
Mechanized inductive proof 
of properties of a simple code optimizer 

Alfons GESER 

Universit~t Passau, Lehrstuhl fiir Programmiersysteme, D-94030 Passau 
Phone: +49 851 509 353, E-mail: geser�9 

Abstract. We demonstrate how mechanical proofs of properties of a 
simple code generator and a partial evaluator can be done by term re- 
writing induction. We yield proofs that the code generator is correct and 
that the partial evaluator produces equivalent, optimal, shorter code. 
We treat a case of disequations and show how comparisons can be done 
adequately. 

1 I n t r o d u c t i o n  

Although much effort has been devoted to automation of inductive reasoning, 
only a few trivial theorems can be proven fully automatically. It appears difficult 
enough to improve effectiveness and to increase the degree of automation of 
mechanical inductive proving for a strongly restricted domain of application. We 
restrict ourselves to claims and axioms that are universally quantified equations 
which can be directed so that they form a term rewriting system. We perform 
proofs by "implicit induction" [1]. We feed the prover a few lemmas, the way 
people use e.g. the Boyer/Moore theorem prover [4] very successfully. 

The case study we are reporting, is a continuation of work that began in 1987. 
Rudolf Berghammer, Herbert Ehler, and Hans Zierer (BEZ, for short) gave an 
algebraic specification, using 59 term rewriting rules, of a code generator and 
partial evaluator for arithmetic expressions [3]. They proved correctness of the 
code generator and of the partial evaluator. They encoded parts of the proof 
such that they could employ RAP [11], a rapid prototyping tool for algebraic 
specifications. RAP uses a narrowing procedure to perform case analysis, and 
simplifies intermediate goals by rewriting. As it is not an inductive prover, in- 
ductive hypotheses had to be encoded as additional axioms, with the inductive 
variables as Skolem constants. As a further consequence, case analyses had to 
be provided explicitly by the user. In spite of these shortcomings, the case study 
was an obvious success as it illustrated a successful formal proof plan. 

This encouraged Heinrich Hui~mann, Ulrich Fraus, and the author to develop 
an inductive prover, TIP [7]. This tool essentially uses the data structures and 
algorithms RAP uses, and moreover manages inductive hypotheses. This paper 
is a summary of the author's experience proving BEZ's and two further claims 
using TIP. The extended system consists of 78 rewrite rules. 
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2 Related Work' 

Among the other studies which use algebraic methods to verify code generators, 
there are to mention: J. Strother Moore's KIT project, a very ambitious formal 
verification, using the Boyer/Moore prover, of a real life compiler for an abstract 
machine. William Young proved correctness of the code generator [19]. Compared 
to the KIT project, our approach is small scale. But it offers more automation 
as our prover needs no induction hints. 

"The key to the proof (of the essential lemma for correctness of the code 
generator - A.G.) is formulating the induction such that  the inductive 
hypotheses fit together to yield a proof of the theorem for PROG2. Some 
measure of the complexity of the induction is that  the induction hint, 
given in the form of a definition in the Boyer-Moore logic, has 12 para- 
meters and is over 250 lines long." ([19], p. 510) 

The "algebraic alternative", surveyed in [16], uses homomorphism properties 
to guide the correctness proof. We do not follow this peculiar technique as we 
are interested in inductive proofs in a more general setting. 

With the RAP and T IP  tools, a number of other medium size case studies 
have been done, e.g. the formal specification of an industrial 8-bit microprocessor 
[9] (225 rewrite rules). Christian Rank formalized a code generator from a small 
functional language to a stack machine [14]. Heinrich Hut3mann [13] analyzed 
the t reatment of recursive function definitions, and attacked the problems of 
partiality and nontermination by a variant of fixed point induction. 

3 A Short View to Theory 

We assume that  the reader is familiar with the essentials of algebraic specification 
and term rewriting. For surveys see [17] and [5], respectively. We will deal with 
hierarchical systems of simply typed first-order term rewriting systems. 

A term rewriting system is a pair (Z, R) where 27 is a signature (often omit- 
ted), and R is any (usually finite) binary relation on terms. The elements of 
R are called rewrite rules, and are written l -~ r. The rewrite relation, --+R, is 
defined as the smallest relation that  contains R and is closed under instantiation 
by substitutions and under contexts. This mirrors the universal quantification 
of variables and the congruence property, respectively, of the described semantic 
equality, ++*R, the equivalence closure of -+R. A term t from which some rewrite 
step t --+R u starts, is called (R-)reducible. In this case the subterm of t which 
is replaced is called the redex. If there is a derivation s --+~ t where t is not 
reducible, then t is called a normal form of s. 

A term rewriting system R is called terminating if no infinite derivation 
tl --+R t2 -~R . . .  exists. R is called confluent if for all terms s, t, s ~-~ t 
implies s --+R+--R t. That  is, in a confluent term rewriting system, two terms are 
semantically equal only if they can be rewritten to a common descendant term. 
As it is well-known, for terminating, confluent term rewriting systems semantic 
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equality is decidable: s ~ t if and only if, R(s) = R(t), where R(s) denotes the 
unique normal form of s. Moreover, confluent rewriting systems guarantee for 
conservativity of extensions, and so (together with sufficient completeness, see 
below) for a clean hierarchy of specifications. 

3.1 I n d u c t i v e  T h e o r e m s  

Let us just recall briefly the theory of inductive proving in term rewriting. A 
term is called ground if it contains no variable. A term t is called ground reducible 
if every ground instance of t is reducible. Given a term rewriting system R, an 
equation s - t is called an inductive theorem if sa ++*R ta holds for every 
substitution a where both sa and ta  are ground. A rewrite rule s --4 t, which is 
an oriented equation, may likewise be called an inductive theorem. Let lr be a 
position of a function symbol in 1 ~. Then a critical pair of l --+ r below l' --+ r '  
at position ~ is, provided it exists, a pair of terms (c,p) if, roughly speaking, 
c +--t-+r t -+l,-~r, P is most general (up to renaming of variables) among the 
forking derivations +--l-+~ t t --+z,~, where in t t the redex position of --+l~ is at 
position ~r below the redex position of ~ l , ~ r , .  The term t in this derivation is 
called the trigger of the critical pair. 

We employ a simplified version of Theorem 1 of Hofbauer/Kutsche to prove 
by implicit induction that  a set H of claims are inductive theorems on a set R 
of axioms. The clue of the method is that  both axioms and inductive claims are 
viewed as terminating term rewriting rules. 

T h e o r e m  1 [12]. Let R and H be term rewriting systems such that 

1. R U H is terminating, 
2. the left hand side of each rule in H is ground R-reducible, 
3. every critical pair (c,p) of rules in R below rules in H satisfies 

r ---+RuH+---RUH p �9 

Then H is a set of inductive theorems. 

R may also include some previously proven lemmas. H is during the proof also 
used as the set of inductive hypotheses. Like in the Knuth /Bendix  completion 
procedure, critical pairs which do not "join" are entered as new members into 
H.  

Laurent Fribourg [8] has observed that  condition (3) may be restricted to the 
set of critical pairs at position 7r, provided that  ~r is completely superposable, i.e. 
the triggers formed by the critical pairs at ~r cover all ground instances of the 
left hand sides of H rules. If there is a completely superposable position then 
obviously (2) holds as well. 

Computing the critical pairs of R rules below H rules is nothing but per- 
forming R-narrowing steps on H equations at the left hand side. In effect each 
serves to establish a finite case analysis. We will therefore call a position 7r in 
H where a critical pair exists, a case analysis redex. Instead of "Tr is completely 
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superposable" we will rather say that  ~r offers a complete case analysis. If a case 
analysis is not complete, one of the missing cases may yield a counterexample. 

In practice, function symbols are parti t ioned into constructors and evalua- 
tors. An evaluator symbol f is called completely defined if every term of the 
form f ( c l , . . .  , cn) where each ci is a ground constructor term, is reducible. This 
property can be checked statically. If every evaluator is completely defined and 
no constructor term is reducible then innermost case analysis redexes are al- 
ways completely superposable. Otherwise, we have to check on the spot that  the 
respective case analysis is complete. 

Typing takes care for the notion of a correctly typed term. One may com- 
monly ignore typing information. However we wish to stress that  ground redu- 
cibility and complete definedness mark an important  exception. Obviously one 
would like to prove x + y = y + x for all ground terms x, y of type Nat, but  
not for ground terms of other sorts, as e.g. Stack.  In view of this, ground re- 
ducibility should not require empty + push(0, empty) to be reducible. For space 
reasons we do not develop theory for this question; we only take care that  we 
get reducibility of correctly typed ground terms, which we feel should work. A 
point in favour of our conjecture is that  complete definedness for correctly typed 
ground terms, together with termination, entails sufficient completeness. 

3.2 Comparisons and Bi-rewriting 

It is the common policy of the algebraic specification community to express every 
predicate other than equality by a Boolean valued function. While this encoding 
keeps the approach simple, it turns out very ineffective for the case of transitive 
binary relations. The basic idea behind the "bi-rewriting" approach of Jorge 
Levy and Jaume Agustf [15] is now to treat  orders analogous to equality. Leo 
Bachmair and Harald Ganzinger extended it to the case of clausal reasoning [2]. 

An order < is axiomatized by two sets, L and R, of term rewriting rules. The 
first, L, defines rewrite steps s -+L t, such that  s < t holds. R, dually, defines 
rewrite steps s --+R t such that  s > t holds. Here we abuse notation: There may 
be function symbols in the signature which are interpreted as non-monotonic 
functions. Hence ---+L and --~R need not be closed under contexts, and so are no 
proper rewrite relations. We define -}L and -~R to be the closure of L and R, 
respectively, under substitution (only). Rewrite steps thus may only be applied 
at the top of a term. To take into account equality, a congruence, we consider 
a third rewrite system, S, where -+s denotes the closure under contexts and 
substitution of S, as usual. So ~ : d e f  ("+L [--J ~"-R [-J ~ S ) * -  

In practice a formal comparison of two terms, s and t, proceeds as follows. 
Term s is rewritten using L and S rules, and t is rewritten using R and S rules, 
to a common term. The name L is chosen to indicate that  L rules may be applied 
only at the left hand side of a goal s _< t. This rewriting process terminates if 
--+L U ~ R  tJ --+s is wellfounded. 

This leads to a straightforward extension of theorem 1 towards comparisons. 
To this end, let the set of axioms and the set of claims each be parti t ioned into 
three subsets, indexed by L, R, and S, respectively. 
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T h e o r e m  2 Bi - rewr i t ing  induct ion.  Let AL, AR, As,  HL, HR, and Hs be 
term rewriting systems, and let L : d e f  AL U HL, R : c l e f  AR U HR, S : c l e f  

As U Hs.  Suppose that 

1. -eL U -e R U -e s is wellfounded, 
2. the left hand side of each rule in HL U HR U Hs is ground As-reducible, 
3. every critical pair (c,p) of rules in As  below rules in Hs satisfies 

c -es+-s p , 

4. every critical pair (e,p) of rules in As  below rules in HL, and every critical 
pair (p, c) of rules in As  below rules in HR satisfies 

e ( -es  u p , 

Then Hs is a set of inductive theorems, and sa (++s U -eL U +--R)* ta holds for 
all s -e t in L and all t --+ s in R, and for all substitutions a where both sa and 
ta are ground. 

We omit the proof. 

4 T h e  S p e c i f i c a t i o n  

Now let us speak shortly about the specification of the code generator and the 
partial evaluator. We follow closely the specification given by BEZ [3]. Like- 
wise, 'we use the input language of the specification tools RAP and TIP [6]. For 
the complete specification text cf. the workshop version [10]. An ASCII file is 
available, too; see Section 5 for details. 

4.1 The  Compi le r  

Assume given a small programming language for arithmetic expressions, by the 
following context free grammar. 

Op ::= "+" I " - "  I "*" Expr ::= Nat I Id  ] Expr Op Expr 

Here Naz and Id denote the set of natural numbers and of identifiers, respectively. 
With specifications given for numbers (NAT) and identifiers (ID), this grammar 
is easily translated into the a specification module EXPRESSION of arithmetic 
expressions. 

Next one specifies an abstract data type module ENVIRONMENT for environ- 
ments, i.e. finite mappings from identifiers to numbers. This gives one the means 
to speak about source semantics, specified formally in the module SSEMANTICS. 
The semantic mapping is specified as a function func s sera: (Env,Expr)Nat, 
by induction on the structure of arithmetic expressions. We take for granted 
that NAT contains definitions for the standard operations + (add), - (sub), and 
�9 (mu].t). 
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Module INSTRUCTION enumerates the set of instructions to the stack machine. 
There are instructions to push a number (NSTORE (n)) or to push the value of an 
identifier (ISTORE(i)), and one per arithmetic operator (ADD, SUB, MUL), where 
e.g. ADD replaces the two topmost values on the stack by their sum value. 

Stack machine programs, i.e. sequences of instructions, are modelled in mo- 
dule SEQUINSTRUCTION. The module defines constructor functions empty for the 
empty sequence, p r e f i x  for addition of an element to the left, and some evalua- 
for functions, e.g. conc for concatenation. To BEZ's version, we add a function 
l eng th ,  to be able to express length decrease in THM4 below, and functions 
bottom, upper,  to obtain the last element of a sequence, and the rest of the 
sequence, respectively. The latter will be useful at the specification of the partial 
evaluator. 

Then the target semantics TSEMANTICS, i.e. the stack machine interpreter, 
is modelled, based on a straightforward specification of stacks of natural num- 
bers. The target semantics is given by a function tsem: (Env, S e q u l n s t r )  
Nat, specified using an auxiliary function t s  : ( E n v , S e q u l n s t r , S t a c k )  S tack  
by structural induction on the syntax of the target program. 

The compiler module COMPILER introduces a function symbol compile : (Expr) 
S e q u I n s t r  by induction on the structure of expressions. 

Correctness of the compiler means that  under any environment e, the target 
semantics applied to the compiled source program a yields the same value as the 
source semantics does. Our correctness claim reads as follows. 1 

(THMI) tsem(e, compile(a)) - - - -  ssem(e, a) . 

In subsection 5.1 we report  on our TIP  proof session for THM1. 

4.2 T h e  P a r t i a l  E v a l u a t o r  

There is a straightforward idea to partially evaluate target programs. Every 
pat tern of the form 

prefix(NSTORE(m), prefix(NSTORE(n), prefix(ADD, s))) 

may be rewritten to the shorter form p r e f i x ( a d d ( m ,  n ) ,  s) ,  and likewise for 
SUB and MUL =. Let pev:  ( S e q u I n s t r )  S e q u I n s t r  be the function that  itera- 
tively replaces every occurrence of a pat tern by its contractum. As BEZ mention, 
there is an obvious first order specification for pev, viz. 

(1) 
V i, s : Sequlnstr, m,n : Nat. 

pev(conc(l, prefix(NSTORE(m), prefix(NSTORE(n), prefix(ADD, s))))) = 

pev(conc(l, pref ix(NSTORE(add(m, n)), s))) 

i In order to save space, and to drop information which is redundant for the reader, 
we will not use full TIP syntax, but a more compact representation. 
In their final version, BEZ dropped optimization of SUB and MUL patterns. We stay 
with their report version. 
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for ADD, and likewise for SUB and MUL, together with 

(2) V t: SequInstr. OPTIMAL(t) ~ pev(t) = t 

where OPTIMAL is a predicate on SequInstr defined by 

OPTIMAL(t) r 

(73 l, s : SequInstr, m,n : Nat 

t = conc(1, prefix(NSTORE(m), prefix(NSTORE(n), prefix(ADD, s)))) V 

t = conc(1, pref ix(NSTORE(m), prefix(NSTORE(n), prefix(SUB, s)))) V 

t ---- conc(1, prefix(NSTORE(m), prefix(NSTORE(n), prefix(MUL, s)))) ) 

Remark. Indeed pe r  is specified uniquely this way. This is proven by induction 
on the length of t .  As a lemma, one needs to prove that  contraction of an 
optimizable pat tern does not destroy any other optimizable pattern.  

In spite of the problem of expressiveness, we wish to stay reasoning within the 
framework of equations and rewriting. Our plan is as follows. We adopt BEZ's 
"algorithmic specification" of pev, given as a term rewriting system in module 
PARTEVAL. Then we prove by that  pev satisfies certain equational properties 
derived from (1) and (2). 

pev is based on an auxiliary function, pv. Given a split (1, s) of the target 
program, pv scans for an occurrence of a pat tern at the start  of the right half, 
s. One may distinguish whether the sequence s is too short to have a pattern,  
or whether it begins with a proper part  of the pat tern but does not continue 
accordingly, or whether s indeed begins with the pattern.  In the latter case, after 
contraction of the pattern,  one must be aware of a new pat tern that  is formed 
using the rightmost instruction of the left half, 1. 

In [3] the latter axioms have a form that  is not satisfactory. 

pv (post f ix (I, x), pref ix (NSTOKE (m) , pref ix (NSTDRE (n) , pref ix (ADD, s) ) ) ) 
-> pv (i, prefix (x, prefix (NSTORE (add (m, n) ) , s) ) ) 

Their left hand sides violate the constructor discipline: postfix(l,x) should 
be a constructor term, but postfix is not a constructor. Even worse, conflu- 
ence does not hold. To fix this, we add access functions bottom and upper to 
SEQUINSTRUCTION. Then we replace postfix(l, x) by prefix (x', i' ) on the left 
hand side, and I by upper (pref ix (i', x' ) ) and x by bottom (pref ix (i ', x ' ) ), 
respectively, on the right hand side. Thus we get: 

pv (pref ix (x', i' ), prefix (NSTORE (m), prefix (NSTORE (n), prefix (ADD, s) ) ) ) 
-> pv(upper(prefix(x' ,I')) , 

pref ix (bottom (prefix (x ', 1 ' ) ), prefix (NSTOKE (add (m, n) ) , s) ) ) 

Interesting to note, the new rev~rite system is still terminating, although a se- 
mantic path order is necessary to prove it. 

A basic theorem says that the partial evaluator preserves the semantics of a 
target program. The proof session for this theorem is reported in subsection 5.2. 

(THM2) teem(e, per(s)) = teem(e, s) 
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4.3  M o r e  a b o u t  t h e  P a r t i a l  E v a l u a t o r  

If PARTEVAL satisfies (1) and (2), then it satisfies THM2 as an inductive conse- 
quence. But THM2 does not imply (1) and (2). It is therefore advisable to prove 
further properties to increase confidence. We will prove that  pe r  yields optimal 
instruction sequences, and decreases the length of an instruction sequence. 

First we introduce a specification OPTIMALITY for a Boolean valued func- 
tion op t ima l :  ( S e q u I n s t r )  Bool, whose purpose is to internalize the predicate 
OPTIMAL. 

(3) Vt : SequInstr. optimal(t) -- true -~ > 0PTIMAL(t) 

To define optimal by a term rewriting system we borrow the recursive structure 
from function pv. We should be able to prove the following claim, a consequence 
of (1), (2), and (3). The proof session is reported in subsection 5.3. 

(THM3) optimal(per(s)) = true 

Still it may be the case that  optimal is not the wanted optimality predicate 
- -  it might be constantly t r u e ,  for instance. There is a way to achieve sure 
knowledge. Show that  op t ima l  (s)  does not rewrite to t r u e  for any s that  con- 
tains an optimizable pattern. We cannot prove a negation by rewriting, but we 
can prove that  o p t i m a l ( s )  yields f a l s e  in that  case. For the proof session see 
subsection 5.4. 

(OPT) 
opt imal(conc(t, pref ix(NSTORE(m), pref ix(NSTORE(n), prefix(ADD~ s))))) 

= false 

In order to derive a disequality, we employ confluence. Our rewriting system 
is confluent; and by confiuence, a term cannot have two distinct normal forms, 
true and false. So we get 

(4) V t : SequInstr. optimal(t) = true = 0PTIMAL(t) , 

which is not yet the characterization (3) that we wanted but sumcient, together 
with theorem THM3, to imply 

V t : SequInstr. 0PTIMAL(pev(t)) . 

Even a function pev that  satisfies both THM2 and THM3, may fail to satisfy 
(2), for it may change an optimal instruction sequence to another optimal one. 
Such a function may even increase the code size as follows. 

pev (prefix (ISTORE (i), prefix (NSTORE (3), prefix (MUL, emptysequ) ) ) ) = 
prefix (ISTORE(i) ,prefix (ISTORE(i) ,prefix (ISTOKE(i), 

prefix (ADD ,prefix (ADD, emptysequ) ) ) ) ) 

Regarding this it is interesting to learn that our partial evaluator does not 
increase code lengths. We report on our experience in subsection 5.5. 

(THM4) length(pay(s)) ___ length(s) 



613 

5 Proof  Sessions 

We used TIP with a peculiar choice of settings. Basically we orient every hy- 
pothesis and every lemma from left to right, just as the rewrite rules of the 
specification. We take care in each case that  this orientation preserves termi- 
nation of the induced rewriting relation. As a consequence, rewriting induction 
may correctly be applied, i.e. application of an inductive hypothesis needs not 
to be justified explicitly. 

As steps are performed in a terminating way, we may drop some amount 
of user control. We have achieved good results switching the default "debug" 
mode off, but switching "interactive" mode on. In effect the user is only asked 
to select one of the offered case analysis redexes. Experience has shown that  
the success of a proof at tempt strongly depends on the chosen redex position. 
Although the default innermost redex is most convenient, proof at tempts using 
innermost redexes exclusively may fail; see lemma CRIT in section 5.2. Usually 
we succeeded when we chose the outermost redex provided that  upon inspection 
the case analysis offered was complete. 

The reader is encouraged to redo the sessions. The TIP system and the 
source text of this case study are available via anonymous FTP from server 
f o r w i s s ,  u n i - p a s s a u ,  de in directory p u b / l o c a l / t i p .  Put  in your home direc- 
tory a copy of the settings file t i p r c ,  rewind and rename it to . t i p r c ,  to have 
TIP do rewriting induction by default. To start TIP,  enter the command t i p  
comp. t i p .  After the start, the input file comp. t ip  containing the specification 
text together with the inductive claims is read, and a check is made for termi- 
nation and constructor totality. 

Below we report how each proof is done in practice. We put stress on the way 
one is guided to the proof. For an overview of the dependence relation among 
the lemmas consult figure 1. 

LEMMAi CRIT 

LEMMA2 LEMMA3 

1 
THM 1 THM2 

PVIISTORE 

PV3ISTDRE 

PV3 

11 
THM3 

CONC GT 

\ /  
LEMMA5 

1 
OPT THM4 

Fig.  1. The Proof Hierarchy 
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5 .1  T H M 1  

Having star ted TIP ,  we enter the proof session by typing p r o v e  THM1, then go 
to switch off the "debug" mode. The T I P  system offers a case analysis redex, 

? POSSIBLE INDUCTION REDEX: 

top(ts(Xl,compile(X2),emptystack)) = ssem(Xl,X2) , 

which is acceptable S. The next offer shows tha t  the proof is likely not to work. 

? POSSIBLE INDUCTION REDEX: 

top(ts(Xl,conc(conc(compile(XS),compile(X6)),prefix(ADD,emptysequ)), 
emptystack)) 

= add(ssem(Xl,X5),ssem(Xl,X6)) 

We find ourselves faced with an equation where two conc symbols prevent the 
inductive hypothesis from application. As soon as we t ry  to continue the proof 
a t tempt ,  even more cone symbols appear.  We bet ter  find some lemma to get rid 
of the conc symbols. Now it is human intuition to find out tha t  the execution 
of a concatenated sequence of instruction leads to the same state  as subsequent 
execution of the parts.  

(LEMMAI) t s ( e ,  conc(s,  t ) ,  k) ---- t s ( e , t , t s ( e ,  s ,k) )  

T I P  can prove LEMMA1 automatically. On demand it writes a proof documenta-  
tion which is boring but fairly readable. 

When we t ry  to prove THM1, this t ime assuming LEMMA14, we are faced with 
a new problem. 

? POSSIBLE INDUCTION KEDEX: 

add(top(pop(ts(Xl,compile(X6),ts(Xl,compile(XS),emptystack)))), 
top(ts(Xl,compile(X6),ts(Xl,compile(X5),emptystack)))) 

= add(ssem(Xl,X5),ssem(Xl,XS)) 

The inner t s  t e rm does not fit to the inductive hypothesis as the symbol t o p  is 
missing. The outer t s  te rm does not fit as its last argument  is not emp tys t ack .  
So let us generalize the claim in two ways: Drop the context, top ,  and replace 
the subterm, emp tys t ack ,  by a variable. It  leads to the following lemma. 

(LEMMA2) ts(e, compile(a), k) = append(ssem(e, a), k) 

It  is now straightforward to prove THMI by LEMMA2, and to prove LEMMA2 by 
LEMMA1. 

3 TIP uses internal variable names of the form Xl, X2, etc. 
4 In TIP, start a new session and type enter  lemma /assumed LEMMA1 . 



615 

5.2 T H M 2  

Trying to prove claim THM2 without any lemma is soon recognized hopeless. The 
left hand side, 1, of pv(1,  s) must be generalized. The necessary lemma, 

teem(e, pv(1, s)) = tsem(e, conc(1, s)) , 

is slightly more special than BEZ's 

(LEMMA3) t s ( e ,  pv(1, s), k) ---- t s (e ,  s, t s (e ,  1, k)) 

But the proofs are essentially the same. So we will stay with LEMMA3. A proof 
at tempt for LEMMA3 unveils at once that  LEMMA1 is needed. With LEMMA1 assumed, 
we arrive at 

? POSSIBLE INDUCTION KEDEX: 

ts (Xl,prefix (bottom (prefix (X52,X53)) ,prefix(NSTORE(add(X54,X55) ) ,X56)), 
ts (Xl, upper (prefix (X52, X58) ), X4) ) 

= ts(XI,X56,append(add(X54,X55) ,ts(Xl,prefix(X52,X53) ,X4))) , 

which shows us that the prover cannot deal appropriately with the theory of 
bottom and upper. One would like to try with the equality 

(CUB) conc(upper(prefix(x, s)), prefix(bottom(prefix(x, s)), t)) = 

prefix(x, conc(s, t)) , 

which expresses in a general way that  conc is left-inverse to (upper, bottom), 
which split a nonempty sequence. Using CUB in the proof of LEMMA3, however, 
produces no recognizable effect. The reason is that  the symbol conc of the left 
hand side is unlikely to appear thanks to the presence of LEMMA1 which we 
introduced for the purpose to get rid of conc symbols. To have CUB working, one 
has to take the effect of LEMMA1 into account, i.e. one has to compute the critical 
pair between LEMMA1 and CUB. This yields the following lemma. 

(CRIT) 
t s ( e ,  prefix(bottom(prefix(x, 1)), s), t s (e ,  upper(prefix(x, 1)), k)) = 

t s ( e ,  s, t s ( e ,  prefix(x, 1), k)) 

There are two ways to prove CRIT, either as an immediate consequence of CUB 
and LEMMA1, or without CUB. We find the latter technically more suggestive. For 
the proof session, we only remark that  the first offer for an inductive redex, 

ts (Xl, prefix (bottom (prefix (X8, xg) ), X4), 
ts (XI, prefix (X2, upper (prefix (X8, Xg) ) ) , X5) ) 

= ts(Xl,X4,ts(Xl,prefix(X2,prefix(X8,Xg)) ,X5)) , 

should be rejected. A good reason to do so is the fact that an occurrence of 
symbol p r e f i x  in the second line prevents the inductive hypothesis from being 
applied, a fact that  is not changed when one accepts this offer. CRIT is a witness 
that  the leftmost-innermost redex selection strategy may fail. 
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5.3 T H M 3  

Unlike previous claims, THM3 is not straightforward to generalize by one propo- 
sition. For example, the conjecture that  pv turns an optimal left argument into 
an optimal result, is wrong. 

(THM3A) optimal(pv(1, s)) = optimal(l) 

The TIP prover, running in "debug mode", finds a counterexample for it. In a 
nutshell, the intermediate claim 

optimal(conc(l,prefix(ADD,emptysequ))) = optimal(l) 

turns out not to hold for the case 

i = prefix(NSTORE(m),prefix(NSTORE(n),emptysequ)) 

The optimal instruction sequence 1 is supplemented to an instruction sequence 
which is not optimal, such that pv does not take action for it. 

The suggestion we finally followed is guided by syntactic considerations. The 
trial to prove THM3 leads to an infinite sequence of claims whose left hand sides 
follow the pattern 

optimal (pv (prefix (ISTORE (i), i), r) . 

We know that any prefix of the form ISTORE (i) of the left argument of pv cannot 
be part of an optimizable pattern. In other words, ISTORE(i) may as well be 
stripped. Indeed it is routine to prove the following lemma. 

(PVIISTDRE) optimal(pv(prefix(ISTORE(i) ,  1), r)) ---- optimal(pv(1,  r)) 

After trying with this lemma, we learn that another pattern occurs, 

optimal(pv(prefix(ADD,l),r) . 

Again we prove a lemma, PVIADD, to express that  the first instruction may be 
stripped. 

Repeating this procedure, one can construct a finite set of lemmas PV 11STORE, 
PVIADD~ PVISUB, PVIMUL, PV2ISTORE, PV2ADD, PV2SUB, PV2MUL, PV3ISTORE, PV3 
(three NSTORE instructions at the beginning). Each of these lemmas can be proven 
for itself, and together they allow to prove THM3. The lemmas mirror the case 
analysis structure of optimal. 

5.4 O P T  

The optimality proof is comparatively easy. Basically, one should prefer to choose 
the case analysis redex at the symbol optimal, provided that this yields a com- 
plete case analysis. This holds whenever at least three prefix symbols appear 
at the top of the argument of optimal. 
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5.5 T H M 4  

Here the main problem is the adequate t rea tment  of the <_ relation on natural  
numbers.  First let us demonstra te  tha t  the naive modelling by a Boolean valued 
function l e  is not satisfying. 

Given a rewriting system for l e  on the naturals,  let us a t t empt  to prove the 
following claim. 

(THM4A) le(length(pev(s)), length(s)) ---- true 

During a proof session for THM4A soon problems emerge like those experienced 
for THM3. I t  is natural  to t ry  the same methods to solve them. One may prove 
lemma LEIISTORE for instance. 

(LEIISTORE) 
length(pv(prefix(ISr0RE(i), i), s)) = succ(length(pv(l, s))) 

There is, however, no such lemma for the case 

length (pv (pref ix (NSTORE (m), pref ix (NSTORE (n), pref ix (NSTORE (p), i) ), s) ) 

as one cannot predict uniformly how many of the NSTORE symbols pv will remove. 
This leaves to say only that the length decreases when the first NSTORE symbol 
is stripped from the instruction sequence. At the following claim, one may ex- 
perience why any proof attempt, even supported by all lemmas LEIISTORE, ..., 
LE31STORE, must fail. 

(LEN) le(length(pv(emptysequ, pref ix(NSr0Rm(m), s))), 

succ(length(pv(emptysequ, s)))) -- true 

The offer for a case analysis redex 

? POSSIBLE INDUCTION REDEX: 

le (length (pv (empt ysequ, pref ix (NSTORE (add (XI, X60) ), X6 i) ) ), 
succ (succ (succ (length(pv(emptysequ,X61)) ) ) ) ) -- true 

indicates that two succ symbols prevent TIP from applying the inductive hy- 
pothesis. Only an application of the transitivity law for le is necessary to close 
the gap. Transitivity of binary Boolean functions however is not supported by 
rewriting. 5 

As < is a transit ive relation, we may also t ry  
rem 2). All rewrite rules t reated so far concern the 
collected in the set As.  It  is easy to see tha t  the 
only rule s u c c ( x )  --+ x and l e n g t h ( p e v ( s ) )  --+ 
other sets are empty. 

bi-rewriting induction (theo- 
semantic equality, and so are 
sets AR and HL contain the 
l e n g t h ( s ) ,  respectively. All 

To simulate bi-rewriting in TIP ,  we add a new rewrite rule for each compa- 
rison as if the comparison symbol were the equality symbol. To supervise tha t  
L and R rules and hypotheses are applied correctly, we introduce each rule as a 
lemma, and we switch T I P  to 

It can be expressed as a conditional rewriting rule, but conditional rewriting is far 
less automatable at the moment. 
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set param hypothesis_usage interlr 
set param lemma_usage interlr 

having the effect that before every application of an inductive hypothesis or 
lemma, the user is asked whether the intended step should take place. 

On these grounds, the axiom for ">" is encoded as an unproven lemma GT, 
succ (x) = x. Likewise the inductive claim THM4 is encoded as length(pev (s)) 
= length(s). With that we can prove THM4 using the encoding of the following 
obvious LEMMA5 (in L), 

(LEMMA5) length(pv(l, s)) _< length(conc(l, s)) . 

In the same way, we achieved a proof of LEMMA5 by GT where we use the equational 
lemma (in S) 

(CONC) length(conc(s, t)) = add(length(s), length(t)) . 

6 Conclusion 

We revisited Berghammer, Ehler, and Zierer's study [3] on automated inductive 
reasoning. Our inductive prover, TIP ,  set for term rewriting induction, yields 
complete proofs with a degree of automation of typically > 98%, which is the 
number of internal steps divided by the total number of steps. 

We extended the case study to show how a negative proposition, and how a 
comparison can be attacked by rewriting induction. 
A c k n o w l e d g e m e n t s .  Thanks to Rudi Berghammer and Bett ina Buth for gi- 
ving me the opportunity to present my work in Kiel. I am grateful to Gerald 
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