
Comparing Flow-based Binding-time Analyses

Jens Palsberg

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

palsberg~daimi, aau. dk

Abstract . Binding-time analyses based on flow analysis have been pre-
sented by Bondorf, Consel, Bondorf and Jorgensen, and Schwartzbach
and the present author. The analyses are formulated in radically different
ways, making comparison non-trivial.
In this paper we demonstrate how to compare such analyses. We prove
that the first and the fourth analyses can be specified by constraint
systems of a particular form, enabling direct comparison. As corollaries,
we get that Bondorf's analysis is more conservative than ours, that both
analyses can be performed in cubic time, and that the core of Bondorf's
analysis is correct. Our comparison is of analyses that apply to the pure
A-calculus.

1 Our R e s u l t s

We present a constraint-based technique for comparing flow-based binding-time
analyses. Binding-time analysis is used in most partial evaluators. The analysis
divides the computations in a source program into "static" computations (to
be performed by the partial evaluator) and "dynamic" computations (to be
performed in the partially evaluated program).

Several binding-time analyses of untyped higher-order languages such as
Scheme use a flow analysis to obtain information about higher-order control
flow. Such analyses have been presented by Bondorf [2], Consel [4], Bondorf and
Jcrgensen [3], and Schwartzbach and the present author [11]. The analyses are
formulated in radically different ways, as follows:

- B o n d o r f . Flow analysis is performed first, by abstract interpretation; and
binding-time analysis is then performed by another abstract interpretation,
using the computed flow information.

- Conse l . Flow and binding-time information are computed by a single ab-
stract interpretation.

- B o n d o r f a n d JOrgensen . Flow analysis is performed first, by solving a con-
straint system; binding-time analysis is then performed by solving another
constraint system.

- P a l s b e r g a n d S c h w a r t z b a c h (PS) . Binding-time analysis is performed
by searching for an output which satisfies a certain predicate. The pred-
icate is formulated using constraint systems where variables range over a
combination of flow and binding-time information.

562

Comparison of these analyses is non-trivial and until now an open problem.
In this paper we demonstrate how to compare such analyses. We concentrate

on comparing the analysis of Bondorf with the analysis of PS. To enable compar-
ison, we restrict Bondorf's analysis to the pure A-calculus. We prove that both
analyses can be specified by so-called SF-systems (SF = "Separate Flow"). This
leads to the direct comparison:

Bondorf r Bondorf as SF-system direct~mpar . PS as SF-system r ~- PS

An SF-system is a form of constraint system that uses both variables ranging
over flow information and variables ranging over binding-time information. The
two SF-systems for the analyses of Bondorf and PS are both derived from the
program to be analyzed and both contain a subsystem that specifies flow analysis.
As corollaries of the two equivalence proofs, we get:

- Compar ison . Bondorf's analysis is more conservative than that of Schwartz-
bach and me, because for all programs the latter SF-system is a subset of
the former;

- Efficiency. Both analyses can be performed in cubic time, because every
SF-system can be solved in cubic time; and

- Correctness . The core of Bondorf's analysis is correct, because the SF-
system can be connected to a known correctness result for binding-time
analysis.

These results demonstrate the benefits of formulating flow-based binding-
time analyses as SF-systems.

2 E x a m p l e

We now illustrate the idea of flow-based binding-time analysis, the notion of an
SF-system, and the similarities and differences between the binding-time analysis
of Bondorf and that of PS.

Consider the A-term (Ax.xx)(y). Throughout we assume that free variables,
in this case y, correspond to dynamic information. The task of a binding-time
analysis is to assign either Stat (static) or Dyn (dynamic) to each subterm. This
information can then be used to annotate the A-term.

Following Bondorf [2] and others, we label all abstractions and applications.
Variables will also be labeled: if a variable is bound, then it is labeled with the
label of the A that binds it, and if it is free, then with an arbitrary label. By
introducing an explicit application symbol, we get the following abstract syntax
for the above A-term.

(Alx.x i �9 x l) �9 ya

For this particular A-term, there are two possible ways of annotating consistently:

(Aix-x 1 ~2 x i) �9 y4 (1)

563

(~lx.xl ~ x 1) r ya (2)

Here, underlining means "dynamic" and no underlining means "static". An-
notated A-terms are called 2-level A-terms. Consistency means that no static
computation can depend on the result of a dynamic computation [8].

Notice that only abstraction and application symbols can be annotated. We
do not need to annotate variables because a free variable is dynamic and the
binding-time of a bound variable is the same as that of the A that binds it.

Bondorf's binding-time analysis yields information which when used for an-
notation leads to (2). The binding-time analysis of PS leads to (1). Thus, in
this particular case, Bondorf's analysis is more conservative. One of our theo-
rems says that Bondorf's analysis always leads to the same or more underlinings
compared the analysis of PS.

An SF-system is a form of constraint system that uses both variables ranging
over flow information and variables ranging over binding-time information. Our
equivalence theorems say that both of the analyses of Bondorf and PS can be
formulated as SF-systems.

The two SF-systems for the analyses of Bondorf and PS are both derived
from the program to be analyzed and both contain a subsystem that specifies
flow analysis. One of our theorems says that for every A-term, the SF-systems
for the analyses of Bondorf and PS have identical subsystems for flow analysis.
In the case of the above A-term, this subsystem is as follows.

From A 1 {1} C [)l]

From �9 and)~l {1} C_ Iv 1] =~ Iv1] C_ [[u t]

From �9 and {I} c_ c_ [.q
{I} c_ c_ [�9

Symbols of the forms ~vt], JAil, and ~�9 are meta-vaxiables ranging over
flow information, that is, sets of labels. They relate to variables with label l,
abstractions with label l, and applications with label {, respectively.

To the left of the constraints, we have indicated from where they arise. The
first constraint says that an abstraction may evaluate to an abstraction with the
same label. The rest of the constraints comes in pairs. For each application point
�9 and each abstraction with label I there are two constraints of the form:

{/} E_ "meta-var. for operator of �9 ~ "meta-var. for operand of �9 E_ ~u l]
{/} E "meta-var. for operator of �9 =~ "meta-var. for body of abst." C [�9

Such pairs of constraints can be read as:

- T h e f i r s t const ra in t . If the function part of �9 evaluates to an abstraction
with label l, then the bound variable of that abstraction may be substituted
with anything to which the argument part of �9 can evaluate.

564

- T h e s e c o n d c o n s t r a i n t . If the function part of �9 evaluates to an abstrac-
tion with label l, then anything to which the body of the abstraction may
evaluate is also a possible result of evaluating the whole application �9

In a solution of the constraint system, meta-variables are assigned flow in-
formation. The minimal solution of the above constraint system is the mapping
L where:

LEA 1] = {1}
LEuq] = LEv 4] = L[�9 = LE�9 = 0

This L says that the only subterm that can evaluate to an abstraction is the
abstraction with label 1.

Although the SF-systems for the analyses of Bondorf and PS have the same
subsystem for specifying flow analysis, they are not the same. One of our the-
orems says that for all A-terms, the SF-system for the analysis of Bondorf is
a superset of the SF-system for the analysis of PS. The SF-system for the PS
analysis of the above A-term contains the following constraints in addition to
those already presented.

From �9 ~�9 ----- Dyn
From y 4 [u4]b= Dyn
From A 1 ~A1]b=Dyn ~ ~Ul]b=~2]b=Dyn
From �9 [U']b = Dyn => EU1~b = E�9 = Dyn
From ~3 EA1]b = Dyn :=~ ~P4~b = ~3~ b : Dyn
From�9 and A 1 {1} C EPl]=:>EYl~b=[Pl]b

From �9 and A 1

{1} C ~Yl~: :}E@2]b=[@2] b

{1} r EAI] E�9 : E@3 b

Meta-variables with b as subscript range over binding-time information, that
is, the set {Stat, Dyn}, where Stat < Dyn. To the left of the constraints, we
have indicated from where they arise. The constraints can be informally read as
follows.

- The first constraint says that the partial evaluator must produce a program.
- The second constraint says that the variable y4 corresponds to dynamic

information.
- The third constraint says that if an abstraction gets classified as dynamic,

then so should its bound variable and its body.
- The fourth and fifth constraints say that if the function part of an application

gets classified as dynamic, then so should the argument part and the whole
application.

- The rest of the constraints come in pairs. They involve both variables ranging
over flow information and variables ranging over binding-time information.
These constraints are similar to the ones used in the subsystem for flow
analysis. The key difference is that the binding-times of the actual and the

565

formal parameter should be equal, and so should the binding-times of the
body of the abstraction and of the application.

The minimal solution of this SF-system is a pair of mappings (L, M), where
L was presented above and M is as follows.

M[A1]b---Stat
M~V1]b-----M[p4]b=M~O2]b=M~�9

The SF-system for Bondorf's analysis of the above A-term contains in addi-
tion the following two constraints.

From @2 [Vl]b = Dyn ==~ ~l~b = Dyn
From @3 ~ 4] b = Dyn =~ ~Al~b=Dyn

The constraints can be informally read as follows.

- If the argument part of an application gets classified as dynamic, then so
should the function part.

The minimal solution of this SF-system is a pair of mappings (L, M~), where
L was presented above and M ~ is as follows.

M'[A1]b=M'[vl]b=M'[~4]b=M'~@2]b=M'[@alb=Dyn

The minimal solution of an SF-system can be computed in cubic time. Previ-
ously, no complexity analysis has been given for the analysis of Bondorf, and the
best-known algorithm for the analysis of PS has so far been one with worst-case
exponential running time [11].

Our equivalence proofs makes it possible to relate Bondorf's analysis to a
known correctness result for binding-time analysis [8]. We thereby obtain the
first proof of correctness for the core of Bondorf's analysis.

In the following section we recall from [7] a constraint system that specifies
flow analysis. In Section 4 we define SF-systems and we present the two SF-
systems that are equivalent to the analyses of Bondorf and PS. Finally in Section
5 we recall the original definitions of Bondorf's and PS's analyses and we give
equivalence proofs that relate them to the SF-systems.

3 F l o w A n a l y s i s

We now present the flow analysis which is a subsystem of both the SF-system
for Bondorf's analysis and the SF-system for the analysis of PS. Recall the A-
calculus [1].

Definit ion 1. The language of A-terms has an abstract syntax which is defined
by the grammar:

566

E ::= x t (variable)
I Alx.E (abstraction)
I E1 �9 E2 (application)

The labels on variables, abstraction symbols, and application symbols have no
semantic impact; they mark program points. The label on a bound variable is the
same as that on the A that binds it. Labels are drawn from the infinite set Label.
The labels and the application symbols are not part of the concrete syntax.

The abstract domain for flow analysis of a A-term E is called CMap(E) and
is defined as follows.

De f in i t i on 2. A meta-variable is of one of the forms [u~], ~[Al], and ~�9 The set
of all meta-variables is denoted Metavar. A A-term is assigned a meta-variable
by the function var, which maps x l to ~[uZll, A%.E to [At]], and E1 �9 E2 to [O~].

For a A-term E, Lab(E) is the set of labels on abstractions (but not appli-
cations) occurring in E. Notice that Lab(E) is finite. The set CSet(E) is the
powerset of Lab(E); CSet(E) with the inclusion ordering is a complete lattice.
The set CMap(E) consists of the total functions from Metavar to CSet(E). The
set CMap(E) with point-wise ordering, written <, is a complete lattice where
least upper bound is written U.

The following flow analysis uses a constraint system. It has been used by
Schwartzbach and the present author in [9, 10], and in [7] is was proved equiva-
lent to the flow analysis of Bondorf [2], which in turn is based on Sestoft's [13].
Flow analysis is called closure analysis in some papers, including [2, 7].

For a A-term E, the constraint system is a finite set of conditional clauses
over inclusions of the form P C P~, where P and P~ are either meta-variables
or elements of CSet(E). A solution of such a system is an element of CMap(E)
that satisfies all constraints.

The constraint system is defined in terms of the program to be analyzed. We
need not assume that all labels are distinct.

The set R(E1 �9 E2, A%.E) consists of the two elements
{l} C var(E1) =:~ var(E2) C_ hull]
{1} c var(E1) =~ var(E) C ~]]
For a A-term E, the constraint system C(E) is the union of the following sets

of constraints.

- For every Atx.F in E, the singleton constraint set consisting of {l} C [[At]].
- For every E1 ~i E2 in E and for every Alx.F in E, the set R(E1 �9 E2, AZx.F).

Each C(E) has a least solution namely the pointwise intersection of all solu-
tions.

We can now do flow analysis of E by computing a solution of C(E). The
canonical choice of solution is of course the least one.

567

4 F l o w - b a s e d B i n d i n g - t i m e A n a l y s i s

The output of a binding-time analysis can be presented as an annotated version
of the analyzed term. In the annotated term, all dynamic abstractions and ap-
plications are underlined. The language of annotated terms is usually called a
2-level A-calculus [6] and is defined as follows.

Defini t ion 3. The language of 2-level A-terms is defined by the grammar:

W ::= x l (variable)
I Alx.W (static abstraction)
[W1 �9 W2 (static application)
[A lx.W (dynamic abstraction)
[W1 _~i W2 (dynamic application)

The language of 2-level A-terms is partially ordered by _ as follows. Given
2-level A-terms W and W I, W __ W' if and only if they are equal except for
underlinings and W ~ has the same and possibly more underlinings than W. For
example, (Alx.x 1 ~2 x 1) �9 y4 _E (hlx.x 1 ~2 x 1) ~3 y4. Notice that E admits
greatest lower bounds for terms that are equal except for underlinings.

The abstract domain for the binding-time analysis of a A-term E is called
BMap(E) and is defined as follows.

Def ini t ion4. Let BVal = {Stat, Dyn}. The set BVal is totally ordered by < so
that Stat < Dyn. For clarity, let Metavarb be a copy of Metavar where elements
are written with b as subscript. The function varb maps A-terms to meta-variables
with subscript b. The set BMap consists of the total functions from Metavarb to
BVal. The set BEnv contains each function in BMap when restricted to meta-
variables of the form Eul]b. Both BMap and BEnv with point-wise ordering,
written <, are complete lattices where least upper bound is written U. The
function (V ~-~ S) maps the meta-variable V to the value S and maps all other
meta-variables to Stat. Finally, we define upd V S L = (V F-~ S) LI L.

Given a A-term E and M E BMap, we can annotate E by the following
function TM.

TM(x) =

S AIx'TM(E) if M[Al]b = Stat
TM(AIx'E) = "1. A2x.TM(E) if M~At]Ib Dyn

TM(Et �9 E2) -= S TM(E1) �9 TM(E2) if M(varb(E1)) ---- Stat
~. TM(E1) @_i TM(E2) if M(varb(E1)) Dyn

L e m m a S . Let E be a A-term and let M , M ~ E BMap. If M <_ M ~, then
TM(E) E_ TM, (E).

568

Proo/. Immediate.

We can now define the notion of an SF-system.

D e f i n i t i o n 6. An SF-system is a finite set of constraints over two disjoint copies
of Metavar. The first copy of Metavar is denoted Metavarc and the second copy
is denoted Metavarb. Elements of Metavarc are written without subscript and
elements of Metavarb are written with b as subscript. A constraint is a conditional
clause of the following form:

- The hypotheses are either of the form {/} C V where V E Metavarc, or of
the form ~ = Dyn where Vb E Metavar~.

- The conclusion is either of the form P C_ P' where P, P~ E CSet(E)UMetavarc
for some E, or of the form Pb = P~ where Pb, P~ E BVal U Metavarb.

A solution for an SF-system is a pair of mappings (L, M) such that all constraints
are satisfied when elements of Metavar~ are mapped to a value by L and elements
of Metavarb are mapped to a value by M. The desired binding-time information
is then the mapping M.

Each SF-system has a least solution namely the component-wise greatest
lower bound of all solutions. The least solution of an SF-system can be computed
in cubic time using a straightforward modification of the algorithm in [9] (see
also [12, Chapter 5]).

Given a A-term E, the following SF-system yields a binding-time analysis of
E.

For a A-term E, the constraint system B(E) is the union of C(E) and the
following sets of constraints.

- The singleton set consisting of varb(E) = Dyn.
- For every free variable x t of E , the singleton set consisting of ~vl]b = Dyn.
- For every Alx.F in E, the set consisting of [AI]b = Dyn ==~ ~l~b = varb(F) =

Dyn.
- For every E1 ~i E2 in E, the set consisting of varb(E1) = Dyn => varb(E2) =

[[�9 = Dyn.
- For every E1 �9 E2 in E and for every AZx.F in E, the set consisting of

{l} C_ var(E1) =~ varb(E2) = [z~l]b
{ l } C_ var(E1) => varb(F) = [Oi]b

We can now do binding-time analysis of E by computing a solution of B(E).
The canonical choice of solution is of course the least one.

In the next section we will prove that this binding-time analysis is equivalent
to that of PS. We will also prove that the analysis of Bondorf is equivalent to
the following modified analysis.

For a A-term E, the constraint system B'(E) is the union of B(E) and the
following sets of constraints.

- For every E1 �9 Ee in E, the singleton set consisting of varb(E2) = Dyn =:>
varb (El) ----- Dyn.

569

Fac t 7 Bondorf's analysis is more conservative than the analysis of PS.

Proof. Clearly, if B'(E) is solvable, then so is B(E). So if (L,M) is the least
solution of B(E) and (L', M') is the least solution of B'(E), then M < M', and
by Lemma 5, TM (E) E TM, (E).

5 Equivalence Proofs

5.1 B o n d o r f ' s A n a l y s i s

T h e Or ig ina l F o r m u l a t i o n We recall the binding-time analysis of Bondorf
[2], with a few minor changes in the notation compared to his presentation. The
analysis assumes that all labels are distinct. Bondorf's definition was originally
given for a subset of Scheme; we have restricted it to the A-calculus.

We will use the notation tha t if)dx.E is a subterm of the term to be
analyzed, then the partial function body maps the label l to E. We define

i,~p~t = (var(E) ~+ Dyn) and we define [9 input #E E = (xt ~-~ Dyn)U. . . U (x~ ~-~ Dyn),
w h e r e x 1 . . . ~c n are the free variables of E.

Bondorf's analysis proceeds by first computing flow information by an ab-
stract interpretation. In a previous paper [7] we proved that Bondorf's flow
analysis is equivalent to computing the least solution of the constraint system
C(E). So for a)k-term E, suppose that C(E) has least solution L.

We follow Bondorf in using an auxiliary function raise, defined as follows.

raise : Metavar --~ BMap --~ BEnv -~ BMap x BEnv
raise kl~p = (Iz, p) U (UleL(k) (Upd [,~l~ Dyn/z, upd ~uz~ Dyn p))

Here follows Bondorf's binding-time analysis of E.

Bt : (E : A) -~ BMap x BEnv
Bt(E) ~-~ i,,p,,t ~np~,t, = fl"TI, A t ~ ' P)"I]~E , PE) U bt(E)/tp)

b, bt : (E : A) -+ BMap -~ BEnv -~ BMap x BEnv
bt(E)#p = let (#' ,p ') be b(E)#p in

let k be var(E) in
if # '(k) = Dyn
then raise k/z~p ~
else (#t, pl)

b()tlx.E)pp = let (# ' ,p ') be bt(E)#p in
if #'(fAll) = Oyn
then raise var(E)/~p'
else (#', p')

b(Et �9 E2)#p =
let (/~', p') be (bt(Et)#p) U (bt(E2)/~p) in

570

let c be L(var(E1)) in
let It" be

upd [@i] (it'(var(E1)) U It'(var(E2)) U Ule~ It'(var(body(1)))) i t' in
let p" be p'U (Utec (upd [vt~ It'(var(E2))) p')) in
i f It"(var(E1)) = Dyn
then raise vat(E2) It"p"
else (it", p")

We can now do binding-time analysis of E by computing fst(Bt(E)).

A S imple r Def in i t i on Bondorf's definition can be simplified considerably. To
see why, consider the second component of BMap x BEnv. This component is
updated only in b(E1 �9 E2)itp and read only in b(xt)itp. The key observation is
that both these operations can be done on the first component instead. Thus,
we can omit the use of BEnv. By rewriting Bondorf's definition according to
this observation, we arrive at the definition below. We use the auxiliary function
newraise which is defined as follows.

newraise : Metavar -+ Metavar --~ BMap -+ BMap
newraise kk'it = if It(k) = Dyn

then It U (UleL(k,)(<~)~l~ ~ Dyn) U ([vt]] ~-~ Dyn)))
else It

As with Bondorf's definition, we assume that all labels are distinct.

bta, m : (E : A) --+ BMap --~ BMap
bta(E)it = newraise var(E) vat(E) (re(E)#)
m (x ') i t = It
m(Atx.E)it = (bta(E)it) U (newraise [A t] var(E) It)
re(E1 �9 E2)it =

(bta(E1)it) U (bta(E2)it) U
Ule/:(var(E,)) (([vt]] ~ It(vat(E2))} O ([�9 ~ It(var(body(l))))) U

(ne~raise ~ar(E~) ~ar(E2) It) U
([@i]] ~ It(var(E1)) U It(var(E2)))

We can now do binding-time analysis of E by computing

flx(Ait.# input I I pi.put II bta(E)#) .

A key question is: is the simpler definition equivalent to Bondorf's? We might
at tempt to prove this using fixed point induction, but we find it much easier
to prove that both of them are equivalent to the SF-system presented in the
previous section.

571

E q u i v a l e n c e For every A-term E where all labels are distinct, we now prove
the equivalence of the binding-time analysis of Bondorf, the simplified definition
of his analysis, and the analysis specified by the SF-system B' (E). We will use
the standard terminology that It is a postfixed point of re(E) if re(E)# < It.

L e m m a 8. For every A-tervn E, the following properties hold:

- If It is a postfixed point of bta(E), then so is it of re(E).
- l / I t is a postfixed point of bta(E), then so is it of bta(F) for every subterm

F o/E.
- If It is a postfixed point of re(E), then so is it of re(F) for every subterm F

orE.

Proof. By induction on the structure of E.

L e m m a 9. B' (E) has least solution (L, fix(Aft.it i'w~t U pl,W~,t IIbta (E)it)).

Proof. We prove a stronger property: the solutions of B'(E) that are of the form
(L, M) are exactly the postfixed points of (L, Aft.it i~p*'t U pi,,p,,t tl bta(E)it). The
proof of this involves repeated use of Lemma 8 and is analogous to the proof of
[7, Lemma 5]; we omit the details.

L e m m a 10. B' (E) has least solution (L, fst(Bt(E))).

Proof. Similar to the proof of Lemma 9.

T h e o r e m 11. For every A-term E, the three binding-time analyses defined in
Section 5.1.1, 5.1.2, and by the SF-system Be(E) are equivalent.

Proof. Combine Lemmas 9 and 10.

5.2 T h e W e l l - a n n o t a t e d n e s s P r e d i c a t e

T h e Or ig ina l F o r m u l a t i o n We recall the binding-time analysis of Schwartz-
bach and me [11, 8], with a few minor changes in the notation compared to the
previous presentations.

First, we introduce two new forms of meta-variables. A meta-variable is of
one of the forms ~ul~, ~Al~, [�9 [~t~, and [0_i]. The set of all such meta-variables
is denoted Metavar2. A 2-level A-term is assigned a meta-variable by the function
var, which maps x I to ~ut~, Alx.W to [A'~, W1 0.~ W2 to [~,]], 2 x . W to L~t], and
W1 0_i W2 to [~i]- (Notice that var is an extension of the previously defined
function var that operates on A-terms.)

To define if a 2-level A-term W is well-annotated, we use an abstract domain
DMap(W) which is defined as follows.

De f in i t i on 12. For a 2-level A-term W, Lab(W) is the set of labels on static
abstractions occurring in W. Notice that Lab(W) is finite. The set CSet(W) is the
powerset of Lab(W); CSet(W) with the inclusion ordering is a complete lattice.

572

Notice that these definitions of I_ab(W) and CSet(W) extend the previously given
ones. We then define D(W) = CSet(W) U {Dyn}. The set D(W) is partially
ordered by < such that if d and d' are sets and d C d', then d < d'. Notice that
D(W) is not a lattice, since Dyn is incomparable to all other elements of D(W).
The set DMap(W) consists of the total functions from Metavar2 to D(W).

A 2-level A-term W is said to be well-annotated if the constraint system
WA(W) below is solvable. The constraint system is a finite set of conditional
clauses over inequalities of the form P < pt , where P and P ' are either meta-
variables or elements of D(W). A solution of such a system is an element of
DMap(W) that satisfies all constraints.

The constraint system is defined in terms of the A-term to be analyzed. We
need not assume that all labels are distinct.

For a 2-level A-term W, the constraint system WA(W) is the union of the
following sets of constraints.

- The singleton set consisting of var(W) = Dyn.
- For every free variable x t of W, the singleton set consisting of [v'] = Dyn.
- For every Atx.W ~ in W, the singleton set consisting of {l} < fat].
- For every W1 �9 W2 in W, the singleton set consisting of 0 < var(W1).
- For every W1 r W2 in W and for every AI.W ' in W, the set consisting of

the two constraints
{l} < a (wl) a (W2) <
{l} < vat(W1) var(w') < [�9

- For every ~_lx.W' in W, the set consisting of [_A t] = Iv t] = var(W') = Dyn.
- For every W1 _~i W2 in W, the set consisting of var(W1) = vat(W2) = ~_i]] =

Dyn.

F a c t 13 For all A-terms, there is a E-least well-annotated version.

Proof. See [11].

We can now do binding-time analysis of a A-term by computing the E-least
well-annotated version.

Equ iva lence For every A-term E, we now prove the equivalence of the binding-
time analysis of PS, and the analysis specified by the SF-system B(E)

We will use the notation that if W is a 2-level A-term, then 17d is the A-term
which is equal to W except that all underlinings have been removed. Moreover,
for a 2-level A-term W, we will write Dkab(W) for the set of labels on dynamic
abstractions occurring in W.

T h e o r e m 14. Let E be a A-term. Let W be an annotated version of E. WA(W)
is solvable if and only if B(E) has a solution (n, M) and TM(E) = W.

573

Proof. Let E be A-term. Suppose first B(E) has solution (L, M). We will prove
that WA(TM(E)) is solvable. Construct S E DMap(TM(E)) as follows. For each
subterm F in E, define

L(var(F)) if M(varb(F)) = S t a t
S(var(TM(F))) = [Dyn if M(varb(F)) = Dyn

On the remainder of its domain, S yields Dyn. It is straightforward to check that
WA(TM(E)) has solution S.

Suppose then that W is an annotated version of E and suppose that WA(W)
has solution S. Construct L as follows. For each subterm W ~ of W, define

S(var(W')) if S(var(W')) :> 0
L(var(W')) = [DLab(W') if S(var(W')) Dyn

On the remainder of its domain, L yields 0.
Construct then M as follows. For each subterm W ~ of W, define

M(varb(l~')) = {Sta t if S(var(W')) >
Dyn if S(var(W')) Dyn

On the remainder of its domain,^M yields Stat. Clearly, TM(~ r) -~ W. It is
straightforward to check that B(W) has solution (L, M).

T h e o r e m 15. Let E be a A-term and suppose B(E) has least solution (L, M).
Then TM(E) is the least well-annotated version of E.

Proof. By Theorem 14, TM(E) is well-annotated. Let Wt be the least well-
annotated version of E. By Theorem 14, choose (U, M ~) so that B(E) has so-
lution (L', M') and TM, (E) = Wt. We have M _< M' so by Lemma 5, we then
get that TM(E) E Wt. From Wl and TM(E) being well-annotated and from Wl
being the least of the well-annotated versions of E, we get that Wt ~_ TM (E). In
conclusion, TM(E) = Wz.

From Theorem 15 follows the desired result:

T h e o r e m 16. For every A-term E, the binding-time analyses defined in Section
5.2.1 and by the SF-system B(E) are equivalent.

In previous work [8], we proved that any binding-time analysis that always
produces well-annotated 2-level terms is correct. Since for every A-term E, we
have B(E) C_ B~(E), the least solution (L,M) of B~(E) is also a solution of
B(E). By Theorem 14, TM(E) is well-annotated. We thus get that Bondorf's
analysis, when restricted to the pure A-calculus, is correct.

574

6 Concluding Remarks

In a previous paper [11], we proved that the type inference based binding-time
analysis of Gomard [5] is more conservative than the analysis of PS. In the papers
[8, 11] we emphasized that the analysis of PS was originally intended to capture
the outputs of the binding-time analyses of Bondorf and Consel. With the result
of this paper, it is now clarified that the analyses of Bondorf is more conservative
than the analysis of PS. In future work, we would like to make comparisons with
also the analyses of Consel and of Bondorf and JCrgensen.

Acknowledgement. The author thanks Paul Steckler, Mitchell Wand, and the
anonymous referees for helpful comments on a draft of the paper. The results
of this paper were obtained at Northeastern University, Boston. The author is
currently hosted by BRICS, Basic Research in Computer Science, Centre of the
Danish National Research Foundation.

References

1. Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, 1981.

2. Anders Bondorf. Automatic autoprojection of higher order recursive equations.
Science of Computer Programming, 17(1-3):3-34, December 1991.

3. Anders Bondorf and Jesper J0rgensen. Efficient analyses for realistic off-line partial
evaluation. Journal of Functional Programming, 3(3):315-346, 1993.

4. Charles Consel. Binding time analysis for higher order untyped functional lan-
guages. In Proc. A CM Conference on Lisp and Functional Programming, pages
264-272, 1990.

5. Carsten K. Gomard. Partial type inference for untyped functional programs. In
Proc. A CM Conference on Lisp and Functional Programming, pages 282-287, 1990.

6. Hanne R. Nielson and Flemming Nielson. Automatic binding time analysis for a
typed A-calculus. Science of Computer Programming, 10:139-176, 1988.

7. Jens Palsberg. Closure analysis in constraint form. A CM Transactions on Pro-
gramming Languages and Systems. To appear. Also in Proc. CAAP'94, Colloquium
on Trees in Algebra and Programming, Springer-Verlag (LNCS 787), pages 276-
290, Edinburgh, Scotland, April 1994.

8. Jens Palsberg. Correctness of binding-time analysis. Journal of Functional Pro-
gramming, 3(3):347-363, 1993.

9. Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference.
Information and Computation. To appear.

10. Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference
for partial types. Info.rmation Processing Lette~'s, 43:175-180, 1992.

11. Jens Palsberg and Michael I. Schwartzbach. Binding-time analysis: Abstract in-
terpretation versus type inference. In Proc. ICCL'94, Fifth IEEE International
Conference on Computer Languages, pages 289-298, Toulouse, France, May 1994.

12. Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. John
Wiley & Sons, 1994.

13. Peter Sestoft. Replacing function parameters by global variables. Master's thesis,
DIKU, University of Copenhagen, September 1989.

