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Abst rac t .  Starting from the process algebra for Concurrent ML we develop 
two program analyses that facilitate the intelligent placement of processes on 
processors. Both analyses are obtained by augmenting an inference system for 
counting the number of channels created, the number of input and output op- 
erations performed, and the number of processes spawned by the execution of a 
Concurrent ML program. One analysis provides information useful for making a 
static decision about processor allocation; to this end it accumulates the commu- 
nication cost for all processes with the same label. The other analysis provides 
information useful for making a dynamic decision about processor allocation; 
to this end it determines the maximum communication cost among processes 
with the same label. We prove the soundness of the inference system and the 
two analyses and demonstrate how to implement them; the latter amounts to 
transforming the syntax-directed inference problems to instances of syntax-free 
equation solving problems. 

1 I n t r o d u c t i o n  

Higher-order concurrent languages as CML [15] and FACILE [5] offer primitives 
for the dynamic creation of processes and channels. A distributed implementa- 
tion of these languages immediately raises the problem of processor allocation. 
The efficiency of the implementation will depend upon how well the network 
configuration matches the communication topology of the program - and here it 
is important which processes reside on which processors. When deciding this it 
will be useful to know: 

�9 Which channels will be used by the process for input and output  operations 
and how many times will the operations be performed? 

*The full paper appears a.s DAIMI-PB 483 and electronic,copies are obtainable .via 
http ://www. daimi, aau. dk/~bra8130/LOMAPS, html using Vi/IArV~. 
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�9 Which channels and processes will be created by the process and how many 
instances will be generated? 

As an example, two processes tha t  frequently communicate with one another  
should be allocated on processors in the network so as to ensure a low commu- 
nication overhead. 

In CML and FACILE processes and channels are created dynamically and this 
leads to a distinction between two different processor allocation schemes: 

�9 Static processor allocation: At compile-time it is decided where all in- 
stances of a process will reside at run-time. 

�9 Dynamic processor allocation: At run-time it is decided where the individ- 
ual instances of a process will reside. 

The first scheme is the simpler one and it is used in the current distributed 
implementation of FACILE; finer grain control over parallelism may be achieved 
using the second scheme [17]. 

W h a t  has  b e e n  a c c o m p l i s h e d .  In this paper we present analyses providing 
info77nation for static and dynamic processor allocation of CML programs. We 
shall follow the approach of [12] and develop the analyses in two stages. In 
the first stage we extract  the communication behaviour of the CML program 
following [12] that  develops a type and behaviour inference system for expressing 
the communication capabilities of programs in CML. As was already indicated 
in [11] the behaviours may be regarded as terms in a process algebra (like CCS 
or CSP); however the process algebra of behaviours is specifically designed so 
as to capture those aspects of communication that  are relevant for the efficient 
implementation of programs in CML. 

In the second stage we then analyse the behaviours so as to obtain information 
for static and dynamic processor allocation. To prepare for this we first develop 
an analysis that  uses simple ideas from abstract interpretation to count for each 
behaviour the number of channels created, the number of input and output  oper- 
ations performed and the number of processes spawned. To provide information 
for static and dynamic processor allocation we then differentiate the information 
with respect to labels associated with the f o r k  operations'of the CML program; 
these labels will identify all instances of a given process and for each label we 
count the number of channels created, the number of input and output  opera- 
tions performed and the number of processes spawned. The central observation 
is now tha t  for the static allocation scheme we accumulate the requirements of 
the individual instances whereas for the dynamic allocation scheme we take the 
maximum of the individual instance requirements. 

C o m p a r i s o n  w i t h  o t h e r  work .  First we want to stress tha t  our approach to 
processor allocation is that  of static program analysis rather  than,  say, heuris- 
tics based on profiling as is often found in the literature on implementation of 
concurrent languages. 
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In the literature there are only few program analyses for combined functional 
and concurrent languages. An extension of SML with Linda communication 
primitives is studied in [3] and, based on the corresponding process algebra, 
an analysis is presented that  provides useful information for the placement of 
processes on a finite number of processors. A functional language with commu- 
nication via shared variables is studied in [8] and its communication patterns are 
analysed, again with the goal of producing useful information for processor (and 
storage) allocation. Also a couple of program analyses have been developed for 
concurrent languages with an imperative facet. The papers [4, 7, 14] all present 
reachability analyses for concurrent programs with a statically determined com- 
munication topology; only [14] shows how this restriction can be lifted to allow 
communication in the style of the ~-calculus. Finally, [10] presents an analy- 
sis determining the number of communications on each channel connecting two 
processes in a CSP-like language. 

2 B e h a v i o u r s  

Full details of the syntax of CML are not necessary for the developments of the 
present paper. It  will suffice to introduce a running example and to use it to 
motivate the process algebra of CML. 

E x a m p l e  2.1 Suppose we want to define a program p ipe  [ f l , f 2 , f 3 ]  in  out  
that  constructs a pipeline of processes: the sequence of inputs is taken over chan- 
nel in,  the sequence of outputs is produced over channel out  and the functions 
f l ,  f2,  f3  (and the identity function id  defined by fn  x => x) are applied in 
turn. To achieve concurrency we want separate processes for each of the func- 
tions f l ,  f2,  f3  (and id).  This system might be depicted graphically as follows: 

Here chl ,  ch2, and ch3 are new internal channels for interconnecting the pro- 
cesses; and f a i l  is a channel over which failure of operation may be reported. 

Taking the second process as an example it may be created by the CML expres- 
sion node f2  c h l  ch2 where the function node is given by 

fn f => fn in => fn out => 

fork~ (rec loop d => 

sync (choose [wrap (receive in, 
fn  x => sync (send ( o u t ,  f x ) ) ;  
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l oop  d ) ,  
s e n d ( f a i l ,  ( ) )  ] ) )  

Here f is the function to be applied, i n  is the input channel and out  is the output  
channel. The  function f o r k ~  creates a new process labelled ~ tha t  performs as 
described by the recursive function l o o p  tha t  takes the dummy parameter  d. 
In each recursive call the function may either report  failure by s e n d ( f a i l ,  ( ) )  
or it may  perform one step of the processing: receive the input by means of 
r e c e i v e  in,  take the value x received and t ransmit  the modified value f x by 
means of s e n d ( o u t ,  f x) after which the process repeats itself by means of l o o p  
d. The  primitive choose allows to perform an unspecified choice between the 
two communicat ion possibilities and wrap allows to modify a communicat ion by 
postprocessing the value received or t ransmit ted.  The  sync  primitive enforces 
synchronisation at the right points and we refer to [15] for a discussion of the 
language design issues involved in this; once we have arrived at the process 
algebra such considerations will be of little importance to us. 

The  overall construction of the network of processes is then the task of the p i p e  
function defined by 

r e c  p i p e  f s  => f n  i n  => fn  out  => 
if isnil fs 

then node (fn x => x) in out 

else let ch = channel () 

in (node (hd fs) in ch; pipe (tl fs) ch out) 

Here f s  is the list of functions to be applied, i n  is the input channel, and out  
is the output  channel. If the list of functions is empty  we connect i n  and out  
by means of a process tha t  applies the identity function; otherwise we create a 
new internal channel by means of chnnne l  O and then we create the process 
for the first function in the list and then recurse on the remainder of the list. [] 

The  process algebra of CML [12] allows to give succinct representations of the 
communicat ions taking place in CML programs. The terms of the process alge- 
bra  are called behaviours, denoted b C B e h ,  and are given by 

b ::= c l L ! t l L ? t l t  CHANL I/~ I FORKL b lbl;b2 I bl +b2  t RECfl. b 

where L C L a b e l s  is a non-empty and finite set of program labels. The  
behaviour e is associated with the pure functional computat ions of CML. The 
behaviours L!t and L?t are associated with sending and receiving values of type t 
over channels with label in L, the behaviour t CHAN L is associated with creating 
a new channel with label in L and over which values of type t can be commu- 
nicated, and the behaviour FOR.KL b is associated with creating a new process 
with behaviour b and with label in L. Together these behaviours consti tute the 
atomic behaviours, denoted p C A B e h ,  as may be expressed by sett ing 

P ::= el L!tl L? t l t  CHANL I FORKL b 
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Finally, behaviours may be composed by sequencing (as in bl; b2) and internal 
choice (as in bl + b2) and we use behaviour variables together with an explicit 
REC construct to express recursive behaviours. 

The structure of  the types, denoted t C T y p ,  shall be of little concern to us 
in this paper  and we shall therefore leave it most ly  unspecified (but see [12]); 
however, we need to s tate  that  a chanL is the type of a channel with label 
in L over which elements of type a may be communicated.  Since types might 
conceivably contain behaviours the notion of free variables needs to be replaced 
by a notion of exposed variables: we shall say tha t  a behaviour variable fl is 
exposed in a behaviour b if it has a free occurrence tha t  is not a subterm of any 
type mentioned in b. 

E x a m p l e  2.2 Assuming that  f a i l  is a channel of type u n i t  chart  L the type  
inference system of [12] can be used to prove tha t  p i p e  has type t where 

t = (~ -+/~ c~) l i s t  __+e a c h a n n l  __+e Ol chanL= __+b u n i t  

b = REC/31.(FORK~r(RECZ".(L17. eq s L2!o~;/3" q- L !un i t ) )  
+c~ CHANL1 ; FORK~r (REC/3'I.(LI?~;/3; L2!a;/3" + L!unit)) ; /3/)  

Thus the behaviour expresses directly that  the p i p e  function is recursively de- 
fined and tha t  it either spawns a single process or creates a channel, spawns 
a process and recurses. The spawned processes will all be recursive and they 
will either report  failure over a channel in L and terminate,  or else input over a 
channel in L1, do something (as expressed by e and/~),  ou tput  over a channel 
in L2 and recurse. [] 

The  semantics of behaviours is defined by a transit ion relation of the form 

P B  ==>~8 P B '  

where P B  and P B '  are mappings from process identifiers to closed behaviours 
and the special symbol x /deno t ing  termination. Furthermore,  a is an action 
tha t  takes place and ps  is a list of the processes tha t  take par t  in the action. 
The actions ra ther  closely correspond to atomic behaviours and are given by 

a ::= e [ L!t?L I t CHAN L [ FORK L b 

If  the transit ion P B  ==#p8 P B  I has a = e this means tha t  one of the behaviours 
in P B  performed some internal computat ion tha t  did not involve communi-  
cation; in other words i t  performed the atomic, behaviour e. I f  a = L!t?L this 
means tha t  two disctinct behaviours performed a communication: one performed 
the atomic behaviour L!t and the other  the atomic behaviour L?t. Finally if 
a = CHANL or a = FORK L this means tha t  one of the behaviours in P B  allocated 
a new channel or forked a new process. Since we have covered all possibilities of 
a tomic behaviours we have also covered all possibilities of actions. We refer to 
[12] for the precise details of the semantics as these axe of little importance for 
the development of the analyses. 
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3 Value Spaces 

In the analyses we want to predict the number  of t imes certain events may  
happen.  The  precision as well as the complexity of the analyses will depend 
upon how we count so we shall parameterise the formulation of the analyses on 
our notion of counting. 

This amounts  to abstract ing the non-negative integers N by a complete lattice 
(Abs ,  ~) .  As usual we write _L for the least element, T for the greatest  element, 
U and u for least upper  bounds by a function and V1 for greatest  lower bounds. 
The  abstract ion is expressed 

n :  N --+m A b s  tha t  is strict (has 7~(0) = 2 )  and monotone (has n ( n i )  _ T~(n2) 
whenever ni  ~ n2); hence the ordering on the natural  numbers is reflected in 
the abs t rac t  values. Three elements of A b s  are of particular interest and we 
shall introduce special syntax for them: 

0 = •(0) = -L I = n (1 )  M = T 

We cannot  expect our notion of counting to be precisely reflected by Abs ;  indeed 
it is likely tha t  we shall allow to identify for example 7~(2) and 7~(3) and perhaps  
even ~ ( 1 )  and 7~(2). However, we shall ensure throughout  tha t  no identifications 
involve 7~(0) by demanding that  ~ - i ( o )  -- {0} so tha t  o really represents "did 
not happen" .  

We shall be  interested in two binary operations on the non-negative integers. One 
is the operat ion of maximum: max{nl ,n2}  is the larger of n l  and n2. In A b s  
we shall use the binary least upper  bound operat ion to express the max imum 
operation. Indeed TO(max{hi, n2} ) = 7r U 7~(n2) holds by monotonici ty of 

as do the laws ni  E_ ni  U n2, n2 E_ n l  U n2 and n U n = n. As a consequence 
ni  U n2 = 0 iff both  ni  and n2 equal o. 

The  other operation is addition: ni  +n2  is the sum of ni  and n2. In A b s  we shall 
have to define a function ~ and demand tha t  (Abs ,  @, o) is an Abelian monoid 
with ~ monotone. This  ensures tha t  we have the associative law ni  @ (n2 @n3) = 
(hi �9 n2) �9 n3, the absorption laws n @ 0 = 0 @ n = n, the commutat ive  law 
ni  ~ n2 = n2 @ ni  and by monotonicity we have also the laws nl  _E nl  �9 n2 
and n2 E nl  @ n2. As a consequence ni  ~ n2 = 0 iff bo th  nl  and n2 equal 
o. To ensure tha t  @ models addition on the integers we impose the condition 
Vnl, n2. 7~(ni + n2) _ 7~(ni)@ 7~(n2) tha t  is common in abstract  interpretation. 

D e f i n i t i o n  3.1 A value space is a s tructure (Abs ,  E, o, I, M, @, 7~) as detailed 
above. I t  is an atomic value space if ! is an a tom (that  is 0 E n E ! implies tha t  
O = n o r I = n ) .  

E x a m p l e  3.2 One possibility is to use A 3  = {o, I, M} and define F by o E I E 
M. The  abstract ion function 7~ will then map  0 to o, 1 to I and all other numbers 
to M. The  operations U and @ can then be given by the following tables: 
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LJ 0 I 

0 0 I 

I I I 

M M M 

M 

M 

M 

M 

| 

O 

I 

M 

O I M 

O I M 

I M M 

M M M 

This defines an atomic value space. [] 

For two value spaces (Abs' ,  ___~, o' ,  if, M',  (~ ' ,  T~') and (Abs",  _E", o",  I", M", @", 
TU') we may construct their cartesian product (Abs, E, o, I, M, @, 7~) by setting 
Abs  = Abs  / • Abs"  and by defining F, O, I, M, r and 7~ componentwise. 

For a value space (Abs I, EZ, o ~, if, M ~, ~ ,  T~ ~) and a non-empty set E of events 
we may construct the indexed value space (or function space) (Abs, _,  o, I, M, 
@, T~) by setting Abs  = E --~ Abs  ~ (the set of total functions from E to Abs  ~) 
and by defining E, o, I, M, @ and 7~ componentwise. 

4 Counting the Behaviours  

For a given behaviour b and value space Abs  we may ask the following four 
questions: 

how many times are channels labelled by L created? 

how many times do channels labelled by L participate in input? 

how many times do channels labelled by L participate in output? 

and how many times are processes labelled by L generated? 

To answer these questions we define an inference system with formulae 

benv k b : A 

where L a b S e t  = P$ (Labels)  is the set of finite and non-empty subsets of Labe l s  
and A E L a b S e t  ---~S Abs  records the required information. 

In this section we shall define the inference system for answering all four ques- 
tions simultaneously. Hence we let Abs  be the four-fold cartesian product Ab  4 
of an atomic value space Ab; we shall leave the formulation parameterised on 
the choice of A b  but a useful candidate is the three-element value space A3 of 
Example 3.2 and this will be the choice in all examples. 

The idea is that  A(L)  = (no, ni, no, n$) means that  channels labelled by L are 
created at most nc times, that  channels labelled by L participate in at most ni 
input operations, that  channels labelled by L participate in at most no output 
operations, and that  processes labelled by L are generated at most n$ times. 
The behaviour environment benv then associates each behaviour variable with 
an element of L a bSe t  ---~f Abs.  

The analysis is defined in Table 1. We use [] as a shorthand for ,~L.(o, o, o, o) 

{ ( o , o , o , o ) i f L '  ~ L } N o t e t h a t I  and [L H ~] as a shorthand for AL r. ff if L ~ = L " 
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benv F e: [] 

benv k L!t:  [L H (o, o, I, o)1 

benv [- t CHAN L : [L H (I, o, o, o)] 

benv k- bl : A1 benv ~- b2 : A2 

benv k bl; b2 : A1 @ A2 

benv[t3 ~-+ A] k b : A 
benv V REC/3. b : A 

benv k L?t : [L ~ (0, I, O, O)] 

benv k b : A 

benv ~- FORKL b : [L ~-~ (o, o, o, I)] @ A 

benv ~- bl : A1 benv F b2 : A2 

benv k bl + b2 : At  U A2 

benv F fl : A if benv(13) = A 

Table 1: Analysis of behaviours 

denotes the designated "one"-element in each copy of Ab  since it is the atoms 
(I, o, o, 0), (0, I, o, 0), (0, o, I, 0), and (0, o, o, I) that  are useful for increasing 
the count. In the rule for FORK L we are deliberately incorporating the effects of 
the forked process; to avoid doing so simply remove the "@A" component. The 
rules for sequencing, choice, and behaviour variables are straightforward given 
the developments of the previous section. 

E x a m p l e  4.1 For the pipe  function of Examples 2.1 and 2.2 the analysis will 
give the following information (read "M" as "many"): 

L I :  M channels created and M inputs performed 
L2: M outputs performed 
L: M outputs performed 
~r: M processes created 

While this is evidently correct it also seems pretty uninformative; yet we shall 
see that  this simple analysis suffices for developing more informative analyses 
for static and dynamic processor allocation. [] 

To formally express the correctness of the analysis we need a few definitions. 
Given a list X of actions define: 

COUNT(X) = AL.(CC(X,  L), C I ( X ,  L), CO(X ,  L), C F ( X ,  L)) 

C C ( X ,  L): the number of elements of the form t CHAN L in X, 
C I ( X ,  L): the number of elements of the form L'!t?L in X,  
CO(X,  L): the number of elements of the form L!t?L' in X, and 
C F ( X ,  L): the number of elements of the form FORKL b in X. 

The formal version of our explanations above about the intentions with the 
analysis then amounts to the following soundness result: 

T h e o r e m  4.2 If (0 t- b : A and ~io ~-* b] _---~al. vs~ ""  ~Psk~k P B  then we have 
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g [ B  : w 

g [ B  : w 

g [ B  : w 

g[[B : w 

8~{B : w 

f I B  : w 

g[B : w 

, f .[B : w 

g~B : w 

: d = { ( ~ )  = [] } 

: L!t]  = {(~y) = [L ~-+ (O,O,I,O)] } 

: L?t ]  = { ( w )  = [L H (o,  I, o,  o)] } 

: t CHANL] = {(~Y) ----[L ~ (I,O, O,O)]'} 

: FORKL b] = { ( w )  = [L ~-* (o,  o,  O, I)] (~ (~:U1) } U ~ [ B :  w l :  b] 

:b l ;b2]  = { ( w ) = ( w l ) @ ( w 2 ) }  U 8 [ B : w l : b l ]  U 8 [ B : w 2 : b 2 ]  

: REC ~. b] = C L O S E ~ ( { ( w )  = (wl) ,  (w) = (f~) } U $~B:  w l :  b] ) 

Table 2: Constructing the equation system 

n * ( C O U N T [ a l , . . . ,  ak]) ~ A. 

where n * ( C ) ( L )  = (•(c), 7~(i), T~(o), n ( f ) )  if C(L) = (c, i, o, f ) .  [] 

5 Implementation 

It is well-known that  compositional specifications of program analyses (whether 
as abstract interpretations or annotated type systems) are not the most effi- 
cient way of obtaining the actual solutions. We therefore demonstrate how the 
inference problem may be transformed to an equation solving problem that  is 
independent of the syntax of our process algebra and where standard algorith- 
mic techniques may be applied. This approach also carries over to the inference 
systems for processor allocation developed subsequently. 

The first step is to generate the set of equations. The function 8 for generating 
the equations for the overall behaviour B achieves this by the call 8 [ B  : e : b] 
where ~ denotes the empty tree-address. In general B : w : b indicates that  the 
subtree of B rooted at w is of the form b and the result of 8 [ B  : w : b~ is the 
set of equations produced for b. The formal definition is given in Table 2. 

Tile key idea is that  E~B : w : b] operates with flow variables of the form (w') 
and (~'). We maintain the invariant that  all w' occurring in s  : w : b~ are 
(possibly empty) prolongations of ~y and that  all fl' occurring in $ [ B  : w : b~ 
are exposed in b. To maintain this invariant in the case of recursion we define 

CLOSEt ' (E)  = { (L[(w>/(~>] = R[(w>/(fl)]) I (L = R) e E } .  

Terms of the equations are formal terms over the flow variables (that range over 
the complete lattice L a b S e t  --~ Abs) ,  the operations @ and u and the constants 
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( that  are elements of the complete lattice L a b S e t  ~ Abs ) .  Thus all terms are 
monotonic in their  free flow variables. A solution to a set E of equations is 
a partial  function a from flow variables to L a b S e t  ~ A b s  such tha t  all flow 
variables in E are in the domain of a and such tha t  all equations (L -- R) of E 
have a ( L )  --- a ( R )  where a is extended to formal terms in the obvious way. We 
write a ~ E whenever this is the case. 

T h e o r e m  5.1 [ ] F b : A i f f 3 a .  a ~ E ~ b : ~ : b ~  A a ( ( ~ ) ) = A .  [] 

Corollary 5.2 The  least (or greatest) A such tha t  [] F b : A is a((~)) for the 
least (or greatest)  a such tha t  a ~ s  [] 

We have now transformed our inference problem to a form where the s tandard  
algorithmic techniques [2, 6, 9, 16] can be exploited. 

6 S ta t i c  P r o c e s s o r  A l l o c a t i o n  

The idea behind the static processor allocation is tha t  all processes with the same 
label will be placed on the same processor and we would therefore like to know 
what  requirements this puts on the processor. To obtain such information we 
shall extend the simple counting analysis of Section 4 to associate information 
with the process labels mentioned in a given behaviour b. For each process 
label La we therefore ask the four questions of Section 4 accumulating the total 
information for all processes with label La: how many  times are channels labelled 
by L created, how many times do channels labelled by L part icipate in input, 
how many  times do channels labelled by L part icipate in output ,  and how many 
times are processes labelled by L generated? 

E x a m p l e  6.1 Let us return to the p i p e  function of Examples  2.1 and 2.2 and 
suppose tha t  we want to perform static processor allocation. This means tha t  
all instances of the processes labelled u will reside on the same processor. The 
analysis should therefore est imate the total requirements of these processes as 
follows: 

main: LI:  M channels created 
7r: M processes created 

7r: LI:  
L2: 
L: 

M inputs performed 
M outputs  performed 
M outputs  performed 

Note tha t  even though each process labelled by 7~ can only communicate  once 
over L we can generate many  such processes and their combined behaviour is 
to communicate  many  times over L. I t  follows from this analysis tha t  the main 
program does not in itself communicate  over L2 or L and tha t  the processes do 
not by themselves spawn new processes. 

Now suppose we have a network of three processors P 1 ,  P 2  and P 3  such tha t  
there are communicat ion links between any pairs of distinct processors. One 
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benv F t CHANL : [L ~-~ (I, O, O, O)] ~:; [ ] 

benv F b : A & P 
benv F FORKL b: [L ~-* (o, o, o, I)] ~ ([L ~-~ A] ~ P)  

benv F bl : A1 & P1 benv F b2 : A2 & P2 
benv ~ bl; b2 : A1 @ A2 & P1 | P2 

benv F bl : A1 & P1 benv F b2 : A2 & t='2 
benv F bl + b2 : A1 U A2 ~ P1 U P2 

benv[/3 H A & P] ~- b: A & P 
benv }- REC/3. b : A 8z P 

benv ~ /3 : A & P if benv(/3) = A & P 

Table 3: Analysis for static process allocation (selected clauses) 

way to place our processes is to place the main program on P1 and all the 
processes labelled 7r on P2. This requires support for multitasking on P2 and 

for multiplexing (over L1) on P 1  and P2 .  [] 

The analysis (specified in Table 3) is obtained by modifying the inference system 
of Section 4 to have formulae 

benv F b : A & P 

where A E L a b S e t  --*f A b s  as before and the new ingredient is 

P : L a b S e t  -+f  ( L a b S e t  - ~ / A b s )  

The idea is that  if some process is labelled La then P(La)  describes the total 
requirements of all processes labelled by La. The behaviour environment benv 
is an extension of that  of Section 4 in that  it associates pairs A &: P with the 
behaviour variables. Note that  in the rule for FORK L we have removed the "(3A" 
component from the local effect; instead it is incorporated in the global effect 
for L. 

To express the correctness of the analysis we need to keep track of the relation- 
ship between the process identifiers and the associated labels. So let penv be a 
mapping from process identifiers to elements La of L a b S e t .  We shall say that  
penv respects the derivation sequence P B  ___~al. p s l  " " " ====~ps~ak P B  ~ if whenever 
(ai,psi) have the form (FORK L b, (pil,P/2)) then penv(pi2) = L; this ensures 
that  the newly created process (1o/2) indeed has a label (in L) as reported by the 
semantics. 

We can now redefine the function COUNT of Section 4. Given a list A' of pairs 
of actions and lists of process identifiers define 

COUNTpenv(x)  = ALa.AL.(CCLa (X,  L), GILa (X, L), COLa (,~, L), CFL,  (X,  L)) 
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CCL~(X,  L): the number of elements of the form (~ CHANL,pi) in X 
where penv(pi) = La, 

CILo(X,  L): the number of elements of the form (L'!t?L, (pi' ,pi)) in X, 
where penv(pi) = L~, 

COLa(X,  L): the number of elements of the form (L!t?L', (pi,pi ')) in A', 
where penv(pi) = L~, and 

CFL~ (X,  L): the number of elements of the form (FORKLb, (pi, p/')) in 2r 
where penv(pi) = L~. 

Soundness of the analysis then amounts to: 

a l  ak  T h e o r e m  6.2 Assume that 0 F b : A & P and Rio ~ b] ==vvs 1 . . .  ===~psk 
P B  and let penv be a mapping from process identifiers to elements of LabSe t  
respecting the above derivation sequence and such that penv(pio) = Lo. We 
then have 

n*(COVNWPC~'[(al ,psl) ,  . . .  , (ak,psk)]) ~ ( r  @ [L0 H A ] )  

where T~* (C)(L~)(L) = (T~(c), T~(i), n(o) ,  n ( f ) )  if C(L~)(L)  = (c, i, o, f) .  [] 

Note that the lefthand side of the inequality counts the number of operations 
for all processes whose labels is given (by L~); hence our information is useful 
for static processor allocation. 

To obtain an efficient implementation of the analysis it is once more profitable 
to generate an equation system. This is hardly any different from the approach 
of Section 5 except that by now there is even greater scope for decomposing the 
flow variables into families of flow variables over simpler value spaces. 

7 D y n a m i c  Processor  Al locat ion  

The idea behind the dynamic processor allocation is that the decision of how to 
place processes on processors is taken dynamically. Again we will be interested 
in knowing which requirements this puts on the processor but in contrast to 
the previous section we are only concerned with a single process rather than all 
processes with a given label. We shall now modify the analysis of Section 6 to 
associate worst-case information with the process labels rather than accumulat- 
ing the total information. For each process label L~ we therefore ask the four 
questions of Section 4 taking the maximum information over all processes with 
label L~: how many times are channels labelled by L created, how many times 
do channels labelled by L participate in input, how many times do channels 
labelled by L participate in output, and how many times are processes labelled 
by L generated? 

E x a m p l e  7.1 Let us return to the pipe function of Examples 2.1 and 2.2 and 
suppose that we want to perform dynamic processor allocation. This means that 
all the processes labelled 7r need not reside on the same processor. The analysis 
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benv F b : A & P 
benv ~ FORKL b : [L ~-~ (o, O, O, I)] & ([L ~ A] U P)  

benv F bl : Al  & P1 benv F b2 : A2 & P2 

benv F- bl; b2 : A1 | A2 & Pz U P2 

benv[~ H A] F b : A & P 
benv F REC/3. b : A & P 

benv F fl : A & [] if benv(fl) --- A 

Table 4: Analysis for dynamic process allocation (selected clauses) 

should therefore estimate the maximal requirements of the instances of these 
processes as follows: 

main: LI:  M channels created 
7r: M processes created 

~r: LI:  

L2: 
L: 

M inputs performed 
M outputs performed 
I output  performed 

Note that  now we do record that each individual process labelled by ~r actually 
only communicates over L at most once. 

Returning to the processor network of Example 6.1 we may allocate the main 
program on P 1  and the remaining processes on P 2  and P 3  (and possibly P 1  
as well): say f l  and f3  on P 2  and f2  and id  on P3 .  Facilities for multitasking 
are needed on P 2  and P 3  and facilities for multiplexing on all of P1 ,  P 2  and 
P3.  [] 

The inference system still has formulae 

benv F b : A & P 

where A and P are as in Section 6 and now benv is as in Section 4: it does not 
incorporate the P component 1. Most of the axioms and rules are as in Table 3; 
the modifications are listed in Table 4. 

A difference from Section 6 is that  now we need to keep track of the individual 
process identifiers. We therefore redefine the function COUNT penv as follows: 

COUNTP~ ' (X)  = ALa.AL.((CCpI(X, L), CIpz(X,  L), COpI(,~., n), CFpI(X,  L)) 
where P I  = penv- l (La) )  

lit could be as in Section 6 as well because we now combine P components using LI rather 
than @. 
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CCpI (X ,  L): the maximum over all p/ E P I  of the number of elements 
of the form (t CHANL,p/) in X, 

C I m ( X ,  L): the maximum over all pi E P I  of the number of elements 
of the form (L'!t?L, (pi',p/)) in X, 

COpr(X ,  L): the maximum over all p/ E P I  of the number of elements 
of the form (L!t?L', (pi, pi')) in X, and 

CFpI(2(,  L): the maximum over all pi E P I  of the number of elements 
of the form (FORKLb, (pi,pi')) in X. 

Soundness of the analysis then amounts to: 

T h e o r e m  7.2 Assume that ~ ~ b : A & P and ~io H b] -------~psl' a l  . . .  ==::=:~pskak 
P B  and let penv be a mapping from process identifiers to elements of LabSet  
respecting the above derivation sequence and such that penv(pio) = Lo. We 
then have 

~*(COUNWPe~V[(al,psl), ' ' '  , (ak,psk)]) V- (p  , K [L0 ~ A]) 

where ~* is as in Theorem 6.2. [] 

Note that the lefthand side of the inequality gives the maximum number of 
operations over all processes with a given label; hence our information is useful 
for dynamic processor allocation. 

To obtain an efficient implementation of the analysis it is once more profitable to 
generate an equation system and the remarks at the end of the previous section 
still apply. 

8 C o n c l u s i o n  

The specifications of the analyses for static and dynamic allocation have much in 
common; the major difference of course being that for static processor allocation 
we accumulate the total numbers whereas for dynamic processor allocation we 
calculate the maximum; a minor difference being that for the static analysis it 
was crucial to let behaviour environments include the P component whereas for 
the dynamic analysis this was hardly of any importance. 
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