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Abstract. We extend the strictness and totality analysis of [12] by allowing 
conjunction at all levels rather than at the top-level. We prove the strictness 
and totality analysis correct with respect to a denotational semantics and finally 
construct an algorithm for inferring the strictness and totality properties. 

1 Introduction 

Strictness analysis has proved useful in the implementation of lazy functional languages 
like Miranda, Lazy ML and Haskelh when a function is strict it is safe to evaluate its 
argument before performing the function call. Totality analysis has not been adopted so 
widely: if the argument to a function is known to terminate then it is safe to evaluate it 
before performing the function call [9]. 

In the literature there are several approaches to the specification of strictness analysis: 
abstract interpretation (e.g. [10, 3]), projection analysis (e.g. [14]) and inference based 
methods (e.g. [2, 6, 7, 8, 15]). Totality analysis has received much less attention and has 
primarily been specified using abstract interpretation [10, 1]. It can be regarded as an ap- 
proximation to time complexity analysis; most literature performing such developments 
consider eager languages but [11] considers lazy languages. 

The paper [12] presents an inference system for performing strictness and totality anal- 
ysis. The inference system is an extension of the usual type system in that we introduce 
three annotations on types ~r: 

- b~r: the value has type ~r and is definitely _[_, 

- nor: the value has type ~r and is definitely not _t_, and 

- T~r: the value has type ~r and it can be any value. 

Annotated types can be constructed using the function type constructor and (top-level) 
conjunction. As an example a function may have the annotated type (n I n t  ~ n I n t )  
A (b I n t  ~ b I n e )  which means that given a terminating argument the function will 
definitely terminate and given a non-terminating argument it will definitely not termi- 
nate. Thus we capture the strictness as well as the totality of the function. Strictness and 
totality information can also be combined as in (n I n t  -~ n I n t  -+ n I n t )  A (b I n t  
-+ n Int -+ n Int) A (n Int -+ b Int -~ n Int) A (b Int -~ b Int -~ b Int) which 

will be the annotated type of McCarthy's ambiguity operator. 

The strictness and totality analysis in [ 12] is defined by an inference system and proven 
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sound with respect to a natural-style operational semantics. The proof is long and detailed 
because in order to reason about fixpoints it is necessary to introduce new terms which 
include information about how many times the fixpoint was allowed to be unfolded. In a 
denotational semantics it is easy to reason about fixpoints since there is no need for new 
terms; all the denotations are already included. In this paper we will extend the analysis 
of [12] with unrestricted conjunction and we will prove this analysis sound with respect 
to a denotational semantics. Finally we will construct an algorithm for inferring the 
strictness and totality properties. There are two different ways of constructing inference 
algorithms: one is to calculate all the information that can be inferred; the other is to 
check if a given property can be inferred. We choose the latter since it is often the case 
that we are only interested in knowing if a term possesses one particular property and 
we thus expect this approach to lead to more efficient implementations. 

Overview Section 2 presents the standard type inference rules and the denotational 
semantics for our simply-typed lazy lambda calculus. In section 3 we define the strictness 
and totality properties and the analysis of [12] is restated. In section 4 the analysis is 
proven correct with respect to the denotational semantics. Finally in Section 5 we 
construct an algorithm for strictness and totality property inference. 

2 Syntax and Semantics 

This section introduces the simply-typed lazy A-calculus with constants and fixpoints. 
We first define the syntax and typing rules for the language, and then we define the lazy 
semantics by means of a denotational semantics. 

2.1 The Language 

The types, r E T, are either base types or function types 

T".= B I T--+T 

where the base types (i.e. the B'S) include Boo l  and I n t .  The terms, e 6 E, of the 
simply-typed A-calculus are 

e :::x T I AxT'e le e I fix e I if e then e else e I c 

where the constants (i.e. the o's) include t r u e  and f a l s e  of type B o o l ,  and all the 
integers of type I n t .  In this paper we have chosen to annotate the variables with their 
type. 

We are only considering terms that are typeable according to the type inference rules 
defined in Figure 1. To all the constants c there is a unique type re. The free variables 
in the term e is the set FV(e) and substitution on terms e[e~/x] is defined as usual; 
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[var]T 

l - e : r  
[absb ~--~xa. e : ~ -~ r [app]T 

el :Bool }- e2 : r }- e3 : r 

[if]T ~--j]f el then e2 else e3:r 

[const]T [_ C : VC 

~ej :~-~r ~ e2: ~ 

el e2 : r 

~e:~--+~ 
[fiX]T ~ fix e : 

Fig. 1. Type inference 

2.2 The Semantics 

The reason for choosing a lazy semantics is to capture the semantics of"real-life" lazy 
functional programming languages like Miranda [13] in contrast to most other papers on 
strictness analysis ([3, 5]). The semantics in [12] is a natural-style operational semantics 
where the terms are evaluated to weak head normal form (abbreviated WHNF), i.e. to 
constants or lambda-abstractions. Here we will define the semantics as a denotational 
semantics. We have a type-indexed family of domains: 

D B : Bi 

D~ -~ r : (D~ -~ont Dr). 

We need the two functions up and dn to get from a domain to the lifted domain and 
back again. We also need an environment p that assigns denotations to variables. This is 
a partial function from variables to the disjoint union of the domains. The environment 
is type-preserving, that is if p (x r )  is defined then it is a member of Dr .  Now the 
semantics assigns denotations to terms, meaning that if we have ~- e : r ,  then [e~ is a 
partial function from environments to Dr  (Figure 2), For each constant, c,  there is a 
unique predefined denotation c. 

3 The Analysis 

We will assume that the terms are annotated with their types.-We define the strictness 
and totality logic s as follows: 

n r ,  b r ,  T r E s 

r e c~ T 
Kr r) ~ 1 :  s T  . 

W" ~ z: s~ r �9 Lsr T 
r  A c r  ~ Z:]:r 

r e c sT r ~ L sT 

The idea is that s is the properties that a term of type r may possess. We relate a 
subset of Dr  to each property r (Figure 3). For this we need to take the downwards 
closure of a subset of the domains: 

dc(X)  = {d'13d ~ X : d' < d} 
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[if el then e2 else 

[x~ p : p (x ~) 

lax r.e]p--up(Ad.[e] p[d/xr]) 
[el e2] p --- dn([el] p)([e2] p) 

[ f i x  e~ p = Undnwhere 

d o = •  

d~+~ = dn([e] p)d,~ 

I, if [ei~ p= • 1 
e3] p ---- [ez] P, if [eli p = true 

[e3] p, if [e,~ p : e~Ise 

[o]p = 

Fig. 2. Denotational semantics for the A-calculus 

[nr~ = Dr \ {J-Dr } 
[b r ]  = {_l_Dr } 
IT r]  = Dr 
[ r  - ~  r = { f  ~ D~  -+ ~ I d n ( / )  [C~I _C l [ r  
I1-r ~ A r = [r n [r176 
I1~.(r176 = d~(I1r176 

Fig. 3. The meaning of the properties 

The idea is that a term with the strictness and totality property n r is a term of type 
r and it has a denotation in D r \ { Z D r )  i.e. the term has a non-bottom denotation. A 

term with the strictness and totality property b r has the type r and it has the denotation 
s  i.e. it is bottom. For terms with the strictness and totality property T r we only 

know that it has the type r.  A term with strictness and totality property c r  ___+ !b(r will 
have the type r --+ (r and will, when applied to another term with the strictness and 
totality property c r ,  yield a term with strictness and totality property r A term with 
the strictness and totality property c r  A c r  is a term with both properties, r cro 
The set of terms with property .[(r is the set of term with property r and including 
bottom; but whenever r is empty so is .[(r The ~(r is used to express 
the fact that the functions we are considering are monotonic, see the rule [monotone] in 
Figure 4. 

An empty property is a property possessed by no term. One example is (n r A bT-) since 
a term cannot both terminate and not terminate. 

Most terms possess more than one strictness and totality property; as an example consider 
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the strictness and totality properties of ~x  I n t .  7 which includes 

Tint -e Int,nInt -+ Int,TInt_en Int,n Int -en Int 

among others. Some of them are redundant and to express this we define coercions 
between the strictness and totality properties: 9 r  <ST eT may only hold if all terms 
of strictness and totality property t~ T also have the strictness and totality property r 
(assuming the types are the same). 

The coercion relation <ST defined in Figure 4 is reflexive, transitive, and anti-monotone 
in contravariant position. We will write _= for the equivalence induced by --<ST, i.e. 
t~T = r if and only if tb ~- <sT ~b T and eT <ST tb T. The rule [topl] expresses that 
the strictness and totality property T r includes all the terms of type T. One axiom 
derived from the rule [top1] is 

TT --+ T ~ <ST T r ~ cr (1) 

Axiom (1) then motivates rule [top2] because when combined they yield 

T T - - ~ = T  T . _ ~ T  ~ 

The rule [monotone] ensures that we live in a universe of monotone function: if we 
know less about the argument to a function, then we should know less about the result 
as well. We can infer 

n ~" --~ b r <ST T "r --'+ b T 

using the [monotone]-rule. This is used in order to infer the type 

(n T ---, b ~') --~ T r ---+ b T 

for t w i c e .  

We would like the ~(~) properties to be equivalent to properties without any ~(tb'). We 
have 

~(n or) _: T O. } ( T  o') = Tcr 

~(b  a )  : b a J.(~ ~ ~b) - tb ~ ~(~b) 

but only 

,!.(O A ~) <_sT ,I.(0) A ~(~) 

The reason for introducing J,(t~) in the first place was to be able to express the mono- 
tonicity-rule. The advantage of having an equivalence between properties with !. and 
properties without ~ is that we can forget all about ~(~)-properties since they are 
equivalent to another property without any ~(~)-properties and the world will look 
nicer. 

Now we can turn to the analysis defined in Figure 5. The list A of assumptions gives 
strictness and totality properties to the free variables. We shall assume that all the 
variables in the list are distinct. For each constant c,  we assume that a strictness and 
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r _<ST r r _<ST X 
[refl ~ ltrans] r <ST X 

f '  _<ST r r _<ST ' /  
[--q f - - ' r  _<ST f ' ~ ' / "  

[topl] Cr _<ST T r [top2] T r  ~ cr _<ST T r ~  T ~ 

[bot] br  ~ o" _<ST T T ' '~  b~ 

[notbot] n r  ~ nO- <ST n r --' cr 

H1] r ~ST 1(r 

H3] T r  <ST l(n r )  

[15] l(l('~))_<sT +(~) 

r <sT r 
[12] 1(4) <ST 1(r 

[14] l (br  ) <ST b r 

[16] l(~b A r _<ST l(,~) A ~(r 

[~7] 1(4 ---' d) - ~b -~ ~(r 

[monotone] ~b--, r <ST 1(4)- '* 1(r 

[A1] ~bAr _<ST f [A2] r 1 6 2  _<ST r 

X <ST'P X <ST r 
[^l X <ST r162 

[--, A] (4--~ r A(4 ~ r  _<ST r ~ (r162 

Fig. 4. Coercions between slrictness and totality properties 

totality property is specified r162  as an example for the successor function we have 
r  = (n I n t  -+ n I n t ) A ( b  I n t  --+ b I n t ) .  The remaining properties can be coerced 

from this strictness and totality property: 

CSUCC --<ST Tint -+ Int 

Csucc <--ST Tint-+ Tint 

r <_ST hint -+ Tint 

etc. 

The rules [var], [abs], [app], and [const] are straightforward. There are three rules 
for conditional - -  depending on whether the test is of strictness and totality property 
b B~176 n B~176 or T B~176 
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[coer] 

[if3] 

[fix] 

[var] A ~ - x  r :~b r i f x  r :~b r 6 A  

A,x  : q~ # I- e : ~ r  
[absl A ~- I x  ~ . e : (~# ~ Zb r )  A n ~ -~r  

A & el : ~b # -~ O r A F e2 : ~# 

[app] A [-- el e2 : ~r 

A ~- el : b B~176 A ~- e2 : ~o"  A ~- e3 : '),b o" 
[if1] 

A P if el then e2 else e3 : b # 

A ~ el :n B~176 AF e2 : ~ A ~ e3 : ~b # 
[if2] 

A ~ - i f  el then e2 else e3:%b ~ 

A~ el : T B~176 Ab e2 : %b ~ A ~ e3 : ~b ~ 

A ~ if el then e2 else e3:~J i f_OT./r .B ( r  

O" 

A~- fix e:r 

[const] A ~- c : ~bc 

A ~ - e  :~b cr 
A b e : @~r if ~b ~r _<ST Oa [conj] 

if 
{ BOT(~b~), 

3p, q : p < q A  

A~-e:0 cr A~-e:@ cr 

AFe:~CrA@ ~ 

Fig. 5. Strictness and Totality Property Inference 

The  predicate BOT defined by 

BOT(n c~) = f f  BOT(T  (r) = t t  
BOT(h ~ = t t  BOT(~(ff)) = BOT(~) 
BOT(r ----+ ~5) = BOT(~) 

BOT(~b A ~b) = BOT(~b) A BOT(~) 

is true for the strictness and totality property ~b r whenever it is guaranteed that bot tom 
can be described by the property ~ r .  The reason for no t  taking BOT(~((b)) be to true is 
that ~ may be empty and therefore also +(~b) may be empty. However, the definition of 
BOT(l(q~)) that we have adopted is not as precise as one would wish. (An example of  
which is when ff = n~.) 

The rule [coer] allows to change the'strictness and totality property to a greater property. 
It is quite useful as a preparation for applying the rule [if3], i.e. whenever BOT((b) is 
not true we can coerce (5 to a property 4 '  so that BOT(4 ' )  is true. 

From the rule [fix] the two more intuitive rules 

A b e  : r ~ ~btr 
[fixl] A ~ - f i x  e : ~ r  i f B O T ( ~  ~ 



508 

and 

A ~" e : r  - -  6 ~ 
[fix2] A ~ " f i x  e : 'r ifBOT((2 ~) and 4 ~ _<sT ~(r 

are easily derived. The rule [fix] itself can be explained as follows: first we have to 
ensure that the strictness and totality property ~b{' can describe bottom in order to be 
able to start the iteration towards the fixpoint. After the first iteration the term has the 
property ~bf and after the second the strictness and totality property ~ f ,  etc. When we 
reach iteration number q - 1 we can apply the rule [coer] because we have r _<sT r 
and the term has the property ~ .  In this way we can go on as long as necessary to 
calculate the fixpoint. Finally we are allowed to iterate n - q times more to get the 
property ~b~ for the fixpoint. 

Example 1 
We can infer ~- f i x  Axin  t . X i n  t : b I n t  which is more precise than the informa- 
tion T I n t  obtained by [15]; in [16] it can be done. In the systems of [2, 6, 7, 16] one 
can infer the property T I n t  for the term f i x  l x  I n t  , 7 whereas we can infer the 
more precise property n I n t .  In this system (as well as those of [12, 2, 6, 7, 16]) it is 
possible to infer the property 

(b Int -+ T Int -~ T Int -+ D Int) A (T Int -~ h Int -4 T Int -+ b Int) 

for the term 

fix Af. (Ax.ly.lz.if z = 0 then z + y else f y x (z - i)) 

that way beyond the techniques of [8]. 

The term 1 twice g where 

twice :Af.lx.f (f x) 

g:AF.AX.+ x (y (fix Ax.x)) 

will have the strictness and totality property 

(T I n t  ._+ T i n t )  ~ T I  n t  ._~ b I n t  

However, we are no t  able to prove it using the analysis in [12], because we need full 
power of conjunction in order to construct the proof-tree. The reason is that we need to 
infer that t w i c e  has the property 

( ( 4  ~ ~ )  t, (,/, ---+ x ) )  --, (4  ~ x )  

for any 4, ~b, and ~ but this is not a well-formed conjunction type in [12]. 

Note that this analysis and the analysis in [12] only differ in the use of conjunction. 

1 Thanks to Nick Benton for pointing to this example 

O 
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4 Soundness 

In this section we will sketch the proof for soundness of the analysis (Figure 5) with 
respect to the denotational semantics (Figure 2). For the details see the author's forth- 
coming PhD Thesis. 

Definition 2 
A subset X of a domain De is limit closed if whenever do ~_ dl _ - �9 �9 is a chain in Da 
and Vi : di E X then Uidi G X and it is convex if whenever dl U_ d2 C_ d 3 E De and dl 
E X and d3 ~ X then d2 E X. [] 

First we prove that each i c e ]  is a limit-closed and convex subset of De and convex: 

Proposition 3 Limit closed subsets 
~r is a limit closed and convex subset of De [] 

Proof We assume that do U_ dl E �9 �9 �9 is a chain in De such that for all i we have di E 
~r then we show by induction on the property err that Uidl E ~r holds. And we 
assume that dl E d2 E_ d3 and both dl and d3 is in ~r then we show by induction on 
the property Ca that d2 is in [r We omit the details. �9 

The predicate BOT is sound but it is not complete. Without properties of the form +(r 
and un-restricted conjunction or without conjunction we would have an bi-implicationin 
Lemma 4 below. The reason is that r can be an empty property, due to the conjunctions, 
and hence we cannot define BOT(~.(r to be true always - -  although it is true for all 
non-empty properties. 

Lemma 4 
(BOT(r e) = t t )  => (_l_De E [r [] 

Proof We assume that BOT(r e) is true and then we prove by induction on Ce that 
J-De E ~r holds. We omit the details. �9 

Next we want to prove that the coercion rules are sound: 

Lemma 5 Soundness of coercions 
If Ca _<ST ~O" then i c e ]  C_ ice]  [] 

Proof We assume Ca --<ST Ca and then we prove by induction on the proof-tree for 
1/)0" ~ST ~Cr that i c e ]  C_ [r holds. We omit the details. �9 

The validity predicate ~ is defined for denotations and properties and extended to 
environments: 

Definition 6 Validity 
d ~ Ca r (d E iCe]i) 
For environments we define 
p ~ A r (dom(A) = dom(p) A V x e 6 dom(p) : p (x e) ~ A(xa)) [] 

In the operational world [ 12] we did not introduce ~(r as part of the syntax. This 
is due to the difficulties in defining validity for l(r in the operational setting. 

Now soundness is: 

Proposition 7 Soundness 
A F  e : r  e ::~(Vp:p ~A=~ [elp ~ Ca) [] 
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Proof We assume A F e : ~b cr and p # A then we show by induction on the proof-tree 
for A F e : t/, ~ that [e]] p ~ tb cr holds. We omit the details. �9 

In the domain Dcr there are elements d to which there is no term that has d as its 
standard denotation. In the operational setting all the "meanings" are terms themselves 
so in order to express properties about the partial results of  the fixpoints we find it 
convenient to introduce special terms approximating the fixpoint. This complicates the 
soundness proof  in the operational setting. 

5 Algori thm for Strictness and Totality Property Inference 

One way to construct an algorithm for strictness and totality property inference - -  
for both the un-restricted and restricted [12] case - -  is to follow the most general 
type approach by Hankin and Le M6tayer [4]. For a given environment and term the 
algorithm will find all the strictness and totality properties that can be inferred for the 
term. Often we are only interested in knowing if a term possesses one particular property 
and not all of  them, so this approach seems like using a sledge hammer to crack a nut. We 
follow the lazy type approach of  Hankin and Le M6tayer [4] where only the information 
necessary to answer one question is calculated. 

The algorithm is constructed as follows: 

- Make the inference system structural in the term and property. This is achieved by 
integrating the rule [coer] into all the appropriate rules and axioms. 

- Introduce the lazy properties. 

- Extract an algorithm from the lazy property inference system. 

5.1 Structural Strictness and Totality Inference System 

We define an inference system without a coercion rule but where the other rules have 
the coercion built in. 

The coercion-rule maybe needed after the rules [var], [const], [ifl],  and labs]. For the 
[abs]-rule we generate all the possible rules: 

[absls]  A Fs Ax ~r . e : n ~r---*~- 

A Fs Ax ~r �9 e : ff~r --+ tbT 
[abs3s] A Fs Ax 'r . e  : ~(%a) _._, ].(~T) 

[abs2s] A I-s A:;: Cr �9 e : T ~ r ' ~ r  

A , x : f f ~  e : ~ T  

[abs4s] A t-s Ax  a . e : ~ a  __~ ~ T  

A bs Ax cr �9 e : ~b cr ---+ ~(tb r )  

[abs5s] A F-s Ax Cr . e : ~(ff~r ___+ tbT) 

The last rule can be stated more generally as 

A F-s e : e x d o w n ' ( r  
[downs] A ks e : ~(ff) 

where we define the functions e x d o w n  and e x d o w n ' :  
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exdown(no.) = To. exdown(bo.) = bo. 

exdown(To.) = T O. exdown((b --+ ~2) = (b --+ ~(~) 

exdown(~ A ~) = ~((b) A ~(~) exdown(~(~)) = ~(~b) 

exdown'(0 A ~) = ~ A ~ exdown'(@) = exdown(6) 

The functions moves the I inwards one level using the coercion rules. The difference 
between exdown and exdown'  is on conjunction'.' we have 

Fact 8 
(1(4) _<L exdown(r  (exdo'.,,}n'(r 5 L 1(4)) [] 

Proof We will show (1(r SL exdown(r and (exdownt(r <L l(q))) by induction 
on the property ~b. �9 

The rest of the rules (lapp], [if2], [if3], [fix], and [conj]) are unchanged. Since the terms 
are typed therefore no more terms can be typed using these rules than using Figure 5. 
The reason for changing the presentation is that we are interested in doing as little as 
possible to check that a term has a given property. In the definition of the analysis 
(Figure 5) we were looking at the idea of the analysis. 

The new structural strictness and property inference system is sound with respect to the 
strictness and totality inference system: 

Lemma 9 
AI-s e : %b =:~ A F e : ~ [] 

Proof We show that the rules in the structural inference system can be derived in the 
non-structural inference system. �9 

5.2 Lazy Property Inference System 

Following the lazy type approach by Hard<in and Le M6tayer [4] we now introduce the 
lazy properties: 

n r ,  b T, -F r ,  (A, e) 6 f L  Cr A ~b r 6 / ~  

The property (A, e) is a shorthand (un-evaluated property) for the conjunction of all the 
properties 4 that can be inferred for e using the environment A. The function e x p a n d  
maps lazy properties to strictness and totality properties due to [4]: 

expand :: r L --+ fSrT 
expand(n T) = n T 
expand(b r ) = b T 
expand(T T) = T T 

expand(~(~)) = ~(expand(~b)) 
expand(~ --+ ~) = expand(b ) --+ expand(%O) 
expand(~ A ~) = expand(~b) A expand(%~) 

expand((A, e)) = A {01 expand(A) l-s e : 0} 
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and the function is extended to environments in a component-wise manner. The predicate 
BOT on lazy properties is defined by 

BOT((A, e)) = BOT(expand((A, e))) 

We need two new rules for relating the lazy properties: 

[envL] (A, e) ~L ~ if r # (A', e') [envR] r _<L (A, e) 

The lazy properties are useful in the application rule: 

A ~-s el : (m, e2) --~ ~T 
[appL] A ks el e2 �9 Cv 

In the [ifl]-rule we no longer construct proof-trees for e2 and e3: 

A F-s el : b B~176 bo- --<ST r 
[iflL] A F s  i f  el t h e n  e2 e l s e  e 3 : r  

All the other rules remain the same. 

The lazy property inference system is sound with respect to the structural strictness and 
totality inference system: 

Lemma 10 
(((r _<L r A A ~-L e : r 
( ( expand(e )  -<ST expand(e ) )  A expand(A)  I-s e : expand(r  [] 

Proof 

Suppose r _<n @ and A ~-L e : r then we will show e x p a n d ( e )  _<ST expand(@) and 
expand(A)  [-s e : e x p a n d ( e )  by simultaneous induction on the proof-tree for -<L 
and FL. 

The reason that we have to do simultaneous induction on <L and t-L is that <L 
depends on ~-L (in [envL] and [envR]) and not only FL depending on _<L (in [varL], 
[iflL], [constL]) as in the other inference systems. We omit the details. �9 

5.3 The Lazy Property Inference Algorithm 

Finally the last step is to extract the algorithm T (see Figure 6) for lazy property 
inference from the lazy property inference system. The function ,,4s163 gives a list of 
all the strictness and totality properties of the type o-. When the function T is applied 
to a list it gives back the list of all those strictness and totality properties for which the 
function is true; the function ZSCT-IAT, A/'(r applied to a list of properties gives back 
the list of those properties that are chains with the property r as the last one and BOT of 
the first is true. The algorithm for checking the coercions is displayed in Figure 7 and 8. 

The algorithms are sound with respect to the lazy property inference system: 

Lemma 11 
(']-(m, e, et) = tt A Z(r r = tt) ~ (A I-L e : r A (r _<L ~)) I-I 
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T(A, e, 4 A r 
T(A, Axo'. e, n o. "+ r)  
T(A, Axo'. e, T o. '-+ r )  
T(A, Axo'. e, b a "+ r) 
T(A, Axo'. e, ~(4)-~ ~(r = 
9-(A, Axo'. e, r -~ r = 
T(A, e l  e2, r = 
T(A, xo', r = 

T(A, if e l  then e2 else e3,4)= 

T(A, c, 4) 
T(A, fix e, 4) 
T(A, e, 1(4)) 
)rZX(A, e, 4 ~) 

= T(A, e, 4) A T(A, e, r 
= t t  
= t t  
= f f  

T((xo" : 0): A, e, r V T((xo" : ~(4)): A, e, 1(r 
T((xo" :4): A, e, r 
T(A, el, (A, e2) ~ r 
2-(A(xo'), r 
(T(A, el, b B~176 A l(bo', 6)) V 

(T(A, e2, 4) A T(A, e3, 4)) A 
(T(A, el, n B~176 v (T(A, el, T B~176 A BOT(r 

= ~ ( r  4)  
= .T'2-X(A, e, 4) 
= T(A, e, exdown'(4)) 
= let ll = T(A,  e, As163 

12 = ZSCHAZA/"  (4 '~, /1) 
in n # [ ]  

Fig. 6. Lazy Property Inference Algorithm 

2-(4o" ' r = f f  2.(4, 4) = t t  
2-(4 , TO') = tt 2-(n ~ bo') = ff 
][(bo', no') = ff ~[(To', no') = ff 
][(To', bo') = ff 2.(~(bo'), bo') = tt 
I (4  ~ r b o'-+r) = f f  2.(1(4), no') = f f  
/ ( 4 ' ,  r A r = 2.(4', r A 2.(4', r /7(4 --' r n o'-*r) = 2.(no', 4) A 2-(r n r )  
Z(4 A •, n a)  = I (4 ,  ncr ) V 77(r no') /?(4 A r bo') = 77(4, b a)  V 2(r bo') 
77(n o ' e r ,  r --* r : Z( T r ,  r Z(b o''-~r, r ~ r = I ( T  r,  r v 2.(b r ,  r 
I (  To'~7", r --~ r =/7( T r ,  r /(no',  Hr = 2.(n a,  4) 
/(bo' ,  J.(r = Z(bo', 4) V (4 = no') 2.(To', 1(4)) = 2.(To', 4) V (4 = n a)  
2.(4 - - ,  r  I ( r  = I ( 4  - - ,  r 4 ' )  

Fig. 7. Lazy Coercion Inference Algorithm (Part 1) 

P roof  We will assume that both T(A,  e ,  r  and I ( r  r  are true and then we will 
prove A F-L e : r  and r _<(L ~ by induction on e ,  r  and r  We omit the details. �9 

Finally we have that the inference algorithm is sound with respect to the strictness and 
totality property inference system: 

T h e o r e m  12  
T(A, e, r ::~ expand(A) }-- e : expand(b ) [3 

Proo f  This is a consequence of Lemma 9, 10, and 11. �9 

The inference algorithm is not complete. Consider the term, e ,  Ax.  ( f  i x  Ax .  x )  
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z(Wr --, e r ,  r ~ r  = (Z(r r A z( r  r  v (z(r  ~(r A I (1(r  r  v 
Z(T r, r 

2-(1(r I(~)) = 2"(~b, r V Z(exdown(r i(%b)) V 2(.L(r exdown'(~b)) 
V Z(exdown(r exdown'(~)) 

z ( r  A r r  --, r  = Z(r r  -~ r  v Z(r r  - *  r  v Z ( T  ~-, r  
Z(~(r r --+ ~b,r) = I (T  r, r V (r = b cr-~r A Z(b r, r V 

(~ = r  -~ r  A Z(r -~ 1(r r  -~ r V 
(0 = (r A r A Z(I(r A 1('r r --+ r 

27(r A r ~(r = $(r A r r V/7(r ~(~b')) V Z(r ~(r 
Z((A, e), 0) = T(A, e, r 
Z(r r (A, e)) = C(Ms A, e, r 
C(I ], A, e, r = tt 

= ; Z(r r A g(l, A, e, r if T(A, e, r 
C(r A, e, r [ C(1, A, e, 0), otherwise 

Fig. 8. Lazy Coercion Inference Algorithm (Part 2) 

and the property, r ~((no. ~ n r )  A (n a ~ Tr)) .  In the analysis (Figure 5) we can 
construct a proof-tree for 0 ~- e : r However, it is not possible to infer 

0 F- e : (no. ~ n r )  A (no. ~ T r)  

The algorithm will do as follows: 

T(O, e, r = T(O, e, (n o. --* n 7") A (n ~ ~ T r ) )  

= T(O, e ,  (no. -+ nr)) A T(O, e ,  (no. --+ Tr) )  

: ff A tt : ff 

The problem is that ~(r A r is not equivalent to r A r More work is needed to find a 
sound and complete inference algorithm. 

6 C o n c l u s i o n  

We have restated the strictness and totality analysis of [12] and removed the restriction 
that conjunction may only occur at the top-level. We have proven the strictness and 
totality analysis correct with respect to a denotational semantics. Finally we have con- 
structed an algorithm for inferring the strictness and totality properties by following the 
lazy types approach of [4]. 
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