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Abs t rac t  
An extension to the theory of confluence in the process calculus CCS is pre- 

sented. The theory is generalized to an extension of the ~r-calc~flus. This cal- 
culus is used to provide semantics by translation for a parallel object-oriented 
programming language. The confluence theory is applied to prove the indis- 
tinguishability in an arbitrary program context of two class defilfitions which 
generate binary tree data structures one of which allows concurrent operations. 

1 [ntroduct ion 

The alms of this paper are to present an extension to the theory of confluence in 
process cMculus and to illustrate the new theory by applying it to a problem con- 
cerning concurrent operations on binary tree data structures expressed in a parMlel 
object-oriented programming language. In fact, the development of the theory was 
stimulated by the problem. We begin by describing it. 

Characteristic of the object-oriented style of programming is the description of a 
computational system as a collection of objects each of which is a self-contained entity 
possessing data (references to objects and simple values) and procedures (methods) 
for acting on those data.. A program of a parallel object-oriented language typically 
consists of a collection of class definitions, each of which provides a template for 
its object instances, together with an indication of how a computat ion should be 
initiated. Such a program often describes a highly mobile concurrent system in which 
new objects are created as computation proceeds and references to objects are passed 
in communications. Parallel object-oriented languages differ from one another in the 
w~vs in which they integrate parallelism with object-oriented features; see e.g. [1, 8]. 

In [4] a development method for concurrent programs is proposed. Central to it 
are the application of program transformations to control the introduction of concur- 
rency into designs and the use of ideas from object-oriented programming to control 
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interference. The problem we consider concerns two classes taken, with minor mod- 
ifications, from [4] whose instances may be used to construct binary tree-structured 
symbol tables. The first of these is as follows. 

class T 

var K:NAT, V:ref(A), L:ref(T), R:ref(T) 

method Insert(X:NAT, W:ref(A)) 

if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T)) 

else if X=K then V:=W 

else if X<K then L!Insert(X,W) 

else R!Insert(X,W) ; 

return 

method Search (X :NAT) :ref (A) 

if K=nil then return nil 

else if X=K then return V 

else if X<K then return L!Search(X) 

else return R!Search(X) 

An object of this class represents a node which stores in its variables K~V,L,R an 

integer key, a value (a reference to an object of some class A) and references to two 
instances of the class (its left and right children in the tree structure of which it is 
a component).  It has two actions: the method I n s e r t  which allows a key-value pair 
to be inserted, and the method Search which returns the value associated with its 
key parameter  (or n i l  if there is none). When the expression new(T) is evaluated a 
new instance of the class is created; the value of the expression is a reference to that 
object. When an object is created all its variables have n i l  values and it assumes a 
quiescent state in which any of its methods may be invoked. On completing a method 
invocation an object returns to its quiescent state; another method may then be 
invoked. Execution of the statement L ! I n s e r t  (X,W) involves left-to-right evaluation 
of L, X, W and then the invocation in the object to which the value of L is a reference of 
the I n s e r t  method with the values of X, W as parameters. The activity of the invoking 
object is suspended until it is released from the rendezvous by execution of a r e t u r n  
statement by the object in which the method was activated. Note that new (empty) 
leaf nodes are created when an insertion with a fresh key is made; thus the data 
structures are futl binary trees. The value of the expression L!Search(X)  is the value 
returned to the object by the execution of a r e t u r n  statement in the child node to 
which the value of L is a reference. 

A tree-structured symbol table is accessible to other objects in a system only 
through its root. Moreover when a method is invoked in the root the entire tree be- 
comes inaccessible until the invocation has been passed down through the structure 
to the node which should handle it, the appropriate activity has taken place, a se- 
quence of r e t u r n  statements has rippled back along the relevant path, and the root 
has released from the rendezvous the object which made the initial invocation. The 
second class definition is as follows. 
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class T 

var E:NAT, V:ref(A), L:ref(T), R:ref(T) 

method Insert(X:NAT, W:ref(A)) 

return ; 
if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T)) 

else if X=E then V:=W 

else if X<E then L!Insert(X,W) 

else R!Insert (X,W) 

method Search(X:NAT) :ref(A) 

if K=nil then return nil 

else if X=K then return V 
else if X<K then commit L!Search(X) 

else commit R!Search(X) 

Referring now to the first class as To, the new class T can be obtained from it by 

applying two transformations: firstly, moving the return statements in the Insert 

method to the beginning of the body; and second, in the Search method, replacing the 

return statements invoking Search methods in the children by commit statements. 

The effect of moving the return statement in the Insert method is to free the 

invoking object from the rendezvous thus allowing it to proceed in parallel with the 

node which then proceeds to carry out the insertion. When an object a executes a 
commit statement by invoking a method in an object ~, it is implicit (i) that fl should 

return its result not to c~ but to the object 3' to which ~ should return a result, and 
(it) that  c~ is freed from the ta.sk of returning a result to 7. In particular, execution 
of c~ may proceed in parallel with that of/~. Thus if the Search  method is invoked in 
a node with a key smaller (resp. larger) than that stored there, the node will commit 
that  search to its left (resp. right) child, and we may think of the node as passing to 
the child the return address to which the result of the search should be sent. This 
address will have been received by the node either directly from the initiator of the 
search (if the node is the root) or from its parent in the tree. 

The problem which stimulated the work of this paper was to determine whether 
the two classes above are interchangeable in an arbitrary program context, that  is 
whether or not the observable behaviour of a program could be altered by replacing 
one of the classes by the other. A more difficult problem is to determine general 
conditions under which transformations such as the movement of r e t u r n  statements 
and the replacement of r e t u r n  statements by commit statements illustrated in the 
I n s e r t  and Search  methods respectively are sound. Such general transformation rules 
are proposed in [4]. One point of the present work is to bring to the surface some 
difficulties concerning tractable, general transformation rules. This issue is discussed 
in the concluding section. 

In previous work [22] it has been argued that process calculus provides a good 
framework for studying the behaviour of systems of concurrent objects. It has been 
shown [21, 28, 24, 22, 5, 7] that  one may give quite natural semantics for parallel 
object-oriented languages by translation to calculi based on the 7r-calculus [13] in 
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which agents may pass names of communication links to one another. In particular 
one may give precise, abstract descriptions of the behaviours of systems a~d employ 
the apparatus of process theory to reason about them. The present work gives further 
evidence of the utility of this kind of framework. To solve the problem stated above 
we isolate a class of agent contexts which contains all encodings of program contexts 
of the language in question and show that the agents representing the symbol table 
classes can not be distinguished by any context in this class. 

An intuition which suggests that the symbol tables classes are interchangeable 
is that the behaviours which they generate are determinate. That is, if requested to 
execute any sequence of method invocations a table would reach a uniquely determined 
abstract state having returned a uniquely determined value for each call. That is not 
to say, however, that tables of the two classes would not be distinguishable in some 
environments. For example, a table of class T might accept several Search requests 
before returning the results of the searches in an order different from that in which 
they were initiated. By contrast, a T0-table imposes a strict invoke-release discipline 
on its environment. 

A precise definition of determznacy is introduced and studied in the setting of the 
process calculus CCS in [11]. It is shown, among other things, that determinacy is not 
in general preserved by the CCS composition and restriction operators. With the aim 
of providing a theoretical fl'amework within which one may build from determinate 
components systems which are guaranteed, by construction, {o be determinate, a 
refined notion of determinacy, confluence, is then introduced. This notion arises in a 
vaa'iety of forms in the theory of computation. Its essence, to quote Milner [1t], is that 
"of any two possible actions, the occurrence of one will never preclude the other". Its 
pertinence in the present setting is clear. To tackle the problem of the symbol table 
classes it is necessary to naake a significant extension to the theory of confluence as an 
agent representing a program context may be highly non-confluent. (Incidentally, the 
generalization of the theory of confluence in CCS to the ~r-calculus raises interesting 
questions; a study of this topic will appear in [17].) We introduce a new notion of 
partial confluence which requires of an agent that it be "well-behaved" with respect 
to a distinguished class of actions. The precise definition is somewhat delicate and 
uses the branching bisimilarity introduced in [20]. It is chosen to be generous enough 
to encompass many systems but restrictive enough that it enjoys a strong theory. 
The main result states, roughly, that in certain contexts a partially-confluent agent 
may be replaced by a simpler "pruned" version of itself without altering the observable 
behaviour of the system. Confluence in value-passing CCS has been studied in [18, 19]. 
In the latter work the definition, from an unpublished note by Milner, of a notion called 
"partial confluence" for pure CCS agents is stated. Although the same name is used, 
the version of confluence studied here differs from it. The relationship between the 
two is explained in the text. 

In the following section we collect background material. In section 3 we introduce 
the theory of partial confluence in the CCS setting and in section 4 generalize it to the 
process calculus, essentially an amalgamation of value-passing CCS and the re-calculus, 
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which we use as semantic basis. In section 5 we use the theory developed to prove the 
interchangeability of the two symbol table classes in an arbitrary program context. 
The paper ends with some concluding remarks. To meet the space requirement most 
proofs are omitted. 

A c k n o w l e d g m e n t  We thank Cliff Jones whose related reseaxch provided an iin- 
portant stimulus for the present work and with whom the second author has enjoyed 
helpful conversations. 

2 P r e l i m i n a r i e s  

In this section we collect necessary background material on the parallel object-oriented 
programming language which is the setting for the problem described in the Intro- 
duction and on its semantics by translation to the ~%-calculus described in [22]. 

2 .1  T h e  p r o g r a m m i n g  l a n g u a g e  

The programming language is a variant of the ~ro/~-language [4] which in turn derives 
from the POOL family [I]. The language has types NAT (natural numbers), BOOk 

(booleans), UNIT and tel(A) for A a class name. The UNIT type plays a r6le similar to 
that of the type of that name in the language Standard ML and a mode in ALGOL 68; 
it has a single value. A value of type ref(A) is a reference to an object of class A; 
class definitions are explained below. The principal syntactic entities are statements 
each of which is assigned a type in a standard way; we omit the details. The language 
has constant symbols 0, 1 , . . .  and nil, the last of which is overloaded and is used to 
represent a reference to no object, the "undefined" value of type NAT and the value of 
type UNIT. In the abstract syntax definitions below we use K to range over constants, 
M over method names, A over class names, T over types, X , Y , Z  over variables, 
and S over statements, and we write Z for a tuple Z1, . . . ,  Z~ of syntactic entities. 
Statements are the well-typed phrases given as follows: 

S ::-- K I x I new(A) I S!M(S) I op(S) I 
X : = S  I S1; co~ I if S then Si else S2 [ 
outputs I returns I commitS[M($o). 

The value of new(A) is a reference to a newly-created object of class A. The evaluation 
of S[M(:~) involves the left-to-right evaluation of S and the statements in the tuple 
followed by the invocation in the object to which the value of S is a reference of the 
method M of the class of that object with parameters the values of S. The value of 
the statement is the simple value or reference returned to the object as the result of 
the method invocation. We assume that the basic operation symbols op are =, < on 
NAT and not, and on BOOk. The assignment, sequence and conditional statements are 
standard. In output S, the statement S of type NAT is evaluated and its value output. 
The return and commit statements are explained in the Introduction. 
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-Declarations are given as follows. Firstly, variable declarations are given by 

Vdec : := v a r  X 1 : T 1 , . . . ,  X n : T n 

Then method declarations are given by 

Mdec : := method M ( f ' :  2~): T, Vdec, S 

where T are the types of the formal parameters Y', T is the result type and S is 
the body of the method with Vdec declaring variables local to it. In the examples 
in the Introduction, we omit UNIT as result type and abbreviate return nil to return. 
Sequences of method declarations are given by 

Mdecs : := Mdecl , . . . ,  Mdecq 

class declarations by 
Cdec : := class A, Vdec, Mdecs 

and finally program declarations by 

Pdec : := Cdecl , . . . ,  Cdec~, trigger S 

where S is of the form new(A)!M(K). The statement S acts as a trigger to initiate 
the computat ion by creating and activating a root object of one of the classes A. 

2 . 2  T h e  t r a n s l a t i o n a l  s e m a n t i c s  

This paper is based on the translational semantics given in [22] which uses the 7c~- 
calculus. To illustrate the sort discipline employed, consider the symbol table classes. 
As we will see below the class "1" is encoded as an abstraction of sort (LINK[r]). The 
sorting decrees that a name of sort kINK[r] carries a pair 

ml, rn2 : METH.~[NAT, ref(~.); UNIT], METH~,/NAT; ref(A)] 

of names, one for each method of the class ( I  for Insert, S for Search). A name 
ml : METH~[NAT, ref(A); UNIT] in turn carries an integer, an object identifier of class 
ref(A), and a return link of sort RESt[UNIT], and similarly m2 : METH}[NAT;reffA)] 
carries an integer and a return link of sort RKS~[ref(A)]. We write OBJECT[T] = 
M ETH~[NAT, ret'(A); UNIT], M ETH-~[NAT; ref(A)]. 

A program Pdec =_ Cdecl , . . . ,  Cdec~, trigger S is encoded as a restricted compo- 
sition of the translations of the class definitions and the trigger 0% 

[Pd 4 d~ I . . .  I l[Cdecr]l(...) I l[s l (. . .> ). 

It has at most one free name, namely out of sort LINK[NA~ at which integer values 
may be emitted; it is used in the translation of statements of the form output S. A 
class definition is translated as a replication with a link name to pass out an object 
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identifier each time a new object is required. For example the encoding of the table 
class T has the following form: 

[T]] ned ( new ) ] ( u ins , srch ) ~ -~(  ins, srch ). O b jT ( new , ins, srch } 

where new is the link name, (ins, srch) is the object identifier, and ObjT(new , ins, srch} 
represents the object. Note that ins, srch are private names since each new instance 
of the class has a fl'esh identifier. Also, (!) is the replication operator from [12] which 
may be eliminated in favour of an agent constant. We can think of !P as PtPIPl  . . . .  

VTe do not repeat here the definition of H ;  see the papers cited above. Instead, we 
present two %-calculus agents To and T which are simplifications of [ c l a s s  T0~ and 
[ c l a s s  T~ respectively and explain some ideas of the translation using them. Thus: 

To =-- ( new ) ! ( ~,ins, srch ) ~ -~ (  ins, srch ). Eo ( new , ins, srch ) 
T - (n~w)!(,ins, sr~h)-C~-~(ins, srch). E(n~ ,  i,~, sr~h> 

where E0, E : (LINK[T], OBJECT[T]), Co, C : (LINK[T], OBJECT[T], N, OBJECT[A], OBJECT[T] 2) 
are the abstractions defined as follows (where cond is a nested conditional): 

Eo ad (r~e~, i~s, srch) 
i ,~(~, w, r). nr srch0, nr  srchr). ~. Co<..., ~, w , . . . )  
+ sr~h(x, ~). ~(,il). E o ( n ~ ,  ins, sr~h) 

Co d~_f (new, ins, srch, k, v, insI, srcht, insr, srchr) 
i~s(~.,~,r). ~o,d( ~ = k :~ .Co<. . . ,k ,~ , . . .> ,  

< k : i~z (x ,~ ,w) .<T .Co( . . . , ~ ,~ , . . . ) ,  
else : i n s r ( x , w , , r ' ) . r ' . ~ . C o ( . . . , k ; v , . . . ) )  

+ srch(~,  r) .  cond(  z = k : Tv. C0(.. �9 k, v , . . . ) ,  
< ~: sr~hI(~, ~,r'). r ' ( G  ~-~. Co(.. . ,  ~, v,...>, 

else : s,,~hr(~, w). , .%).  ~,. Co<..., ~, v,...>) 

E ~  (new, ins, srch) 
ind- ,  w, ~). ~. ,~cw (i,~t, ~rchO. n~( in~r,  sr~hr). C<.. . ,  ~, w,...> 
+ ~ h ( ~ ,  r). ~(,iO. E(n~w, in~, sr~h) 

C a=~ (new, ins, srch, x, w, insI, srchI, insr, srchr) 
i~s(x, w, r). ~. co,d ( x = k:  Ct . . . ,  ~, ~, . . . I ,  

< k:  i~sl(x, ~, W). r'. C( . . . ,k ,v , . . . ) ,  
e,se : insr(~, w, W). < C( . . . ,  k, v,...)) 

+ srch(x, ~). cond ( x = k: ~'o. C<...,  ~, v,...>, 
x < ~:  s~c~(~,r). C( . . . , k ,v , . . . ) ,  
else : s~chr(~,r) .C( . . . ,~ ,~ , . . . ) ) .  

Note that we write e.g. insl(x ,w,  ,r ')  as an abbreviation for (ur ') insI(x,w,r ' ) .  
From the expressions defining Co and C it is not hard to convince oneself (and it 
can be proved) that To and T are branching bisimilar to [c lass  To~ and [c l a s s  T] 
respectively. 
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3 Par t ia l  c o n f l u e n c e  in C C S  

In [19], a notion called "R-part ia l  confluence" due to Milner is defined in the  setting of 
pure CCS, where R is a set of labels. I t  is a generalizat ion of the  notion of confluence 
in that  a process is confluent just  in case it is R-par t ia l ly  confluent when R is the 
set of all labels. However, a par t ia l ly  confluent process, like a confluent one, must  
be de terminate  with respect to internal  moves. So this notion cannot be applied 
in a si tuat ion where internal  moves may change an agent 's  state.  In this section 
we introduce and s tudy a more general version of confluence. Before defining it we 

introduce a convenient abbreviat ion:  we write P ~ ~) P '  to mean that  P 

P"  ~ > P '  for some P" with P "  ~b P and moreover if a = r then P~ Cb P .  

Definition 3.1 Let R C s be a set of labels. An agent P is R-conf luent  if for every 

derivative Q0 of P ,  whenever Q0 ~ Q~ and Q0 ~ ~ ' Q2 with r E R and a E Act ,  
then either c~ = r and Q1 ~b Q2, or a r r and agents Q~I,Q'2 can be found so that  
Q~ ~ 4,  Q~, Q2 ==,_2_+ Qi  and Q~ ~b Qi.  

It is easy to see that  confluence implies R-confluence (for any R). However the 
converse fails as e.g. (r. a + r. b) [ r is {r}-confluent but  not confluent. Although for 
convienience we have dropped the word "part ial" ,  the definition of "R-confluence" 
generalizes that  of "R-part ial  confluence" s ta ted in [19]. In fact, a process P is R- 
par t ia l ly  confluent if and only if P is R-confluent and for every derivative Q of P ,  
whenever Q ~ Q~ then Q ~b Qq This follows from the fact tha t  if P is de terminate  

with respect to internal moves, i.e. for every derivative P~ of P ,  whenever P~ _Z~ p -  
then P'  ~ P",  then P ~ Q just  in case P ~b Q. It  is necessary to use ~b instead 
of ~ in the generalized theory of par t ia l  confluence. Roughly speaking, the reason is 
that  since we no longer require processes to be de terminate  with respect to internal  
moves, ~ cannot guarantee tha t  R-confluence is a proper ty  of equivalence classes. It 
is straightforward to show tha t  R-confluence is preserved by ~b. 

It is convenient to introduce a further abbreviat ion.  For s = (~1 �9 �9 �9 a~ E Act* we write 
>~ for the  composite relation ~ - g ~  ~ ~b ~b . . .  ~b- - - -~b .  The following result enunci- 

ates a simple but  useful proper ty  of R-confluent agents. Recall from the Prel iminaries 
that  s/(~ is the excess of s over c~. 

L e l m n a  3.2 If P is R-confluent then for any s E R* and ~ E Act ,  whenever 
s 8/c~ 

P )z P1 and P ~ - ~  P2, either c~ occurs in s and P2 ---+~ P1, or c~ does not 

occur in s and there is P0 such that  P1 ~ ~ ~ P0 and P2 ~ )~ P0. [] 

Using this l emma we can establish the first significant result.  It  implies tha t  the 
s ta te  of a restr ic ted composit ion of R-confluent agents is not changed up to ~b by an 
interaction between components via a name and a co-name in R, provided all names 
in R are restricted. 

L e m m a  3.3 If P , T  are R-confluent, P s ~~ p j  and T s T '  >~ with s , ~  E R*, 
s = r ~ . . .  r~, s = r ~ . . .  r-~, and R C_ L then ( P ] T ) \ L  ~b ( P ' [ T ' ) \ L .  [] 
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We now have a rather long definition. 

Def ini t ion 3.4 Suppose M, R are disjoint sets of names and r : M ~ R a function. 
A derivation-closed set S of R-confluent agents is (M, R, r if there is a partition 
{ Se I ~ a finite submultiset of R} of S (an (M, R, r partition) such that: 

1. i f P E S  e a n d P - - ~ P ' w h e r e a C M U R t h e n P ' E S e ;  

2. if P E $e and P - ~  P '  where m E M then P '  E Se'r 

3. if P E $e and P --5-+ P '  where r E R then r E ~ and P~ E S e-r. 

Further, S is (M, R, r if it is (M, R, r  and 

4a. if P E Sr (where r is a singleton multiset) and P "~ where m E M then 
p = = ~  ~ ;  

and S is (M, R, r if it is (M, R, r  and 

4b. i f P E S  ~ a n d r E ~ t h e n P - - ~ .  

To grasp the motivation for this definition consider the agent T from the Prelim- 
inaries. An (M,R, r partition is to capture the relationship between method 
invocations and the corresponding returns. One can view each derivative T ~ of T as 
a tree-structured collection of agents each of which represents a tree node. Each time 
a method is invoked, via ins(x, w, r) or srch(x, r), a return link (r) which does not 
occur free in T ~ is received. This name will occur free in each derivative of T' until the 
result of the call is returned. Now the notion of (M, R, r  partition express the 
relationship between ins(x, w, r), r and srch(x, r), r by setting r w, r)) = ~ and 
~b(srch(x, r)) = ~-. In more general terms, we can view r as an association between 
names of the distinguished sets M and R such that r  E R is the companion action, 
in some sense, of m E M. An (M, R, r  partition of S divides its agents, all of 
which are required to be R-confluent, into classes whose indices record the outstanding 
companion actions of their elements; conditions 1-3 ensure that this interpretation is 
accurate. Condition 4b stipulates that an agent must be able to engage immediately 
in any of its outstanding companion actions. (In the case of the object example this 
corresponds to the property that when an object invokes a method, its activity is sus- 
pended as it awaits the return of the result of that invocation.) Finally, condition 4a 
requires that if an agent has one outstanding companion action r and it may initiate 
another activity via an action in M, then it may also perform r, possibly after some 
r-actions which, however, do not change its ~b-state. The purpose of this condition 
is to ensure, in conjunction with the others, that in certain contexts the behaviour of 
the agent is indistinguishable from that of an agent obtained by pruning parts of its 
state space. This is explained in detail in the theorem which follows the definition of 
the pruning operation. 

Defini t ion 3.5 Given a labelled transition system T and a subset W of its set of 
points, T[W is the system obtained by removing all points not in W and all arrows 
incident on such points. If P E W we write/3 for the corresponding point of T[W. 
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We now have the main result in the CCS case. 

T h e o r e m  3.6 Suppose M,R  are disjoint sets of names and r : M ~ R, and 
define r : M --~ 2 by setting r  = r Suppose 7' is an (M, R, ~b)-ready 
system with (M, R, r partition {Pe}~, and T an (M, R, r system 
with (M, R, ~b)-tidy partition {T~}~. Suppose P 6 p0, T 6 T ~ and M U R G L. Let 
2 ~ be the agent corresponding to T in T [ (T~  U U{T ~ [ r a singleton multiset}). Then 
(PIT)\L ~ (P[IP)\L. 

PROOF: Let (S1,S2) E S ~ if $, = (NI[T1)\L and S2 = (N2[~)\L where P2 E 7 ~~ 
T2 E T~ P1 ~ P2, T1 "~ ' )~ T2 with s,~ 6 R*, s : r l . . . r n ,  ~ = r l . . . rn ,  and 
21I U R C_ L. Let also.(S~,S2) E B ~ if S1 = (P~IT,)\L and $2 = (P2[~) \L  where 

P2 E P ~ , T : E T  ~,P1 " ~ P 2 ,  Tf  ~ ) ~ T 2 w i t h s , ~ E R * , s = r l . . . r , , S = r l . . . r . ,  
and M U R _ L. Then B~ B1U ~b is a branching bisimulation. The most interesting 
part of the proof is as follows. 

Suppose (S~,8~) ~ B1 where S~ = (P~IT1)\L and S2 = (P~I~) \L  are as in the 
definition with P2 E P~ and T2 C T< Suppose S~ ~ Q~, and Q~ --= (P~ [ T~)\L 

where P~ ' ~  ic[ and T~ --~ T~ where m C M. Let T ~ be T o U U{TF}~. 

Since T1 ~ ~ T2, by Lemma 3.2 there are T0,~r~ such that T2 ~ To m) T~' 
and 2r~ ~ u  T~ with To ~b T:. Since T is (M, R, r To E T ~ and 

m 6 M, T 0 ~  ~ .  HenceT2 ~ ~ > T~ for some Ta. Hence as T2 is R-confluent, 
T ~ T 4  ~ ' , T~ and T~ :~ T~ for some T4 and T~ with T4 ~b Ta. Now Ta, T4 ~ T o 
and T~ e T ~' where r' = r  so the transitions ~ ~_5_~  T3 ~ ~ _K~ Ts exist 
in T IT ~. 

Now since P~ __2__~ P2, by Lemma 3.2 there are P0 and P~ such that P2 ==~ Pom.)  
P~, Po m~ P2 and _P~ *,~ P~. Because P is (M, R, ~b)-ready and P2 6 P~, P2 ~, Pa 
for some Pa. Since P2 is R-confluent, Pa ==~ P4 --~ P~ and P~ _r_~ p~ for some 
/~ and Ps with P4 ~b Pa. Thus (P2[~) \L ~ - ~  (Pa l~ ) \L  ==> (P4I~) \L  ~-+ 
(Ps ln) \L-  

It remains to note that by the construction (S1, (P4 [ T4)\L) 6 B ~ and (Q~, (P~ ] 
T~)\L) ~ B 1. These claims follow from Lemma 3.2. [::1 

4 P a r t i a l  c o n f l u e n c e  i n  t h e  % - c a l c u l u s  

We now generalize the theory presented in the previous section. 

No ta t ion  4.1 (a) We write subj(a) for the subject of the action a. If s = a l . . .  a ,  
is a sequence of actions then s.bj( ) = 

(b) Let R be a sort. We write R + (resp. R-)  for the set of actions with a positive 
(resp. negative) subject whose name is in R, and R • for R + U R- .  
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Defini t ion 4.2 Let R be a sort. A process P is R-confluent if for every derivative 

Q of P: 

1. i f p  E R +, subj(~) #subj(p) ,  Q o Q~ and Q ~ ~> Q2 then for someQ' ,  

Q1 =====*--~ O' and Q2 ==~ P - ~ b  O'; 

2. ifp~,p2 E R-,subj(pl) = s u b j ( p 2 ) , Q - ~  Q l a n d  Q :=~ m Q2 thenp~ = p2 

and QI ~ Q2; 
3. if p E R  + , Q  o Q l a n d Q ~ - - % ~  Q 2 t h e n Q l ~ b Q 2 .  

The theory presented in the previous section can be generalized, with some changes, 
to the new setting. In the space available, however, we can only state the main defi- 

nition and theorem. 
We first formulate analogues of the notions "(M, R, ~)-tidy" etc. In the CCS case 

the purpose of the function r was to record an association between names in M and 
names in R. In the present setting this is achieved in a different way, namely via a 
sorting which associates with the sort M a tuple of sorts of the form (S, R, S ~ )  where 
R does not occur in the tuples S and S ~ .  Then if c~ E M e, the name of the subject of 
c~ is m and the component, objR(~), of the object of c~ of sort R is r, then m and r are 
associated. It is appropriate also to reflect in the following definition the asymmetric 
nature of communication in the %-calculus. Thus we define "(M-, R+)-tidy" (with 
requirements on output actions whose subjects have names in M and input actions 
with subjects in R) rather than "(M, R)-tidy" etc. 

Def in i t ion  4.3 Suppose M and R are distinct sorts and the sorting E is such 
that E(M) = (S, R, S') for some tuples of sorts S and S ~ not containing R and R 
occurs in no other object sort. A derivation-closed set 3 of R-confluent processes is 
( M - ,  R+)-tidy if there is a partition {8 7 1 ~ a finite subset of R} of 3 (an (M- ,  R+) - 
tidy partition) such that: 

1. i f P E 8  7andP ~)P 'wherea~M-UR + t h e n P ' E , . q ~ ;  

2. if P E ,9 ~ and P _5+ p,  where c~ E 21,I- and r r F where r = objR(a ) then 
P '  E 87,~ ; 

3. if P E 8 7 and P - %  P~ where c~ E R + then subj(c~) = r E F and P' E S 7-~. 

Further, 3 is (M-, R+)-ready if it is (M- ,R+) - t idy  and 

4a. i f P E S  7andrETthenP ~) for a n y a E R  + w i t h s u b j ( a ) = r .  

Similarly, we define (M +, R-)-tidy (partition) andsay  3 is (M +, R-)-disciplined if it 
is (M +, R-,)-tidy with (M +, R-)- t idy partition {3r}7 and 

4b. if P E 8 r (where r is a singleton multiset) and P 

P ~ ' ,  fox some 9 c R -  w i t h  subj(/~) = v. 

~* where c~ E M + then 
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T h e o r e m  4.4 Suppose M and R are distinct sorts and the sorting N is such that 
E(M) = (:~, R, S;) for some tuples of sorts 2~ and S ~ not containing R and R occurs 
in no other object sort. Suppose 7 ~ is an (M- ,R+)- ready  set with (M- ,R+) - t idy  
partition {7~'}~ -, and T an (M+,R-)-disciplined set with (M+,R- ) - t idy  partition 
{T~'}~ -. Suppose P E 7)~, T E T $ and no derivative of (u'~)(P I T) contains a 
free occurrence in subject position of a name of sort R or of sort M. Let iP be 
the process corresponding to T in 7-[(7 ~ O U{7 TM r a  singleton multiset}). Then 

(,f)(PIT) ~b (v~)(Pli~). 

5 An  e x a m p l e  

In Section 2.4 we defined agents To and T which are mmplified encodings of the symbol 
table classes To and T respectively. To illustrate the theory of partial confluence we 
now use it to establish the equivalence of To and T in the encoding of an arbitrary 
program context, thus proving the interchangeability of the symbol table classes To 
and T as discussed in the Introduction. 

Suppose C[-] is the encoding of a program context into which an abstraction of 
sort (kINK[T]), the sort of the agents encoding the classes, may be placed. Then C[-] is 
of the form (unew)(P [.(new)) where P is the encoding of the other classes and the 
trigger of the program. Since the classes have more than one method, it is necessary 
to generalize the definitions of " (M- ,  R+)-tidy " etc. to the case when instead of single 
sorts M and R we have tuples M = M1...-Mn and R = R1. . .  R~ of distinct sorts 
where the sorting E is such that for each i, E(.~-) = (S~, R,, S[) for some tuples S, 
and S~. This is straightforward. The following theorem expresses the equivalence of 
the class definitions. 

T h e o r e m  5.1 Let C[.] = (unew)(P I .(new)) be the translation of an arbitrary 
program context and To, T as in the Preliminaries. Then C[T] ~b C[T0]. 

PROOF: We want to show that (vnew)(P To(new)) ,.~, (vnew)(P I T(new)). Let T 
be the process system generated by To(new) and T(new), and 7 ) the process system 
generated by P. Let M be the pair of sorts METH~[NAT, Tel(A); UNIT], METH~[NAT; re:~(A)] 
and R the pair RESt[UNIT],RES~[ref(A)] and consider the generalized definitions of 
"(M +, R-)- t idy"  etc. The proof involves showing: 

1. P is ( M - ,  R+)-ready. 

2. T is (M+,R-)-disciplined. 

3. To(new} ,~b T{new}, where To(new) and T(new} are the states corresponding 
to To{new} and T(new) respectively in T[(TeUU{T ~ I r a singleton multiset}). 

By 1 and 2 above, applying the main theorem in the previous section we have 
A 

(unew)(P l To(new)) ~b (,new)(P l To(new)) and 
(.new)(P l r(new)) ~b (unew)(P I T(new)). 



229 

Together with 3 and the observation that by the nature of the translation the theorem's 
condition on names of sort M or R is met, these facts complete the proof. 

In the space available we can only sketch the proof. We consider first 1. The names 
of sort R are return links for invocations via names of sort M. In the translation the 
use of these names has a very strict pattern: ~(/~, ur) where m : M is always followed 
by an action with subject r : R, and an action with subject r : R is always preceded 
by ~(/Y, vr) where m : M. As illustrated in the Preliminaries, P is a restricted 
composition and it follows that any derivative of it must (up to structural congruence) 
have the form 

Q - ( u i Y ) ( r l ( X l ) . P l  1 . . .  [rn(Xn).Pn I rtl'-]5~ ]''" I I'~.P~ [ Q') (1 )  

' ' RESt[UNIT] are pairwise distinct (as where r l , . . . , r ,  : RES~[ref(g)] and r l , . . . , r , ,  : 
private names are used for returning results), and for any action ~ E R +, Q' P ~, 
Pi P ' ,  Pi' 7 &+- As each of its elements has this form, 7 ~ is an R-confluent process 
system: Now let {:p7 ] ~- a finite subset of R} be the partition of ~ defined by setting 

I ! Q c ;Dr for Q of form (1) if ~ = { r l , . . .  ,rn, r l , . . .  ,r,~}. It may be checked that this 
partition is ( M - ,  R+)-tidy. It is clear that 7 ~ is (M- ,  R+)-ready. 

For To(new) and T(new) w e  can obtain the general form of the derivatives by 
analyzing their syntax. We_.mmay then ap.~y the technique of unique solution of process 
equations to prove that To(new) ~ T(new}. Now by the translation no derivative of 
C[T] = (unew)(P I T(new}) contains a free occurrence in subject position of a name 
of sort M or R. Hence from 1, 2 and 3 above it follows by the generalized version 
of the main theorem of the preceding section that C[T0] ~b C[T0] and C[T] ~b C[T] 

and hence g[T] ~b g[T0]. Moreover since out is the only free name it follows that 
C[T] .~b e[r0]. [] 

6 C o n c l u s i o n  

The notion of partial confluence introduced here is worthy of further investigation. 
In addition to the intrinsic interest of the theory it may be useful in e.g. the study 
of concurrency control in databases [15]. As a further example we intend to study 
concurrent operations on binary search trees and B-trees as presented in e.g. [9, 10]. 
Also of interest are connections with non-interleaving semantics of concurrent systems 
and action/process refinement as in e.g. [3]. 

The proof presented in Section 5 can be viewed, as mentioned in the Introduction, 
as establishing the soundness of particular instances of general transformation rules 
such as those proposed in [6]. Those rules stipulate conditions under which (in the 
notation of the present paper) a statement of the form S; return S' may be replaced by 
return S'; S, and a statement of the form return X!M(Y) by commit X!M(Y). These 
conditions refer to termination of (executions of) statements and to properties of a 
distinguished class' of program variables called "private references". No semantic ac- 
count of "private references" if given in [6], nor is it stipulated how they may be used in 
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programs. It appears that to satisfy the side conditions of the rules in question, quite 
severe syntactic restrictions may be necessary. Moreover the requirement to estab- 
lish termination of (executions of) statements which may invoke methods in systems 
of objects with dynamically-evolving structure may be very demanding. The theory 
developed in this paper provides a framework, at an appropriate level of abstraction, 
for reasoning rigorously about the behaviours of systems of objects whose reference 
structures are (forests of) trees, tt remains a tough challenge to provide a comparable 
framework on which to base a proof of the soundness of general transformation rules 
whose side conditions are not unduly restrictive or intractable. 
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