning they have underlying set functors Ue : C --~ Set and 
Uo : D --~ Set, with which F commutes, UDF = Uc, i.e. the realizing object has 
the same underlying set as the object it realizes [PT80, p.49]. 
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Although the position of a Chu space in [-1,  1] gives some indication of its 
form factor, these positions turn out not to populate [ -1 ,  1] densely. For example 
at g = 2 the intervals [1, �89 and (�89 2] contain no Chu spaces, since Chu spaces 

1 2 that  are only one away from being square are below 5 or above ~, and indeed 
the interval is riddled with such holes. One imagines being able to distribute 
Chu spaces more uniformly along [ -1 ,  1] with the help of say IIAII/llX]h but in 
choosing such a formula it would help to have some reason for wanting a dense 
distribution. 

This viewpoint is a compromise between those of set theory and category 
theory. Set theory monistically constructs everything from the single category of 
pure sets. Category theory pluralistically constructs a plethora of categories. Chu 
spaces are like sets in that  there is only one category C h u g  of them (modulo 
the parameter  K).  C h u g  is dualistic in that  it postulates the two categories Se t  
and Se t  ~ neither of which is singled out as having priority over the other, and 
connects them via interaction to form the single much larger category C h u g .  
Some impression of its size may be had from the theorem [Pra93, p.153-4] that  
Chu2k realizes the category of all k-ary relational structures and their homomor- 
phisms standardly defined. For example Chus realizes the category of ternary 
relational structures, which in turn  realizes the category of groups and group 
homomorphisms (since its multiplication is the ternary relation xy = z), and 
realization is transitive. 

3 T h e  M e a n i n g  o f  I n t e r a c t i o n  

Thus far we have constructed interaction as no more than a formal notion. We 
now relate it to our intuitions about causal interaction. 

It is ironic that Cartesian philosophy, whose guiding dictum was to question 
everything, should question causal interaction between the mental  and physical 
planes before that  within the planes. The latter problems must have posed an 
insufficient challenge to the Cartesians. We argue that  the converse is the case: 
between is actually easier than within! 

We interpret interaction as causality. Causality is directional, but  the di- 
rection depends on whether we have in mind physical or mental  causality. We 
interpret x ~ a ambiguously as the t ime elapsed between the occurrence of the 
physical a and its impression on the mental  state x, and as the t ru th  value of a as 
a proposition. 6 The former is physical causality or impression, flowing forward 
in t ime from events to states. The latter is mental causality or inference, flow- 
ing backwards in time from the thought of a to the inference of a's occurrence. 
In this way time flows forward (from the usual point of view) while logic flows 

6 The reader may be understandably concerned at this identification of physical events 
and ostensibly mental propositions. However a Boolean proposition about events in 
A is of type 22A and each exponentiation dualizes, whence two of them return us 
to the physical plane. The truly mental propositions are the constituent descriptive 
clauses of a physical DNF formula, each describing a possible world. 
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backward. This is primary interaction, and it occurs only between the mental 
and physical plane. 

We thus see that  the seat of causal interaction in Cartesian duality is not the 
pineal gland but  the identification of impression and inference. We write x ~ a 
as expressing equally the impression of event a on subsequent state x and the 
deduction by state x of the prior occurrence of event a. The Cartesian dictum 
cogito, ergo sum is the case of this where x is the thinker's state and a the event 
of his or her existence. 

As a proponent of more dynamic logics than traditionally contemplated in 
logic [Pra76, Pra90a] we point out the atemporal  quality of this dictum, a hall- 
mark of classical logic. Examined closely, our analysis shows that  Descartes' 
dictum properly tensed becomes cogito, ergo eram (I was), an epitaph both of 
whose tenses the liar paradox renders true in perpetuity. Our thoughts follow 
from our events but not conversely and hence may survive them without logical 
contradiction. A particularly good one may far outlive its source. 

We pass now to interaction within each plane, whether physical or mental, 
which we derive as secondary interaction from the primary form with the aid 
of residuation, a pair of operations on binary relations that  constitutes dynamic 
implications forwards and backwards in time;. For K ----- 2, ~ as a matr ix  of O's 
and l 's  is an ordinary binary relation: the event a either is or is not related 
to state x. This relation is understood ambiguously as a two-valued distance in 
either t ime space (a~x, physical) or information space (x ~ a, mental). 

Given any two contrary binary relations R c U • V, T C U x W, their right 
residual R \ T  [WD39, J6n82, Pra90b] can be defined equivalently as follows. 

(i) As the operation satisfying R; S C_ T iff S C R\T.  (Think of this as 
defining division on the left by R, with inequalities where one would expect an 
equality. The case R = 0, all entries 0, requires no special attention.) 

(ii) As the largest relation S C V x W such that  R; S C_ T. 
(iii) As the set of all pairs (v, w) in V x W such that  uRv ~ uTw for all 

u E U .  
(iv) As that  operation monotone in its right hand argument that  satisfies 

modus ponens, R; (R\T) k T, and also T ~ R\(R; T), where k is read as _c. 
This makes R; - and R \ -  pseudoinverse operations which when composed either 
decrease or increase their argument depending on the order of composition. 

(v) As the relation (R~; T - ) -  where R ~ is converse (transpose) and T -  is 
complement (change all O's to l 's  in the matrix and vice versa). This can be 
written more neatly as (Tt;  R) t  where T~ denotes T -v. If we think of residuation 
R \ T  as a form of implication R --* T, and composition as a form of conjunction, 
and allow for the noncommutat ivi ty  of relational composition (relative product),  
then this corresponds to the classical principle A --* B - -~(A A -~B), as well 
as to linear logic's A-oB -- (A | B• z. 

It is a straightforward exercise to show the equivalence of these definitions; 
see [Pra90a] for further discussion. 

Definition (v) reveals the contravariance of the operation in R, and its covari- 
ance in T, composition being monotone in each argument, a form of bilinearity. 
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We therefore call residuation sesquilinear, in anticipation of the next section. 

Now consider ~ \ ~  in the light of condition (iii). This instance of residuation 
is a binary relation on X.  For all x, y in X,  x ( ~ \ ~ ) y  holds just when row x 
implies (is a subset of) row y for every event, i.e. when x --* y is valid. Now 
x ~ y says that  in order to be able to get from x to y, every event a whose 
occurrence is recorded in x must still be recorded in y. Thus ~ \ ~  consists of 
those pairs (x, y) which as transitions do not entail taking back the claim that  
an event has already happened.- 

This makes ~ \ ~  the natural  transition relation on X.  This is a partially 
ordered automaton. Elsewhere we have used higher dimensional automata  to 
argue that  automata  could be reliably paired up as the dual of schedules [Pra92]. 
We find Chu spaces a very appealing extension of this duality. 

The left residual T/S ,  where T C U • W, S C_ V • W, is the dual of the 
right. We settle for defining T / S  as the set of all pairs (u, v) in U • V such that  
vSw ~ uTw for all w E W (cf. (iii)), and ask the reader to infer the other four 
equivalent formulations corresponding to (i)-(v) above. 

The left residual ~ / ~  is, by dual reasoning to ~ \ ~ ,  tha t  binary relation on 
A containing (a, b) just when for all x e X ,  b~x implies a~x.  This makes it 
the natural temporal  precedence relation on events, namely a schedule of events, 
an alternative to automata  theory and Kripke structures that  has a t t racted our 
at tention as a reliable model of t rue concurrency since 1982 [Pra82]. 

When we unravel the primitive causal links contributing to secondary causal 
interaction we find that  two events, or two states, communicate with each other 
by interrogating all entities of the opposite type. Thus event a deduces that  it 
precedes event b not by broaching the mat ter  with b directly, but  instead by 
consulting the record of every state to see if there is any state volunteering a 
counterexample. When none is found, the precedence is established. Conversely 
when a Chu space is in state x and desires to pass to state y, it inquires as to 
whether this would undo any event that  has already occurred. If not then the 
transition is allowed. 

If one truly believed that  the universe proceeded via state transitions, this 
might seem a roundabout and inefficient way of implementing those transitions. 
However it seems to us, particularly in view of the considerations of the following 
section, that  the more likely possibility is that  the universe only seems to proceed 
via state transitions, due perhaps to our ancestors having ill-advisedly chosen 
monism as the natural  world view, perhaps millennia before the rise of Carte- 
sianism, perhaps only some years after its decline. What  we conjecture actually 
happens is that  events signal states forward in time, or equivalently that  states 
infer events backwards in time, and the world we imagine we live in is simply 
what that  process looks like to its inhabitants when interpreted monistically. 

Why this theory as opposed to any other? Well, certainly no other theory has 
satisfactorily explained the causal interaction of real mental  and physical planes 
as conceived by Descartes. Whether  monism is an equally satisfactory alternative 
for Descartes' problem is a good question. But for the other applications of 
Chu spaces considered here, namely concurrency, metamathematics ,  quant~am 
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mechanics, and logic (see below), it seems to us that  monism simply cannot 
compete with dualism. 

4 Q u a n t u m  M e c h a n i c s  

When time and t ru th  are complex-valued as in quantum mechanics, right resid- 
uation is replaced by the sesquilinear operation of inner product  (~1r This is a 
complex-valued correlation between wavefunctions (~o] and Ir which are given 
as points of a Hilbert space, a metrically complete vector space which is made 
an inner product space with this operation. 

The correspondence with Chu spaces is as follows. Any given choice of basis of 
Hilbert space defines a set of propositions, one per basis vector. Each coordinate 
of a given state vector relative to that  basis is interpreted as the complex t ru th  
value of the corresponding proposition in that  state. Relative to that  basis, a 
state vector then corresponds to a row of ~ ,  or a column of 7-  Right residuation 
is defined even for one-state spaces, and is in form the logical counterpart  to 
inner product. The right residual of a one-state space with itself is simply the 
identity relation on that  state, this being the only partial order possible. The 
inner product of a wavefunction with itself is a scalar, namely its length squared, 
but  quantum mechanics is a projective system where lengths are only physically 
meaningful in proportion: the length of a single state is no more informative in 
QM than is the identity partial order on a singleton. 

A mixed state is a set of pure states and a distribution giving their relative 
probabilities. Such a distribution can be understood as a quantitative form of 
disjunction, making a mixed state the quantum mechanical counterpart  of a Chu 
space. Here (~]r for mixed states corresponds to the right residual of two Chu 
spaces. The inner product  of a mixed state with itself yields a square matr ix  of 
transition probabilities between its constituent pure states. The right residual 
of a Chu space with itself yields a square matr ix of transition possibilities when 
K = 2, and a suitably richer relation for larger K ,  where the possibilities begin 
to depend on choice of quantale for K,  taking us beyond the scope of this paper. 

The outer product [r I produces an operator which transforms Hilbert 
space. Viewed as a transformation of basis vectors of Hilbert space, such an 
operator establishes correlations between attributes. The corresponding opera- 
tion on Chu spaces is left residuation, which likewise produces a (two-valued) 
correlation between events, which we may identify with attributes. 

This perspective leads to the following reconstruction of the emergence of 
modern quantum mechanics in 1925-26. Classical physics, and the old quantum 
mechanics, took between-state correlations as basic. Newton's laws, or their ex- 
pression in terms of Lagrange's equations and the energy-difference Langrangian, 
were couched in terms of space and time, with velocity v being the derivative 
of position with respect to time, and momentum being my.  Hamilton made the 
bold move of taking momentum to be an independent quanti ty in its own right, 
observing that  two equations per dimension based on a total-energy Hamilto- 
nian yielded an elegantly symmetric reformulation of Langrange's one equation 
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per dimension. From the perspective of classical physics this was no more than 
an ingeniously symmetric but otherwise unimproved variant of the basic laws of 
motion. 

The new quantum mechanics made Hamilton's ~'causal interaction" of mo- 
mentum and position primitive, and derived the classical laws as secondary. 
Furthermore they used the same logic, only as a complex-valued fuzzy logic 
rather than a two-valued logic, to achieve this end. This made momentum-space 
interaction a simple interaction, and the derived momentum-momentum and 
space-space interactions more complex. These can be understood as having to 
go both backwards and forwards in time for their complete effect, the basis 
for Cramer's transactional account of quantum mechanics [Cra86], which Leslie 
Lamport drew to my attention in 1987. 

5 C o n c l u s i o n  

We have advanced a mechanism for the causal interaction of mind and body, and 
argued that separate additional mechanisms for body-body and mind-mind inter- 
action can be dispensed with; mind-body interaction is all that is needed. This is 
a very different outcome from that contemplated by 17th century Cartesianists, 
who took body-body and mind-mind interaction as given and who could find no 
satisfactory passage from these to mind-body interaction. Even had they found 
a technically plausible solution to their puzzle, mind-body interaction would 
presumably still have been regarded as secondary to body-body interaction. We 
have reversed that priority. 

One might not expect mind-body duality as a mere philosophical problem to 
address any urgent need outside of philosophy. Nevertheless we have offered so- 
lutions to the following practical problems that could be construed as particular 
applications of our general solution to Descartes' mind-body problem, broadly 
construed to allow scarecrows and everything else to have minds. 

What is the conceptual basis of concurrent computation? What is the essence 
of quantum mechanics? On what foundation should mathematics be based? 
What is the right logic to reason with? 

Concepts for concurrent computation. Our research focus since 1980 has been 
concurrent computation. Our conclusion is that programmers should be able to 
move as freely as possible between declarative and imperative modes of thought 
about the same program. We are now convinced that the duality of schedules and 
automata, as the realization of the duality of body and mind respectively in the 
world of programming, provides a better conceptual foundation for concurrent 
programming than any other model. 

Essence of quantum mechanics. We claim that quantum mechanics has not 
previously been reduced to lay terms by physicists, who have been content to 
leave the subject as a mysterious jumble of properties of Hilbert space that 
the working physicist can become acclimatized to and even confident with af- 
ter sufficient exposure. Mind-body duality and interaction explains respectively 
complementarity and the inner product in relatively elementary terms making a 
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clear connection with other structures such as the above model of computat ion 
and the following foundation for mathematics.  The central role of the mental 
plane in this account of quantum mechanics makes it a rational mechanics. 

Foundations of mathematics. We implicitly settle for relational structures as 
the objects of mathematics when we so restrict the models of first-order logic. 
But this has the unfortunate side effect of excluding some popular mathematical  
structures, most notably topology, which would appear to require a second order 
theory. Chu spaces over 2 k realize all k-cry relational s t ruc t~es  [Pra93, p.154-3] 
as well as topological spaces when K = 2 [LS91], all as objects of the one cate- 
gory, yielding a novel degree of morphism-sensitive typelessness for foundations. 
The above connection with quantum mechanics suggests that  mathematics  based 
on Chu spaces be thought of as natural mathematics,  sharing with nature the 
essential principles of duality and interaction. 

Choice o] logic. We envision two logics, elementary and transformational. 
Elementary logic has its usual meaning as the logic of individual objects such 
as sets, groups, and Boolean algebras. It serves to reason about relationships 
between elements of such objects. These objects are traditionally understood 
as relational structures but  they can also more generally be understood as Chu 
spaces as per the preceding paragraph. 

Transformational logic bears superficial resemblances to elementary logic but  
serves to reason about interactions between objects rather than relationships 
within objects. The structural basis for object interaction is the homomorphism 
or structure-preserving morphism, from which flows all other interaction struc- 
ture such as duality, limits, tensor products,  homsets, and size (cardinality or 
concreteness). 

The  most promising transformational logic seems to us to be Girard's linear 
logic [Gir87]. C h u g  is a constructive model of linear logic in the sense that  it 
interprets the sequents of linear logic as sets of proofs rather than as Boolean or 
intuitionistic t ru th  values. Nonconstructive models of linear logic such as phase 
spaces seem to us at best a curiosity. As to alternative constructive models, for 
want of any convincing counterexamples we conjecture mildly that  these can all 
be satisfactorily subsumed by Chu spaces, the case V -- Se t  of the general Chu 
construction Chu(V,  k). We have yet to be shown a V that  improves on Se t  for 
any significant application of the Chu construction. 
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