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Abs t r ac t .  Starting from the specification of a small imperative pro- 
gramming language, and the description of two program transformations 
on this language, we formally prove the correctness of these transforma- 
tions. The formal specifications are given in a single format, and can 
be compiled into both executable tools and collections of definitions to 
reason abo~t into a theorem prover. This work is a case study of an en- 
vironment integrating executable tool generation and formal reasoning 
on these tools. 

1 I n t r o d u c t i o n  

Two impor tan t  areas of computer  science have shown some interest in formal 
specifications of p rogramming  languages. One area is tha t  of programming envi- 
ronment  generators like Centaur  [Jac92], the Synthesizer Generator  [RT88], or 
A S F + S D F  [Kli93] where one is interested ill deriving programming tools from 
an abs t rac t  description of the p rogramming  language. Users of the programming 
environment generators can thus provide short  descriptions of tools, which are 
then obtained by some compilat ion process from these descriptions. 

In the other area interested in formal specifications, the central tool is a proof 
tool like Coq [DFH+93], HOL [MT92], or Elf [Pfe89] rather  than  a programming 
environment.  Here, the actual  derivation of programming tools is less relevant 
than the ease with which one can describe a programming language, feed this 
description to a theorem proving system, and get this theorem proving system 
to produce a proof for s ta tements  about  the language. 

Because of the distance between these two areas, there is no insurance tha t  
the same notion of "formal specification" is shared by speakers from all sides. 
The work described in these notes a t t em p t s  to unite the two sides: we are go- 
ing to provide formal specifications tha t  will be both integrated in practical 
p rogramming environments and abs t rac t  enough to reason about  formally. In 
this respect we follow Berry 's  "What  you prove is what you execute" principle 
[Ber89]. The result of our work is a practical  environment where users can edit, 
run and debug programs and trigger t ransformat ions  by clicking the mouse. The 
same environment also provides suppor t  for proof checked by a machine. We 
used Centaur  et Coq to realize the exper iment  describe~d in this paper.  
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2 R e l a t e d  w o r k  

A wide variety of programming environment generators use formal descriptions 
of programming languages. The best known systems use Attr ibute Grammars,  
Conditional Rewriting Systems or Natural Semantics. Only in rare cases does 
the specification formalism adapt to some kind of formal proof. 

Attr ibute Grammars,  used in the Synthesizer Generator,  exemplify the case 
of specification formalisms where the formal convenience is sacrificed to effi- 
ciency. Attr ibute Grammars can be compiled into very efficient programs, with 
good incrementality properties (incrementality is the holy grail of interactive 
environments). However, Attr ibute Grammars are limited in scope, so that  lan- 
guage designers are left on their own to describe key aspects of their language's 
environment like dynamic semantics. When it comes to formal reasoning, the 
situation is even worse~ as to our knowledge the only work done in this direction 
is by Reetz and Kropf  IRK94] but their approach is very limited in scope. 

Conditional Rewriting Systems, used in ASF+SDF,  may be more adapted to 
formal reasoning than at t r ibute grammars, but, to our knowledge there are no 
experiments done on coupling ASF+SDF with proof tools. 

The specification formalism we use in Centaur is often referred to as Natural  
Semantics [Kah87]. It draws upon earlier work of Plotkin who introduced Struc- 
tured Operational Semantics [Plo81]. This style of specification is well suited to 
execution, as it can easily be related with Prolog, Attr ibute Grammars  or func- 
tional evaluation. However, this style of specification is also suitable for formal 
reasoning, as it has its foundations in meta-mathematics and logics. The natural  
semantics is widely used for the formal description of type systems or program 
execution. 

Another area of related work is formal semantics and proof tools. The work 
closest to the experience described in this document is that  of Pfenning and 
Rohwedder [PR92]. They use the LF Logical Framework [HHPgl] to specify the 
meta-theory of deductive systems and the meta-language Elf to implement it. 
Our s tudy improves on their results in two respects: first, we present an inte- 
grated environment, where exactly the same specification is executed to perform 
transformations and to mechanically produce the necessary theorem prover in- 
put; second, Coq provides general tools related to inductive definitions as in 
[PM93], while in LF the induction principle is not internalized in the system. A 
drawback of our approach with respect to theirs is that  we are not able to use 
higher order abstract  syntax. Despeyroux and Hirschowitz are currently doing 
research in this direction [DH94]. However, they prove properties of functional 
languages, and it is unclear whether higher order abstract  syntax can also be 
useful in reasoning about  imperative languages. 

There are also case studies using HOL for reasoning about  semantic proper- 
ties of programming languages. Very close to our work is [RN91], where Roxas 
and Newey study simple program transformations on roughly the same program- 
ming language. However, they do not have a complete environment and they do 
not use induction (as they prove only the correctness of local transformation 
rules). 
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Camilleri and Zammit  [CZ94] s tudy a way to execute formal specifications 
inside the theorem prover HOL, and to use this symbolic execution as a proof 
tool. This kind of tool could have been useful in our experiment.  

Recently, Buth presented a t ransformat ion of operat ional  and denotat ional  
semantics definitions into rewrite rules [But94]. These rules can be used as proof 
input by the Larch Prover [GJ93]. As the t ransformat ion is au tomat ic  this ap- 
proach is similar to ours. However Buth doesn ' t  provide a tool for executing the 
semantic specifications. 

3 S tar t ing  little 

In this section, we present the formal specification of a small imperat ive pro- 
gramming language, little, tha t  only handles boolean and integer values. 

3.1 S y n t a c t i c  s p e c i f i c a t i o n s  

The abs t rac t  syntax describes how to construct  syntactic trees for the programs 
of a language, while the concrete syntax describes their textual  form. The ab- 
s t ract  syntax consists of sorts and operators. Operators  represent primitive tree 
pat terns ,  while sorts represent tree categories, for instance instructions or ex- 
pressions. Each sort is defined as the set of head operators  accepted for trees in 
this sort. The syntactic description of the main par t  of the language is as follows, 
where operators  are given in lower case characters and sorts are in upper  case. 

program -> DECLS INST ; PROGRAM ::= program ; 

decls -> DECL + ... ; DECLS ::= decls ; 

decl -> ID VAL ; DECL ::= decl ; 

assign -> ID EXP ; INST ::= assign sequence if while ; 

sequence -> INST * ... ; SEQUENCE ::= sequence ; 

if -> EXP INST INST ; 

while -> EXP INST ; 

This description states tha t  a program is made of a list of declarations and an 
instruction. Each declaration assigns an initial value to some variable of the 
program. An instruction can be an assignment, an if conditional instruction, a 
while loop or a sequence of instructions. In the following we will often use skip 
as a shor thand for sequence[]. 

The abs t rac t  syntax description of a language can be used to implement  a 
s t ructure  editor for this language. This tool provides a more user-friendly envi- 
ronment  for editing programs in this language. We can also give specifications for 
other tools of the environment,  like a pret ty-pr inter  to a more readable textual  
form and a parser that  allows editing fragments  of programs as text. 

3.2 S e m a n t i c  Specifications 

We describe semantic aspects of the programming language in a natural  seman- 
tics style [Kah87]. More exactly we define relations between abs t rac t  syntax 
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trees and provide inference rules for proving instances of these relations. These 
inference rules have the following form: 

premise 1 . . .  premise n 
condusion 

The meaning of such a rule is that  the conclusion holds if all the premises hold. 
There is an implicit universal quantification for all the variables occurring in the 
rule. 

D y n a m i c  S e m a n t i c s  We can use this kind of inference rules to specify the 
dynamic semantics of programming languages. We do this with a judgement of 
the form 

dynamics(P P ---* D) 

that  states that  the execution of program P terminates and returns a list of 
declarations D, a judgement of the form 

exec(D ~- I ~ D') 

that  states that  the execution of an instruction I in the environment D termi- 
nates and returns a list of declarations D p, a judgement of the form 

eval(D F- E ~-~ V) 

that  states that  the evaluation of expression E in the environment D returns 
the value V, and a judgement of the form 

update(id, V P D --* D1 ) 

stating that  we obtain the new environment D1 from the environment D by 
associating the value V to the identifier id. 

For instance, the rule describing the execution of a program has the following 
form: 

exec( D F I ---* D') 
dynamics(F program(D, I)  --~ D') (1) 

This rule says that  if the execution of I terminates in the environment D and 
returns the environment D 1 then the execution of program(D, I)  terminates and 
returns the same environment. The rule describing the execution of an assign- 
ment has the following form: 

eval(D F- E ~-~ V) npdate(id, Y F- D --* 01 ) 
exec(D F assign(/d, E)  --~ D1 ) (2) 

It states that to execute an assignment we evaluate the expression E and asso- 
ciate the obtained value V to the identifier id in the new environment. 

The rule describing the execution of a sequence of instructions has the fol- 
lowing form: 

exec(D e / 1  -~ D1) exec(D1 F I e  -~ De) 
exec(D F sequence[Ii .Iz] --~ De) (3) 
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It states that  the execution of the two instructions has to terminate for the 
execution of a sequence of two instructions to terminate,  and it gives the relation 
between the various computed environments. 

Compiling the dynamic semantics specification into a Prolog program yields 
an interpreter tha t  can be used to run programs [Des84]. If the programming en- 
vironment generator also provides subject tracking and breakpointing facilities, 
a complete debugger can also be derived from this specification [Ber91]. 

S t a t i c  S e m a n t i c s  In the same way that  we specified the execution of programs, 
we can express the property that  programs respect a type discipline. We will 
consider a program to be well typed if every variable used in the program is 
declared in the initial list of declarations and if all subsequent uses of this variable 
are coherent with its declaration. The specification of the static semantics can be 
described with Natural  Semantics rules and compiled into a type-checker for the 
programs of the language. In the case of static semantics, the target  language of 
the compilation may also be Attr ibute Grammars  [Att88], so that  an incremental 
evaluation of static properties may be achieved. 

4 P r o g r a m  t r a n s f o r m a t i o n s  

We distinguish two important  classes of transformations. Global transformations 
require a full pass on the program; local ones replace a piece of code with another. 
In this section we will study a global transformation, constant propagation, and 
a local one, code simplification. 

4.1 C o n s t a n t  propagation 

Constant propagation builds on a data  flow analysis technique used by compilers 
in the optimization phase. Its goal is to discover variables whose value is constant 
on all possible executions and propagate these values as far as possible in the 
program. For example, this transformation can perform relevant simplifications 
on a program fragment that  has the following form: 

a : = true ; 

if a then 

begin x := 2; y := z + (x + 4); z := x + y; end 

else 

x := 0 

and replace it with the following equivalent fragment, inferring the way the 
conditional instruction and the various assignments will be performed. 

y :=  z + 6; z :=  2 + y; a:= t r u e ;  x:= 2; 

As before, we specify constant propagation by describing a number of judge- 
ments on programs, instructions, expressions, etc. The idea is to compute in each 
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point of the program a list of bindings associating some variables with their val- 
ues at tha t  point whenever these values are the same for every possible execution 
of the program. We use meta-variables named B,  B p to denote such lists. 

We have a judgement 

propagate_program( P --+ pi) 

that  states that  the program pr  is the result of constant propagation applied to 
the program P.  

We also have a judgement 

propagation(B ~- I --* 11 + B f) 

that  states tha t  the instruction I r is obtained from the instruction I by simplify- 
ing it with respect to the bindings given by B and that  B r denotes new bindings 
derived from B and I .  Note that d- in judgements is merely a syntactic separator 
symbol. 

The rule used to propagate constants in a program is: 

propagation(bindings[] F- I ~ I '  + B') conversion(B' ~ S') 
propagate_program(program(D, I) --* program(D, sequence[I'.S']) 

(4) 

It says that  if the body I of the initial program is simplified with respect to the 
empty list of bindings, giving us the instruction I t and the new list of bindings 
B t, then the new program will have the body It; S t where S r is the sequence 
of assignments (/1 := V1);.. .  ; (In := V~) corresponding to the list of bindings 
B '  = (Iz, V~);... ; (In,  Vn). We have a judgement 

propag_eval(B F E ~-~ E r) 

that  states that  the expression E I is obtained from the expression E by simpli- 
fying it with respect to a list of bindings of values to variables given by B. 

We have a judgement 

partial_update(id\val P B ---4 B I) 

tha t  states that  B t is the same list of bindings as B except that  it maps the 
identifier id to the value val. 

We also have a judgement 

remove(id F- B --+ B f) 

that  states that  B ~ is the same list of bindings as B except that  it does not 
associate any vMue to the identifier id. 

For instance, the rules describing constant propagation over assignments have 
the following form: 

propag_eval(B ~- E ~ val) partial_update(id\val F- B -* B') 
....... (5) 

propagationiB ~- assign(id, E)  -* skip + B 1) 
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propag_eval(B F E ~ E') remove(id F B ~ B') 
propagation(B F assign(id, E)  ~ assign(id, E ' )  + B')  (6) 

provided E ~ is not a value 

The first rule states that  if the expression E simplifies to a value val in the 
context of the list of bindings B and if updating the list B with the couple 
(id, val) yields the new list B' ,  then the assignment assign(id, E) reduces to 
an empty instruction together with the list Bg This rule is valid only when E 
simplifies to a fixed value, since partial_update is only defined for such immediate 
values. The second rule states that  if the expression E simplifies to another  
expression E ' ,  which is not a fixed value, then the assignment assign(id, E)  must 
be transformed into the assignment assign(id, E ' )  together with a new list of 
bindings B'  where the identifier id is not assigned a value. 

The rule describing constant propagation over a sequence of instructions has 
the following form: 

propagation( B f- 11 -~ I~ + BI ) propagation(B1 F- 12 --* 1~ ~- B2) (7) 

propagation(B F- sequence[Ii .I2] ~ sequence[I~ ./~] + B2) 

It states that  the first instruction is simplified with respect to the initiM list of 
bindings and the second instruction is simplified with respect to the list of bind- 
ings resulting from the propagation on the first instruction. This transformation 
specification can also be compiled to Prolog or Attr ibute Grammars to obtain 
an executable tool. 

4.2 C o d e  simplification 

After constant propagation, programs present some unpleasant characteristics. 
They contain pieces of useless code like if(E,skip,skip). We use code simplification 
to get rid of such useless fragments. The specification of this local transformation 
is divided into two parts. First, we define a judgement 

replace( I -~ I') 

expressing that  the instruction I is locally replaced with the instruction I r. The 
following two rules describe how the local replacements are performed: 

replace ( i f (E,  skip, skip) ~ skip) (8) 

var SI:  SEQUENCE 

append(St + $2 = S) 
replace(sequence[S1, $2] -* S) (9) 

The first one detects pieces of unused code and suppresses them. The second one 
restructures some parts of the code into a simpler form. More exactly it flattens 
a sequence of sequences into one sequence. The variable declaration is used to 
check that  the variable $1 is already a sequence. 
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Then we introduce the judgement 

rewrite(I ~ I r) 

as the closure of the relation replace under the operators if, whiJe and sequence. 
Two of the rules defining this judgement are: 

replace(I ~ I ')  
rewrite( I -+ I ')  (10) 

rewrite(I --~ I ')  
rewrite(while(E, I)  --* while(E, I ')) (11) 

Finally, code simplification is the transitive closure of the rewrite relation. 
In an interactive environment, local transformations may be applied on re- 

quest using the mouse, by selecting the location in the program and the rule 
to apply in a "Transformation menu". Such transformation menus are easy to 
define in programming environment generators such as the Cornel1 Synthesizer 
Generator or Centaur. 

5 Using the Coq proof assistant 

Formal specifications of programming languages are objects that  one should be 
able to reason about. The reasoning process can be done informally, but it can 
also be done formally, in a way that  can be mechanically checked, by using 
a proof assistant like Coq. This proof assistant is a system in itself, a priori 
independent from our programming environment generator, but tools have been 
developed to increase the cooperation between the two systems. So far, these 
tools provide the following features: 

- Abstract  syntax specification and semantic specification can be compiled 
into data-type declarations and axioms for the Coq system [Ter94], 

- Programming tools as found in our programming environment generator 
can improve the usability of the Coq system and make some proofs easier 
[BKT92]. 

The type theory provided by the Coq system seems to be a good candidate 
for representing programming languages, but the real gain of using this system 
is in the specialized proof tactics provided for manipulating inductive types. 

5.1 T r a n s l a t i n g  Specifications 

T r a n s l a t i n g  t h e  A b s t r a c t  S y n t a x  We illustrate the translation of abstract  
syntax specifications towards Coq data  structures on the example of the language 
little. All the sorts of the language are merged into one inductive type called little 
and each operator  is translated into a constructor of this type: 1 

1 Another possibility would be to associate a type to each sort. This approach, requires 
mutually inductive types in the general case. This feature was not available in Coq 
at the time of the experiment. 
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Inductive Defini t ion .little : Set -- 
program : l i t t le --+ l i t t le -~ l i t t le 

assign : l i t t le ~ l i t t le -~ l i t t le 
if : l i t t le --* l i t t le -~ l i t t le --* l i t t le 
sequence : l i t t le -~ l i t t le --~ l i t t le 
nul_sequence : l i t t le 
while : l i t t le -~ l i t t le -~ l i t t le 

In this definition A ~ B ~ C is read as A --* (B ~ C). List operators  
are encoded using two operators,  a binary one (sequence) and an atomic one 
(nuLsequence). 

To forbid the manipulat ion of exotic terms (not respecting the syntactic 
constraints) we define the set of sorts of our language, such as ]itt]e_PROGRAM 
and ]itt]e_EXP, and we define a flmction little_is which takes two arguments ,  a 
t e rm t and a sort p and determines whether t is a syntactically correct tree in 
the sort p. 

Translating S e m a n t i c  S p e c i f i c a t i o n s  Semantic specifications are t ranslated 
into collections of axioms. Each inference rule is compiled into a universally quan- 
tiffed formula. For example, the rule describing the execution of an assignment 
is t ranslated into the following s tatement:  

exec_assign : VD, E, id,V : little.(eval D E V) =~ (update id V D D I )  =~ 
(exec D (assign id E) D I )  

The s ta tement  Vx : A.B reads as "for all x of type A, B is true".  Also, A ~ B 
C is understood as A ~ (B ~ C). Coq also supports  inductive definitions of re- 
lations. Given a collection of s ta tements  about  a relation, an inductive definition 
expresses tha t  the defined relation is the least relation, in terms of set inclusion, 
tha t  verifies all these s tatements .  Actually, semantic specifications correspond 
to inductive definitions. For instance, in the case of our exec property, we will 
write down the following inductive definition: 

Inductive Definition exec : l i t t le --~ l i t t le -~ l i t t le --* Prop = 
exec_assign : VD, E, i d ,V  : l i t t le.(eval D E V)  ~ (upclate id V D D I )  

(exec D (assign id E) D1) 
I exec_sequence : VI1, 12, D, D I ,  D 2 : l i t t le. 

( l i t t l e i s  12 l i t t le_SEQUENCE) =~ (exec D 11 D I )  =~ 
(exec D 1 12 D2)  =~ (exec D (sequence 11 12) D2)  

5.2 P r o o f  M e t h o d s  

The Coq system provides a variety of methods for manipulat ing inductive def- 
initions. Proof  of properties of programs often rely on proofs by induction of 
various forms IDes86, Win93]. More precisely: 
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- From the definition of an inductive set the Coq system automatical ly  gen- 
erates a structural induction principle. This principle states that  this set is 
the least one closed under the given operators.  

- From the definition of an inductive relation the Coq system automat ical ly  
generates a principle of induction on the structure of the proof. This principle 
states that  this relation is the least one closed under the given axioms and 
inference rules. 

Sometimes a degenerate form of induction is sufficient. For example an argument  
by cases on the s tructure of expressions will do when a proper ty  is true of all 
expressions simply by virtue of the different forms expressions can take, without  
having to use the fact tha t  the proper ty  holds for subexpressions. 

Thanks  to the work of Terrasse [Ter94], the relevant inductive definitions 
are automatical ly  generated from the specification of the language. In turn, the 
induction theorems are automatical ly  generated by the Coq system. A precise 
definition of the translation to Coq and a proof  of its correctness is given in 
[Ter94]. This proof  guarantees that  correctness proofs in Coq imply correctness 
of the underlying natural  semantics style specifications. 

6 Proving transformations correct 

Once we have t ranslated the syntactic and semantic specifications into Coq def- 
initions, we can s tar t  proving that  the given program transformations preserve 
the meaning of programs. 

6.1 Val idat ing  the  constant  propagat ion  

We saw tha t  the execution of a program returns a list of pairs (variable~value). 
To prove the t ransformation correct it is enough to show that  the execution 
of the t ransformed program returns a list that  associates the same values to 
the variables. In fact it is easier to prove a stronger result, namely tha t  the 
t ransformed program returns the same list as the initial program. 

More exactly, we prove the soundness and the completeness of the t ransforma- 
tion. The soundness proper ty  states that  there is no result tha t  the t ransformed 
program returns but tha t  the initial program cannot return. 

VP1, P2, D' : little.(propagate_program P1 P2) =~ 
(dynamics P2 D') =~ (dynamics Pl D') 

The completeness proper ty  states tha t  any result returned by the initial p rogram 
can also be returned by the transformed program. 

VP1, P2, DI : Iktfe'(pr~176 ram Pl P2) =a 
(dynamics P1 D') ::~ (dynamics P2 D') 

As the proofs of the two propert ies are very similar we shall limit our presentat ion 
only to the proof of the soundness property, Using the rules (1), (4) and (3) the 
soundness proper ty  can be reduced to the following one: 
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VI, V, B' ,S l, D, D1, D' : little. 
(propagation nul_bindings I I' B') =~ (conversion B' S') =~ 
(exec D I' D I )  =~ (exec D I S' D') =~ (exec D I D') 

This property is a particular case of a more general one, propagation_sound, which 
has the following statement: 

Vl, V, B, B', S, S r, 13, D1, D' : little. 
(propagation B I1' B') =~ (wf_bindings B) =~ (conversion B S) =~ 
(conversion B' S') (exec D I' D1) (e• D1 S' D') 
HD 2 : little.(exec D S D2) A ( e x e c  D 2 I D') 

What  matters  here is that  we replace nul_bindings by a more general value B, 
with a specific constraint, (wf_bindings B), expressing that  the list. B contains 
at most one occurrence of each variable. This kind of generalization step seems 
difficult to automatize and justifies the use of an interactive proof assistant. 

The property propagation_sound can be better understood as expressing the 
commutativity of the following diagram (where the dashed lines represent prop- 
erties that  must be proved): 

V 
D , D 1 

I 

B~S', B '~S '  

* I 
D 2 . . . . . . .  D' 

For this diagram we have the following assumptions: 

- the instruction I '  is obtained from the instruction I by simplifying it with 
respect to the bindings given by B, and B' is a new list of bindings derived 
from B and I, 

- S and S' are sequences of assignments corresponding to the lists of bindings 
B and B', and 

- B is well-formed. 

We prove the property propagation_sound by induction on the structure of 
the proof of the hypothesis (propagation B I I' B'), followed by case reasoning on 
the proof of (exec D I' D1). We obtain several cases, one for each inference rule 
given in the definition of the predicate propagation. 

We present the proof of one of these cases. It is the case corresponding to 
the rule (7) when I -- sequence(ll, 12) and I' - sequence(l~, I~). In this case, we 
must prove the commutativity of the following diagram: 

D 'i , D~ , D 1 

1 
I I 

B ~ S: B I -,~ Sl', B 2 --~ S 2 
I I 

D 2 --- I - I  . . . .  D0 - - -12-  . . . .  D' 
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We begin by applying the induction assumption corresponding to the proof of 
(propagation B 1 12 B 2 ]~), where B 1 is the list of bindings obtained by apply- 
ing the propagation on I 1. We have to show that  the list B 1 is well-formed: 
(wf_bindings [31). We do this by using the assumption that  the initial list [3 is 
well-formed and applying an auxiliary lemma, propagate_we]Lformed saying that  
the propagation transforms a well-formed list into another well-formed list: 

VB, I, B', I' : little.(propagation B I I' B') ~ (wf_bindings B) ~ (wf_bindings B') 

Interestingly, propagation_sound expresses that the propagation preserves dy- 
namic properties of instructions, while propagate_well_formed expresses that  the 
propagation also preserves static properties, like well-formedness. After this first 
step the intermediary state can be represented by the following partially com- 
pleted diagram: 

o , D~[ , D 1 

' I 1 
I 

B ~ S', B 1 ,-~ S 1 B 2 ~ S 2 
I 

* 11 12 
D 2 . . . . . . . .  DO , D' 

The proof of the case can be completed by using the induction assumption 
corresponding to the proof of (propagation B I1 B 1 I~). 

6.2 Va l ida t i ng  the  code  s impl i f i ca t ion  

As before we want to prove the soundness and the completeness of the transfor- 
mation. The proof closely follows the specification of the transformation, being 
also divided into two parts. 

Let us first define the relation equiv on the instructions of the language as 
the equivalence induced by the dynamic semantics: 

Vl, l ' : l i t t le.(equivI l ' )de=f VD, D l : l i t t le . (execD I D1) c:~(execD I' D1) 

In the first part, we prove that  each local replacement transforms an instruc- 
tion into an equivalent one: 

Vl, ~': little.(replace I1') =~ (equiv I1') 

In the second part we prove that  the relation rewrite transforms an instruction 
into an equivalent one: 

~'l, I': litUe.(rewrite I I') ~ (equiv I I') 

This proof is done by induction on the structure of the proof of the judgement 
(rewrite I I'). Actually it reduces to a proof of the fact that  the relation equiv is 



543 

a congruence with respect to the operators if, while and sequence. For instance, 
one of the subgoals to prove is: 

VI, I', E: little.(equiv I1') =~ (equiv (while E I) (while E I')) 

We should stress that  the second part of the proof is generic, as it can be 
shared by all the proofs of local transformations. 

Another interesting remark about  this proof is that  it must be done under 
the assumption that  the manipulated programs are Well typed. We need this 
assumption in order to prove that  the instructions skip and if E then skip else 
skip are equivalent. But skip can be executed in any environment whereas if E 
then skip else skip can only be executed in an environment where E is a boolean 
expression. This show's the need to prove several facts which relate the static 
and the dynamic semantics of the language, such as: 

- the evaluation of a well typed expression always terminates and returns a 
value having the same type as the expression. 

- types of variables do not change during the execution of a well typed in- 
struction. 

7 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

The work described in this paper aims at providing a uniform environment for 
the design and study of well defined programming languages. The originality of 
this work is not in the way formal specifications are executed and integrated in an 
interactive environment or in the proof techniques that  have been used to estab- 
lish the coherence results between the various specifications. Rather,  this work 
is original as it connects several aspects of formal descriptions of programming 
languages which have so far been politely ignoring each other. Connecting these 
various research domains is not only interesting per se, it is also relevant when 
considering the evolution of software engineering tools. First, the wide variety 
of applications of computer  technology leads to the design of numerous special 
purpose languages for which trustworthy compilers and programming tools are 
needed. It is sensible to provide tools to the designers of these languages to as- 
sist the task of writing these compilers and verifying their correctness. Second, 
transformation tools can become a major  feature of programming environments, 
since such tools can assist software engineers not only in their task of writing 
new programs and optimizing them, but also in the task of maintening old soft- 
ware and adapting it to new architectures. The transformations we have studied 
in our work exemplify two kinds of transformation tools: one performs a com- 
plete pass on the program, without interaction from the user, while the other 
describes a transformation that  can be piloted by the engineer in an interactive 
environment. 

This work was very labor intensive, especially due to the lack of programma- 
bility of the proof system we used (an old version of Coq). The issue whether this 
technique will scale up to more powerful languages cannot be fairly estimated 
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before evaluating the progress obtained with a programmable  proof system. In 
this respect we have remarked that  many proofs followed a similar pa t te rn  which 
could make them amenable to an automat ic  t reatment .  For sealing up to real 
programming languages it is also impor tan t  to be able to reuse previous se- 
mantic descriptions and proofs as one adds a new feature to the language. We 
suspect that  the work of Felty and Howe [FH94] brings pert inent  answers to this 
problem. 

All these problems hide a more general one: compiling semantic specifica- 
tions to definitions for the proof assistant and then using the proof  assistant 
for manipulat ing these definitions forces the user down to the lowest level of 
abstraction. A more user-friendly environment would allow the user to reason 
directly with the concepts available at the level of the formal specification, or 
even with concepts available at the level of the programming language. Finding 
the correct representation for concepts during the proof  is an interesting but  
difficult goal. 
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