
Reasoning with Executable Specifications

Yves Ber tot and Ranan Freer

INRIA - Sophia Ant.ipolis,
2004, route des Lucioles,

06902 Sophia Antipolis, France
e-maih {bertot ,rfraer}~sophia. inria.fr

Abs t r ac t . Starting from the specification of a small imperative pro-
gramming language, and the description of two program transformations
on this language, we formally prove the correctness of these transforma-
tions. The formal specifications are given in a single format, and can
be compiled into both executable tools and collections of definitions to
reason abo~t into a theorem prover. This work is a case study of an en-
vironment integrating executable tool generation and formal reasoning
on these tools.

1 I n t r o d u c t i o n

Two impor tan t areas of computer science have shown some interest in formal
specifications of p rogramming languages. One area is tha t of programming envi-
ronment generators like Centaur [Jac92], the Synthesizer Generator [RT88], or
A S F + S D F [Kli93] where one is interested ill deriving programming tools from
an abs t rac t description of the p rogramming language. Users of the programming
environment generators can thus provide short descriptions of tools, which are
then obtained by some compilat ion process from these descriptions.

In the other area interested in formal specifications, the central tool is a proof
tool like Coq [DFH+93], HOL [MT92], or Elf [Pfe89] rather than a programming
environment. Here, the actual derivation of programming tools is less relevant
than the ease with which one can describe a programming language, feed this
description to a theorem proving system, and get this theorem proving system
to produce a proof for s ta tements about the language.

Because of the distance between these two areas, there is no insurance tha t
the same notion of "formal specification" is shared by speakers from all sides.
The work described in these notes a t t em p t s to unite the two sides: we are go-
ing to provide formal specifications tha t will be both integrated in practical
p rogramming environments and abs t rac t enough to reason about formally. In
this respect we follow Berry 's "What you prove is what you execute" principle
[Ber89]. The result of our work is a practical environment where users can edit,
run and debug programs and trigger t ransformat ions by clicking the mouse. The
same environment also provides suppor t for proof checked by a machine. We
used Centaur et Coq to realize the exper iment describe~d in this paper.

532

2 R e l a t e d w o r k

A wide variety of programming environment generators use formal descriptions
of programming languages. The best known systems use Attr ibute Grammars,
Conditional Rewriting Systems or Natural Semantics. Only in rare cases does
the specification formalism adapt to some kind of formal proof.

Attr ibute Grammars, used in the Synthesizer Generator, exemplify the case
of specification formalisms where the formal convenience is sacrificed to effi-
ciency. Attr ibute Grammars can be compiled into very efficient programs, with
good incrementality properties (incrementality is the holy grail of interactive
environments). However, Attr ibute Grammars are limited in scope, so that lan-
guage designers are left on their own to describe key aspects of their language's
environment like dynamic semantics. When it comes to formal reasoning, the
situation is even worse~ as to our knowledge the only work done in this direction
is by Reetz and Kropf IRK94] but their approach is very limited in scope.

Conditional Rewriting Systems, used in ASF+SDF, may be more adapted to
formal reasoning than at t r ibute grammars, but, to our knowledge there are no
experiments done on coupling ASF+SDF with proof tools.

The specification formalism we use in Centaur is often referred to as Natural
Semantics [Kah87]. It draws upon earlier work of Plotkin who introduced Struc-
tured Operational Semantics [Plo81]. This style of specification is well suited to
execution, as it can easily be related with Prolog, Attr ibute Grammars or func-
tional evaluation. However, this style of specification is also suitable for formal
reasoning, as it has its foundations in meta-mathematics and logics. The natural
semantics is widely used for the formal description of type systems or program
execution.

Another area of related work is formal semantics and proof tools. The work
closest to the experience described in this document is that of Pfenning and
Rohwedder [PR92]. They use the LF Logical Framework [HHPgl] to specify the
meta-theory of deductive systems and the meta-language Elf to implement it.
Our s tudy improves on their results in two respects: first, we present an inte-
grated environment, where exactly the same specification is executed to perform
transformations and to mechanically produce the necessary theorem prover in-
put; second, Coq provides general tools related to inductive definitions as in
[PM93], while in LF the induction principle is not internalized in the system. A
drawback of our approach with respect to theirs is that we are not able to use
higher order abstract syntax. Despeyroux and Hirschowitz are currently doing
research in this direction [DH94]. However, they prove properties of functional
languages, and it is unclear whether higher order abstract syntax can also be
useful in reasoning about imperative languages.

There are also case studies using HOL for reasoning about semantic proper-
ties of programming languages. Very close to our work is [RN91], where Roxas
and Newey study simple program transformations on roughly the same program-
ming language. However, they do not have a complete environment and they do
not use induction (as they prove only the correctness of local transformation
rules).

533

Camilleri and Zammit [CZ94] s tudy a way to execute formal specifications
inside the theorem prover HOL, and to use this symbolic execution as a proof
tool. This kind of tool could have been useful in our experiment.

Recently, Buth presented a t ransformat ion of operat ional and denotat ional
semantics definitions into rewrite rules [But94]. These rules can be used as proof
input by the Larch Prover [GJ93]. As the t ransformat ion is au tomat ic this ap-
proach is similar to ours. However Buth doesn ' t provide a tool for executing the
semantic specifications.

3 S tar t ing little

In this section, we present the formal specification of a small imperat ive pro-
gramming language, little, tha t only handles boolean and integer values.

3.1 S y n t a c t i c s p e c i f i c a t i o n s

The abs t rac t syntax describes how to construct syntactic trees for the programs
of a language, while the concrete syntax describes their textual form. The ab-
s t ract syntax consists of sorts and operators. Operators represent primitive tree
pat terns , while sorts represent tree categories, for instance instructions or ex-
pressions. Each sort is defined as the set of head operators accepted for trees in
this sort. The syntactic description of the main par t of the language is as follows,
where operators are given in lower case characters and sorts are in upper case.

program -> DECLS INST ; PROGRAM ::= program ;

decls -> DECL + ... ; DECLS ::= decls ;

decl -> ID VAL ; DECL ::= decl ;

assign -> ID EXP ; INST ::= assign sequence if while ;

sequence -> INST * ... ; SEQUENCE ::= sequence ;

if -> EXP INST INST ;

while -> EXP INST ;

This description states tha t a program is made of a list of declarations and an
instruction. Each declaration assigns an initial value to some variable of the
program. An instruction can be an assignment, an if conditional instruction, a
while loop or a sequence of instructions. In the following we will often use skip
as a shor thand for sequence[].

The abs t rac t syntax description of a language can be used to implement a
s t ructure editor for this language. This tool provides a more user-friendly envi-
ronment for editing programs in this language. We can also give specifications for
other tools of the environment, like a pret ty-pr inter to a more readable textual
form and a parser that allows editing fragments of programs as text.

3.2 S e m a n t i c Specifications

We describe semantic aspects of the programming language in a natural seman-
tics style [Kah87]. More exactly we define relations between abs t rac t syntax

534

trees and provide inference rules for proving instances of these relations. These
inference rules have the following form:

premise 1 . . . premise n
condusion

The meaning of such a rule is that the conclusion holds if all the premises hold.
There is an implicit universal quantification for all the variables occurring in the
rule.

D y n a m i c S e m a n t i c s We can use this kind of inference rules to specify the
dynamic semantics of programming languages. We do this with a judgement of
the form

dynamics(P P ---* D)

that states that the execution of program P terminates and returns a list of
declarations D, a judgement of the form

exec(D ~- I ~ D')

that states that the execution of an instruction I in the environment D termi-
nates and returns a list of declarations D p, a judgement of the form

eval(D F- E ~-~ V)

that states that the evaluation of expression E in the environment D returns
the value V, and a judgement of the form

update(id, V P D --* D1)

stating that we obtain the new environment D1 from the environment D by
associating the value V to the identifier id.

For instance, the rule describing the execution of a program has the following
form:

exec(D F I ---* D')
dynamics(F program(D, I) --~ D') (1)

This rule says that if the execution of I terminates in the environment D and
returns the environment D 1 then the execution of program(D, I) terminates and
returns the same environment. The rule describing the execution of an assign-
ment has the following form:

eval(D F- E ~-~ V) npdate(id, Y F- D --* 01)
exec(D F assign(/d, E) --~ D1) (2)

It states that to execute an assignment we evaluate the expression E and asso-
ciate the obtained value V to the identifier id in the new environment.

The rule describing the execution of a sequence of instructions has the fol-
lowing form:

exec(D e / 1 -~ D1) exec(D1 F I e -~ De)
exec(D F sequence[Ii .Iz] --~ De) (3)

535

It states that the execution of the two instructions has to terminate for the
execution of a sequence of two instructions to terminate, and it gives the relation
between the various computed environments.

Compiling the dynamic semantics specification into a Prolog program yields
an interpreter tha t can be used to run programs [Des84]. If the programming en-
vironment generator also provides subject tracking and breakpointing facilities,
a complete debugger can also be derived from this specification [Ber91].

S t a t i c S e m a n t i c s In the same way that we specified the execution of programs,
we can express the property that programs respect a type discipline. We will
consider a program to be well typed if every variable used in the program is
declared in the initial list of declarations and if all subsequent uses of this variable
are coherent with its declaration. The specification of the static semantics can be
described with Natural Semantics rules and compiled into a type-checker for the
programs of the language. In the case of static semantics, the target language of
the compilation may also be Attr ibute Grammars [Att88], so that an incremental
evaluation of static properties may be achieved.

4 P r o g r a m t r a n s f o r m a t i o n s

We distinguish two important classes of transformations. Global transformations
require a full pass on the program; local ones replace a piece of code with another.
In this section we will study a global transformation, constant propagation, and
a local one, code simplification.

4.1 C o n s t a n t propagation

Constant propagation builds on a data flow analysis technique used by compilers
in the optimization phase. Its goal is to discover variables whose value is constant
on all possible executions and propagate these values as far as possible in the
program. For example, this transformation can perform relevant simplifications
on a program fragment that has the following form:

a : = true ;

if a then

begin x := 2; y := z + (x + 4); z := x + y; end

else

x := 0

and replace it with the following equivalent fragment, inferring the way the
conditional instruction and the various assignments will be performed.

y := z + 6; z := 2 + y; a:= t r u e ; x:= 2;

As before, we specify constant propagation by describing a number of judge-
ments on programs, instructions, expressions, etc. The idea is to compute in each

536

point of the program a list of bindings associating some variables with their val-
ues at tha t point whenever these values are the same for every possible execution
of the program. We use meta-variables named B, B p to denote such lists.

We have a judgement

propagate_program(P --+ pi)

that states that the program pr is the result of constant propagation applied to
the program P.

We also have a judgement

propagation(B ~- I --* 11 + B f)

that states tha t the instruction I r is obtained from the instruction I by simplify-
ing it with respect to the bindings given by B and that B r denotes new bindings
derived from B and I . Note that d- in judgements is merely a syntactic separator
symbol.

The rule used to propagate constants in a program is:

propagation(bindings[] F- I ~ I ' + B') conversion(B' ~ S')
propagate_program(program(D, I) --* program(D, sequence[I'.S'])

(4)

It says that if the body I of the initial program is simplified with respect to the
empty list of bindings, giving us the instruction I t and the new list of bindings
B t, then the new program will have the body It; S t where S r is the sequence
of assignments (/1 := V1);.. . ; (In := V~) corresponding to the list of bindings
B ' = (Iz, V~);... ; (In, Vn). We have a judgement

propag_eval(B F E ~-~ E r)

that states that the expression E I is obtained from the expression E by simpli-
fying it with respect to a list of bindings of values to variables given by B.

We have a judgement

partial_update(id\val P B ---4 B I)

tha t states that B t is the same list of bindings as B except that it maps the
identifier id to the value val.

We also have a judgement

remove(id F- B --+ B f)

that states that B ~ is the same list of bindings as B except that it does not
associate any vMue to the identifier id.

For instance, the rules describing constant propagation over assignments have
the following form:

propag_eval(B ~- E ~ val) partial_update(id\val F- B -* B')
....... (5)

propagationiB ~- assign(id, E) -* skip + B 1)

537

propag_eval(B F E ~ E') remove(id F B ~ B')
propagation(B F assign(id, E) ~ assign(id, E ') + B') (6)

provided E ~ is not a value

The first rule states that if the expression E simplifies to a value val in the
context of the list of bindings B and if updating the list B with the couple
(id, val) yields the new list B' , then the assignment assign(id, E) reduces to
an empty instruction together with the list Bg This rule is valid only when E
simplifies to a fixed value, since partial_update is only defined for such immediate
values. The second rule states that if the expression E simplifies to another
expression E ' , which is not a fixed value, then the assignment assign(id, E) must
be transformed into the assignment assign(id, E ') together with a new list of
bindings B' where the identifier id is not assigned a value.

The rule describing constant propagation over a sequence of instructions has
the following form:

propagation(B f- 11 -~ I~ + BI) propagation(B1 F- 12 --* 1~ ~- B2) (7)

propagation(B F- sequence[Ii .I2] ~ sequence[I~ ./~] + B2)

It states that the first instruction is simplified with respect to the initiM list of
bindings and the second instruction is simplified with respect to the list of bind-
ings resulting from the propagation on the first instruction. This transformation
specification can also be compiled to Prolog or Attr ibute Grammars to obtain
an executable tool.

4.2 C o d e simplification

After constant propagation, programs present some unpleasant characteristics.
They contain pieces of useless code like if(E,skip,skip). We use code simplification
to get rid of such useless fragments. The specification of this local transformation
is divided into two parts. First, we define a judgement

replace(I -~ I')

expressing that the instruction I is locally replaced with the instruction I r. The
following two rules describe how the local replacements are performed:

replace (i f (E, skip, skip) ~ skip) (8)

var SI: SEQUENCE

append(St + $2 = S)
replace(sequence[S1, $2] -* S) (9)

The first one detects pieces of unused code and suppresses them. The second one
restructures some parts of the code into a simpler form. More exactly it flattens
a sequence of sequences into one sequence. The variable declaration is used to
check that the variable $1 is already a sequence.

538

Then we introduce the judgement

rewrite(I ~ I r)

as the closure of the relation replace under the operators if, whiJe and sequence.
Two of the rules defining this judgement are:

replace(I ~ I ')
rewrite(I -+ I ') (10)

rewrite(I --~ I ')
rewrite(while(E, I) --* while(E, I ')) (11)

Finally, code simplification is the transitive closure of the rewrite relation.
In an interactive environment, local transformations may be applied on re-

quest using the mouse, by selecting the location in the program and the rule
to apply in a "Transformation menu". Such transformation menus are easy to
define in programming environment generators such as the Cornel1 Synthesizer
Generator or Centaur.

5 Using the Coq proof assistant

Formal specifications of programming languages are objects that one should be
able to reason about. The reasoning process can be done informally, but it can
also be done formally, in a way that can be mechanically checked, by using
a proof assistant like Coq. This proof assistant is a system in itself, a priori
independent from our programming environment generator, but tools have been
developed to increase the cooperation between the two systems. So far, these
tools provide the following features:

- Abstract syntax specification and semantic specification can be compiled
into data-type declarations and axioms for the Coq system [Ter94],

- Programming tools as found in our programming environment generator
can improve the usability of the Coq system and make some proofs easier
[BKT92].

The type theory provided by the Coq system seems to be a good candidate
for representing programming languages, but the real gain of using this system
is in the specialized proof tactics provided for manipulating inductive types.

5.1 T r a n s l a t i n g Specifications

T r a n s l a t i n g t h e A b s t r a c t S y n t a x We illustrate the translation of abstract
syntax specifications towards Coq data structures on the example of the language
little. All the sorts of the language are merged into one inductive type called little
and each operator is translated into a constructor of this type: 1

1 Another possibility would be to associate a type to each sort. This approach, requires
mutually inductive types in the general case. This feature was not available in Coq
at the time of the experiment.

539

Inductive Defini t ion .little : Set --
program : l i t t le --+ l i t t le -~ l i t t le

assign : l i t t le ~ l i t t le -~ l i t t le
if : l i t t le --* l i t t le -~ l i t t le --* l i t t le
sequence : l i t t le -~ l i t t le --~ l i t t le
nul_sequence : l i t t le
while : l i t t le -~ l i t t le -~ l i t t le

In this definition A ~ B ~ C is read as A --* (B ~ C). List operators
are encoded using two operators, a binary one (sequence) and an atomic one
(nuLsequence).

To forbid the manipulat ion of exotic terms (not respecting the syntactic
constraints) we define the set of sorts of our language, such as]itt]e_PROGRAM
and]itt]e_EXP, and we define a flmction little_is which takes two arguments , a
t e rm t and a sort p and determines whether t is a syntactically correct tree in
the sort p.

Translating S e m a n t i c S p e c i f i c a t i o n s Semantic specifications are t ranslated
into collections of axioms. Each inference rule is compiled into a universally quan-
tiffed formula. For example, the rule describing the execution of an assignment
is t ranslated into the following s tatement:

exec_assign : VD, E, id,V : little.(eval D E V) =~ (update id V D D I) =~
(exec D (assign id E) D I)

The s ta tement Vx : A.B reads as "for all x of type A, B is true". Also, A ~ B
C is understood as A ~ (B ~ C). Coq also supports inductive definitions of re-
lations. Given a collection of s ta tements about a relation, an inductive definition
expresses tha t the defined relation is the least relation, in terms of set inclusion,
tha t verifies all these s tatements . Actually, semantic specifications correspond
to inductive definitions. For instance, in the case of our exec property, we will
write down the following inductive definition:

Inductive Definition exec : l i t t le --~ l i t t le -~ l i t t le --* Prop =
exec_assign : VD, E, i d ,V : l i t t le.(eval D E V) ~ (upclate id V D D I)

(exec D (assign id E) D1)
I exec_sequence : VI1, 12, D, D I , D 2 : l i t t le.

(l i t t l e i s 12 l i t t le_SEQUENCE) =~ (exec D 11 D I) =~
(exec D 1 12 D2) =~ (exec D (sequence 11 12) D2)

5.2 P r o o f M e t h o d s

The Coq system provides a variety of methods for manipulat ing inductive def-
initions. Proof of properties of programs often rely on proofs by induction of
various forms IDes86, Win93]. More precisely:

54-0

- From the definition of an inductive set the Coq system automatical ly gen-
erates a structural induction principle. This principle states that this set is
the least one closed under the given operators.

- From the definition of an inductive relation the Coq system automat ical ly
generates a principle of induction on the structure of the proof. This principle
states that this relation is the least one closed under the given axioms and
inference rules.

Sometimes a degenerate form of induction is sufficient. For example an argument
by cases on the s tructure of expressions will do when a proper ty is true of all
expressions simply by virtue of the different forms expressions can take, without
having to use the fact tha t the proper ty holds for subexpressions.

Thanks to the work of Terrasse [Ter94], the relevant inductive definitions
are automatical ly generated from the specification of the language. In turn, the
induction theorems are automatical ly generated by the Coq system. A precise
definition of the translation to Coq and a proof of its correctness is given in
[Ter94]. This proof guarantees that correctness proofs in Coq imply correctness
of the underlying natural semantics style specifications.

6 Proving transformations correct

Once we have t ranslated the syntactic and semantic specifications into Coq def-
initions, we can s tar t proving that the given program transformations preserve
the meaning of programs.

6.1 Val idat ing the constant propagat ion

We saw tha t the execution of a program returns a list of pairs (variable~value).
To prove the t ransformation correct it is enough to show that the execution
of the t ransformed program returns a list that associates the same values to
the variables. In fact it is easier to prove a stronger result, namely tha t the
t ransformed program returns the same list as the initial program.

More exactly, we prove the soundness and the completeness of the t ransforma-
tion. The soundness proper ty states that there is no result tha t the t ransformed
program returns but tha t the initial program cannot return.

VP1, P2, D' : little.(propagate_program P1 P2) =~
(dynamics P2 D') =~ (dynamics Pl D')

The completeness proper ty states tha t any result returned by the initial p rogram
can also be returned by the transformed program.

VP1, P2, DI : Iktfe'(pr~176 ram Pl P2) =a
(dynamics P1 D') ::~ (dynamics P2 D')

As the proofs of the two propert ies are very similar we shall limit our presentat ion
only to the proof of the soundness property, Using the rules (1), (4) and (3) the
soundness proper ty can be reduced to the following one:

541

VI, V, B' ,S l, D, D1, D' : little.
(propagation nul_bindings I I' B') =~ (conversion B' S') =~
(exec D I' D I) =~ (exec D I S' D') =~ (exec D I D')

This property is a particular case of a more general one, propagation_sound, which
has the following statement:

Vl, V, B, B', S, S r, 13, D1, D' : little.
(propagation B I1' B') =~ (wf_bindings B) =~ (conversion B S) =~
(conversion B' S') (exec D I' D1) (e• D1 S' D')
HD 2 : little.(exec D S D2) A (e x e c D 2 I D')

What matters here is that we replace nul_bindings by a more general value B,
with a specific constraint, (wf_bindings B), expressing that the list. B contains
at most one occurrence of each variable. This kind of generalization step seems
difficult to automatize and justifies the use of an interactive proof assistant.

The property propagation_sound can be better understood as expressing the
commutativity of the following diagram (where the dashed lines represent prop-
erties that must be proved):

V
D , D 1

I

B~S', B '~S '

* I
D 2 D'

For this diagram we have the following assumptions:

- the instruction I ' is obtained from the instruction I by simplifying it with
respect to the bindings given by B, and B' is a new list of bindings derived
from B and I,

- S and S' are sequences of assignments corresponding to the lists of bindings
B and B', and

- B is well-formed.

We prove the property propagation_sound by induction on the structure of
the proof of the hypothesis (propagation B I I' B'), followed by case reasoning on
the proof of (exec D I' D1). We obtain several cases, one for each inference rule
given in the definition of the predicate propagation.

We present the proof of one of these cases. It is the case corresponding to
the rule (7) when I -- sequence(ll, 12) and I' - sequence(l~, I~). In this case, we
must prove the commutativity of the following diagram:

D 'i , D~ , D 1

1
I I

B ~ S: B I -,~ Sl', B 2 --~ S 2
I I

D 2 --- I - I D0 - - -12- D'

542

We begin by applying the induction assumption corresponding to the proof of
(propagation B 1 12 B 2]~), where B 1 is the list of bindings obtained by apply-
ing the propagation on I 1. We have to show that the list B 1 is well-formed:
(wf_bindings [31). We do this by using the assumption that the initial list [3 is
well-formed and applying an auxiliary lemma, propagate_we]Lformed saying that
the propagation transforms a well-formed list into another well-formed list:

VB, I, B', I' : little.(propagation B I I' B') ~ (wf_bindings B) ~ (wf_bindings B')

Interestingly, propagation_sound expresses that the propagation preserves dy-
namic properties of instructions, while propagate_well_formed expresses that the
propagation also preserves static properties, like well-formedness. After this first
step the intermediary state can be represented by the following partially com-
pleted diagram:

o , D~[, D 1

' I 1
I

B ~ S', B 1 ,-~ S 1 B 2 ~ S 2
I

* 11 12
D 2 DO , D'

The proof of the case can be completed by using the induction assumption
corresponding to the proof of (propagation B I1 B 1 I~).

6.2 Va l ida t i ng the code s impl i f i ca t ion

As before we want to prove the soundness and the completeness of the transfor-
mation. The proof closely follows the specification of the transformation, being
also divided into two parts.

Let us first define the relation equiv on the instructions of the language as
the equivalence induced by the dynamic semantics:

Vl, l ' : l i t t le.(equivI l ')de=f VD, D l : l i t t le . (execD I D1) c:~(execD I' D1)

In the first part, we prove that each local replacement transforms an instruc-
tion into an equivalent one:

Vl, ~': little.(replace I1') =~ (equiv I1')

In the second part we prove that the relation rewrite transforms an instruction
into an equivalent one:

~'l, I': litUe.(rewrite I I') ~ (equiv I I')

This proof is done by induction on the structure of the proof of the judgement
(rewrite I I'). Actually it reduces to a proof of the fact that the relation equiv is

543

a congruence with respect to the operators if, while and sequence. For instance,
one of the subgoals to prove is:

VI, I', E: little.(equiv I1') =~ (equiv (while E I) (while E I'))

We should stress that the second part of the proof is generic, as it can be
shared by all the proofs of local transformations.

Another interesting remark about this proof is that it must be done under
the assumption that the manipulated programs are Well typed. We need this
assumption in order to prove that the instructions skip and if E then skip else
skip are equivalent. But skip can be executed in any environment whereas if E
then skip else skip can only be executed in an environment where E is a boolean
expression. This show's the need to prove several facts which relate the static
and the dynamic semantics of the language, such as:

- the evaluation of a well typed expression always terminates and returns a
value having the same type as the expression.

- types of variables do not change during the execution of a well typed in-
struction.

7 C o n c l u s i o n s a n d f u t u r e w o r k

The work described in this paper aims at providing a uniform environment for
the design and study of well defined programming languages. The originality of
this work is not in the way formal specifications are executed and integrated in an
interactive environment or in the proof techniques that have been used to estab-
lish the coherence results between the various specifications. Rather, this work
is original as it connects several aspects of formal descriptions of programming
languages which have so far been politely ignoring each other. Connecting these
various research domains is not only interesting per se, it is also relevant when
considering the evolution of software engineering tools. First, the wide variety
of applications of computer technology leads to the design of numerous special
purpose languages for which trustworthy compilers and programming tools are
needed. It is sensible to provide tools to the designers of these languages to as-
sist the task of writing these compilers and verifying their correctness. Second,
transformation tools can become a major feature of programming environments,
since such tools can assist software engineers not only in their task of writing
new programs and optimizing them, but also in the task of maintening old soft-
ware and adapting it to new architectures. The transformations we have studied
in our work exemplify two kinds of transformation tools: one performs a com-
plete pass on the program, without interaction from the user, while the other
describes a transformation that can be piloted by the engineer in an interactive
environment.

This work was very labor intensive, especially due to the lack of programma-
bility of the proof system we used (an old version of Coq). The issue whether this
technique will scale up to more powerful languages cannot be fairly estimated

544

before evaluating the progress obtained with a programmable proof system. In
this respect we have remarked that many proofs followed a similar pa t te rn which
could make them amenable to an automat ic t reatment . For sealing up to real
programming languages it is also impor tan t to be able to reuse previous se-
mantic descriptions and proofs as one adds a new feature to the language. We
suspect that the work of Felty and Howe [FH94] brings pert inent answers to this
problem.

All these problems hide a more general one: compiling semantic specifica-
tions to definitions for the proof assistant and then using the proof assistant
for manipulat ing these definitions forces the user down to the lowest level of
abstraction. A more user-friendly environment would allow the user to reason
directly with the concepts available at the level of the formal specification, or
even with concepts available at the level of the programming language. Finding
the correct representation for concepts during the proof is an interesting but
difficult goal.

R e f e r e n c e s

[ArtS8]

[Ber89]

[Bet91]

[BET92]

[But94]

[cz94]

[Des84]

[Des86]

[DFH+93]

[DH94]

I. Attali. Compiling Typol with Attribute Grammars. In Programming
Language Implementation and Logic Programmzng, Orleans, France, 1988.
Springer Verlag, LNCS.
G. Berry. Real-time programming: General purpose or special-purpose lan-
guages. In G. Ritter, editor, Information Processing 89, pages 11-17. Else-
vier Science Publishers P.V, 1989.
Y. Bettor. Une Automatisation du Calcul des Rgsidus eu Sdmantique Na-
turelle. PhD thesis, Universit~ de Nice-Sophia Antipolis, 1991.
Y. Bettor, G. Kahn, and L. Th~ry. Real Theorem Provers Deserve Real
Interfaces. In 5th A CM Symposium on Software Development Environments,
Washington, 1992. Also available as INRIA Research Report, RR-1684.
K. Buth. Technzques for Modelling Structured Operational and Denotational
Semantics Definitzons with Term Rewriting Systems. PhD thesis, Christian-
Albrechts University, Kiel, 1994.
J. Camilleri and V. Zammit. Symbolic Animation as a Proof Tool. In HOL
Theorem Proving System and its Applications. Springer-Verlag LNCS 859,
1994.
T. Despeyroux. Executable Specifications of Static Semantics. In Interna-
tional Symposium on Semantics of Data Types, 1984. Springer-Verlag LNCS
173.
J. Despeyroux. Proof of Translation in Natural Semantics. In Proceedings
of the first ACM-IEEE Syrup. on Logic In Computer Science, Cambmdge,
Ma, USA, June 1986, pages 193-205, 1986. also available as a Research
Report RR-514, Inria-Sophia-Antipolis, France, April 1986.
G. Dowek, A. Felty, H. Herbelin, G. Huet, Ch. Paulin, and B. Werner. The

Coq Proof Assistant User's guide, Version 5.8. TechnicM Report 154, IN-
RIA, Rocquencourt, May 1993.
J. Despeyroux and A. Hirschowitz. Higher-Order Abstract Syntax and In-
duction in Coq. In Proceedings of the 5 ~h Int. Conf. on Logic Programmzng
and Automated Reasoning, July 1994.

545

[FH94]

[G J93]

[HHP91]

[Jac92]

[Kah87]

[Kli93]

[MT92]

[Pfe89]

[Plo81]

[PM93]

[PR92]

IRK94]

[RN911

[RT88]

[Ter94]

[Win93]

A. Felty and D. Howe. Generalization and Reuse of Tactic Proofs. In Pro-
ceedings of the 5 *h Int. Conf. on Logzc Programming and Automated Rea-
soning, July 1994.
J.V. Guttag and J.J.Horning, editors. Larch: Languages and Tools for For-
mal Specification. Springer-Verlag, 1993.
R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Technical Report 162, LFCS, University of Edinburgh, June 1991.
I. Jacobs. The Centaur 1.2 Manual. Technical report, INRIA, Sophia-
Antipolis, 1992.
G. Kahn. Natural Semantics. In Proceedings of the Syrup. on Theomcal
Aspects of Computer Science, Passau, Germany, 1987. Also available as
Research Report RR-601,INRIA, Sophia-Antipolis, February 1987.
Paul Klint. A Morn-environment for Generating Programming Environ-
ments. In ACM Transactzon on Software Engineering and Methodology,
number 2 in 2, pages 176-201, 1993.
M.J.C. Gordon and T.Melham. HOL: a Proof Generating System for
Hzgher-order Logic. Cambridge University Press, 1992.
F. Pfenning. Elf: A Language for Logic Definition and Verified Morn-
Programming. In Proceedings of the 4 ~h International Symposium on Logic
zn Computer Science, June 1989.
G.D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, Aarhus, 1981.
C. Paulin-Mohring. Inductive Definitions in the System Coq: Rules and
Properties. In Mark Bezem and Jan-Friso Groote, editors, Typed Lambda
Calculi and Apphcations, pages 328-345. Springer-Verlag, March 1993.
F. Pfenning and E. Rohwedder. Implementing the Meta-Theory of Deduc-
tive Systems. In D. Kaput, editor, Proceedings of the 11 ~h International
Conference on Automated Deduction, Saratoga Springs, New York, June
1992.
R. Reetz and T. Kropf. Simplifying Deep Embedding: A Formalised Code
Generator. In HOL Theorem Proving System and its Applications. Springer-
Verlag LNCS 859, 1994.
R. Roxas and M. Newey. Proof of Program Transformations. In HOL'91~
HOL Theorem Provzng System and its Applications, pages 223-230. IEEE
Computer Society Press, 1991.
T. Reps and T. Teitelbaum. The Synthesizer Generator: a System for Con-
structing Language Based Editors. Springer Verlag, 1988. (third edition).
D. Terrasse. Encoding Natural Semantics in Coq. Submitted
to AMAST'95. Also available by anonymous ftp to babar.inria.fr:
pub/croap/terrasse:NSinCoq.dvi, 1994.
G. Winskel. The Formal Semantzcs of Programmzng Languages, an Intro-
ductzon. Foundations of Computing. The MIT Press, 1993.

