
Strictness and Totality Analysis
with Conjunction

Kirsten Lackner Solberg

Computer Science Department
Aarhus University, Denmark

e-mail : kls@daimi, aau.dk

Abstract. We extend the strictness and totality analysis of [12] by allowing
conjunction at all levels rather than at the top-level. We prove the strictness
and totality analysis correct with respect to a denotational semantics and finally
construct an algorithm for inferring the strictness and totality properties.

1 Introduction

Strictness analysis has proved useful in the implementation of lazy functional languages
like Miranda, Lazy ML and Haskelh when a function is strict it is safe to evaluate its
argument before performing the function call. Totality analysis has not been adopted so
widely: if the argument to a function is known to terminate then it is safe to evaluate it
before performing the function call [9].

In the literature there are several approaches to the specification of strictness analysis:
abstract interpretation (e.g. [10, 3]), projection analysis (e.g. [14]) and inference based
methods (e.g. [2, 6, 7, 8, 15]). Totality analysis has received much less attention and has
primarily been specified using abstract interpretation [10, 1]. It can be regarded as an ap-
proximation to time complexity analysis; most literature performing such developments
consider eager languages but [11] considers lazy languages.

The paper [12] presents an inference system for performing strictness and totality anal-
ysis. The inference system is an extension of the usual type system in that we introduce
three annotations on types ~r:

- b~r: the value has type ~r and is definitely _[_,

- nor: the value has type ~r and is definitely not _t_, and

- T~r: the value has type ~r and it can be any value.

Annotated types can be constructed using the function type constructor and (top-level)
conjunction. As an example a function may have the annotated type (n I n t ~ n I n t)
A (b I n t ~ b I n e) which means that given a terminating argument the function will
definitely terminate and given a non-terminating argument it will definitely not termi-
nate. Thus we capture the strictness as well as the totality of the function. Strictness and
totality information can also be combined as in (n I n t -~ n I n t -+ n I n t) A (b I n t
-+ n Int -+ n Int) A (n Int -+ b Int -~ n Int) A (b Int -~ b Int -~ b Int) which

will be the annotated type of McCarthy's ambiguity operator.

The strictness and totality analysis in [12] is defined by an inference system and proven

502

sound with respect to a natural-style operational semantics. The proof is long and detailed
because in order to reason about fixpoints it is necessary to introduce new terms which
include information about how many times the fixpoint was allowed to be unfolded. In a
denotational semantics it is easy to reason about fixpoints since there is no need for new
terms; all the denotations are already included. In this paper we will extend the analysis
of [12] with unrestricted conjunction and we will prove this analysis sound with respect
to a denotational semantics. Finally we will construct an algorithm for inferring the
strictness and totality properties. There are two different ways of constructing inference
algorithms: one is to calculate all the information that can be inferred; the other is to
check if a given property can be inferred. We choose the latter since it is often the case
that we are only interested in knowing if a term possesses one particular property and
we thus expect this approach to lead to more efficient implementations.

Overview Section 2 presents the standard type inference rules and the denotational
semantics for our simply-typed lazy lambda calculus. In section 3 we define the strictness
and totality properties and the analysis of [12] is restated. In section 4 the analysis is
proven correct with respect to the denotational semantics. Finally in Section 5 we
construct an algorithm for strictness and totality property inference.

2 Syntax and Semantics

This section introduces the simply-typed lazy A-calculus with constants and fixpoints.
We first define the syntax and typing rules for the language, and then we define the lazy
semantics by means of a denotational semantics.

2.1 The Language

The types, r E T, are either base types or function types

T".= B I T--+T

where the base types (i.e. the B'S) include Boo l and I n t . The terms, e 6 E, of the
simply-typed A-calculus are

e :::x T I AxT'e le e I fix e I if e then e else e I c

where the constants (i.e. the o's) include t r u e and f a l s e of type B o o l , and all the
integers of type I n t . In this paper we have chosen to annotate the variables with their
type.

We are only considering terms that are typeable according to the type inference rules
defined in Figure 1. To all the constants c there is a unique type re. The free variables
in the term e is the set FV(e) and substitution on terms e[e~/x] is defined as usual;

503

[var]T

l - e : r
[absb ~--~xa. e : ~ -~ r [app]T

el :Bool }- e2 : r }- e3 : r

[if]T ~--j]f el then e2 else e3:r

[const]T [_ C : VC

~ej :~-~r ~ e2: ~

el e2 : r

~e:~--+~
[fiX]T ~ fix e :

Fig. 1. Type inference

2.2 The Semantics

The reason for choosing a lazy semantics is to capture the semantics of"real-life" lazy
functional programming languages like Miranda [13] in contrast to most other papers on
strictness analysis ([3, 5]). The semantics in [12] is a natural-style operational semantics
where the terms are evaluated to weak head normal form (abbreviated WHNF), i.e. to
constants or lambda-abstractions. Here we will define the semantics as a denotational
semantics. We have a type-indexed family of domains:

D B : Bi

D~ -~ r : (D~ -~ont Dr).

We need the two functions up and dn to get from a domain to the lifted domain and
back again. We also need an environment p that assigns denotations to variables. This is
a partial function from variables to the disjoint union of the domains. The environment
is type-preserving, that is if p (x r) is defined then it is a member of Dr . Now the
semantics assigns denotations to terms, meaning that if we have ~- e : r , then [e~ is a
partial function from environments to Dr (Figure 2), For each constant, c, there is a
unique predefined denotation c.

3 The Analysis

We will assume that the terms are annotated with their types.-We define the strictness
and totality logic s as follows:

n r , b r , T r E s

r e c~ T
Kr r) ~ 1 : s T .

W" ~ z: s~ r �9 Lsr T
r A c r ~ Z:]:r

r e c sT r ~ L sT

The idea is that s is the properties that a term of type r may possess. We relate a
subset of Dr to each property r (Figure 3). For this we need to take the downwards
closure of a subset of the domains:

dc(X) = {d'13d ~ X : d' < d}

504

[if el then e2 else

[x~ p : p (x ~)

lax r.e]p--up(Ad.[e] p[d/xr])
[el e2] p --- dn([el] p)([e2] p)

[f i x e~ p = Undnwhere

d o = •

d~+~ = dn([e] p)d,~

I, if [ei~ p= • 1
e3] p ---- [ez] P, if [eli p = true

[e3] p, if [e,~ p : e~Ise

[o]p =

Fig. 2. Denotational semantics for the A-calculus

[nr~ = Dr \ {J-Dr }
[b r] = {_l_Dr }
IT r] = Dr
[r - ~ r = { f ~ D~ -+ ~ I d n (/) [C~I _C l [r
I1-r ~ A r = [r n [r176
I1~.(r176 = d~(I1r176

Fig. 3. The meaning of the properties

The idea is that a term with the strictness and totality property n r is a term of type
r and it has a denotation in D r \ { Z D r) i.e. the term has a non-bottom denotation. A

term with the strictness and totality property b r has the type r and it has the denotation
s i.e. it is bottom. For terms with the strictness and totality property T r we only

know that it has the type r. A term with strictness and totality property c r ___+ !b(r will
have the type r --+ (r and will, when applied to another term with the strictness and
totality property c r , yield a term with strictness and totality property r A term with
the strictness and totality property c r A c r is a term with both properties, r cro
The set of terms with property .[(r is the set of term with property r and including
bottom; but whenever r is empty so is .[(r The ~(r is used to express
the fact that the functions we are considering are monotonic, see the rule [monotone] in
Figure 4.

An empty property is a property possessed by no term. One example is (n r A bT-) since
a term cannot both terminate and not terminate.

Most terms possess more than one strictness and totality property; as an example consider

505

the strictness and totality properties of ~x I n t . 7 which includes

Tint -e Int,nInt -+ Int,TInt_en Int,n Int -en Int

among others. Some of them are redundant and to express this we define coercions
between the strictness and totality properties: 9 r <ST eT may only hold if all terms
of strictness and totality property t~ T also have the strictness and totality property r
(assuming the types are the same).

The coercion relation <ST defined in Figure 4 is reflexive, transitive, and anti-monotone
in contravariant position. We will write _= for the equivalence induced by --<ST, i.e.
t~T = r if and only if tb ~- <sT ~b T and eT <ST tb T. The rule [topl] expresses that
the strictness and totality property T r includes all the terms of type T. One axiom
derived from the rule [top1] is

TT --+ T ~ <ST T r ~ cr (1)

Axiom (1) then motivates rule [top2] because when combined they yield

T T - - ~ = T T . _ ~ T ~

The rule [monotone] ensures that we live in a universe of monotone function: if we
know less about the argument to a function, then we should know less about the result
as well. We can infer

n ~" --~ b r <ST T "r --'+ b T

using the [monotone]-rule. This is used in order to infer the type

(n T ---, b ~') --~ T r ---+ b T

for t w i c e .

We would like the ~(~) properties to be equivalent to properties without any ~(tb'). We
have

~(n or) _: T O. } (T o') = Tcr

~(b a) : b a J.(~ ~ ~b) - tb ~ ~(~b)

but only

,!.(O A ~) <_sT ,I.(0) A ~(~)

The reason for introducing J,(t~) in the first place was to be able to express the mono-
tonicity-rule. The advantage of having an equivalence between properties with !. and
properties without ~ is that we can forget all about ~(~)-properties since they are
equivalent to another property without any ~(~)-properties and the world will look
nicer.

Now we can turn to the analysis defined in Figure 5. The list A of assumptions gives
strictness and totality properties to the free variables. We shall assume that all the
variables in the list are distinct. For each constant c, we assume that a strictness and

506

r _<ST r r _<ST X
[refl ~ ltrans] r <ST X

f ' _<ST r r _<ST ' /
[--q f - - ' r _<ST f ' ~ ' / "

[topl] Cr _<ST T r [top2] T r ~ cr _<ST T r ~ T ~

[bot] br ~ o" _<ST T T ' '~ b~

[notbot] n r ~ nO- <ST n r --' cr

H1] r ~ST 1(r

H3] T r <ST l(n r)

[15] l(l('~))_<sT +(~)

r <sT r
[12] 1(4) <ST 1(r

[14] l (br) <ST b r

[16] l(~b A r _<ST l(,~) A ~(r

[~7] 1(4 ---' d) - ~b -~ ~(r

[monotone] ~b--, r <ST 1(4)- '* 1(r

[A1] ~bAr _<ST f [A2] r 1 6 2 _<ST r

X <ST'P X <ST r
[^l X <ST r162

[--, A] (4--~ r A(4 ~ r _<ST r ~ (r162

Fig. 4. Coercions between slrictness and totality properties

totality property is specified r162 as an example for the successor function we have
r = (n I n t -+ n I n t) A (b I n t --+ b I n t) . The remaining properties can be coerced

from this strictness and totality property:

CSUCC --<ST Tint -+ Int

Csucc <--ST Tint-+ Tint

r <_ST hint -+ Tint

etc.

The rules [var], [abs], [app], and [const] are straightforward. There are three rules
for conditional - - depending on whether the test is of strictness and totality property
b B~176 n B~176 or T B~176

507

[coer]

[if3]

[fix]

[var] A ~ - x r :~b r i f x r :~b r 6 A

A,x : q~ # I- e : ~ r
[absl A ~- I x ~ . e : (~# ~ Zb r) A n ~ -~r

A & el : ~b # -~ O r A F e2 : ~#

[app] A [-- el e2 : ~r

A ~- el : b B~176 A ~- e2 : ~o" A ~- e3 : '),b o"
[if1]

A P if el then e2 else e3 : b #

A ~ el :n B~176 AF e2 : ~ A ~ e3 : ~b #
[if2]

A ~ - i f el then e2 else e3:%b ~

A~ el : T B~176 Ab e2 : %b ~ A ~ e3 : ~b ~

A ~ if el then e2 else e3:~J i f_OT./r .B (r

O"

A~- fix e:r

[const] A ~- c : ~bc

A ~ - e :~b cr
A b e : @~r if ~b ~r _<ST Oa [conj]

if
{ BOT(~b~),

3p, q : p < q A

A~-e:0 cr A~-e:@ cr

AFe:~CrA@ ~

Fig. 5. Strictness and Totality Property Inference

The predicate BOT defined by

BOT(n c~) = f f BOT(T (r) = t t
BOT(h ~ = t t BOT(~(ff)) = BOT(~)
BOT(r ----+ ~5) = BOT(~)

BOT(~b A ~b) = BOT(~b) A BOT(~)

is true for the strictness and totality property ~b r whenever it is guaranteed that bot tom
can be described by the property ~ r . The reason for no t taking BOT(~((b)) be to true is
that ~ may be empty and therefore also +(~b) may be empty. However, the definition of
BOT(l(q~)) that we have adopted is not as precise as one would wish. (An example of
which is when ff = n~.)

The rule [coer] allows to change the'strictness and totality property to a greater property.
It is quite useful as a preparation for applying the rule [if3], i.e. whenever BOT((b) is
not true we can coerce (5 to a property 4 ' so that BOT(4 ') is true.

From the rule [fix] the two more intuitive rules

A b e : r ~ ~btr
[fixl] A ~ - f i x e : ~ r i f B O T (~ ~

508

and

A ~" e : r - - 6 ~
[fix2] A ~ " f i x e : 'r ifBOT((2 ~) and 4 ~ _<sT ~(r

are easily derived. The rule [fix] itself can be explained as follows: first we have to
ensure that the strictness and totality property ~b{' can describe bottom in order to be
able to start the iteration towards the fixpoint. After the first iteration the term has the
property ~bf and after the second the strictness and totality property ~ f , etc. When we
reach iteration number q - 1 we can apply the rule [coer] because we have r _<sT r
and the term has the property ~ . In this way we can go on as long as necessary to
calculate the fixpoint. Finally we are allowed to iterate n - q times more to get the
property ~b~ for the fixpoint.

Example 1
We can infer ~- f i x Axin t . X i n t : b I n t which is more precise than the informa-
tion T I n t obtained by [15]; in [16] it can be done. In the systems of [2, 6, 7, 16] one
can infer the property T I n t for the term f i x l x I n t , 7 whereas we can infer the
more precise property n I n t . In this system (as well as those of [12, 2, 6, 7, 16]) it is
possible to infer the property

(b Int -+ T Int -~ T Int -+ D Int) A (T Int -~ h Int -4 T Int -+ b Int)

for the term

fix Af. (Ax.ly.lz.if z = 0 then z + y else f y x (z - i))

that way beyond the techniques of [8].

The term 1 twice g where

twice :Af.lx.f (f x)

g:AF.AX.+ x (y (fix Ax.x))

will have the strictness and totality property

(T I n t ._+ T i n t) ~ T I n t ._~ b I n t

However, we are no t able to prove it using the analysis in [12], because we need full
power of conjunction in order to construct the proof-tree. The reason is that we need to
infer that t w i c e has the property

((4 ~ ~) t, (,/, ---+ x)) --, (4 ~ x)

for any 4, ~b, and ~ but this is not a well-formed conjunction type in [12].

Note that this analysis and the analysis in [12] only differ in the use of conjunction.

1 Thanks to Nick Benton for pointing to this example

O

509

4 Soundness

In this section we will sketch the proof for soundness of the analysis (Figure 5) with
respect to the denotational semantics (Figure 2). For the details see the author's forth-
coming PhD Thesis.

Definition 2
A subset X of a domain De is limit closed if whenever do ~_ dl _ - �9 �9 is a chain in Da
and Vi : di E X then Uidi G X and it is convex if whenever dl U_ d2 C_ d 3 E De and dl
E X and d3 ~ X then d2 E X. []

First we prove that each i c e] is a limit-closed and convex subset of De and convex:

Proposition 3 Limit closed subsets
~r is a limit closed and convex subset of De []

Proof We assume that do U_ dl E �9 �9 �9 is a chain in De such that for all i we have di E
~r then we show by induction on the property err that Uidl E ~r holds. And we
assume that dl E d2 E_ d3 and both dl and d3 is in ~r then we show by induction on
the property Ca that d2 is in [r We omit the details. �9

The predicate BOT is sound but it is not complete. Without properties of the form +(r
and un-restricted conjunction or without conjunction we would have an bi-implicationin
Lemma 4 below. The reason is that r can be an empty property, due to the conjunctions,
and hence we cannot define BOT(~.(r to be true always - - although it is true for all
non-empty properties.

Lemma 4
(BOT(r e) = t t) => (_l_De E [r []

Proof We assume that BOT(r e) is true and then we prove by induction on Ce that
J-De E ~r holds. We omit the details. �9

Next we want to prove that the coercion rules are sound:

Lemma 5 Soundness of coercions
If Ca _<ST ~O" then i c e] C_ ice] []

Proof We assume Ca --<ST Ca and then we prove by induction on the proof-tree for
1/)0" ~ST ~Cr that i c e] C_ [r holds. We omit the details. �9

The validity predicate ~ is defined for denotations and properties and extended to
environments:

Definition 6 Validity
d ~ Ca r (d E iCe]i)
For environments we define
p ~ A r (dom(A) = dom(p) A V x e 6 dom(p) : p (x e) ~ A(xa)) []

In the operational world [12] we did not introduce ~(r as part of the syntax. This
is due to the difficulties in defining validity for l(r in the operational setting.

Now soundness is:

Proposition 7 Soundness
A F e : r e ::~(Vp:p ~A=~ [elp ~ Ca) []

510

Proof We assume A F e : ~b cr and p # A then we show by induction on the proof-tree
for A F e : t/, ~ that [e]] p ~ tb cr holds. We omit the details. �9

In the domain Dcr there are elements d to which there is no term that has d as its
standard denotation. In the operational setting all the "meanings" are terms themselves
so in order to express properties about the partial results of the fixpoints we find it
convenient to introduce special terms approximating the fixpoint. This complicates the
soundness proof in the operational setting.

5 Algori thm for Strictness and Totality Property Inference

One way to construct an algorithm for strictness and totality property inference - -
for both the un-restricted and restricted [12] case - - is to follow the most general
type approach by Hankin and Le M6tayer [4]. For a given environment and term the
algorithm will find all the strictness and totality properties that can be inferred for the
term. Often we are only interested in knowing if a term possesses one particular property
and not all of them, so this approach seems like using a sledge hammer to crack a nut. We
follow the lazy type approach of Hankin and Le M6tayer [4] where only the information
necessary to answer one question is calculated.

The algorithm is constructed as follows:

- Make the inference system structural in the term and property. This is achieved by
integrating the rule [coer] into all the appropriate rules and axioms.

- Introduce the lazy properties.

- Extract an algorithm from the lazy property inference system.

5.1 Structural Strictness and Totality Inference System

We define an inference system without a coercion rule but where the other rules have
the coercion built in.

The coercion-rule maybe needed after the rules [var], [const], [ifl], and labs]. For the
[abs]-rule we generate all the possible rules:

[absls] A Fs Ax ~r . e : n ~r---*~-

A Fs Ax ~r �9 e : ff~r --+ tbT
[abs3s] A Fs Ax 'r . e : ~(%a) _._,].(~T)

[abs2s] A I-s A:;: Cr �9 e : T ~ r ' ~ r

A , x : f f ~ e : ~ T

[abs4s] A t-s Ax a . e : ~ a __~ ~ T

A bs Ax cr �9 e : ~b cr ---+ ~(tb r)

[abs5s] A F-s Ax Cr . e : ~(ff~r ___+ tbT)

The last rule can be stated more generally as

A F-s e : e x d o w n ' (r
[downs] A ks e : ~(ff)

where we define the functions e x d o w n and e x d o w n ' :

511

exdown(no.) = To. exdown(bo.) = bo.

exdown(To.) = T O. exdown((b --+ ~2) = (b --+ ~(~)

exdown(~ A ~) = ~((b) A ~(~) exdown(~(~)) = ~(~b)

exdown'(0 A ~) = ~ A ~ exdown'(@) = exdown(6)

The functions moves the I inwards one level using the coercion rules. The difference
between exdown and exdown' is on conjunction'.' we have

Fact 8
(1(4) _<L exdown(r (exdo'.,,}n'(r 5 L 1(4)) []

Proof We will show (1(r SL exdown(r and (exdownt(r <L l(q))) by induction
on the property ~b. �9

The rest of the rules (lapp], [if2], [if3], [fix], and [conj]) are unchanged. Since the terms
are typed therefore no more terms can be typed using these rules than using Figure 5.
The reason for changing the presentation is that we are interested in doing as little as
possible to check that a term has a given property. In the definition of the analysis
(Figure 5) we were looking at the idea of the analysis.

The new structural strictness and property inference system is sound with respect to the
strictness and totality inference system:

Lemma 9
AI-s e : %b =:~ A F e : ~ []

Proof We show that the rules in the structural inference system can be derived in the
non-structural inference system. �9

5.2 Lazy Property Inference System

Following the lazy type approach by Hard<in and Le M6tayer [4] we now introduce the
lazy properties:

n r , b T, -F r , (A, e) 6 f L Cr A ~b r 6 / ~

The property (A, e) is a shorthand (un-evaluated property) for the conjunction of all the
properties 4 that can be inferred for e using the environment A. The function e x p a n d
maps lazy properties to strictness and totality properties due to [4]:

expand :: r L --+ fSrT
expand(n T) = n T
expand(b r) = b T
expand(T T) = T T

expand(~(~)) = ~(expand(~b))
expand(~ --+ ~) = expand(b) --+ expand(%O)
expand(~ A ~) = expand(~b) A expand(%~)

expand((A, e)) = A {01 expand(A) l-s e : 0}

512

and the function is extended to environments in a component-wise manner. The predicate
BOT on lazy properties is defined by

BOT((A, e)) = BOT(expand((A, e)))

We need two new rules for relating the lazy properties:

[envL] (A, e) ~L ~ if r # (A', e') [envR] r _<L (A, e)

The lazy properties are useful in the application rule:

A ~-s el : (m, e2) --~ ~T
[appL] A ks el e2 �9 Cv

In the [ifl]-rule we no longer construct proof-trees for e2 and e3:

A F-s el : b B~176 bo- --<ST r
[iflL] A F s i f el t h e n e2 e l s e e 3 : r

All the other rules remain the same.

The lazy property inference system is sound with respect to the structural strictness and
totality inference system:

Lemma 10
(((r _<L r A A ~-L e : r
((expand(e) -<ST expand(e)) A expand(A) I-s e : expand(r []

Proof

Suppose r _<n @ and A ~-L e : r then we will show e x p a n d (e) _<ST expand(@) and
expand(A) [-s e : e x p a n d (e) by simultaneous induction on the proof-tree for -<L
and FL.

The reason that we have to do simultaneous induction on <L and t-L is that <L
depends on ~-L (in [envL] and [envR]) and not only FL depending on _<L (in [varL],
[iflL], [constL]) as in the other inference systems. We omit the details. �9

5.3 The Lazy Property Inference Algorithm

Finally the last step is to extract the algorithm T (see Figure 6) for lazy property
inference from the lazy property inference system. The function ,,4s163 gives a list of
all the strictness and totality properties of the type o-. When the function T is applied
to a list it gives back the list of all those strictness and totality properties for which the
function is true; the function ZSCT-IAT, A/'(r applied to a list of properties gives back
the list of those properties that are chains with the property r as the last one and BOT of
the first is true. The algorithm for checking the coercions is displayed in Figure 7 and 8.

The algorithms are sound with respect to the lazy property inference system:

Lemma 11
(']-(m, e, et) = tt A Z(r r = tt) ~ (A I-L e : r A (r _<L ~)) I-I

513

T(A, e, 4 A r
T(A, Axo'. e, n o. "+ r)
T(A, Axo'. e, T o. '-+ r)
T(A, Axo'. e, b a "+ r)
T(A, Axo'. e, ~(4)-~ ~(r =
9-(A, Axo'. e, r -~ r =
T(A, e l e2, r =
T(A, xo', r =

T(A, if e l then e2 else e3,4)=

T(A, c, 4)
T(A, fix e, 4)
T(A, e, 1(4))
)rZX(A, e, 4 ~)

= T(A, e, 4) A T(A, e, r
= t t
= t t
= f f

T((xo" : 0): A, e, r V T((xo" : ~(4)): A, e, 1(r
T((xo" :4): A, e, r
T(A, el, (A, e2) ~ r
2-(A(xo'), r
(T(A, el, b B~176 A l(bo', 6)) V

(T(A, e2, 4) A T(A, e3, 4)) A
(T(A, el, n B~176 v (T(A, el, T B~176 A BOT(r

= ~ (r 4)
= .T'2-X(A, e, 4)
= T(A, e, exdown'(4))
= let ll = T(A, e, As163

12 = ZSCHAZA/" (4 '~, /1)
in n # []

Fig. 6. Lazy Property Inference Algorithm

2-(4o" ' r = f f 2.(4, 4) = t t
2-(4 , TO') = tt 2-(n ~ bo') = ff
][(bo', no') = ff ~[(To', no') = ff
][(To', bo') = ff 2.(~(bo'), bo') = tt
I (4 ~ r b o'-+r) = f f 2.(1(4), no') = f f
/ (4 ' , r A r = 2.(4', r A 2.(4', r /7(4 --' r n o'-*r) = 2.(no', 4) A 2-(r n r)
Z(4 A •, n a) = I (4 , ncr) V 77(r no') /?(4 A r bo') = 77(4, b a) V 2(r bo')
77(n o ' e r , r --* r : Z(T r , r Z(b o''-~r, r ~ r = I (T r, r v 2.(b r , r
I (To'~7", r --~ r =/7(T r , r /(no', Hr = 2.(n a, 4)
/(bo' , J.(r = Z(bo', 4) V (4 = no') 2.(To', 1(4)) = 2.(To', 4) V (4 = n a)
2.(4 - - , r I (r = I (4 - - , r 4 ')

Fig. 7. Lazy Coercion Inference Algorithm (Part 1)

P roof We will assume that both T(A, e , r and I (r r are true and then we will
prove A F-L e : r and r _<(L ~ by induction on e , r and r We omit the details. �9

Finally we have that the inference algorithm is sound with respect to the strictness and
totality property inference system:

T h e o r e m 12
T(A, e, r ::~ expand(A) }-- e : expand(b) [3

Proo f This is a consequence of Lemma 9, 10, and 11. �9

The inference algorithm is not complete. Consider the term, e , Ax. (f i x Ax . x)

514

z(Wr --, e r , r ~ r = (Z(r r A z(r r v (z(r ~(r A I (1(r r v
Z(T r, r

2-(1(r I(~)) = 2"(~b, r V Z(exdown(r i(%b)) V 2(.L(r exdown'(~b))
V Z(exdown(r exdown'(~))

z (r A r r --, r = Z(r r -~ r v Z(r r - * r v Z (T ~-, r
Z(~(r r --+ ~b,r) = I (T r, r V (r = b cr-~r A Z(b r, r V

(~ = r -~ r A Z(r -~ 1(r r -~ r V
(0 = (r A r A Z(I(r A 1('r r --+ r

27(r A r ~(r = $(r A r r V/7(r ~(~b')) V Z(r ~(r
Z((A, e), 0) = T(A, e, r
Z(r r (A, e)) = C(Ms A, e, r
C(I], A, e, r = tt

= ; Z(r r A g(l, A, e, r if T(A, e, r
C(r A, e, r [C(1, A, e, 0), otherwise

Fig. 8. Lazy Coercion Inference Algorithm (Part 2)

and the property, r ~((no. ~ n r) A (n a ~ Tr)) . In the analysis (Figure 5) we can
construct a proof-tree for 0 ~- e : r However, it is not possible to infer

0 F- e : (no. ~ n r) A (no. ~ T r)

The algorithm will do as follows:

T(O, e, r = T(O, e, (n o. --* n 7") A (n ~ ~ T r))

= T(O, e , (no. -+ nr)) A T(O, e , (no. --+ Tr))

: ff A tt : ff

The problem is that ~(r A r is not equivalent to r A r More work is needed to find a
sound and complete inference algorithm.

6 C o n c l u s i o n

We have restated the strictness and totality analysis of [12] and removed the restriction
that conjunction may only occur at the top-level. We have proven the strictness and
totality analysis correct with respect to a denotational semantics. Finally we have con-
structed an algorithm for inferring the strictness and totality properties by following the
lazy types approach of [4].

Acknowledgement The author has been funded by Odense University, Denmark. I
would like to thank LOMAPS (Esprit Basic Research) and DART (Danish Science
Research Council) for partial support. Part of the research was carried out while vis-
iting Cambridge University, England; the visit was supported by the Danish Research
Academy. I am grateful to Nick Benton, David Wright, Hanne Riis Nielson and Flem-
ming Nielson for interesting discussions.

515

References

1. Samson Abramsky. Abstract interpretation, logical relations and Kan extensions. Journal of
Logic and Computation, 1(1):5-39, 1990.

2. Nick Benton. Strictness Analysis ofFunctionalPrograms. PhD thesis, University of Cam-
bridge, 1993. Available as Technical Report No, 309.

3. Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness Analysis for Higher-
order Functions. Science of Computer Programming, 7:249-278, 1986.

4. Chris Hankin and Daniel Le Mrtayer. Deriving algorithms from type inference systems:
Application to strictness analysis. In Proceedings of POPL'94, pages 202- 212, 1994.

5. Chris Hankin and Daniel Le Mrtayer. A Type-based framework for Program Analysis. In
Proceedings ofSAS'94, LNCS 864, pages 380--394, 1994.

6. Thomas R Jensen. Strictness analysis in logical form. In Proceedings ofFPCA'91, LNCS
523, pages 352- 366, 1991.

7. Thomas P. Jensen. Disjunctive strictness analysis. In Proceedings of LICS'92, pages 174 -
185, 1992.

8. Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new perspective based on type
inference. In Proceedings of FPCA'89, pages 260 - 272. ACM Press, 1989.

9. Alan Mycroft. The theory and practice of transforming call-by-need into call-by-value. In
Proceedingsof the 4th InternationaI Symposium on Programming, LNCS 83, pages 269-281,
1980.

10. Alan Mycroft. Abstract Interpretation and Optimising Transformation for Applicative pro-
grams. PhD thesis, University of Edinburgh, Scotland, 1981.

11. David Sands. Complexity analysis for a lazy higher-order language. In Proceedings of
ESOP'90, LNCS 432, pages 361-376, 1990.

12. Kirsten LacknerSolberg, Hanne RiisNielson, andFlemmingNielson. Strictness and totality
analysis. In Proceedings ofSAS'94, LNCS 864, pages 408 -422, 1994.

13. D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In Pro-
ceedings ofFPCA'85, LNCS 201, pages 1 - 16, 1985.

14. PhilWadlerandJohnHughes. Projections for strictness analysis. InProceedingsofFPCA'87,
LNCS 27, 1987.

15. David A. Wright. A new technique for strictness analysis. In Proceedings TAPSOFT'91,
LNCS 494, pages 260 - 272. Springer Verlag, 1991.

16. David A. Wright. Reduction Types and Intensionality in the Lambda-Calculus. PhD thesis,
University of Tasmania, 1992.

