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Abstract. We introduce the notion of strongly concatenable process as a refine- 
ment of concatenable processes [3] which can be expressed axiomatically via a 
funetor Q[_] from the category of Petri nets to an appropriate category of sym- 
metric strict monoidal categories, in the precise sense that,  for each net N, the 
strongly concatenable processes of N are isomorphic to the arrows of Q[N]. In ad- 
dition, we identify a corefleetion right adjoint to Q[_] and characterize its replete 
image, thus yielding an axiomatization of the category of net computations. 

Introduction 
Petri nets, introduced by C.A. Petri [8] (see also [10]), are unanimously con- 
sidered among the most representative models for concurrency, since they are 
a fairly simple and natural model of concurrent and distributed computations. 
However, Petri nets are, in our opinion, not yet completely understood. 

Among the semantics proposed for Petri nets, a relevant role is played by the 
wrious notions of process [9, 4, 1], whose merit is to provide a faithful account of 
computations involving many different transitions and of the causal connections 
between the events occurring in a computation. However, process models, at 
least in their standard forms, fail to bring to the foreground the algebraic struc- 
ture of nets and their computations. Since such a structure is relevant to the 
understanding of nets, they fail, in our view, to give a comprehensive account of 
net behaviours. 

The idea of looking at nets as algebraic structures [10, 7, 13, 14, 2] has been 
given an original interpretation by considering monoidal categories as a suitable 
framework [6]. In fact, in [6, 3] the authors have shown that  the semantics 
of Petri nets can be understood in terms of symmetric monoidal categories-- 
where objects are states, arrows processes, and the tensor product and the arrow 
composition model, respectively, the operations of parallel and sequential com- 
position of processes. In particular, [3] introduced concatenable processes--the 
slightest variation of Goltz-Reisig processes [4] on which sequential composition 
can be defined--and structured the concatenable processes of a Petri net N as 
the arrows of the symmetric strict monoidal category 7~[N]. This yields an ax- 
iomatization of the causal behaviour of a net as an essentially algebraic theory 
and thus provides a unification of the process and the algebraic view of net 
computations. 

However, also this construction is somehow unsatisfactory, since it is not 
functorial. More strongly, given a morphism between two nets, i.e., a simulation 
between them, it may not be possible to identify a corresponding monoidal 
functor between the respective categories of computations. This fact, besides 
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showing that our understanding of the algebraic structure of Petri nets is still 
incomplete, prevents us from identifying the category (of the categories) o /ne t  
computations, i.e., from axiomatizing the behaviour of Petri nets 'in the large'. 

This paper presents an analysis of this issue and a solution based on the new 
notion of strongly concatenable processes, introduced in Section 4. These are 
a slight refinement of concatenable processes which are still rather close to the 
standard notion process: they are Goltz-Reisig processes whose minimal and 
maximal places are linearly ordered. In the paper we show that, similarly to 
concatenable processes, also this new notion can be axiomatized as an algebraic 
construction on N by providing an abstract symmetric strict monoidal category 
Q[N] whose arrows are in one-to-one correspondence with the strongly concaten- 
able processes of N. The category Q[N] constitutes our proposed axiomatization 
of the behaviour of N in categorical terms. 

Corresponding directly to the linear ordering of pre- and post-sets which 
characterizes strongly concatenable processes, the key feature of Q[_] is that, 
differently from P[_], it associates to the net N a monoidal category whose 
objects form a free non-commutative monoid. The reason for renouncing to 
commutativity when passing from P[_] to Q[_], a choice that at first may seem 
odd, is explained in Section 2, where the following negative result is proved: 
under very reasonable assumptions, no mapping from nets to symmetric strict 
monoidal categories whose monoids of objects are commutative can be lifted to 
a functor, since there exists a morphism of nets which cannot be extended to 
a monoidal functor between the appropriate categories. Thus, abandoning the 
commutativity of the monoids of objects and considering strings as representa- 
tives of multisets, i.e., considering strongly concatenable processes, seem to be 
a choice forced upon us by the aim of a functorial algebraic semantics of nets. 
As a consequence of this choice, any transition of N has many corresponding ar- 
rows in Q[N], actually one for each linearization of its pre-set and of its post-set. 
However, such arrows are 'related' to each other by a naturality condition, in the 
precise sense that, when collected together, they form a natural transformation 
between appropriate functors. This naturality axiom is the second relevant fea- 
ture of Q[_] and it is actually the key to keep the computational interpretation 
of the new category Q IN], i.e., the strongly concatenable processes, surprisingly 
close to that of 7)IN], i.e., the concatenable processes. 

Concerning our main issue, v/z. functoriality, in Section 3 we introduce 
a category TSSMC ~ of symmetric strict monoidal categories with free non- 
commutative monoids of objects, called symmetric Petri categories, whose ar- 
rows are equivalence classes--accounting for our view of strings as representa- 
tives of multisets--of those symmetric strict monoidal functors which preserve 
some further structure related to nets, and we show that Q[_] is a functor from 
Petri, a rich category of nets ifitroduced in [6], to TSSMC ~. In addition, we 
prove that Q[_] has a coreflection right adjoint A/'[_]: TSSMC ~ --+ Pet~. This 
implies, by general reasons, that Petri  is equivalent to an easily identified core- 
flective subcategory of TSSMC | namely the replete image of Q[_]. The category 
TSSMC | together with the functors Q[_] and N[_], constitutes our proposed ax- 
iomatization ('in the large') of Petri net computations in categorical terms. 
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Although this contribution is a first attempt towards the aims of a functo- 
rim algebraic semantics for nets and of an axiomatization of net behaviours 'in 
the large', we think that the results given here help to deepen the understand- 
ing of the subject. We remark that the refinement of concatenable processes 
into strongly concatenable processes is similar and comparable to the one which 
brought from Goltz-Reisig processes to them, and that the result of Section 2 
makes strongly concatenable processes 'unavoidable' if a functorial construction 
is desired. In addition, from the categorical viewpoint, our approach is quite 
natural, since it is the one which simply observes that multisets are equivalence 
classes of strings and then takes into account the categorical paradigm, following 
which one always prefers to add suitable isomorphisms between objects rather 
than considering explicitly equivalence classes of them. Finally, concerning the 
use of category theory in semantics, and in particular in this paper, it may be 
appropriate to observe here that the categorical framework made it possible to 
discover and amend a significant 'anomaly' of i~ which, although of general 
relevance, would have not been easily noticed in other frameworks. 

Due to the extended abstract nature of this exposition, most of the proofs 
are omitted. Some preliminary related results appear also in [11]. 

Notation. W h e n  dea l ing  wi th  a ca t ego ry  C in wh ich  arrows are  m e a n t  to  represen t  c o m p u t a -  
t ions ,  in  o rder  to s t ress  t he i r  c o m p u t a t i o n a l  in t e rp re ta t ion ,  we wr i te  ar row c o m p o s i t i o n  f rom 
left to  r ight ,  i.e., in t h e  d i a g r a m m a t i c  order ,  a n d  we deno te  it  by  _ ; _. T h e  reader  is referred 
to  [5] for t he  ca tegor ica l  concep t s  used.  

Acknowledgements. I wish  to  t h a n k  J o s s  M esegue r  a n d  Ugo M o n t a n a r i  to  w h o m  I a m  indeb t ed  
for several  d i scuss ions  on t h e  sub jec t .  T h a n k s  to  Mogens  Nielsen,  Claudio  H e r m i d a  a n d  
J a a p  van  O o s t e n  for the i r  va luab le  c o m m e n t s  on  an  ear ly vers ion  of  th i s  paper .  

1 Concatenable Processes 
In this section we recall the notion of concatenable processes [3]. 

Notation. Given  a set  S, we deno te  by  S $ t h e  set  of  finite multisets of  S, i.e., t h e  set  of  all 
f unc t i ons  f rom S to t h e  set  w of n a t u r a l  n u m b e r s  which  yield nonzero  values  on ly  on  f ini tely 
m a n y  s @ S. We  recall t h a t  S $ is a commutative monoid, ac tua l ly  t he  free c o m m u t a t i v e  
m o n o i d  on S, u n d e r  t h e  ope ra t i on  of mul t i se t  un ion ,  in t he  following deno ted  by  •, w i th  un i t  
element t h e  e m p t y  mul t i se t  0. 

DEFINITION 1.1 (Petri  Nets )  
A Petr i  net  is a s tructure N = (O~v,O~.TN~ 1.  _+ StN), where TN is a set o f  
transitions, SN is a set o f  places, and 0 ~ and 0 1  are functions. 
A morphism o f  Petri  nets  from No to N1 is a pair ( f ,  g), where f :  TNo --* TN1 is a 
funct ion and g: S~o --+ S~I  is a monoid  homomorphism such that  ( f  , g) respects 
source and target, i.e., 0 i o f = g o 0 i for i = O, 1. N1 No 
This  de/~nes the category Petvt of Petri  nets. 

This describes a Petri net precisely as a graph whose set of nodes is a free 
commutative monoid, i.e., the set of f inite multisets on a given set of places. 
The source and target of an arc, here called a transition, are meant to represent, 
respectively, the markings consumed and produced by the firing of the transition. 
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DEFINITION 1.2 (Process Nets and Processes) 
A process net is a finite, acyclic net 0 such that t'or all t e To, O~ and O~(t) 
are sets (as opposed to multisets), and for all to • tl e To, Ok(to ) f l0~( t l )  -- 0 ,  
for i = 0, 1. Given N C Petr i ,  a process of N is a morphism 7r: 0 --+ N, where O 
is a process net and ~r is a net morphism which maps places to places (as opposed 
to morphisms which map places to markings). 

We consider as identical process nets which are isomorphic. Consequently, 
we shall make no distinction between two processes ~r: O ~ N and # :  O' --* N 
for which there exists an isomorphism 99: O ~ O' such that 7r' o 99 --- zr. 

The  equivalence of the following definition of 79[N] with the original one in [3] 
has been proved in [12]. The reader is referred to the cited works for a more 
explicit description of P[N],  a wider discussion, and for related examples. 

DEFINITION 1.3 (The Category P[N]) 
The category 7)[N] is the monoidal quotient of ~(N), the symmetric strict 
monoidal category whose monoid of objects is S~ and whose arrows are freely 
generated from the transitions of N, modulo the axioms 

V~,b = id~eb if  a, b E SN a n d a t b ,  

t ; ( i d ~ | 1 7 4  = t i f t c T N  a n d a E S N ,  

( id~|174 = t i f t E T N  a n d a C S N ,  

where 7 is the symmet ry  isomorphism ofg"(N).  

The arrows of 79[N] have a nice computational interpretation as concaten- 
able processes, a slight refinement of the classical notion of process consisting 
of a suitable labelling of the minimal and the maximal places of process nets 
which distinguishes among the different instances of a place in a process of N.  
The role of the symmetries--which in a symmetric monoidal category are the 
arrows generated via tensor and composition from the components of the symme- 
try isomorphism and the identities--is to regulate the flow of causality between 
subprocesses by permuting instances of places appropriately, i.e., by exchanging 
causes. In this view, the first axiom says that  permuting different places does not 
change the causal relationships, and the remaining two that  the same happens 
when permuting places in the pre- and in the post-set of a transition. Using the 
labels, it is then easy to define an operation of concatenation of concatenable pro- 
cesses and, thus, a category CP[N] whose objects are the multisets S~ and whose 
arrows are the concatenable processes of N. It has been proved in [3] that  CT)[N] 
is a symmetric strict monoidal category and that  the following result holds. 

THEOREM 1.4 (Concatenable Processes vs. 7)[_]) 
CP[N] and PIN] are isomorphic. 

2 A Negative Result about Functoriality 
Among the pr imary requirements usually imposed on constructions like 7)[_] 
there is that  of functoriality. One of the main reasons supporting the choice 
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of a categorical treatment of semantics is the need of specifying further the 
structure of the systems under analysis by giving explicitly the morphisms or, 
in other words, by specifying how the given systems simulate each other. This, 
in turn, means to choose precisely what the relevant (behavioural) structure of 
the systems is. It is then clear that such morphisms should be preserved at 
the semantic level. In our case, the functoriality of P[_] means that if N can 
be mapped to N'  via a morphism (f, g), which by the very definition of net 
morphisms implies that N can be simulated by N', there must be a way, namely 
7)[<f, g>], to see the processes of N as processes of N'. However, this is not 
possible for 7)[_]. The problem, as illustrated by the following example, is due 
to the first axiom in Definition 1.3 which, on the other hand, is exactly what 
makes 7)[N] capture quite precisely the notion of processes of N. 

EXAMPLE 2.1 (P[_] cannot be a functor) 
Consider the nets N and N in the picture below, where we use the standard 
graphical representation of  nets in which circles are places, boxes are transitions, 
and sources and targets are directed arcs. We have SN -~ {a0, al, b0, bl} and TN 
consisting of the transitions t0:a0 -+ bo and t l :a l  ~ bl, while S 9 = {d, b0,bl} 
and T 9  contains to: ~ -+ bo and tl  : ~ -~  b l .  

Consider now the net morphism ( f  , g> where f ( t i )  -- ti, g(ai) = a and g(bi) = bi, 
for i = 0, 1. We c/aim that (f,  g) cannot be extended to a monoidal functor 
7)[(1, g>] from 7)[N] to 7)[2r Suppose in fact that F is such an extension. Then, 
it  must  be F(t0 |  = F(t0) | F(tl) = [0 |  Moreover, since to |  = t l  |  
we would have 

t0 | ---- F(tx | to) : fi | ~-0, 

which is impossible since the leftmost and the rightmost terms above are different 
processes in 7)[_]~-], as follows from Definition 1.3. 

Formally speaking, the problem is that the category of symmetries sitting 
inside 7)[N], say Symn ,  is not free on N. Moreover, it is easy to verify that 
as soon as one imposes axioms on 7)[N] which guarantee to get a functor, one 
annihilates all the symmetries and, therefore, destroys the ability of P[N] of 
dealing with causality. It is important to observe that it would be definitely 
meaningless to try to overcome the problem simply by dropping from Petri 
the morphisms which 'behave badly': the morphism (f, g) of Example 2.1, for 
instance, is clearly a simulation and, as such, it should definitely be allowed by 
any serious attempt to formulate a definition of net morphisms. The following 
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result shows tha t  the problem illustrated in Example  2.1 is serious, actually deep 
enough to prevent any naive modification of P[_] from being functorial. 

THEOREM 2.2 (No simple variation of P[_] can be a functor) 
Let  2([_] be a function which assigns to each net N a symmetric strict monoidal 
category whose monoid of  objects is commutative and contains the places of  N .  
Suppose that  the group of  symmetries at any object of  X[N] is finite and suppose 
that  there exists a net N with a place a E N such that, for each n > 1, we have 
that the components at (ha, na) of the s ym m et ry  isomorphism of  X[N] is not an 
identity. Then, there exists a Petri net morphism (f ,  g): No --~ N1 which cannot 
be extended to a symmetric strict monoidal functor from X[N0] to X[NI].  

Proof. (Sketch.) Let N '  be a net such that, for each n, we have c~ . . . .  r id, 
where c' is the symmetry natural isomorphism of X[Nt], and let N be a net with two 
distinct places a and b and with no transitions, and let c' be the symmetry natural 
isomorphism of X[N]. Since the group of symmetries at ab is finite, there is a cyclic 
subgroup generated by ca,b, i.e., there exists k > 1, the order of the subgroup, such 
that (C~,b) k = id and (C~,b) '~ ~ id for any 1 ~ n < k. Let p be any prime number 
greater than k. Then, exploiting general properties of monoidal categories and 
reasoning as in Example 2.1, one sees that  the Petri net morphism (f, g): N --* N' ,  
where f is the function O ---* TN, and g is the monoid homomorphism such that 
g(b) = (p - 1)a and g is the identity on the other places of N, cannot be extended 
to a symmetric strict monoidal functor F: X[N] ---* X[N']. 4~ 

The contents of the previous theorem can be restated in different terms by 
saying tha t  in the free category of symmetr ies  on a commutat ive  monoid M 
there are infinite homsets.  This means tha t  dropping axiom ~/a,b = idatb in 
the definition of 7)[N] causes an 'explosion' of the s t ructure  of the symmetries.  
More precisely, if we omit  that  axiom we can find some object u such that  
the group of symmetries  on u has infinite order. Of course, since symmetries 
represent causality, and as such they axe integral par ts  of processes, this makes 
the category so obtained completely useless for the application we have in mind. 

The hypotheses of Theorem 2.2 can be certainly weakened in several ways, at 
the expense of complicating the proof. However, we avoided such complications 
since the conditions s ta ted above are already weak enough if one wants to regard 
A'[N] as a category of processes of N.  In fact, since places represent the atomic 
bricks of which states are built, one needs to consider them in A'[N], since sym- 
metries regulate the 'flow of causality' ,  there will be c~a,,~a different from the 
identity, and since in a computat ion we can have only finitely many  'causal- 
ity s treams' ,  there will not be categories with infinite groups of symmetries.  
Therefore, the given result means that  there is no chance to have a functorial 
construction along the lines of 7)[_] for the categories of processes of Petri  nets 
if their objects form commutat ive  monoids. 

3 The Category Q[N] 
In this section we introduce the symmetr ic  strict monoidai category Q[N] which 
is meant  to represent the processes of the Petr i  net N and which supports  a 
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functorial construction. This will allow us to characterize the category of the 
categories of net behaviours, i.e., to axiomatize net behaviours 'in the large'. 

Theorem 2.2 shows that,  necessarily, there is a price to be payed. Here, the 
idea is to renounce to the commutativity of the monoids of objects. More pre- 
cisely, we build the arrows of Q[N] starting from the Sym*N, the 'free' category 
of symmetries over the set St; of places of N. Similarly to Symlv , Sym* N serves 
a double purpose: from the categorical point of view it provides the symmetry 
isomorphism of a symmetric monoidal category, while from a semantic perspec- 
tive it regulates the flow of causal dependency. Generally speaking, a symmetry 
in Q[N] should be interpreted as a 'reorganization' of the tokens in the global 
state of the net which, when reorganizing multiple instances of the same place, 
yields a exchange of causes exactly as Sym N does for P[N]. 

Notation. In  t h e  following, we use  S | to  indica te  t h e  set  of  (finite) s t r i ngs  on set  S,  more  
c o m m o n l y  deno t ed  by S*.  In  t h e  s ame  way, we use  | to  deno t e  s t r ing  conca t ena t i on ,  while  0 
deno tes  t h e  e m p t y  s t r ing .  As  usua l ,  for u E S | we ind ica te  by [u[ t h e  l eng th  of u a n d  by ui  

i t s  i - th  e lement .  

DEFINITION 3.1 (The Category of Permutations) 
Let S be a set. The category Sym* s has for objects the strings S | and an arrow 
p: u --~ v f f  and only i f  p is a permutation of [u[ elements, and v is the string 
obtained by applying the permutation p to u, i.e., vp(i) = ui. 
Arrows composition in Sym* s is obviously given by the product  o f  permutations,  
i.e., their composition as functions, here and in the following denoted by _ ; _. 

Graphically, we represent an arrow p: u -+ v in Sym* s by drawing a line 
between ul and vp(i), as for example in Figure 1. Of course, it is possible to define 
a tensor product on Sym* s together with interchange permutations which make 
it a symmetric monoidal category (see also Figure 1 where 7 is the permutation 
{1 --~ 2, 2 --~ 1)). 

DEFINITION 3.2 (Operations on Permutations) 
Given the permutat ions p: u -+ v and pt : u' -+ v ~ in Sym* s their parallel compo- 
sition p | p~ : u | u t -+ v | v r is the permutation such that 

i f p(i) if0 < i _< [ul 
( p'(i -I l) + ifJul < i <_ + I 'f 

Given a permutation ~r of  m elements and the strings ui E S | i =- 1 , . . . ,  m,  the 
interchange permutation 7r(ul , . . . ,  Um) is the permutat ion p such that 

h - 1  h - 1  h 

p(i)=i- l Jl+ I jl 
j=l  ~(/)<~(h) j=l j=l 

It is easy to see that | extends to a functor | Sym* s x Sym* s --+ Sym* s 
making Sym* s a strict monoidal category. Moreover, the family of interchange 
permutations ~ -- {~(u, v)}~,~esym* s provides the symmetry isomorphism which 
makes Sym* s a symmetric strict monoidal category. 
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( a a . b a  a a b b) 

Figure 1: The  monoidal s t ructure of Sym* s 

THEOREM 3.3 ( Sym* s is free) 
Let S be a set, let C be a symmetric strict monoidal category and let F be a 
function from S to the set of objects of C. Then, there ex/sts a unique symmetric 
strict monoidal functor F: Sym* s --+ C__ extending F.  

The preceding result proves that  the mapping  S ~ Sym*s extends to a left 
adjoint functor from Set, the category of sets, to SSMC, the category of symmet-  
ric strict monoidal categories. Equivalently, Sym*s is the free symmetr ic  strict 
monoidal category on the set S, which is the key point about  Sym* s. 

In the following, given a string u 6 S | let AA(u) denote the multiset corre- 
sponding to u, and, given a net N,  let Sym* N the category Sym*sN. 

DEFINITION 3.4 (The  category Q[N]) 
Let N be a net in Petv[. Then Q[N] is the category which includes Sym~ as 
subcategory and has as additional arrows those defined by the following inference 
rules: 

t: M(u) -~ M(v)  in TN 
t~,v: u --+ v in Q[N] 

~: u --+ v and fl: u '  ~ v '  in Q[N] a: u ~ v and •: v --+ w in Q[N] 
c~ | fl: u | u '  ~ v | v '  in Q[N] ~ ; •: u ~ w in Q[N] 

plus the axioms expressing the fact that  Q[N] is a symmetr ic  strict monoidal 
category with symmet ry  isomorphism 7, and the following axiom ('naturality') 
involving (instances of) transitions and symmetries. 

p ; t,,,,v, = t,~,v ; q, where p: u --* u '  and q: v --+ v' in Sym* N. (~) 

Exploiting the freeness of Sym*N, it is easy to prove the following completely 
axiomatic description of Q[N], which can be useful in many  contexts. 
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PROPOSITION 3.5 
Q[N] is ( isomorphic  to) the category C whose objects  are the  e lements  o f  S ~  
and whose  arrows are generated by  the inference rules 

u e S ~  u, v in S g  t: M(u )  ~ M ( v )  in TN 
idu: u --* u in C__ cu,v: u | v --+ v | u in C__ tu,v: u --* v in C__ 

a: u --+ v and fl: u I --* v t in C__ a: u --+ v and fl: v --+ w in C 
a | fl: u | u I --~ v @ v t in C__ a ; fl: u --+ w in C__ 

m o d u l o  the  ax ioms  express ing tha t  C__ is a strict  monoidal  category, namely ,  

a ; i d . = a = i d u ; a  and ( a ; f l ) ; 8 = a ; ( f l ; ~ ) ,  

( a | 1 7 4 1 7 4 1 7 4  and i d o @ a = a = a @ i d o ,  

| idv  = id | and  | ; (8  | 8 ' )  = ; 8 )  | ; 

the  la t ter  whenever  the  right hand  term is defined, the following ax ioms  express- 
ing that  C is s y m m e t r i c  wi th  s y m m e t r y  i somorph ism c = {cu,v}~,veS ~ 

c~,.| = (c~,. | ida)  ; ( id .  @ c~,,~,), 

c~. , , . , ; ( f l@a) = ( a |  f o r a : u ~ v ,  f l : u t - + v ' i n C ,  

cu,v ; c,,u = idu| 

and  the  fol lowing axiom corresponding to ax iom ( ~2 ). 

p ; t~,,r ; q = t~,v, where p: u --+ u t and q: v~ --+ v are s y m m e t r i e s  o f  C.  

We show next that  Q[_] can be lifted to a functor from the category of Petri  
nets to an appropriate category of symmetric strict monoidal categories and 
equivalence classes of symmetric strict monoidal functors. The role of such an 
equivalence is to take into account that we look at the strings of SN ~ as con- 
crete representatives of the multisets of SN r and, therefore, we want to consider 
perfectly equal those functors which differ only by picking up different, yet com- 
patible, linearizations of multisets. 

DEFINITION 3.6 (Symme t r i c  Pe t r i  Categories) 
A s y m m e t r i c  Pe t r i  category is a s y m m e t r i c  s tr ict  monoidal  category C in SSMC 
whose  mono id  o f  objec ts  is the free mono id  S | for some set S. 

For any pair C and 19 of symmetric Petri  categories, consider the binary 
relation 9~C,D on the symmetric strict monoidal functors from C to D defined as 
F :Rc,t) G if and only if there exists a monoidal  natural i somorphism a: F ~ G 
whose components are all symmetr ies .  Clearly, 9~__C,D is an equivalence relation 
and the family 9~ --- {:RC,D}C, DcSSMr is a congruence with respect to functor 
composition. Therefore, the following definition makes sense. 

DEFINITION 3.7 (The  category SSMC | 
Let  SSMC | be the  quot ient  o f  the  full subcategory  of  SSMC consis t ing o f  the 
s y m m e t r i c  Petr i  categories modu lo  the congruence 5~. 
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THEOREM 3.8 ((~[_]: Petr~ - -  SSMC | 
Q[_] extends to a functor from Petr~ to SSMC | 
Proof. (Sketch.) Let (f,g):N0 --~ N1 be a morphism of Petri nets. In order define 

Q[(f, g)] we need to be able to embed N in Q[N]. To this end, consider any function 
inNx: S~, --~ S~, such that .h/l(intr (v)) = u. Since g is a monoid homomorphism 
from the free monoid S~o to SsNx, it corresponds to a unique function g~ from Str 
to S~x , whence we obtain ~ = {nN~ o g': Slvo ~ S~x, i.e., a function from SNo to 
the set of objects of Q[N1]. Then, from Theorem 3.3, we have the symmetric strict 
monoidal functor F': SymsN ~ --~ Q[N1]. Finally, we extend F' to a functor Q[(f, g)] 
from Q[N0] to Q[N1] by considering the symmetric strict monoidal functor F which 
coincides with F' on SymNo and maps t~,.:u -+ v to f(t)F(~),F(.):F(u) -~ F(v). 
Since monoidal functors map symmetries to symmetries, and since f(t) is transition 
of N1, it follows immediately that F preserves axiom (~), i.e., that F is well defined. 
Moreover, since a different choice of intv~ would clearly give a functor G such that 
F ~R G, we have that Q[_] does not depend on inN1. It is easy to check that this 
definition makes Q[_] into a functor. 

However, the category SSMC | is still too general for our purpose. In partic- 
ular, it is easily noticed that  Q[_] is not full. This signifies that  SSMC | has too 
httle structure to represent net behaviours precisely enough; equivalently, since 
the structure of the objects of a category C is 'encoded' in the morphisms of C, 
it signifies that  the morphisms of SSMC | do not capture the structure of sym- 
metric Petri  categories precisely enough. Specifically, the transitions, which are 
definitely primary components of nets, and as such are treated by the morphisms 
in Petri ,  have no corresponding notion in SSMC| we need to identify such a 
notion and refine the choice of the category of net computations accordingly. 

The key to accomphsh our task is the following observation about axiom (4) 
in Definition 3.4: as already mentioned, it simply expresses that  the collection of 
the arrows t~,~ of Q[N], for t E Tic and u,v  E S~r is a natural  transformation. 
Namely, for C a symmetric Petri  category with objects S | and v a multiset in 
S $, let Symc_,~ be the subcategory of C consisting of those objects u E S | such 
that ~4(u) = v and the symmetries between them, and let inc,~ be the inclusion 
of Symc_,~ in __C. Then, for v, v'  E S ~, one obtains a pair of parallel functors ~r_c,, 
and ~rc,., by composing inc,~ and inc,~, respectively with the first and with the 
second projection of Symc,v x Symc_,v,. 

Symc_,~ 

l r  C.C., L, 

Symc , x Symc ,, ~ C 

t 

Symc,~, 

It follows directly from the definitions that,  when C is Q[N], axiom (~I,) states 
exactly that,  for all t :v  --~ v' E TN, the set {tu,, I ~r = v, Ad(v) = v'} is a 
natural transformation from ~rQ[N],. to 7rQ[g],~,. 
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A further very relevant property of the transitions of N when considered 
as arrows of Q[N] is that  of being decomposable as a tensor only trivially and 
as a composition only by means of symmetries. This is easily captured by the 
following notion of primitive arrow. 

DEFINITION 3.9 (Primitive Arrows) 
Let  C be a symmetric Petri category. An  arrow T in C__ is primitive i f  

i) T is not a symmetry;  

ii) "r ---- a ; fl implies a is a symmetry  and/~ is primitive, or vice versa; 

iii) ~ -~ a | fl implies a ~ ido and fl is primitive, or vice versa. 

A simple inspection of Definition 3.4 shows that  the only primitive arrows in 
Q[N] are the arrows t~,,,, for t: A4(u) ~ A4(v) a transition of N. As a conse- 
quence, the natural  transformations T: ZrQ[N],~ -~ ~rQ[N],v' whose components are 
primitive are in one-to-one correspondence with the transitions of N.  Following 
the usual categorical paradigm, we then use the properties tha t  characterize the 
transitions of N in Q[N], expressed in abstract categorical terms, to define the 
notion of transition in any symmetric Petri category. 

DEFINITION 3.10 (Transitions of Symmetric Petri  Categories) 
Let  C__ be a symmetric Petri category and let S | be its monoid of  objects. A 
transition of  C__ is a natural transformation T: ZrC,~ -~ ~rc_,u, , for u, u ~ in S e ,  whose 
components ~'~,v are primitive arrows of C. 

It  is clear now what the extra structure required in SSMC | is: transitions 
must be 'preserved by morphisms of symmetric Petri  categories. Formally, for 
_C and D in SSMC | and F: C --~ D__ in SSMC, F respects transitions if, for each 
transition T: ~_C,u -~ 1r_c,~, of _.C, there exists a transition 7~: ~rD__,v -~ ~rD__,o, of D__ 
such that  F(T~,.) ----- T' for all (u, v) in Symc_,u x Sym c v,; in this case, we F(~),F(~) _, 
say that  T ~ corresponds to T via 17. 

The following lemma shows that  a symmetric strict monoidal functor which 
respects transitions defines a mapping between sets of transitions and that ,  more- 
over, this property extends to the arrows of SSMC | It follows immediately that  
Definition 3.12 is well given. 

LEMMA 3.11 
I f  17: C C_ -+ D__ respects transitions, then for any transition T Of C C, there exists a 
unique transition ~r ~ of  D_D which corresponds to T via !7. 
I f  17 ~ G, then 17 respects transitions i f  and and only i f  G does so, and then "r t 
corresponds to "r via 17 i f  and only i f  ~r I corresponds to T via G. 

DEFINITION 3.12 (Symmetric Petri Morphisms and the Category TSSMC | 
A morphism of symmetric Petri category is an arrow in SSMC | which respects 
transitions. We shall use TSSMC | denote the (IIuf) subcategory of  SSMC | 
whose arrows are the morphisms of  symmetric Petri categories. 

Finally, it is easy to prove that Q[_] is actually a functor to TSSMC | 
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PROPOSITION 3.13 (Q[_]: Pe t r i  -+ TSSMC | 
The functor Q[_] restricts to a functor from Pet r i  to TSSMC | 

Proof. It is enough to verify that, for any morphism (f ,g):No --* N1 in Petr t ,  a 
representative F of Q[(f, g)] respects transitions. This follows at once, since f is a 
function TNo --* TN1, F(t=,~) = f(t)F(=),F(.), and the transitions of Q[N~] are exactly 
the natural transformations {t=,. [ A4(u) = u, A4(v) = u'} for t:u --+ u' E TN~. r 

Interestingly enough, we can identify a functor from TSSMC | to Pe t r i  which 
is a coreflection right adjoint to Q[_]. It is worth remarking that  this answers to 
a possible legitimate doubt about the category TSSMC| in principle, in fact, 
the functoriality of Q[_] could be due to a very tight choice of the target cate- 
gory, e.g., the congruence :R could induce too many isomorphisms of categories 
and Q[_] make undesirable identifications of nets. The existence of a coreflec- 
tion right adjoint to Q[_] is, of course, the best possible proof of the adequacy 
of TSSMC| it implies that  Pe t r i  is embedded in it fully and faithfully as a 
coreflective subcategory. This result supports our claim that  TSSMC | is an 
axiomatization of the category of net computations. 

THEOREM 3.14 (Q[_] ~ JV'[_]: Pe t r i  --+ TSSMC | ) 
Let C__ be a symmetric Petri category, and let S | be its monoid of  objects. Define 
Af[C__] to be the Petri net (0 ~ 01: T -+ S ~), where 

�9 T is the set of  transitions T: 7rC,~ -:* 7rC,,, of C; 

�9 O0(T:Trcw-Z+TrC,v,) w=/~ and Ol(T:TrC,v-z+TrCw,) =b' t .  

Then, Af[_] extends to a functor TSSMC | -+ Pe t r i  which is right adjoint to Q[_]. 
In addition, since the unit is an isomorphism, the adjunction is a coreflection. 

Proof. For any symmetric Petri category C, there is a (unique) symmetric strict 
monoidal functor ~C: QJV'[_C_] ---r __C which is the identity on the objects and which 
sends the component at (u, v) of the transition ~': v ---r v' of JV'[_q to the component 
T,,,. of the natural transformation ~-: Ir__c,~ ~+ ~rc,~, : Symc,v • Symc__,,, --+ C__. Since it 
clearly preserves transitions, we have that ~C is a (representative of a) morphism of 
symmetric Petri categories. It is not difficult to prove that ec__ enjoys the couniversal 
property making it the counit of the adjunction. The unit ~/N: N --~ A/Q[N] is the 
morphism (f, id), where f sends t E TN to {t~,,~} e T~Q[NI, which is an iso. r 

Finally, we can identify the replete image of Q[_] in TSSMC ~, i.e., identify 
those symmetric Petri  categories which are isomorphic to Q[N], for some net N.  

THEOREM 3.15 ( P e t r i  ~ PSSMC.) 
Let PSSMC be the full subcategory of TSSMC | consisting of  those symmetric 
Petri categories C' whose arrows can be generated by tensor and composition 
from symmetries, and components of transitions of  C, uniquely up to the axioms 
of  symmetric strict monoidal categories, i.e., the axioms in Proposition 3.5, and 
the naturality of  transitions, i.e., axiom ( ~2 ). 
Then, PSSMC and Petri. are equivalent via Af[_] and Q[_]. 
Proof. By Theorem 3.14, it is enough to show that C belongs to PSSMC if and 

only if eC: Q2r --+ C is an isomorphism, which is easy. ,,r 
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4 Strongly Concatenable Processes 
In this section we introduce a slight refinement of concatenable processes and we 
show that they are abstractly represented by the arrows of the category Q[N]. In 
other words, we find a process-like representation for the arrows of Q[N]. This 
provides a functorial construction for the category of the processes of a net N. 

DEFINITION 4.1 (Strongly Concatenable Processes) 
Given a petri net N in Pet~, a strongly concatenable process of N is a tuple 
(~r, g, L) where 7r: 0 -~ Y is a process of N, and g: min(O) ~ {1, . . . ,  [ m in(O)[} 
and L: max(O) -+ {1, . . . ,  I max(O)[} are isomorphisms, i.e., total orderings of, 
respectively, the minimal and the maximal places of O. 
An isomorphism of strongly concatenable processes is an isomorphism of the 
underlying processes which, in addition, preserves the orderings g and L. As 
usual, we identify isomorphic strongly concatenahle processes. 

As in the case of concatenable processes, it is easy to define an operation of 
concatenation of strongly concatenable processes. We associate a source and a 
target in S~ to each strongly concatenable process by taking the string corre- 
sponding to the linear ordering of, respectively, re_in(O) and max(O). Then, the 
concatenation of (Tr0:O0 ~ N, go,Lo):u --* v and (~h:O1 ~ N, gl, L1):v --+ w 
is the strongly concatenable process u --+ w obtained by merging the maximal 
places of O0 and the minimal of O1 according to L0 and gl- (See Figure 2, where 
we enrich the usual representation of non-sequential processes by labelling the 
minimal and the maximal places with the values of, respectively, g and L.) 

PROPOSITION 4.2 (The Category CQ[N]) 
Under the above defined operation of sequential composition, the strongly con- 
catenable processes of N form a category CQ[N] whose identities are those pro- 
cesses consisting only of places, which therefore are both rain/real and maximal, 
and such that g = L. 

Strongly concatenable processes admit a tensor product | such that, given 
SCP = (Tr0:O0 ~ N, go, Lo):U --* v and SCP' -- (Ih:O1 --* N, gl,L1):u' --* v', 
SCP| is the strongly concatenable process (~r: O -+ N, g, L): u| -+ v| ~ 
given below (see also Figure 2), where +, besides the usual sum of natural 
numbers, denotes also the disjoint union of sets and functions, and ino and inl 
the corresponding injections. 

�9 O = ( O ~ 1 7 6  

�9 "n- : ~To --I- 71"i ; 

�9 g(ino(a)) = go(a) and e(ina(a)) = I min(e0)l  + ga(a); 

�9 Z(ino(a))  = Lo(a) and L( in l (a ) )  = I max(e l ) l  + Ll(a).  

Observe that | is a functor | • CQ[N] ~ gQ[N]. The strongly 
coneatenable processes consisting only of places are analogous in CQ[N] of the 
permutations of Q[N]. In particular, for any u, v E S | the strongly concaten- 
able process ~(u, v) consisting of places in one-to-one correspondence with the 
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1 2 

~ / )  ~ )  1 2 1 

2 

1 + 1 

2 1 

Figure 2: An example of the algebra of concatenable processes 

1 m 

@... 
m + l  m + n  1 m 

Figure 3: A transitions t~,.: u --~ v and the symmetry if(u, v) in CQ[N] 

eleraents of the string u | v mapped by ir to the corresponding places of N, and 
such that g(ui) = i, g(v,) -- lul + i, n(ui) -- Iv[ + i and L(v~) -- i, plays in CQ[N] 
the role played by the permutation if(u, v) in Q[N] (see also Figure 3). 

PROPOSITION 4.3 (The Symmetric Petri Category CQ[N]) 
Under the above deigned tensor product CQ[N] is a symmetric Petri category 
whose symmetry isomorphism is the family {~(u, v) }u,ves~. 

The transitions t of N are faithfully represented in the obvious way by pro- 
cesses with a unique transition which is in the post-set of any minimal place 
and in the pre-set of any maximal place, minimal and maximal places being in 
one-to-one correspondence, respectively, with O~ and O~(t). Thus, varying g 
and L on the process corresponding to a transition we obtain a representative 
in CQ[N] of each instance t~,~ of t in Q[N] (see also Figure 3). 
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THEOREM 4.4 (Strongly Concatenable Processes vs. Q[_]) 
CQ[N] Q[N] are isomorphic. 

Proof. (Sketch.) Consider the following mapping F from the arrows of Q[N] to 
strongly concatenable processes. 

* An instance t~,~ of a transi t ion t of Q[N] is mapped to the strongly con- 
catenable processes with a unique transition and two layers of places: the 
minimal, in one-to-one correspondence with O~ and ordered by l to form 
the string u, and the maximal, in one-to-one correspondence with O~(t) and 
ordered to form v. 

�9 The permutation "r(u, v) is sent to the strongly concatenable process ~(u, v). 

�9 F is extended inductively to a generic term a of Q[N], i.e., a0 | a l  is mapped 
to F(~0) @ F(a l )  and s0 ; ~1 to F(~0) ; F(al) .  

Then, defining F to be the identity on the objects gives the required isomorphism 

F: Q[N] ~- CQ[N] in SSMC. Clearly, [F]5~ is afortiori an iso in TSS/VtC @. r 
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