
Static and Dynamic Processor
Allocation for Higher-Order

Concurrent Languages*

Hanne Riis Nielson, Flemming Nielson

Computer Science Department, Aarhus University, Denmark.

e-mail : {hrnielson, fnielson}@daimi, aau. dk

Abst rac t . Starting from the process algebra for Concurrent ML we develop
two program analyses that facilitate the intelligent placement of processes on
processors. Both analyses are obtained by augmenting an inference system for
counting the number of channels created, the number of input and output op-
erations performed, and the number of processes spawned by the execution of a
Concurrent ML program. One analysis provides information useful for making a
static decision about processor allocation; to this end it accumulates the commu-
nication cost for all processes with the same label. The other analysis provides
information useful for making a dynamic decision about processor allocation;
to this end it determines the maximum communication cost among processes
with the same label. We prove the soundness of the inference system and the
two analyses and demonstrate how to implement them; the latter amounts to
transforming the syntax-directed inference problems to instances of syntax-free
equation solving problems.

1 I n t r o d u c t i o n

Higher-order concurrent languages as CML [15] and FACILE [5] offer primitives
for the dynamic creation of processes and channels. A distributed implementa-
tion of these languages immediately raises the problem of processor allocation.
The efficiency of the implementation will depend upon how well the network
configuration matches the communication topology of the program - and here it
is important which processes reside on which processors. When deciding this it
will be useful to know:

�9 Which channels will be used by the process for input and output operations
and how many times will the operations be performed?

*The full paper appears a.s DAIMI-PB 483 and electronic,copies are obtainable .via
http ://www. daimi, aau. dk/~bra8130/LOMAPS, html using Vi/IArV~.

591

�9 Which channels and processes will be created by the process and how many
instances will be generated?

As an example, two processes tha t frequently communicate with one another
should be allocated on processors in the network so as to ensure a low commu-
nication overhead.

In CML and FACILE processes and channels are created dynamically and this
leads to a distinction between two different processor allocation schemes:

�9 Static processor allocation: At compile-time it is decided where all in-
stances of a process will reside at run-time.

�9 Dynamic processor allocation: At run-time it is decided where the individ-
ual instances of a process will reside.

The first scheme is the simpler one and it is used in the current distributed
implementation of FACILE; finer grain control over parallelism may be achieved
using the second scheme [17].

W h a t has b e e n a c c o m p l i s h e d . In this paper we present analyses providing
info77nation for static and dynamic processor allocation of CML programs. We
shall follow the approach of [12] and develop the analyses in two stages. In
the first stage we extract the communication behaviour of the CML program
following [12] that develops a type and behaviour inference system for expressing
the communication capabilities of programs in CML. As was already indicated
in [11] the behaviours may be regarded as terms in a process algebra (like CCS
or CSP); however the process algebra of behaviours is specifically designed so
as to capture those aspects of communication that are relevant for the efficient
implementation of programs in CML.

In the second stage we then analyse the behaviours so as to obtain information
for static and dynamic processor allocation. To prepare for this we first develop
an analysis that uses simple ideas from abstract interpretation to count for each
behaviour the number of channels created, the number of input and output oper-
ations performed and the number of processes spawned. To provide information
for static and dynamic processor allocation we then differentiate the information
with respect to labels associated with the f o r k operations'of the CML program;
these labels will identify all instances of a given process and for each label we
count the number of channels created, the number of input and output opera-
tions performed and the number of processes spawned. The central observation
is now tha t for the static allocation scheme we accumulate the requirements of
the individual instances whereas for the dynamic allocation scheme we take the
maximum of the individual instance requirements.

C o m p a r i s o n w i t h o t h e r work . First we want to stress tha t our approach to
processor allocation is that of static program analysis rather than, say, heuris-
tics based on profiling as is often found in the literature on implementation of
concurrent languages.

592

In the literature there are only few program analyses for combined functional
and concurrent languages. An extension of SML with Linda communication
primitives is studied in [3] and, based on the corresponding process algebra,
an analysis is presented that provides useful information for the placement of
processes on a finite number of processors. A functional language with commu-
nication via shared variables is studied in [8] and its communication patterns are
analysed, again with the goal of producing useful information for processor (and
storage) allocation. Also a couple of program analyses have been developed for
concurrent languages with an imperative facet. The papers [4, 7, 14] all present
reachability analyses for concurrent programs with a statically determined com-
munication topology; only [14] shows how this restriction can be lifted to allow
communication in the style of the ~-calculus. Finally, [10] presents an analy-
sis determining the number of communications on each channel connecting two
processes in a CSP-like language.

2 B e h a v i o u r s

Full details of the syntax of CML are not necessary for the developments of the
present paper. It will suffice to introduce a running example and to use it to
motivate the process algebra of CML.

E x a m p l e 2.1 Suppose we want to define a program p ipe [f l , f 2 , f 3] in out
that constructs a pipeline of processes: the sequence of inputs is taken over chan-
nel in, the sequence of outputs is produced over channel out and the functions
f l , f2, f3 (and the identity function id defined by fn x => x) are applied in
turn. To achieve concurrency we want separate processes for each of the func-
tions f l , f2, f3 (and id). This system might be depicted graphically as follows:

Here chl , ch2, and ch3 are new internal channels for interconnecting the pro-
cesses; and f a i l is a channel over which failure of operation may be reported.

Taking the second process as an example it may be created by the CML expres-
sion node f2 c h l ch2 where the function node is given by

fn f => fn in => fn out =>

fork~ (rec loop d =>

sync (choose [wrap (receive in,
fn x => sync (send (o u t , f x)) ;

593

l oop d) ,
s e n d (f a i l , ())]))

Here f is the function to be applied, i n is the input channel and out is the output
channel. The function f o r k ~ creates a new process labelled ~ tha t performs as
described by the recursive function l o o p tha t takes the dummy parameter d.
In each recursive call the function may either report failure by s e n d (f a i l , ())
or it may perform one step of the processing: receive the input by means of
r e c e i v e in, take the value x received and t ransmit the modified value f x by
means of s e n d (o u t , f x) after which the process repeats itself by means of l o o p
d. The primitive choose allows to perform an unspecified choice between the
two communicat ion possibilities and wrap allows to modify a communicat ion by
postprocessing the value received or t ransmit ted. The sync primitive enforces
synchronisation at the right points and we refer to [15] for a discussion of the
language design issues involved in this; once we have arrived at the process
algebra such considerations will be of little importance to us.

The overall construction of the network of processes is then the task of the p i p e
function defined by

r e c p i p e f s => f n i n => fn out =>
if isnil fs

then node (fn x => x) in out

else let ch = channel ()

in (node (hd fs) in ch; pipe (tl fs) ch out)

Here f s is the list of functions to be applied, i n is the input channel, and out
is the output channel. If the list of functions is empty we connect i n and out
by means of a process tha t applies the identity function; otherwise we create a
new internal channel by means of chnnne l O and then we create the process
for the first function in the list and then recurse on the remainder of the list. []

The process algebra of CML [12] allows to give succinct representations of the
communicat ions taking place in CML programs. The terms of the process alge-
bra are called behaviours, denoted b C B e h , and are given by

b ::= c l L ! t l L ? t l t CHANL I/~ I FORKL b lbl;b2 I bl +b2 t RECfl. b

where L C L a b e l s is a non-empty and finite set of program labels. The
behaviour e is associated with the pure functional computat ions of CML. The
behaviours L!t and L?t are associated with sending and receiving values of type t
over channels with label in L, the behaviour t CHAN L is associated with creating
a new channel with label in L and over which values of type t can be commu-
nicated, and the behaviour FOR.KL b is associated with creating a new process
with behaviour b and with label in L. Together these behaviours consti tute the
atomic behaviours, denoted p C A B e h , as may be expressed by sett ing

P ::= el L!tl L? t l t CHANL I FORKL b

594

Finally, behaviours may be composed by sequencing (as in bl; b2) and internal
choice (as in bl + b2) and we use behaviour variables together with an explicit
REC construct to express recursive behaviours.

The structure of the types, denoted t C T y p , shall be of little concern to us
in this paper and we shall therefore leave it most ly unspecified (but see [12]);
however, we need to s tate that a chanL is the type of a channel with label
in L over which elements of type a may be communicated. Since types might
conceivably contain behaviours the notion of free variables needs to be replaced
by a notion of exposed variables: we shall say tha t a behaviour variable fl is
exposed in a behaviour b if it has a free occurrence tha t is not a subterm of any
type mentioned in b.

E x a m p l e 2.2 Assuming that f a i l is a channel of type u n i t chart L the type
inference system of [12] can be used to prove tha t p i p e has type t where

t = (~ -+/~ c~) l i s t __+e a c h a n n l __+e Ol chanL= __+b u n i t

b = REC/31.(FORK~r(RECZ".(L17. eq s L2!o~;/3" q- L !un i t))
+c~ CHANL1 ; FORK~r (REC/3'I.(LI?~;/3; L2!a;/3" + L!unit)) ; /3/)

Thus the behaviour expresses directly that the p i p e function is recursively de-
fined and tha t it either spawns a single process or creates a channel, spawns
a process and recurses. The spawned processes will all be recursive and they
will either report failure over a channel in L and terminate, or else input over a
channel in L1, do something (as expressed by e and/~), ou tput over a channel
in L2 and recurse. []

The semantics of behaviours is defined by a transit ion relation of the form

P B ==>~8 P B '

where P B and P B ' are mappings from process identifiers to closed behaviours
and the special symbol x /deno t ing termination. Furthermore, a is an action
tha t takes place and ps is a list of the processes tha t take par t in the action.
The actions ra ther closely correspond to atomic behaviours and are given by

a ::= e [L!t?L I t CHAN L [FORK L b

If the transit ion P B ==#p8 P B I has a = e this means tha t one of the behaviours
in P B performed some internal computat ion tha t did not involve communi-
cation; in other words i t performed the atomic, behaviour e. I f a = L!t?L this
means tha t two disctinct behaviours performed a communication: one performed
the atomic behaviour L!t and the other the atomic behaviour L?t. Finally if
a = CHANL or a = FORK L this means tha t one of the behaviours in P B allocated
a new channel or forked a new process. Since we have covered all possibilities of
a tomic behaviours we have also covered all possibilities of actions. We refer to
[12] for the precise details of the semantics as these axe of little importance for
the development of the analyses.

595

3 Value Spaces

In the analyses we want to predict the number of t imes certain events may
happen. The precision as well as the complexity of the analyses will depend
upon how we count so we shall parameterise the formulation of the analyses on
our notion of counting.

This amounts to abstract ing the non-negative integers N by a complete lattice
(Abs , ~) . As usual we write _L for the least element, T for the greatest element,
U and u for least upper bounds by a function and V1 for greatest lower bounds.
The abstract ion is expressed

n : N --+m A b s tha t is strict (has 7~(0) = 2) and monotone (has n (n i) _ T~(n2)
whenever ni ~ n2); hence the ordering on the natural numbers is reflected in
the abs t rac t values. Three elements of A b s are of particular interest and we
shall introduce special syntax for them:

0 = •(0) = -L I = n (1) M = T

We cannot expect our notion of counting to be precisely reflected by Abs ; indeed
it is likely tha t we shall allow to identify for example 7~(2) and 7~(3) and perhaps
even ~ (1) and 7~(2). However, we shall ensure throughout tha t no identifications
involve 7~(0) by demanding that ~ - i (o) -- {0} so tha t o really represents "did
not happen" .

We shall be interested in two binary operations on the non-negative integers. One
is the operat ion of maximum: max{nl ,n2} is the larger of n l and n2. In A b s
we shall use the binary least upper bound operat ion to express the max imum
operation. Indeed TO(max{hi, n2}) = 7r U 7~(n2) holds by monotonici ty of

as do the laws ni E_ ni U n2, n2 E_ n l U n2 and n U n = n. As a consequence
ni U n2 = 0 iff both ni and n2 equal o.

The other operation is addition: ni +n2 is the sum of ni and n2. In A b s we shall
have to define a function ~ and demand tha t (Abs , @, o) is an Abelian monoid
with ~ monotone. This ensures tha t we have the associative law ni @ (n2 @n3) =
(hi �9 n2) �9 n3, the absorption laws n @ 0 = 0 @ n = n, the commutat ive law
ni ~ n2 = n2 @ ni and by monotonicity we have also the laws nl _E nl �9 n2
and n2 E nl @ n2. As a consequence ni ~ n2 = 0 iff bo th nl and n2 equal
o. To ensure tha t @ models addition on the integers we impose the condition
Vnl, n2. 7~(ni + n2) _ 7~(ni)@ 7~(n2) tha t is common in abstract interpretation.

D e f i n i t i o n 3.1 A value space is a s tructure (Abs , E, o, I, M, @, 7~) as detailed
above. I t is an atomic value space if ! is an a tom (that is 0 E n E ! implies tha t
O = n o r I = n) .

E x a m p l e 3.2 One possibility is to use A 3 = {o, I, M} and define F by o E I E
M. The abstract ion function 7~ will then map 0 to o, 1 to I and all other numbers
to M. The operations U and @ can then be given by the following tables:

596

LJ 0 I

0 0 I

I I I

M M M

M

M

M

M

|

O

I

M

O I M

O I M

I M M

M M M

This defines an atomic value space. []

For two value spaces (Abs' , ___~, o' , if, M', (~ ' , T~') and (Abs", _E", o", I", M", @",
TU') we may construct their cartesian product (Abs, E, o, I, M, @, 7~) by setting
Abs = Abs / • Abs" and by defining F, O, I, M, r and 7~ componentwise.

For a value space (Abs I, EZ, o ~, if, M ~, ~ , T~ ~) and a non-empty set E of events
we may construct the indexed value space (or function space) (Abs, _, o, I, M,
@, T~) by setting Abs = E --~ Abs ~ (the set of total functions from E to Abs ~)
and by defining E, o, I, M, @ and 7~ componentwise.

4 Counting the Behaviours

For a given behaviour b and value space Abs we may ask the following four
questions:

how many times are channels labelled by L created?

how many times do channels labelled by L participate in input?

how many times do channels labelled by L participate in output?

and how many times are processes labelled by L generated?

To answer these questions we define an inference system with formulae

benv k b : A

where L a b S e t = P$ (Labels) is the set of finite and non-empty subsets of Labe l s
and A E L a b S e t ---~S Abs records the required information.

In this section we shall define the inference system for answering all four ques-
tions simultaneously. Hence we let Abs be the four-fold cartesian product Ab 4
of an atomic value space Ab; we shall leave the formulation parameterised on
the choice of A b but a useful candidate is the three-element value space A3 of
Example 3.2 and this will be the choice in all examples.

The idea is that A(L) = (no, ni, no, n$) means that channels labelled by L are
created at most nc times, that channels labelled by L participate in at most ni
input operations, that channels labelled by L participate in at most no output
operations, and that processes labelled by L are generated at most n$ times.
The behaviour environment benv then associates each behaviour variable with
an element of L a bSe t ---~f Abs.

The analysis is defined in Table 1. We use [] as a shorthand for ,~L.(o, o, o, o)

{ (o , o , o , o) i f L ' ~ L } N o t e t h a t I and [L H ~] as a shorthand for AL r. ff if L ~ = L "

597

benv F e: []

benv k L!t: [L H (o, o, I, o)1

benv [- t CHAN L : [L H (I, o, o, o)]

benv k- bl : A1 benv ~- b2 : A2

benv k bl; b2 : A1 @ A2

benv[t3 ~-+ A] k b : A
benv V REC/3. b : A

benv k L?t : [L ~ (0, I, O, O)]

benv k b : A

benv ~- FORKL b : [L ~-~ (o, o, o, I)] @ A

benv ~- bl : A1 benv F b2 : A2

benv k bl + b2 : At U A2

benv F fl : A if benv(13) = A

Table 1: Analysis of behaviours

denotes the designated "one"-element in each copy of Ab since it is the atoms
(I, o, o, 0), (0, I, o, 0), (0, o, I, 0), and (0, o, o, I) that are useful for increasing
the count. In the rule for FORK L we are deliberately incorporating the effects of
the forked process; to avoid doing so simply remove the "@A" component. The
rules for sequencing, choice, and behaviour variables are straightforward given
the developments of the previous section.

E x a m p l e 4.1 For the pipe function of Examples 2.1 and 2.2 the analysis will
give the following information (read "M" as "many"):

L I : M channels created and M inputs performed
L2: M outputs performed
L: M outputs performed
~r: M processes created

While this is evidently correct it also seems pretty uninformative; yet we shall
see that this simple analysis suffices for developing more informative analyses
for static and dynamic processor allocation. []

To formally express the correctness of the analysis we need a few definitions.
Given a list X of actions define:

COUNT(X) = AL.(CC(X, L), C I (X , L), CO(X , L), C F (X , L))

C C (X , L): the number of elements of the form t CHAN L in X,
C I (X , L): the number of elements of the form L'!t?L in X,
CO(X, L): the number of elements of the form L!t?L' in X, and
C F (X , L): the number of elements of the form FORKL b in X.

The formal version of our explanations above about the intentions with the
analysis then amounts to the following soundness result:

T h e o r e m 4.2 If (0 t- b : A and ~io ~-* b] _---~al. vs~ "" ~Psk~k P B then we have

598

g [B : w

g [B : w

g [B : w

g[[B : w

8~{B : w

f I B : w

g[B : w

, f .[B : w

g~B : w

: d = { (~) = [] }

: L!t] = {(~y) = [L ~-+ (O,O,I,O)] }

: L?t] = { (w) = [L H (o, I, o, o)] }

: t CHANL] = {(~Y) ----[L ~ (I,O, O,O)]'}

: FORKL b] = { (w) = [L ~-* (o, o, O, I)] (~ (~:U1) } U ~ [B : w l : b]

:b l ;b2] = { (w) = (w l) @ (w 2) } U 8 [B : w l : b l] U 8 [B : w 2 : b 2]

: REC ~. b] = C L O S E ~ ({ (w) = (wl) , (w) = (f~) } U $~B: w l : b])

Table 2: Constructing the equation system

n * (C O U N T [a l , . . . , ak]) ~ A.

where n * (C) (L) = (•(c), 7~(i), T~(o), n (f)) if C(L) = (c, i, o, f) . []

5 Implementation

It is well-known that compositional specifications of program analyses (whether
as abstract interpretations or annotated type systems) are not the most effi-
cient way of obtaining the actual solutions. We therefore demonstrate how the
inference problem may be transformed to an equation solving problem that is
independent of the syntax of our process algebra and where standard algorith-
mic techniques may be applied. This approach also carries over to the inference
systems for processor allocation developed subsequently.

The first step is to generate the set of equations. The function 8 for generating
the equations for the overall behaviour B achieves this by the call 8 [B : e : b]
where ~ denotes the empty tree-address. In general B : w : b indicates that the
subtree of B rooted at w is of the form b and the result of 8 [B : w : b~ is the
set of equations produced for b. The formal definition is given in Table 2.

Tile key idea is that E~B : w : b] operates with flow variables of the form (w')
and (~'). We maintain the invariant that all w' occurring in s : w : b~ are
(possibly empty) prolongations of ~y and that all fl' occurring in $ [B : w : b~
are exposed in b. To maintain this invariant in the case of recursion we define

CLOSEt ' (E) = { (L[(w>/(~>] = R[(w>/(fl)]) I (L = R) e E } .

Terms of the equations are formal terms over the flow variables (that range over
the complete lattice L a b S e t --~ Abs) , the operations @ and u and the constants

599

(that are elements of the complete lattice L a b S e t ~ Abs) . Thus all terms are
monotonic in their free flow variables. A solution to a set E of equations is
a partial function a from flow variables to L a b S e t ~ A b s such tha t all flow
variables in E are in the domain of a and such tha t all equations (L -- R) of E
have a (L) --- a (R) where a is extended to formal terms in the obvious way. We
write a ~ E whenever this is the case.

T h e o r e m 5.1 [] F b : A i f f 3 a . a ~ E ~ b : ~ : b ~ A a ((~)) = A . []

Corollary 5.2 The least (or greatest) A such tha t [] F b : A is a((~)) for the
least (or greatest) a such tha t a ~ s []

We have now transformed our inference problem to a form where the s tandard
algorithmic techniques [2, 6, 9, 16] can be exploited.

6 S ta t i c P r o c e s s o r A l l o c a t i o n

The idea behind the static processor allocation is tha t all processes with the same
label will be placed on the same processor and we would therefore like to know
what requirements this puts on the processor. To obtain such information we
shall extend the simple counting analysis of Section 4 to associate information
with the process labels mentioned in a given behaviour b. For each process
label La we therefore ask the four questions of Section 4 accumulating the total
information for all processes with label La: how many times are channels labelled
by L created, how many times do channels labelled by L part icipate in input,
how many times do channels labelled by L part icipate in output , and how many
times are processes labelled by L generated?

E x a m p l e 6.1 Let us return to the p i p e function of Examples 2.1 and 2.2 and
suppose tha t we want to perform static processor allocation. This means tha t
all instances of the processes labelled u will reside on the same processor. The
analysis should therefore est imate the total requirements of these processes as
follows:

main: LI: M channels created
7r: M processes created

7r: LI:
L2:
L:

M inputs performed
M outputs performed
M outputs performed

Note tha t even though each process labelled by 7~ can only communicate once
over L we can generate many such processes and their combined behaviour is
to communicate many times over L. I t follows from this analysis tha t the main
program does not in itself communicate over L2 or L and tha t the processes do
not by themselves spawn new processes.

Now suppose we have a network of three processors P 1 , P 2 and P 3 such tha t
there are communicat ion links between any pairs of distinct processors. One

600

benv F t CHANL : [L ~-~ (I, O, O, O)] ~:; []

benv F b : A & P
benv F FORKL b: [L ~-* (o, o, o, I)] ~ ([L ~-~ A] ~ P)

benv F bl : A1 & P1 benv F b2 : A2 & P2
benv ~ bl; b2 : A1 @ A2 & P1 | P2

benv F bl : A1 & P1 benv F b2 : A2 & t='2
benv F bl + b2 : A1 U A2 ~ P1 U P2

benv[/3 H A & P] ~- b: A & P
benv }- REC/3. b : A 8z P

benv ~ /3 : A & P if benv(/3) = A & P

Table 3: Analysis for static process allocation (selected clauses)

way to place our processes is to place the main program on P1 and all the
processes labelled 7r on P2. This requires support for multitasking on P2 and

for multiplexing (over L1) on P 1 and P2 . []

The analysis (specified in Table 3) is obtained by modifying the inference system
of Section 4 to have formulae

benv F b : A & P

where A E L a b S e t --*f A b s as before and the new ingredient is

P : L a b S e t -+f (L a b S e t - ~ / A b s)

The idea is that if some process is labelled La then P(La) describes the total
requirements of all processes labelled by La. The behaviour environment benv
is an extension of that of Section 4 in that it associates pairs A &: P with the
behaviour variables. Note that in the rule for FORK L we have removed the "(3A"
component from the local effect; instead it is incorporated in the global effect
for L.

To express the correctness of the analysis we need to keep track of the relation-
ship between the process identifiers and the associated labels. So let penv be a
mapping from process identifiers to elements La of L a b S e t . We shall say that
penv respects the derivation sequence P B ___~al. p s l " " " ====~ps~ak P B ~ if whenever
(ai,psi) have the form (FORK L b, (pil,P/2)) then penv(pi2) = L; this ensures
that the newly created process (1o/2) indeed has a label (in L) as reported by the
semantics.

We can now redefine the function COUNT of Section 4. Given a list A' of pairs
of actions and lists of process identifiers define

COUNTpenv(x) = ALa.AL.(CCLa (X, L), GILa (X, L), COLa (,~, L), CFL, (X, L))

601

CCL~(X, L): the number of elements of the form (~ CHANL,pi) in X
where penv(pi) = La,

CILo(X, L): the number of elements of the form (L'!t?L, (pi' ,pi)) in X,
where penv(pi) = L~,

COLa(X, L): the number of elements of the form (L!t?L', (pi,pi ')) in A',
where penv(pi) = L~, and

CFL~ (X, L): the number of elements of the form (FORKLb, (pi, p/')) in 2r
where penv(pi) = L~.

Soundness of the analysis then amounts to:

a l ak T h e o r e m 6.2 Assume that 0 F b : A & P and Rio ~ b] ==vvs 1 . . . ===~psk
P B and let penv be a mapping from process identifiers to elements of LabSe t
respecting the above derivation sequence and such that penv(pio) = Lo. We
then have

n*(COVNWPC~'[(al ,psl) , . . . , (ak,psk)]) ~ (r @ [L0 H A])

where T~* (C)(L~)(L) = (T~(c), T~(i), n(o) , n (f)) if C(L~)(L) = (c, i, o, f) . []

Note that the lefthand side of the inequality counts the number of operations
for all processes whose labels is given (by L~); hence our information is useful
for static processor allocation.

To obtain an efficient implementation of the analysis it is once more profitable
to generate an equation system. This is hardly any different from the approach
of Section 5 except that by now there is even greater scope for decomposing the
flow variables into families of flow variables over simpler value spaces.

7 D y n a m i c Processor Al locat ion

The idea behind the dynamic processor allocation is that the decision of how to
place processes on processors is taken dynamically. Again we will be interested
in knowing which requirements this puts on the processor but in contrast to
the previous section we are only concerned with a single process rather than all
processes with a given label. We shall now modify the analysis of Section 6 to
associate worst-case information with the process labels rather than accumulat-
ing the total information. For each process label L~ we therefore ask the four
questions of Section 4 taking the maximum information over all processes with
label L~: how many times are channels labelled by L created, how many times
do channels labelled by L participate in input, how many times do channels
labelled by L participate in output, and how many times are processes labelled
by L generated?

E x a m p l e 7.1 Let us return to the pipe function of Examples 2.1 and 2.2 and
suppose that we want to perform dynamic processor allocation. This means that
all the processes labelled 7r need not reside on the same processor. The analysis

602

benv F b : A & P
benv ~ FORKL b : [L ~-~ (o, O, O, I)] & ([L ~ A] U P)

benv F bl : Al & P1 benv F b2 : A2 & P2

benv F- bl; b2 : A1 | A2 & Pz U P2

benv[~ H A] F b : A & P
benv F REC/3. b : A & P

benv F fl : A & [] if benv(fl) --- A

Table 4: Analysis for dynamic process allocation (selected clauses)

should therefore estimate the maximal requirements of the instances of these
processes as follows:

main: LI: M channels created
7r: M processes created

~r: LI:

L2:
L:

M inputs performed
M outputs performed
I output performed

Note that now we do record that each individual process labelled by ~r actually
only communicates over L at most once.

Returning to the processor network of Example 6.1 we may allocate the main
program on P 1 and the remaining processes on P 2 and P 3 (and possibly P 1
as well): say f l and f3 on P 2 and f2 and id on P3 . Facilities for multitasking
are needed on P 2 and P 3 and facilities for multiplexing on all of P1 , P 2 and
P3. []

The inference system still has formulae

benv F b : A & P

where A and P are as in Section 6 and now benv is as in Section 4: it does not
incorporate the P component 1. Most of the axioms and rules are as in Table 3;
the modifications are listed in Table 4.

A difference from Section 6 is that now we need to keep track of the individual
process identifiers. We therefore redefine the function COUNT penv as follows:

COUNTP~ ' (X) = ALa.AL.((CCpI(X, L), CIpz(X, L), COpI(,~., n), CFpI(X, L))
where P I = penv- l (La))

lit could be as in Section 6 as well because we now combine P components using LI rather
than @.

603

CCpI (X , L): the maximum over all p/ E P I of the number of elements
of the form (t CHANL,p/) in X,

C I m (X , L): the maximum over all pi E P I of the number of elements
of the form (L'!t?L, (pi',p/)) in X,

COpr(X , L): the maximum over all p/ E P I of the number of elements
of the form (L!t?L', (pi, pi')) in X, and

CFpI(2(, L): the maximum over all pi E P I of the number of elements
of the form (FORKLb, (pi,pi')) in X.

Soundness of the analysis then amounts to:

T h e o r e m 7.2 Assume that ~ ~ b : A & P and ~io H b] -------~psl' a l . . . ==::=:~pskak
P B and let penv be a mapping from process identifiers to elements of LabSet
respecting the above derivation sequence and such that penv(pio) = Lo. We
then have

~*(COUNWPe~V[(al,psl), ' ' ' , (ak,psk)]) V- (p , K [L0 ~ A])

where ~* is as in Theorem 6.2. []

Note that the lefthand side of the inequality gives the maximum number of
operations over all processes with a given label; hence our information is useful
for dynamic processor allocation.

To obtain an efficient implementation of the analysis it is once more profitable to
generate an equation system and the remarks at the end of the previous section
still apply.

8 C o n c l u s i o n

The specifications of the analyses for static and dynamic allocation have much in
common; the major difference of course being that for static processor allocation
we accumulate the total numbers whereas for dynamic processor allocation we
calculate the maximum; a minor difference being that for the static analysis it
was crucial to let behaviour environments include the P component whereas for
the dynamic analysis this was hardly of any importance.

Acknowledgements . We would like to thank Torben Amtoft for many in-
teresting discussions. This research has been funded in part by the LOMAPS
(ESPRIT BRA) and DART (Danish Science Research Council) projects.

R e f e r e n c e s

[1] T.Amtoft, F.Nielson, H.R.Nielson: Type and behaviour reconstruction for higher-
order concurrent programs. Manuscript.

604

[2] J.Cai, R.Paige: Program Derivation by Fixed Point Computation. Science of
Computer Programming 11, pp. 197-261, 1989.

[3] R. Cridlig, E.Goubanlt: Semantics and analysis of Linda-based languages. Proc.
Static Analysis, Springer Lecture Notes in Computer Science 724, 1993.

[4] C.E:McDowell: A practical algorithm for static analysis of parallel programs.
Journal of parallel and distributed computing 6, 1989.

[5] A.Giacalone, P.Mishra, S.Prasad: Operational and Algebraic Semantics for Facile:
a Symmetric Integration of Concurrent and Functional Programming. Proc.
ICALP'90, Springer Lecture Notes in Computer Science 443, 1990.

[6] M.S.Hecht: Flow Analysis of Computer Programs, North-Holland, 1977.

[7] Y.-C.Hung, G.-H.Chen: Reverse reachability analysis: a new technique for dead-
lock detection on communicating finite state machines. Software -- Practice and
Experience 23, 1993.

[8] S.Jagannathan, S.Week: Analysing stores and references in a parallel symbolic
language. Proe. L~4FP, 1994.

[9] M.Jourdan, D.Parigot: Techniques for Improving Grammar Flow Analysis. Proc.
ESOP'90, Springer Lecture Notes in Computer Science 432, pp. 240-255, 1990.

[10] N. Mercouroff: An algorithm for analysing communicating processes. Proc. of
MFPS, Springer Lecture Notes in Computer Science 598, 1992.

[11] F.Nielson, H.R.Nielson: From CML to Process Algebras. Proe. CONCUR'93,
Springer Lecture Notes in Computer Science 715, 1993.

[12] H.R.Nielson, F.Nielson: Higher-Order Concurrent Programs with Finite Commu-
nication Topology. Proc. POPL'94, pp. 84-97, ACM Press, 1994.

[13] F.Nielson, H.R.Nielson: Constraints for Polymorphic Behaviours for Concurrent
ML. Proe. CCL'94, Springer Lecture Notes in Computer Science 845, 1994.

[14] J.H.Reif, S.A.Smolka: Dataflow analysis of distributed communicating processes.
International Journal of Parallel Programs 19, 1990.

[15] J.R.Reppy: Concurrent ML: Design, Application and Semantics. Springer Lecture
Notes in Computer Science 693, pp. 165-198, 1993.

[16] R.Tarjan: Iterative Algorithms for Global Flow Analysis. In J.Traub (ed.), Algo-
rithms and Complexity, pp. 91-102, Academic Press, 1976.

[17] B.Thomsen. Personal communication, May 1994.

