
Confluence of Processes
and Systems of Objects

Xinxin Liu* and David Walker

Department of Computer Science
University of Warwick

Coventry CV4 7AL, U.K.

Abs t rac t
An extension to the theory of confluence in the process calculus CCS is pre-

sented. The theory is generalized to an extension of the ~r-calc~flus. This cal-
culus is used to provide semantics by translation for a parallel object-oriented
programming language. The confluence theory is applied to prove the indis-
tinguishability in an arbitrary program context of two class defilfitions which
generate binary tree data structures one of which allows concurrent operations.

1 [ntroduct ion

The alms of this paper are to present an extension to the theory of confluence in
process cMculus and to illustrate the new theory by applying it to a problem con-
cerning concurrent operations on binary tree data structures expressed in a parMlel
object-oriented programming language. In fact, the development of the theory was
stimulated by the problem. We begin by describing it.

Characteristic of the object-oriented style of programming is the description of a
computational system as a collection of objects each of which is a self-contained entity
possessing data (references to objects and simple values) and procedures (methods)
for acting on those data.. A program of a parallel object-oriented language typically
consists of a collection of class definitions, each of which provides a template for
its object instances, together with an indication of how a computat ion should be
initiated. Such a program often describes a highly mobile concurrent system in which
new objects are created as computation proceeds and references to objects are passed
in communications. Parallel object-oriented languages differ from one another in the
w~vs in which they integrate parallelism with object-oriented features; see e.g. [1, 8].

In [4] a development method for concurrent programs is proposed. Central to it
are the application of program transformations to control the introduction of concur-
rency into designs and the use of ideas from object-oriented programming to control

*Supported by a grant from the U.K. Engineering and Physical Sciences Research Council

218

interference. The problem we consider concerns two classes taken, with minor mod-
ifications, from [4] whose instances may be used to construct binary tree-structured
symbol tables. The first of these is as follows.

class T

var K:NAT, V:ref(A), L:ref(T), R:ref(T)

method Insert(X:NAT, W:ref(A))

if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T))

else if X=K then V:=W

else if X<K then L!Insert(X,W)

else R!Insert(X,W) ;

return

method Search (X :NAT) :ref (A)

if K=nil then return nil

else if X=K then return V

else if X<K then return L!Search(X)

else return R!Search(X)

An object of this class represents a node which stores in its variables K~V,L,R an

integer key, a value (a reference to an object of some class A) and references to two
instances of the class (its left and right children in the tree structure of which it is
a component). It has two actions: the method I n s e r t which allows a key-value pair
to be inserted, and the method Search which returns the value associated with its
key parameter (or n i l if there is none). When the expression new(T) is evaluated a
new instance of the class is created; the value of the expression is a reference to that
object. When an object is created all its variables have n i l values and it assumes a
quiescent state in which any of its methods may be invoked. On completing a method
invocation an object returns to its quiescent state; another method may then be
invoked. Execution of the statement L ! I n s e r t (X,W) involves left-to-right evaluation
of L, X, W and then the invocation in the object to which the value of L is a reference of
the I n s e r t method with the values of X, W as parameters. The activity of the invoking
object is suspended until it is released from the rendezvous by execution of a r e t u r n
statement by the object in which the method was activated. Note that new (empty)
leaf nodes are created when an insertion with a fresh key is made; thus the data
structures are futl binary trees. The value of the expression L!Search(X) is the value
returned to the object by the execution of a r e t u r n statement in the child node to
which the value of L is a reference.

A tree-structured symbol table is accessible to other objects in a system only
through its root. Moreover when a method is invoked in the root the entire tree be-
comes inaccessible until the invocation has been passed down through the structure
to the node which should handle it, the appropriate activity has taken place, a se-
quence of r e t u r n statements has rippled back along the relevant path, and the root
has released from the rendezvous the object which made the initial invocation. The
second class definition is as follows.

219

class T

var E:NAT, V:ref(A), L:ref(T), R:ref(T)

method Insert(X:NAT, W:ref(A))

return ;
if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T))

else if X=E then V:=W

else if X<E then L!Insert(X,W)

else R!Insert (X,W)

method Search(X:NAT) :ref(A)

if K=nil then return nil

else if X=K then return V
else if X<K then commit L!Search(X)

else commit R!Search(X)

Referring now to the first class as To, the new class T can be obtained from it by

applying two transformations: firstly, moving the return statements in the Insert

method to the beginning of the body; and second, in the Search method, replacing the

return statements invoking Search methods in the children by commit statements.

The effect of moving the return statement in the Insert method is to free the

invoking object from the rendezvous thus allowing it to proceed in parallel with the

node which then proceeds to carry out the insertion. When an object a executes a
commit statement by invoking a method in an object ~, it is implicit (i) that fl should

return its result not to c~ but to the object 3' to which ~ should return a result, and
(it) that c~ is freed from the ta.sk of returning a result to 7. In particular, execution
of c~ may proceed in parallel with that of/~. Thus if the Search method is invoked in
a node with a key smaller (resp. larger) than that stored there, the node will commit
that search to its left (resp. right) child, and we may think of the node as passing to
the child the return address to which the result of the search should be sent. This
address will have been received by the node either directly from the initiator of the
search (if the node is the root) or from its parent in the tree.

The problem which stimulated the work of this paper was to determine whether
the two classes above are interchangeable in an arbitrary program context, that is
whether or not the observable behaviour of a program could be altered by replacing
one of the classes by the other. A more difficult problem is to determine general
conditions under which transformations such as the movement of r e t u r n statements
and the replacement of r e t u r n statements by commit statements illustrated in the
I n s e r t and Search methods respectively are sound. Such general transformation rules
are proposed in [4]. One point of the present work is to bring to the surface some
difficulties concerning tractable, general transformation rules. This issue is discussed
in the concluding section.

In previous work [22] it has been argued that process calculus provides a good
framework for studying the behaviour of systems of concurrent objects. It has been
shown [21, 28, 24, 22, 5, 7] that one may give quite natural semantics for parallel
object-oriented languages by translation to calculi based on the 7r-calculus [13] in

220

which agents may pass names of communication links to one another. In particular
one may give precise, abstract descriptions of the behaviours of systems a~d employ
the apparatus of process theory to reason about them. The present work gives further
evidence of the utility of this kind of framework. To solve the problem stated above
we isolate a class of agent contexts which contains all encodings of program contexts
of the language in question and show that the agents representing the symbol table
classes can not be distinguished by any context in this class.

An intuition which suggests that the symbol tables classes are interchangeable
is that the behaviours which they generate are determinate. That is, if requested to
execute any sequence of method invocations a table would reach a uniquely determined
abstract state having returned a uniquely determined value for each call. That is not
to say, however, that tables of the two classes would not be distinguishable in some
environments. For example, a table of class T might accept several Search requests
before returning the results of the searches in an order different from that in which
they were initiated. By contrast, a T0-table imposes a strict invoke-release discipline
on its environment.

A precise definition of determznacy is introduced and studied in the setting of the
process calculus CCS in [11]. It is shown, among other things, that determinacy is not
in general preserved by the CCS composition and restriction operators. With the aim
of providing a theoretical fl'amework within which one may build from determinate
components systems which are guaranteed, by construction, {o be determinate, a
refined notion of determinacy, confluence, is then introduced. This notion arises in a
vaa'iety of forms in the theory of computation. Its essence, to quote Milner [1t], is that
"of any two possible actions, the occurrence of one will never preclude the other". Its
pertinence in the present setting is clear. To tackle the problem of the symbol table
classes it is necessary to naake a significant extension to the theory of confluence as an
agent representing a program context may be highly non-confluent. (Incidentally, the
generalization of the theory of confluence in CCS to the ~r-calculus raises interesting
questions; a study of this topic will appear in [17].) We introduce a new notion of
partial confluence which requires of an agent that it be "well-behaved" with respect
to a distinguished class of actions. The precise definition is somewhat delicate and
uses the branching bisimilarity introduced in [20]. It is chosen to be generous enough
to encompass many systems but restrictive enough that it enjoys a strong theory.
The main result states, roughly, that in certain contexts a partially-confluent agent
may be replaced by a simpler "pruned" version of itself without altering the observable
behaviour of the system. Confluence in value-passing CCS has been studied in [18, 19].
In the latter work the definition, from an unpublished note by Milner, of a notion called
"partial confluence" for pure CCS agents is stated. Although the same name is used,
the version of confluence studied here differs from it. The relationship between the
two is explained in the text.

In the following section we collect background material. In section 3 we introduce
the theory of partial confluence in the CCS setting and in section 4 generalize it to the
process calculus, essentially an amalgamation of value-passing CCS and the re-calculus,

221

which we use as semantic basis. In section 5 we use the theory developed to prove the
interchangeability of the two symbol table classes in an arbitrary program context.
The paper ends with some concluding remarks. To meet the space requirement most
proofs are omitted.

A c k n o w l e d g m e n t We thank Cliff Jones whose related reseaxch provided an iin-
portant stimulus for the present work and with whom the second author has enjoyed
helpful conversations.

2 P r e l i m i n a r i e s

In this section we collect necessary background material on the parallel object-oriented
programming language which is the setting for the problem described in the Intro-
duction and on its semantics by translation to the ~%-calculus described in [22].

2 .1 T h e p r o g r a m m i n g l a n g u a g e

The programming language is a variant of the ~ro/~-language [4] which in turn derives
from the POOL family [I]. The language has types NAT (natural numbers), BOOk

(booleans), UNIT and tel(A) for A a class name. The UNIT type plays a r6le similar to
that of the type of that name in the language Standard ML and a mode in ALGOL 68;
it has a single value. A value of type ref(A) is a reference to an object of class A;
class definitions are explained below. The principal syntactic entities are statements
each of which is assigned a type in a standard way; we omit the details. The language
has constant symbols 0, 1 , . . . and nil, the last of which is overloaded and is used to
represent a reference to no object, the "undefined" value of type NAT and the value of
type UNIT. In the abstract syntax definitions below we use K to range over constants,
M over method names, A over class names, T over types, X , Y , Z over variables,
and S over statements, and we write Z for a tuple Z1, . . . , Z~ of syntactic entities.
Statements are the well-typed phrases given as follows:

S ::-- K I x I new(A) I S!M(S) I op(S) I
X : = S I S1; co~ I if S then Si else S2 [
outputs I returns I commitS[M($o).

The value of new(A) is a reference to a newly-created object of class A. The evaluation
of S[M(:~) involves the left-to-right evaluation of S and the statements in the tuple
followed by the invocation in the object to which the value of S is a reference of the
method M of the class of that object with parameters the values of S. The value of
the statement is the simple value or reference returned to the object as the result of
the method invocation. We assume that the basic operation symbols op are =, < on
NAT and not, and on BOOk. The assignment, sequence and conditional statements are
standard. In output S, the statement S of type NAT is evaluated and its value output.
The return and commit statements are explained in the Introduction.

222

-Declarations are given as follows. Firstly, variable declarations are given by

Vdec : := v a r X 1 : T 1 , . . . , X n : T n

Then method declarations are given by

Mdec : := method M (f ' : 2~): T, Vdec, S

where T are the types of the formal parameters Y', T is the result type and S is
the body of the method with Vdec declaring variables local to it. In the examples
in the Introduction, we omit UNIT as result type and abbreviate return nil to return.
Sequences of method declarations are given by

Mdecs : := Mdecl , . . . , Mdecq

class declarations by
Cdec : := class A, Vdec, Mdecs

and finally program declarations by

Pdec : := Cdecl , . . . , Cdec~, trigger S

where S is of the form new(A)!M(K). The statement S acts as a trigger to initiate
the computat ion by creating and activating a root object of one of the classes A.

2 . 2 T h e t r a n s l a t i o n a l s e m a n t i c s

This paper is based on the translational semantics given in [22] which uses the 7c~-
calculus. To illustrate the sort discipline employed, consider the symbol table classes.
As we will see below the class "1" is encoded as an abstraction of sort (LINK[r]). The
sorting decrees that a name of sort kINK[r] carries a pair

ml, rn2 : METH.~[NAT, ref(~.); UNIT], METH~,/NAT; ref(A)]

of names, one for each method of the class (I for Insert, S for Search). A name
ml : METH~[NAT, ref(A); UNIT] in turn carries an integer, an object identifier of class
ref(A), and a return link of sort RESt[UNIT], and similarly m2 : METH}[NAT;reffA)]
carries an integer and a return link of sort RKS~[ref(A)]. We write OBJECT[T] =
M ETH~[NAT, ret'(A); UNIT], M ETH-~[NAT; ref(A)].

A program Pdec =_ Cdecl , . . . , Cdec~, trigger S is encoded as a restricted compo-
sition of the translations of the class definitions and the trigger 0%

[Pd 4 d~ I . . . I l[Cdecr]l(...) I l[s l (. . .>).

It has at most one free name, namely out of sort LINK[NA~ at which integer values
may be emitted; it is used in the translation of statements of the form output S. A
class definition is translated as a replication with a link name to pass out an object

223

identifier each time a new object is required. For example the encoding of the table
class T has the following form:

[T]] ned (new)] (u ins , srch) ~ -~(ins, srch). O b jT (new , ins, srch }

where new is the link name, (ins, srch) is the object identifier, and ObjT(new , ins, srch}
represents the object. Note that ins, srch are private names since each new instance
of the class has a fl'esh identifier. Also, (!) is the replication operator from [12] which
may be eliminated in favour of an agent constant. We can think of !P as PtPIPl

VTe do not repeat here the definition of H ; see the papers cited above. Instead, we
present two %-calculus agents To and T which are simplifications of [c l a s s T0~ and
[c l a s s T~ respectively and explain some ideas of the translation using them. Thus:

To =-- (new) ! (~,ins, srch) ~ -~ (ins, srch). Eo (new , ins, srch)
T - (n~w)!(,ins, sr~h)-C~-~(ins, srch). E(n~ , i,~, sr~h>

where E0, E : (LINK[T], OBJECT[T]), Co, C : (LINK[T], OBJECT[T], N, OBJECT[A], OBJECT[T] 2)
are the abstractions defined as follows (where cond is a nested conditional):

Eo ad (r~e~, i~s, srch)
i ,~(~, w, r). nr srch0, nr srchr). ~. Co<..., ~, w , . . .)
+ sr~h(x, ~). ~(,il). E o (n ~ , ins, sr~h)

Co d~_f (new, ins, srch, k, v, insI, srcht, insr, srchr)
i~s(~.,~,r). ~o,d(~ = k :~ .Co<. . . ,k ,~ , . . .> ,

< k : i~z (x ,~ ,w) .<T .Co(. . . , ~ ,~ , . . .) ,
else : i n s r (x , w , , r ') . r ' . ~ . C o (. . . , k ; v , . . .))

+ srch(~, r) . cond(z = k : Tv. C0(.. �9 k, v , . . .) ,
< ~: sr~hI(~, ~,r'). r ' (G ~-~. Co(.. . , ~, v,...>,

else : s,,~hr(~, w). , .%). ~,. Co<..., ~, v,...>)

E ~ (new, ins, srch)
ind- , w, ~). ~. ,~cw (i,~t, ~rchO. n~(in~r, sr~hr). C<.. . , ~, w,...>
+ ~ h (~ , r). ~(,iO. E(n~w, in~, sr~h)

C a=~ (new, ins, srch, x, w, insI, srchI, insr, srchr)
i~s(x, w, r). ~. co,d (x = k: Ct . . . , ~, ~, . . . I ,

< k: i~sl(x, ~, W). r'. C(. . . ,k ,v , . . .) ,
e,se : insr(~, w, W). < C(. . . , k, v,...))

+ srch(x, ~). cond (x = k: ~'o. C<..., ~, v,...>,
x < ~: s~c~(~,r). C(. . . , k ,v , . . .) ,
else : s~chr(~,r) .C(. . . ,~ ,~ , . . .)) .

Note that we write e.g. insl(x ,w, ,r ') as an abbreviation for (ur ') insI(x,w,r ') .
From the expressions defining Co and C it is not hard to convince oneself (and it
can be proved) that To and T are branching bisimilar to [c lass To~ and [c l a s s T]
respectively.

224

3 Par t ia l c o n f l u e n c e in C C S

In [19], a notion called "R-part ia l confluence" due to Milner is defined in the setting of
pure CCS, where R is a set of labels. I t is a generalizat ion of the notion of confluence
in that a process is confluent just in case it is R-par t ia l ly confluent when R is the
set of all labels. However, a par t ia l ly confluent process, like a confluent one, must
be de terminate with respect to internal moves. So this notion cannot be applied
in a si tuat ion where internal moves may change an agent 's state. In this section
we introduce and s tudy a more general version of confluence. Before defining it we

introduce a convenient abbreviat ion: we write P ~ ~) P ' to mean that P

P" ~ > P ' for some P" with P " ~b P and moreover if a = r then P~ Cb P .

Definition 3.1 Let R C s be a set of labels. An agent P is R-conf luent if for every

derivative Q0 of P , whenever Q0 ~ Q~ and Q0 ~ ~ ' Q2 with r E R and a E Act ,
then either c~ = r and Q1 ~b Q2, or a r r and agents Q~I,Q'2 can be found so that
Q~ ~ 4, Q~, Q2 ==,_2_+ Qi and Q~ ~b Qi.

It is easy to see that confluence implies R-confluence (for any R). However the
converse fails as e.g. (r. a + r. b) [r is {r}-confluent but not confluent. Although for
convienience we have dropped the word "part ial" , the definition of "R-confluence"
generalizes that of "R-part ial confluence" s ta ted in [19]. In fact, a process P is R-
par t ia l ly confluent if and only if P is R-confluent and for every derivative Q of P ,
whenever Q ~ Q~ then Q ~b Qq This follows from the fact tha t if P is de terminate

with respect to internal moves, i.e. for every derivative P~ of P , whenever P~ _Z~ p -
then P' ~ P", then P ~ Q just in case P ~b Q. It is necessary to use ~b instead
of ~ in the generalized theory of par t ia l confluence. Roughly speaking, the reason is
that since we no longer require processes to be de terminate with respect to internal
moves, ~ cannot guarantee tha t R-confluence is a proper ty of equivalence classes. It
is straightforward to show tha t R-confluence is preserved by ~b.

It is convenient to introduce a further abbreviat ion. For s = (~1 �9 �9 �9 a~ E Act* we write
>~ for the composite relation ~ - g ~ ~ ~b ~b . . . ~b- - - -~b . The following result enunci-

ates a simple but useful proper ty of R-confluent agents. Recall from the Prel iminaries
that s/(~ is the excess of s over c~.

L e l m n a 3.2 If P is R-confluent then for any s E R* and ~ E Act , whenever
s 8/c~

P)z P1 and P ~ - ~ P2, either c~ occurs in s and P2 ---+~ P1, or c~ does not

occur in s and there is P0 such that P1 ~ ~ ~ P0 and P2 ~)~ P0. []

Using this l emma we can establish the first significant result. It implies tha t the
s ta te of a restr ic ted composit ion of R-confluent agents is not changed up to ~b by an
interaction between components via a name and a co-name in R, provided all names
in R are restricted.

L e m m a 3.3 If P , T are R-confluent, P s ~~ p j and T s T ' >~ with s , ~ E R*,
s = r ~ . . . r~, s = r ~ . . . r-~, and R C_ L then (P] T) \ L ~b (P ' [T ') \ L . []

225

We now have a rather long definition.

Def ini t ion 3.4 Suppose M, R are disjoint sets of names and r : M ~ R a function.
A derivation-closed set S of R-confluent agents is (M, R, r if there is a partition
{ Se I ~ a finite submultiset of R} of S (an (M, R, r partition) such that:

1. i f P E S e a n d P - - ~ P ' w h e r e a C M U R t h e n P ' E S e ;

2. if P E $e and P - ~ P ' where m E M then P ' E Se'r

3. if P E $e and P --5-+ P ' where r E R then r E ~ and P~ E S e-r.

Further, S is (M, R, r if it is (M, R, r and

4a. if P E Sr (where r is a singleton multiset) and P "~ where m E M then
p = = ~ ~ ;

and S is (M, R, r if it is (M, R, r and

4b. i f P E S ~ a n d r E ~ t h e n P - - ~ .

To grasp the motivation for this definition consider the agent T from the Prelim-
inaries. An (M,R, r partition is to capture the relationship between method
invocations and the corresponding returns. One can view each derivative T ~ of T as
a tree-structured collection of agents each of which represents a tree node. Each time
a method is invoked, via ins(x, w, r) or srch(x, r), a return link (r) which does not
occur free in T ~ is received. This name will occur free in each derivative of T' until the
result of the call is returned. Now the notion of (M, R, r partition express the
relationship between ins(x, w, r), r and srch(x, r), r by setting r w, r)) = ~ and
~b(srch(x, r)) = ~-. In more general terms, we can view r as an association between
names of the distinguished sets M and R such that r E R is the companion action,
in some sense, of m E M. An (M, R, r partition of S divides its agents, all of
which are required to be R-confluent, into classes whose indices record the outstanding
companion actions of their elements; conditions 1-3 ensure that this interpretation is
accurate. Condition 4b stipulates that an agent must be able to engage immediately
in any of its outstanding companion actions. (In the case of the object example this
corresponds to the property that when an object invokes a method, its activity is sus-
pended as it awaits the return of the result of that invocation.) Finally, condition 4a
requires that if an agent has one outstanding companion action r and it may initiate
another activity via an action in M, then it may also perform r, possibly after some
r-actions which, however, do not change its ~b-state. The purpose of this condition
is to ensure, in conjunction with the others, that in certain contexts the behaviour of
the agent is indistinguishable from that of an agent obtained by pruning parts of its
state space. This is explained in detail in the theorem which follows the definition of
the pruning operation.

Defini t ion 3.5 Given a labelled transition system T and a subset W of its set of
points, T[W is the system obtained by removing all points not in W and all arrows
incident on such points. If P E W we write/3 for the corresponding point of T[W.

226

We now have the main result in the CCS case.

T h e o r e m 3.6 Suppose M,R are disjoint sets of names and r : M ~ R, and
define r : M --~ 2 by setting r = r Suppose 7' is an (M, R, ~b)-ready
system with (M, R, r partition {Pe}~, and T an (M, R, r system
with (M, R, ~b)-tidy partition {T~}~. Suppose P 6 p0, T 6 T ~ and M U R G L. Let
2 ~ be the agent corresponding to T in T [(T~ U U{T ~ [r a singleton multiset}). Then
(PIT)\L ~ (P[IP)\L.

PROOF: Let (S1,S2) E S ~ if $, = (NI[T1)\L and S2 = (N2[~)\L where P2 E 7 ~~
T2 E T~ P1 ~ P2, T1 "~ ')~ T2 with s,~ 6 R*, s : r l . . . r n , ~ = r l . . . rn , and
21I U R C_ L. Let also.(S~,S2) E B ~ if S1 = (P~IT,)\L and $2 = (P2[~) \L where

P2 E P ~ , T : E T ~,P1 " ~ P 2 , Tf ~) ~ T 2 w i t h s , ~ E R * , s = r l . . . r , , S = r l . . . r . ,
and M U R _ L. Then B~ B1U ~b is a branching bisimulation. The most interesting
part of the proof is as follows.

Suppose (S~,8~) ~ B1 where S~ = (P~IT1)\L and S2 = (P~I~) \L are as in the
definition with P2 E P~ and T2 C T< Suppose S~ ~ Q~, and Q~ --= (P~ [T~)\L

where P~ ' ~ ic[and T~ --~ T~ where m C M. Let T ~ be T o U U{TF}~.

Since T1 ~ ~ T2, by Lemma 3.2 there are T0,~r~ such that T2 ~ To m) T~'
and 2r~ ~ u T~ with To ~b T:. Since T is (M, R, r To E T ~ and

m 6 M, T 0 ~ ~ . HenceT2 ~ ~ > T~ for some Ta. Hence as T2 is R-confluent,
T ~ T 4 ~ ' , T~ and T~ :~ T~ for some T4 and T~ with T4 ~b Ta. Now Ta, T4 ~ T o
and T~ e T ~' where r' = r so the transitions ~ ~_5_~ T3 ~ ~ _K~ Ts exist
in T IT ~.

Now since P~ __2__~ P2, by Lemma 3.2 there are P0 and P~ such that P2 ==~ Pom.)
P~, Po m~ P2 and _P~ *,~ P~. Because P is (M, R, ~b)-ready and P2 6 P~, P2 ~, Pa
for some Pa. Since P2 is R-confluent, Pa ==~ P4 --~ P~ and P~ _r_~ p~ for some
/~ and Ps with P4 ~b Pa. Thus (P2[~) \L ~ - ~ (Pa l~) \L ==> (P4I~) \L ~-+
(Ps ln) \L-

It remains to note that by the construction (S1, (P4 [T4)\L) 6 B ~ and (Q~, (P~]
T~)\L) ~ B 1. These claims follow from Lemma 3.2. [::1

4 P a r t i a l c o n f l u e n c e i n t h e % - c a l c u l u s

We now generalize the theory presented in the previous section.

No ta t ion 4.1 (a) We write subj(a) for the subject of the action a. If s = a l . . . a ,
is a sequence of actions then s.bj() =

(b) Let R be a sort. We write R + (resp. R-) for the set of actions with a positive
(resp. negative) subject whose name is in R, and R • for R + U R- .

227

Defini t ion 4.2 Let R be a sort. A process P is R-confluent if for every derivative

Q of P:

1. i f p E R +, subj(~) #subj(p) , Q o Q~ and Q ~ ~> Q2 then for someQ' ,

Q1 =====*--~ O' and Q2 ==~ P - ~ b O';

2. ifp~,p2 E R-,subj(pl) = s u b j (p 2) , Q - ~ Q l a n d Q :=~ m Q2 thenp~ = p2

and QI ~ Q2;
3. if p E R + , Q o Q l a n d Q ~ - - % ~ Q 2 t h e n Q l ~ b Q 2 .

The theory presented in the previous section can be generalized, with some changes,
to the new setting. In the space available, however, we can only state the main defi-

nition and theorem.
We first formulate analogues of the notions "(M, R, ~)-tidy" etc. In the CCS case

the purpose of the function r was to record an association between names in M and
names in R. In the present setting this is achieved in a different way, namely via a
sorting which associates with the sort M a tuple of sorts of the form (S, R, S ~) where
R does not occur in the tuples S and S ~ . Then if c~ E M e, the name of the subject of
c~ is m and the component, objR(~), of the object of c~ of sort R is r, then m and r are
associated. It is appropriate also to reflect in the following definition the asymmetric
nature of communication in the %-calculus. Thus we define "(M-, R+)-tidy" (with
requirements on output actions whose subjects have names in M and input actions
with subjects in R) rather than "(M, R)-tidy" etc.

Def in i t ion 4.3 Suppose M and R are distinct sorts and the sorting E is such
that E(M) = (S, R, S') for some tuples of sorts S and S ~ not containing R and R
occurs in no other object sort. A derivation-closed set 3 of R-confluent processes is
(M - , R+)-tidy if there is a partition {8 7 1 ~ a finite subset of R} of 3 (an (M- , R+) -
tidy partition) such that:

1. i f P E 8 7andP ~)P 'wherea~M-UR + t h e n P ' E , . q ~ ;

2. if P E ,9 ~ and P _5+ p, where c~ E 21,I- and r r F where r = objR(a) then
P ' E 87,~ ;

3. if P E 8 7 and P - % P~ where c~ E R + then subj(c~) = r E F and P' E S 7-~.

Further, 3 is (M-, R+)-ready if it is (M- ,R+) - t idy and

4a. i f P E S 7andrETthenP ~) for a n y a E R + w i t h s u b j (a) = r .

Similarly, we define (M +, R-)-tidy (partition) andsay 3 is (M +, R-)-disciplined if it
is (M +, R-,)-tidy with (M +, R-)- t idy partition {3r}7 and

4b. if P E 8 r (where r is a singleton multiset) and P

P ~ ' , fox some 9 c R - w i t h subj(/~) = v.

~* where c~ E M + then

228

T h e o r e m 4.4 Suppose M and R are distinct sorts and the sorting N is such that
E(M) = (:~, R, S;) for some tuples of sorts 2~ and S ~ not containing R and R occurs
in no other object sort. Suppose 7 ~ is an (M- ,R+)- ready set with (M- ,R+) - t idy
partition {7~'}~ -, and T an (M+,R-)-disciplined set with (M+,R-) - t idy partition
{T~'}~ -. Suppose P E 7)~, T E T $ and no derivative of (u'~)(P I T) contains a
free occurrence in subject position of a name of sort R or of sort M. Let iP be
the process corresponding to T in 7-[(7 ~ O U{7 TM r a singleton multiset}). Then

(,f)(PIT) ~b (v~)(Pli~).

5 An e x a m p l e

In Section 2.4 we defined agents To and T which are mmplified encodings of the symbol
table classes To and T respectively. To illustrate the theory of partial confluence we
now use it to establish the equivalence of To and T in the encoding of an arbitrary
program context, thus proving the interchangeability of the symbol table classes To
and T as discussed in the Introduction.

Suppose C[-] is the encoding of a program context into which an abstraction of
sort (kINK[T]), the sort of the agents encoding the classes, may be placed. Then C[-] is
of the form (unew)(P [.(new)) where P is the encoding of the other classes and the
trigger of the program. Since the classes have more than one method, it is necessary
to generalize the definitions of " (M- , R+)-tidy " etc. to the case when instead of single
sorts M and R we have tuples M = M1...-Mn and R = R1. . . R~ of distinct sorts
where the sorting E is such that for each i, E(.~-) = (S~, R,, S[) for some tuples S,
and S~. This is straightforward. The following theorem expresses the equivalence of
the class definitions.

T h e o r e m 5.1 Let C[.] = (unew)(P I .(new)) be the translation of an arbitrary
program context and To, T as in the Preliminaries. Then C[T] ~b C[T0].

PROOF: We want to show that (vnew)(P To(new)) ,.~, (vnew)(P I T(new)). Let T
be the process system generated by To(new) and T(new), and 7) the process system
generated by P. Let M be the pair of sorts METH~[NAT, Tel(A); UNIT], METH~[NAT; re:~(A)]
and R the pair RESt[UNIT],RES~[ref(A)] and consider the generalized definitions of
"(M +, R-)- t idy" etc. The proof involves showing:

1. P is (M - , R+)-ready.

2. T is (M+,R-)-disciplined.

3. To(new} ,~b T{new}, where To(new) and T(new} are the states corresponding
to To{new} and T(new) respectively in T[(TeUU{T ~ I r a singleton multiset}).

By 1 and 2 above, applying the main theorem in the previous section we have
A

(unew)(P l To(new)) ~b (,new)(P l To(new)) and
(.new)(P l r(new)) ~b (unew)(P I T(new)).

229

Together with 3 and the observation that by the nature of the translation the theorem's
condition on names of sort M or R is met, these facts complete the proof.

In the space available we can only sketch the proof. We consider first 1. The names
of sort R are return links for invocations via names of sort M. In the translation the
use of these names has a very strict pattern: ~(/~, ur) where m : M is always followed
by an action with subject r : R, and an action with subject r : R is always preceded
by ~(/Y, vr) where m : M. As illustrated in the Preliminaries, P is a restricted
composition and it follows that any derivative of it must (up to structural congruence)
have the form

Q - (u i Y) (r l (X l) . P l 1 . . . [rn(Xn).Pn I rtl'-]5~]''" I I'~.P~ [Q') (1)

' ' RESt[UNIT] are pairwise distinct (as where r l , . . . , r , : RES~[ref(g)] and r l , . . . , r , , :
private names are used for returning results), and for any action ~ E R +, Q' P ~,
Pi P ' , Pi' 7 &+- As each of its elements has this form, 7 ~ is an R-confluent process
system: Now let {:p7] ~- a finite subset of R} be the partition of ~ defined by setting

I ! Q c ;Dr for Q of form (1) if ~ = { r l , . . . ,rn, r l , . . . ,r,~}. It may be checked that this
partition is (M - , R+)-tidy. It is clear that 7 ~ is (M- , R+)-ready.

For To(new) and T(new) w e can obtain the general form of the derivatives by
analyzing their syntax. We_.mmay then ap.~y the technique of unique solution of process
equations to prove that To(new) ~ T(new}. Now by the translation no derivative of
C[T] = (unew)(P I T(new}) contains a free occurrence in subject position of a name
of sort M or R. Hence from 1, 2 and 3 above it follows by the generalized version
of the main theorem of the preceding section that C[T0] ~b C[T0] and C[T] ~b C[T]

and hence g[T] ~b g[T0]. Moreover since out is the only free name it follows that
C[T] .~b e[r0]. []

6 C o n c l u s i o n

The notion of partial confluence introduced here is worthy of further investigation.
In addition to the intrinsic interest of the theory it may be useful in e.g. the study
of concurrency control in databases [15]. As a further example we intend to study
concurrent operations on binary search trees and B-trees as presented in e.g. [9, 10].
Also of interest are connections with non-interleaving semantics of concurrent systems
and action/process refinement as in e.g. [3].

The proof presented in Section 5 can be viewed, as mentioned in the Introduction,
as establishing the soundness of particular instances of general transformation rules
such as those proposed in [6]. Those rules stipulate conditions under which (in the
notation of the present paper) a statement of the form S; return S' may be replaced by
return S'; S, and a statement of the form return X!M(Y) by commit X!M(Y). These
conditions refer to termination of (executions of) statements and to properties of a
distinguished class' of program variables called "private references". No semantic ac-
count of "private references" if given in [6], nor is it stipulated how they may be used in

230

programs. It appears that to satisfy the side conditions of the rules in question, quite
severe syntactic restrictions may be necessary. Moreover the requirement to estab-
lish termination of (executions of) statements which may invoke methods in systems
of objects with dynamically-evolving structure may be very demanding. The theory
developed in this paper provides a framework, at an appropriate level of abstraction,
for reasoning rigorously about the behaviours of systems of objects whose reference
structures are (forests of) trees, tt remains a tough challenge to provide a comparable
framework on which to base a proof of the soundness of general transformation rules
whose side conditions are not unduly restrictive or intractable.

References

[1] P. America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1:366-411, 1989.

[2] U. Engberg and M. Nielsen. A calculus of communicating systems with label
passing. Technical report, University of Aarhus, 1986.

[3] W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in
the development of parallel systems. In CONCUt~'91, pages 298-316. Springer,
1991.

[4] C. Jones. Constraining interference in an object-based design method. In Pro-
ceedings of TAPSOFT'92, pages 136-150, 1993.

[5] C. Jones. A pi-calculus semantics for an object-based design notation. In Pro-
ceedings of CONCUR '93, pages 158-172, t993.

[6] C. Jones. Process-algebraic foundations for an object-based design notation.
Technical report, University of Manchester, 1993.

[7] C. Jones. Process algebra arguments about an object-based design method. In
Essays in Honour of C. A. R. Hoare. Prentice-Hall, 1994.

[8] D. Kafura and R. G. Lavender. Concurrent object-oriented languages and the
inheritance anomoly. In T. Casavant, editor, Parallel C'omputers: Theory and
Practice. Computer Society Press, to appear.

[9] H. Kung and P. Lehman. Concurrent manipulation of binary search trees. A CM
Transactions on Database Systems, 5:354-382, 1980.

[t0] P. Lehman and S. B. Yao. Efficient locking for concurrent operations on B-trees.
A CM Transactions on Database Systems, 6:650-670, 1981.

[1t] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

231

[12] R. Milner. The polyadic re-calculus: a tutorial. In Logic and Algebra of Specifi-
cation. Springer, 1992.

[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1
and 2. Information and Computation, 100:1-77, 1992.

[14] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theo-
retical Computer Science, 114:149-171, 1993.

[15] C. Papadimitriou. The Theory of Database Concurrency Control. Computer
Society Press, 1986.

[16] M. Papathomas. Language Design Rationale and Semantic Framework for Con-
current Object-Oriented Programming. PhD thesis, University of Geneva, 1992.

[17] A. Philippou. PhD thesis, University of Warwick, forthcoming.

[18] M. Sanderson. Proof techniques for CCS. PhD thesis, University of Edinburgh,
1982.

[19] C. Torts. Proof methods and pragmatics for parallel programming. PhD thesis,
University of Edinburgh, 1990.

[20] R. van Glabbeek and P. Weijland. Branching time and abstraction in bisimula-
tion semantics. In Information Processing '89, pages 613-618, t989.

[21] D. Walker. 7r-calculus semantics for object-oriented programming languages. In
Proceedings of TACS'91, pages 532-547. Springer, 1991.

[22] D. Walker. Algebraic proofs of properties of objects. In Proceedings of ESOP'94,
pages 501-516. Springer, 1994.

[23] D. Walker. Objects in the ~r-calculus. Information and Computation, to appear.

[24] D. Walker. Process calculus and parallel object-oriented programming
lanaguages. In T. Casavant~ editor, Parallel Computers: Theory and Practice.
Computer Society Press, to appear.

