
Mechanized inductive proof
of properties of a simple code optimizer

Alfons GESER

Universit~t Passau, Lehrstuhl fiir Programmiersysteme, D-94030 Passau
Phone: +49 851 509 353, E-mail: geser�9

Abstract. We demonstrate how mechanical proofs of properties of a
simple code generator and a partial evaluator can be done by term re-
writing induction. We yield proofs that the code generator is correct and
that the partial evaluator produces equivalent, optimal, shorter code.
We treat a case of disequations and show how comparisons can be done
adequately.

1 I n t r o d u c t i o n

Although much effort has been devoted to automation of inductive reasoning,
only a few trivial theorems can be proven fully automatically. It appears difficult
enough to improve effectiveness and to increase the degree of automation of
mechanical inductive proving for a strongly restricted domain of application. We
restrict ourselves to claims and axioms that are universally quantified equations
which can be directed so that they form a term rewriting system. We perform
proofs by "implicit induction" [1]. We feed the prover a few lemmas, the way
people use e.g. the Boyer/Moore theorem prover [4] very successfully.

The case study we are reporting, is a continuation of work that began in 1987.
Rudolf Berghammer, Herbert Ehler, and Hans Zierer (BEZ, for short) gave an
algebraic specification, using 59 term rewriting rules, of a code generator and
partial evaluator for arithmetic expressions [3]. They proved correctness of the
code generator and of the partial evaluator. They encoded parts of the proof
such that they could employ RAP [11], a rapid prototyping tool for algebraic
specifications. RAP uses a narrowing procedure to perform case analysis, and
simplifies intermediate goals by rewriting. As it is not an inductive prover, in-
ductive hypotheses had to be encoded as additional axioms, with the inductive
variables as Skolem constants. As a further consequence, case analyses had to
be provided explicitly by the user. In spite of these shortcomings, the case study
was an obvious success as it illustrated a successful formal proof plan.

This encouraged Heinrich Hui~mann, Ulrich Fraus, and the author to develop
an inductive prover, TIP [7]. This tool essentially uses the data structures and
algorithms RAP uses, and moreover manages inductive hypotheses. This paper
is a summary of the author's experience proving BEZ's and two further claims
using TIP. The extended system consists of 78 rewrite rules.

606

2 Related Work'

Among the other studies which use algebraic methods to verify code generators,
there are to mention: J. Strother Moore's KIT project, a very ambitious formal
verification, using the Boyer/Moore prover, of a real life compiler for an abstract
machine. William Young proved correctness of the code generator [19]. Compared
to the KIT project, our approach is small scale. But it offers more automation
as our prover needs no induction hints.

"The key to the proof (of the essential lemma for correctness of the code
generator - A.G.) is formulating the induction such that the inductive
hypotheses fit together to yield a proof of the theorem for PROG2. Some
measure of the complexity of the induction is that the induction hint,
given in the form of a definition in the Boyer-Moore logic, has 12 para-
meters and is over 250 lines long." ([19], p. 510)

The "algebraic alternative", surveyed in [16], uses homomorphism properties
to guide the correctness proof. We do not follow this peculiar technique as we
are interested in inductive proofs in a more general setting.

With the RAP and T IP tools, a number of other medium size case studies
have been done, e.g. the formal specification of an industrial 8-bit microprocessor
[9] (225 rewrite rules). Christian Rank formalized a code generator from a small
functional language to a stack machine [14]. Heinrich Hut3mann [13] analyzed
the t reatment of recursive function definitions, and attacked the problems of
partiality and nontermination by a variant of fixed point induction.

3 A Short View to Theory

We assume that the reader is familiar with the essentials of algebraic specification
and term rewriting. For surveys see [17] and [5], respectively. We will deal with
hierarchical systems of simply typed first-order term rewriting systems.

A term rewriting system is a pair (Z, R) where 27 is a signature (often omit-
ted), and R is any (usually finite) binary relation on terms. The elements of
R are called rewrite rules, and are written l -~ r. The rewrite relation, --+R, is
defined as the smallest relation that contains R and is closed under instantiation
by substitutions and under contexts. This mirrors the universal quantification
of variables and the congruence property, respectively, of the described semantic
equality, ++*R, the equivalence closure of -+R. A term t from which some rewrite
step t --+R u starts, is called (R-)reducible. In this case the subterm of t which
is replaced is called the redex. If there is a derivation s --+~ t where t is not
reducible, then t is called a normal form of s.

A term rewriting system R is called terminating if no infinite derivation
tl --+R t2 -~R . . . exists. R is called confluent if for all terms s, t, s ~-~ t
implies s --+R+--R t. That is, in a confluent term rewriting system, two terms are
semantically equal only if they can be rewritten to a common descendant term.
As it is well-known, for terminating, confluent term rewriting systems semantic

607

equality is decidable: s ~ t if and only if, R(s) = R(t), where R(s) denotes the
unique normal form of s. Moreover, confluent rewriting systems guarantee for
conservativity of extensions, and so (together with sufficient completeness, see
below) for a clean hierarchy of specifications.

3.1 I n d u c t i v e T h e o r e m s

Let us just recall briefly the theory of inductive proving in term rewriting. A
term is called ground if it contains no variable. A term t is called ground reducible
if every ground instance of t is reducible. Given a term rewriting system R, an
equation s - t is called an inductive theorem if sa ++*R ta holds for every
substitution a where both sa and ta are ground. A rewrite rule s --4 t, which is
an oriented equation, may likewise be called an inductive theorem. Let lr be a
position of a function symbol in 1 ~. Then a critical pair of l --+ r below l' --+ r '
at position ~ is, provided it exists, a pair of terms (c,p) if, roughly speaking,
c +--t-+r t -+l,-~r, P is most general (up to renaming of variables) among the
forking derivations +--l-+~ t t --+z,~, where in t t the redex position of --+l~ is at
position ~r below the redex position of ~ l , ~ r , . The term t in this derivation is
called the trigger of the critical pair.

We employ a simplified version of Theorem 1 of Hofbauer/Kutsche to prove
by implicit induction that a set H of claims are inductive theorems on a set R
of axioms. The clue of the method is that both axioms and inductive claims are
viewed as terminating term rewriting rules.

T h e o r e m 1 [12]. Let R and H be term rewriting systems such that

1. R U H is terminating,
2. the left hand side of each rule in H is ground R-reducible,
3. every critical pair (c,p) of rules in R below rules in H satisfies

r ---+RuH+---RUH p �9

Then H is a set of inductive theorems.

R may also include some previously proven lemmas. H is during the proof also
used as the set of inductive hypotheses. Like in the Knuth /Bendix completion
procedure, critical pairs which do not "join" are entered as new members into
H.

Laurent Fribourg [8] has observed that condition (3) may be restricted to the
set of critical pairs at position 7r, provided that ~r is completely superposable, i.e.
the triggers formed by the critical pairs at ~r cover all ground instances of the
left hand sides of H rules. If there is a completely superposable position then
obviously (2) holds as well.

Computing the critical pairs of R rules below H rules is nothing but per-
forming R-narrowing steps on H equations at the left hand side. In effect each
serves to establish a finite case analysis. We will therefore call a position 7r in
H where a critical pair exists, a case analysis redex. Instead of "Tr is completely

608

superposable" we will rather say that ~r offers a complete case analysis. If a case
analysis is not complete, one of the missing cases may yield a counterexample.

In practice, function symbols are parti t ioned into constructors and evalua-
tors. An evaluator symbol f is called completely defined if every term of the
form f (c l , . . . , cn) where each ci is a ground constructor term, is reducible. This
property can be checked statically. If every evaluator is completely defined and
no constructor term is reducible then innermost case analysis redexes are al-
ways completely superposable. Otherwise, we have to check on the spot that the
respective case analysis is complete.

Typing takes care for the notion of a correctly typed term. One may com-
monly ignore typing information. However we wish to stress that ground redu-
cibility and complete definedness mark an important exception. Obviously one
would like to prove x + y = y + x for all ground terms x, y of type Nat, but
not for ground terms of other sorts, as e.g. Stack. In view of this, ground re-
ducibility should not require empty + push(0, empty) to be reducible. For space
reasons we do not develop theory for this question; we only take care that we
get reducibility of correctly typed ground terms, which we feel should work. A
point in favour of our conjecture is that complete definedness for correctly typed
ground terms, together with termination, entails sufficient completeness.

3.2 Comparisons and Bi-rewriting

It is the common policy of the algebraic specification community to express every
predicate other than equality by a Boolean valued function. While this encoding
keeps the approach simple, it turns out very ineffective for the case of transitive
binary relations. The basic idea behind the "bi-rewriting" approach of Jorge
Levy and Jaume Agustf [15] is now to treat orders analogous to equality. Leo
Bachmair and Harald Ganzinger extended it to the case of clausal reasoning [2].

An order < is axiomatized by two sets, L and R, of term rewriting rules. The
first, L, defines rewrite steps s -+L t, such that s < t holds. R, dually, defines
rewrite steps s --+R t such that s > t holds. Here we abuse notation: There may
be function symbols in the signature which are interpreted as non-monotonic
functions. Hence ---+L and --~R need not be closed under contexts, and so are no
proper rewrite relations. We define -}L and -~R to be the closure of L and R,
respectively, under substitution (only). Rewrite steps thus may only be applied
at the top of a term. To take into account equality, a congruence, we consider
a third rewrite system, S, where -+s denotes the closure under contexts and
substitution of S, as usual. So ~ : d e f ("+L [--J ~"-R [-J ~ S) * -

In practice a formal comparison of two terms, s and t, proceeds as follows.
Term s is rewritten using L and S rules, and t is rewritten using R and S rules,
to a common term. The name L is chosen to indicate that L rules may be applied
only at the left hand side of a goal s _< t. This rewriting process terminates if
--+L U ~ R tJ --+s is wellfounded.

This leads to a straightforward extension of theorem 1 towards comparisons.
To this end, let the set of axioms and the set of claims each be parti t ioned into
three subsets, indexed by L, R, and S, respectively.

609

T h e o r e m 2 Bi - rewr i t ing induct ion. Let AL, AR, As, HL, HR, and Hs be
term rewriting systems, and let L : d e f AL U HL, R : c l e f AR U HR, S : c l e f

As U Hs. Suppose that

1. -eL U -e R U -e s is wellfounded,
2. the left hand side of each rule in HL U HR U Hs is ground As-reducible,
3. every critical pair (c,p) of rules in As below rules in Hs satisfies

c -es+-s p ,

4. every critical pair (e,p) of rules in As below rules in HL, and every critical
pair (p, c) of rules in As below rules in HR satisfies

e (-es u p ,

Then Hs is a set of inductive theorems, and sa (++s U -eL U +--R)* ta holds for
all s -e t in L and all t --+ s in R, and for all substitutions a where both sa and
ta are ground.

We omit the proof.

4 T h e S p e c i f i c a t i o n

Now let us speak shortly about the specification of the code generator and the
partial evaluator. We follow closely the specification given by BEZ [3]. Like-
wise, 'we use the input language of the specification tools RAP and TIP [6]. For
the complete specification text cf. the workshop version [10]. An ASCII file is
available, too; see Section 5 for details.

4.1 The Compi le r

Assume given a small programming language for arithmetic expressions, by the
following context free grammar.

Op ::= "+" I " - " I "*" Expr ::= Nat I Id] Expr Op Expr

Here Naz and Id denote the set of natural numbers and of identifiers, respectively.
With specifications given for numbers (NAT) and identifiers (ID), this grammar
is easily translated into the a specification module EXPRESSION of arithmetic
expressions.

Next one specifies an abstract data type module ENVIRONMENT for environ-
ments, i.e. finite mappings from identifiers to numbers. This gives one the means
to speak about source semantics, specified formally in the module SSEMANTICS.
The semantic mapping is specified as a function func s sera: (Env,Expr)Nat,
by induction on the structure of arithmetic expressions. We take for granted
that NAT contains definitions for the standard operations + (add), - (sub), and
�9 (mu].t).

610

Module INSTRUCTION enumerates the set of instructions to the stack machine.
There are instructions to push a number (NSTORE (n)) or to push the value of an
identifier (ISTORE(i)), and one per arithmetic operator (ADD, SUB, MUL), where
e.g. ADD replaces the two topmost values on the stack by their sum value.

Stack machine programs, i.e. sequences of instructions, are modelled in mo-
dule SEQUINSTRUCTION. The module defines constructor functions empty for the
empty sequence, p r e f i x for addition of an element to the left, and some evalua-
for functions, e.g. conc for concatenation. To BEZ's version, we add a function
l eng th , to be able to express length decrease in THM4 below, and functions
bottom, upper, to obtain the last element of a sequence, and the rest of the
sequence, respectively. The latter will be useful at the specification of the partial
evaluator.

Then the target semantics TSEMANTICS, i.e. the stack machine interpreter,
is modelled, based on a straightforward specification of stacks of natural num-
bers. The target semantics is given by a function tsem: (Env, S e q u l n s t r)
Nat, specified using an auxiliary function t s : (E n v , S e q u l n s t r , S t a c k) S tack
by structural induction on the syntax of the target program.

The compiler module COMPILER introduces a function symbol compile : (Expr)
S e q u I n s t r by induction on the structure of expressions.

Correctness of the compiler means that under any environment e, the target
semantics applied to the compiled source program a yields the same value as the
source semantics does. Our correctness claim reads as follows. 1

(THMI) tsem(e, compile(a)) - - - - ssem(e, a) .

In subsection 5.1 we report on our TIP proof session for THM1.

4.2 T h e P a r t i a l E v a l u a t o r

There is a straightforward idea to partially evaluate target programs. Every
pat tern of the form

prefix(NSTORE(m), prefix(NSTORE(n), prefix(ADD, s)))

may be rewritten to the shorter form p r e f i x (a d d (m , n) , s) , and likewise for
SUB and MUL =. Let pev: (S e q u I n s t r) S e q u I n s t r be the function that itera-
tively replaces every occurrence of a pat tern by its contractum. As BEZ mention,
there is an obvious first order specification for pev, viz.

(1)
V i, s : Sequlnstr, m,n : Nat.

pev(conc(l, prefix(NSTORE(m), prefix(NSTORE(n), prefix(ADD, s))))) =

pev(conc(l, pref ix(NSTORE(add(m, n)), s)))

i In order to save space, and to drop information which is redundant for the reader,
we will not use full TIP syntax, but a more compact representation.
In their final version, BEZ dropped optimization of SUB and MUL patterns. We stay
with their report version.

611

for ADD, and likewise for SUB and MUL, together with

(2) V t: SequInstr. OPTIMAL(t) ~ pev(t) = t

where OPTIMAL is a predicate on SequInstr defined by

OPTIMAL(t) r

(73 l, s : SequInstr, m,n : Nat

t = conc(1, prefix(NSTORE(m), prefix(NSTORE(n), prefix(ADD, s)))) V

t = conc(1, pref ix(NSTORE(m), prefix(NSTORE(n), prefix(SUB, s)))) V

t ---- conc(1, prefix(NSTORE(m), prefix(NSTORE(n), prefix(MUL, s)))))

Remark. Indeed pe r is specified uniquely this way. This is proven by induction
on the length of t . As a lemma, one needs to prove that contraction of an
optimizable pat tern does not destroy any other optimizable pattern.

In spite of the problem of expressiveness, we wish to stay reasoning within the
framework of equations and rewriting. Our plan is as follows. We adopt BEZ's
"algorithmic specification" of pev, given as a term rewriting system in module
PARTEVAL. Then we prove by that pev satisfies certain equational properties
derived from (1) and (2).

pev is based on an auxiliary function, pv. Given a split (1, s) of the target
program, pv scans for an occurrence of a pat tern at the start of the right half,
s. One may distinguish whether the sequence s is too short to have a pattern,
or whether it begins with a proper part of the pat tern but does not continue
accordingly, or whether s indeed begins with the pattern. In the latter case, after
contraction of the pattern, one must be aware of a new pat tern that is formed
using the rightmost instruction of the left half, 1.

In [3] the latter axioms have a form that is not satisfactory.

pv (post f ix (I, x), pref ix (NSTOKE (m) , pref ix (NSTDRE (n) , pref ix (ADD, s))))
-> pv (i, prefix (x, prefix (NSTORE (add (m, n)) , s)))

Their left hand sides violate the constructor discipline: postfix(l,x) should
be a constructor term, but postfix is not a constructor. Even worse, conflu-
ence does not hold. To fix this, we add access functions bottom and upper to
SEQUINSTRUCTION. Then we replace postfix(l, x) by prefix (x', i') on the left
hand side, and I by upper (pref ix (i', x')) and x by bottom (pref ix (i ', x ')),
respectively, on the right hand side. Thus we get:

pv (pref ix (x', i'), prefix (NSTORE (m), prefix (NSTORE (n), prefix (ADD, s))))
-> pv(upper(prefix(x' ,I')) ,

pref ix (bottom (prefix (x ', 1 ')), prefix (NSTOKE (add (m, n)) , s)))

Interesting to note, the new rev~rite system is still terminating, although a se-
mantic path order is necessary to prove it.

A basic theorem says that the partial evaluator preserves the semantics of a
target program. The proof session for this theorem is reported in subsection 5.2.

(THM2) teem(e, per(s)) = teem(e, s)

612

4.3 M o r e a b o u t t h e P a r t i a l E v a l u a t o r

If PARTEVAL satisfies (1) and (2), then it satisfies THM2 as an inductive conse-
quence. But THM2 does not imply (1) and (2). It is therefore advisable to prove
further properties to increase confidence. We will prove that pe r yields optimal
instruction sequences, and decreases the length of an instruction sequence.

First we introduce a specification OPTIMALITY for a Boolean valued func-
tion op t ima l : (S e q u I n s t r) Bool, whose purpose is to internalize the predicate
OPTIMAL.

(3) Vt : SequInstr. optimal(t) -- true -~ > 0PTIMAL(t)

To define optimal by a term rewriting system we borrow the recursive structure
from function pv. We should be able to prove the following claim, a consequence
of (1), (2), and (3). The proof session is reported in subsection 5.3.

(THM3) optimal(per(s)) = true

Still it may be the case that optimal is not the wanted optimality predicate
- - it might be constantly t r u e , for instance. There is a way to achieve sure
knowledge. Show that op t ima l (s) does not rewrite to t r u e for any s that con-
tains an optimizable pattern. We cannot prove a negation by rewriting, but we
can prove that o p t i m a l (s) yields f a l s e in that case. For the proof session see
subsection 5.4.

(OPT)
opt imal(conc(t, pref ix(NSTORE(m), pref ix(NSTORE(n), prefix(ADD~ s)))))

= false

In order to derive a disequality, we employ confluence. Our rewriting system
is confluent; and by confiuence, a term cannot have two distinct normal forms,
true and false. So we get

(4) V t : SequInstr. optimal(t) = true = 0PTIMAL(t) ,

which is not yet the characterization (3) that we wanted but sumcient, together
with theorem THM3, to imply

V t : SequInstr. 0PTIMAL(pev(t)) .

Even a function pev that satisfies both THM2 and THM3, may fail to satisfy
(2), for it may change an optimal instruction sequence to another optimal one.
Such a function may even increase the code size as follows.

pev (prefix (ISTORE (i), prefix (NSTORE (3), prefix (MUL, emptysequ)))) =
prefix (ISTORE(i) ,prefix (ISTORE(i) ,prefix (ISTOKE(i),

prefix (ADD ,prefix (ADD, emptysequ)))))

Regarding this it is interesting to learn that our partial evaluator does not
increase code lengths. We report on our experience in subsection 5.5.

(THM4) length(pay(s)) ___ length(s)

613

5 Proof Sessions

We used TIP with a peculiar choice of settings. Basically we orient every hy-
pothesis and every lemma from left to right, just as the rewrite rules of the
specification. We take care in each case that this orientation preserves termi-
nation of the induced rewriting relation. As a consequence, rewriting induction
may correctly be applied, i.e. application of an inductive hypothesis needs not
to be justified explicitly.

As steps are performed in a terminating way, we may drop some amount
of user control. We have achieved good results switching the default "debug"
mode off, but switching "interactive" mode on. In effect the user is only asked
to select one of the offered case analysis redexes. Experience has shown that
the success of a proof at tempt strongly depends on the chosen redex position.
Although the default innermost redex is most convenient, proof at tempts using
innermost redexes exclusively may fail; see lemma CRIT in section 5.2. Usually
we succeeded when we chose the outermost redex provided that upon inspection
the case analysis offered was complete.

The reader is encouraged to redo the sessions. The TIP system and the
source text of this case study are available via anonymous FTP from server
f o r w i s s , u n i - p a s s a u , de in directory p u b / l o c a l / t i p . Put in your home direc-
tory a copy of the settings file t i p r c , rewind and rename it to . t i p r c , to have
TIP do rewriting induction by default. To start TIP, enter the command t i p
comp. t i p . After the start, the input file comp. t ip containing the specification
text together with the inductive claims is read, and a check is made for termi-
nation and constructor totality.

Below we report how each proof is done in practice. We put stress on the way
one is guided to the proof. For an overview of the dependence relation among
the lemmas consult figure 1.

LEMMAi CRIT

LEMMA2 LEMMA3

1
THM 1 THM2

PVIISTORE

PV3ISTDRE

PV3

11
THM3

CONC GT

\ /
LEMMA5

1
OPT THM4

Fig. 1. The Proof Hierarchy

614

5 .1 T H M 1

Having star ted TIP , we enter the proof session by typing p r o v e THM1, then go
to switch off the "debug" mode. The T I P system offers a case analysis redex,

? POSSIBLE INDUCTION REDEX:

top(ts(Xl,compile(X2),emptystack)) = ssem(Xl,X2) ,

which is acceptable S. The next offer shows tha t the proof is likely not to work.

? POSSIBLE INDUCTION REDEX:

top(ts(Xl,conc(conc(compile(XS),compile(X6)),prefix(ADD,emptysequ)),
emptystack))

= add(ssem(Xl,X5),ssem(Xl,X6))

We find ourselves faced with an equation where two conc symbols prevent the
inductive hypothesis from application. As soon as we t ry to continue the proof
a t tempt , even more cone symbols appear. We bet ter find some lemma to get rid
of the conc symbols. Now it is human intuition to find out tha t the execution
of a concatenated sequence of instruction leads to the same state as subsequent
execution of the parts.

(LEMMAI) t s (e , conc(s, t) , k) ---- t s (e , t , t s (e , s ,k))

T I P can prove LEMMA1 automatically. On demand it writes a proof documenta-
tion which is boring but fairly readable.

When we t ry to prove THM1, this t ime assuming LEMMA14, we are faced with
a new problem.

? POSSIBLE INDUCTION KEDEX:

add(top(pop(ts(Xl,compile(X6),ts(Xl,compile(XS),emptystack)))),
top(ts(Xl,compile(X6),ts(Xl,compile(X5),emptystack))))

= add(ssem(Xl,X5),ssem(Xl,XS))

The inner t s t e rm does not fit to the inductive hypothesis as the symbol t o p is
missing. The outer t s te rm does not fit as its last argument is not emp tys t ack .
So let us generalize the claim in two ways: Drop the context, top , and replace
the subterm, emp tys t ack , by a variable. It leads to the following lemma.

(LEMMA2) ts(e, compile(a), k) = append(ssem(e, a), k)

It is now straightforward to prove THMI by LEMMA2, and to prove LEMMA2 by
LEMMA1.

3 TIP uses internal variable names of the form Xl, X2, etc.
4 In TIP, start a new session and type enter lemma /assumed LEMMA1 .

615

5.2 T H M 2

Trying to prove claim THM2 without any lemma is soon recognized hopeless. The
left hand side, 1, of pv(1, s) must be generalized. The necessary lemma,

teem(e, pv(1, s)) = tsem(e, conc(1, s)) ,

is slightly more special than BEZ's

(LEMMA3) t s (e , pv(1, s), k) ---- t s (e , s, t s (e , 1, k))

But the proofs are essentially the same. So we will stay with LEMMA3. A proof
at tempt for LEMMA3 unveils at once that LEMMA1 is needed. With LEMMA1 assumed,
we arrive at

? POSSIBLE INDUCTION KEDEX:

ts (Xl,prefix (bottom (prefix (X52,X53)) ,prefix(NSTORE(add(X54,X55)) ,X56)),
ts (Xl, upper (prefix (X52, X58)), X4))

= ts(XI,X56,append(add(X54,X55) ,ts(Xl,prefix(X52,X53) ,X4))) ,

which shows us that the prover cannot deal appropriately with the theory of
bottom and upper. One would like to try with the equality

(CUB) conc(upper(prefix(x, s)), prefix(bottom(prefix(x, s)), t)) =

prefix(x, conc(s, t)) ,

which expresses in a general way that conc is left-inverse to (upper, bottom),
which split a nonempty sequence. Using CUB in the proof of LEMMA3, however,
produces no recognizable effect. The reason is that the symbol conc of the left
hand side is unlikely to appear thanks to the presence of LEMMA1 which we
introduced for the purpose to get rid of conc symbols. To have CUB working, one
has to take the effect of LEMMA1 into account, i.e. one has to compute the critical
pair between LEMMA1 and CUB. This yields the following lemma.

(CRIT)
t s (e , prefix(bottom(prefix(x, 1)), s), t s (e , upper(prefix(x, 1)), k)) =

t s (e , s, t s (e , prefix(x, 1), k))

There are two ways to prove CRIT, either as an immediate consequence of CUB
and LEMMA1, or without CUB. We find the latter technically more suggestive. For
the proof session, we only remark that the first offer for an inductive redex,

ts (Xl, prefix (bottom (prefix (X8, xg)), X4),
ts (XI, prefix (X2, upper (prefix (X8, Xg))) , X5))

= ts(Xl,X4,ts(Xl,prefix(X2,prefix(X8,Xg)) ,X5)) ,

should be rejected. A good reason to do so is the fact that an occurrence of
symbol p r e f i x in the second line prevents the inductive hypothesis from being
applied, a fact that is not changed when one accepts this offer. CRIT is a witness
that the leftmost-innermost redex selection strategy may fail.

616

5.3 T H M 3

Unlike previous claims, THM3 is not straightforward to generalize by one propo-
sition. For example, the conjecture that pv turns an optimal left argument into
an optimal result, is wrong.

(THM3A) optimal(pv(1, s)) = optimal(l)

The TIP prover, running in "debug mode", finds a counterexample for it. In a
nutshell, the intermediate claim

optimal(conc(l,prefix(ADD,emptysequ))) = optimal(l)

turns out not to hold for the case

i = prefix(NSTORE(m),prefix(NSTORE(n),emptysequ))

The optimal instruction sequence 1 is supplemented to an instruction sequence
which is not optimal, such that pv does not take action for it.

The suggestion we finally followed is guided by syntactic considerations. The
trial to prove THM3 leads to an infinite sequence of claims whose left hand sides
follow the pattern

optimal (pv (prefix (ISTORE (i), i), r) .

We know that any prefix of the form ISTORE (i) of the left argument of pv cannot
be part of an optimizable pattern. In other words, ISTORE(i) may as well be
stripped. Indeed it is routine to prove the following lemma.

(PVIISTDRE) optimal(pv(prefix(ISTORE(i) , 1), r)) ---- optimal(pv(1, r))

After trying with this lemma, we learn that another pattern occurs,

optimal(pv(prefix(ADD,l),r) .

Again we prove a lemma, PVIADD, to express that the first instruction may be
stripped.

Repeating this procedure, one can construct a finite set of lemmas PV 11STORE,
PVIADD~ PVISUB, PVIMUL, PV2ISTORE, PV2ADD, PV2SUB, PV2MUL, PV3ISTORE, PV3
(three NSTORE instructions at the beginning). Each of these lemmas can be proven
for itself, and together they allow to prove THM3. The lemmas mirror the case
analysis structure of optimal.

5.4 O P T

The optimality proof is comparatively easy. Basically, one should prefer to choose
the case analysis redex at the symbol optimal, provided that this yields a com-
plete case analysis. This holds whenever at least three prefix symbols appear
at the top of the argument of optimal.

617

5.5 T H M 4

Here the main problem is the adequate t rea tment of the <_ relation on natural
numbers. First let us demonstra te tha t the naive modelling by a Boolean valued
function l e is not satisfying.

Given a rewriting system for l e on the naturals, let us a t t empt to prove the
following claim.

(THM4A) le(length(pev(s)), length(s)) ---- true

During a proof session for THM4A soon problems emerge like those experienced
for THM3. I t is natural to t ry the same methods to solve them. One may prove
lemma LEIISTORE for instance.

(LEIISTORE)
length(pv(prefix(ISr0RE(i), i), s)) = succ(length(pv(l, s)))

There is, however, no such lemma for the case

length (pv (pref ix (NSTORE (m), pref ix (NSTORE (n), pref ix (NSTORE (p), i)), s))

as one cannot predict uniformly how many of the NSTORE symbols pv will remove.
This leaves to say only that the length decreases when the first NSTORE symbol
is stripped from the instruction sequence. At the following claim, one may ex-
perience why any proof attempt, even supported by all lemmas LEIISTORE, ...,
LE31STORE, must fail.

(LEN) le(length(pv(emptysequ, pref ix(NSr0Rm(m), s))),

succ(length(pv(emptysequ, s)))) -- true

The offer for a case analysis redex

? POSSIBLE INDUCTION REDEX:

le (length (pv (empt ysequ, pref ix (NSTORE (add (XI, X60)), X6 i))),
succ (succ (succ (length(pv(emptysequ,X61)))))) -- true

indicates that two succ symbols prevent TIP from applying the inductive hy-
pothesis. Only an application of the transitivity law for le is necessary to close
the gap. Transitivity of binary Boolean functions however is not supported by
rewriting. 5

As < is a transit ive relation, we may also t ry
rem 2). All rewrite rules t reated so far concern the
collected in the set As. It is easy to see tha t the
only rule s u c c (x) --+ x and l e n g t h (p e v (s)) --+
other sets are empty.

bi-rewriting induction (theo-
semantic equality, and so are
sets AR and HL contain the
l e n g t h (s) , respectively. All

To simulate bi-rewriting in TIP , we add a new rewrite rule for each compa-
rison as if the comparison symbol were the equality symbol. To supervise tha t
L and R rules and hypotheses are applied correctly, we introduce each rule as a
lemma, and we switch T I P to

It can be expressed as a conditional rewriting rule, but conditional rewriting is far
less automatable at the moment.

618

set param hypothesis_usage interlr
set param lemma_usage interlr

having the effect that before every application of an inductive hypothesis or
lemma, the user is asked whether the intended step should take place.

On these grounds, the axiom for ">" is encoded as an unproven lemma GT,
succ (x) = x. Likewise the inductive claim THM4 is encoded as length(pev (s))
= length(s). With that we can prove THM4 using the encoding of the following
obvious LEMMA5 (in L),

(LEMMA5) length(pv(l, s)) _< length(conc(l, s)) .

In the same way, we achieved a proof of LEMMA5 by GT where we use the equational
lemma (in S)

(CONC) length(conc(s, t)) = add(length(s), length(t)) .

6 Conclusion

We revisited Berghammer, Ehler, and Zierer's study [3] on automated inductive
reasoning. Our inductive prover, TIP , set for term rewriting induction, yields
complete proofs with a degree of automation of typically > 98%, which is the
number of internal steps divided by the total number of steps.

We extended the case study to show how a negative proposition, and how a
comparison can be attacked by rewriting induction.
A c k n o w l e d g e m e n t s . Thanks to Rudi Berghammer and Bett ina Buth for gi-
ving me the opportunity to present my work in Kiel. I am grateful to Gerald
L/ittgen for reading and commenting on a preliminary version.

References

1. Leo Bachmair. Proof by consistency in equational theories. In 3rd Proc. IEEE
Symp. Logic in Computer Science, pages 228-233, July 1988.

2. Leo Bachmair and Harald Ganzinger. Rewrite techniques for transitive relations.
Technical Report MPI-I-93-249, Max-Planck-Institut ffir Informatik, Saarbr/icken,
Germany, November 1993.

3. Rudolf Berghammer, Herbert Ehler, and Hans Zierer. Towards an algebraic spe-
cification of code generation. Science of Computer Programming, 11:45-63, 1988.
Also as technical report TUM-I8707, June, 1987, Technische Universits M/inchen,
Germany.

4. Robert S. Boyer and J. Strother Moore. A computational logic handbook. Academic
Press, 1988.

5. Nachum Dershowitz and Jean:Pierre Jouannaud. Rewrite systems. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B, chapter 6,
pages 243-320. Elsevier, 1990.

6. Ulrich Fraus. Inductive theorem proving for algebraic specifications - - TIP sy-
stem user's manual. Technical Report MIP-9401, Universit~it Passau, Germany,
February 1994.

619

7. Ulrich Fraus and Heinrich Hut~mann. Term induction proofs by a generalization of
narrowing. In C. Rattray and R. G. Clark, editors, The Unified Computation Labo-
ratory -- Unifying Frameworks, Theories and Tools, Oxford, UK, 1992. Clarendon
Press.

8. Laurent Fribourg. A strong restriction of the inductive completion procedure. J.
Symbolic Computation, 8(3):253-276, September 1989.

9. Alfons Geser. A specification of the intel 8085 microprocessor - - a case study. In
[18], pages 347-402, 1987.

10. Alfons Geser. Mechanized inductive proof of properties of a simple code optimizer.
In Bettina Buth and Rudolf Berghammer, editors, Systems for Computer-Aided
Specification, Development, and Verification. Technical report 9416, Universit~t
Kiel, Germany, October 1994.

11. Alfons Geser and Heinrich Huf~mann. Experiences with the RAP system - - a spe-
cification interpreter combining term rewriting and resolution. In Bernard Robinet
and Reinhard Wilhelm, editors, 2nd European Symposium on Programming, pages
339-350. Springer LNCS 213, March 1986.

12. Dieter Hofbaner and Ralf-Detlef Kutsche. Proving inductive theorems based on
term rewriting systems. In Proc. Algebraic and Logic Programing, pages 180-190,
Gant~ig, Germany, 1988. Springer LNCS 343.

13. Heinrich Huf~mann. A case study towards algebraic specification of code genera-
tion. In Maurice Nivat, C. Rattray, Teodor Rus, and Giuseppe Scollo, editors,
Algebraic Methodology and Software Technology 91, Workshops in Computing, pa-
ges 254-263. Springer, 1992.

14. Heinrich Hui~mann and Christian Rank. Specification and prototyping of a com-
piler for a small applicative language. In [18], pages 403-418, 1987.

15. J. Levy and J. AgustL Bi-rewriting, a term rewriting technique for monotonic
order relations. In Claude Kirchner, editor, Int. Conf. Rewriting Techniques and
Applications, pages 17-31. Springer LNCS 690, 1993.

16. Teodor Rus. Algebraic alternative for compiler construction. In IMA Conf. on the
Unified Computation Laboratory, pages 144-152, Stirling, Scotland, 1990.

17. Martin Wirsing. Algebraic specification. In J. van Leeuwen, editor, Formal Models
and Semantics, Handbook of Theoretical Computer Science, Vol. B. Elsevier - The
MIT Press, 1990.

18. Martin Wirsing and Jan A. Bergstra. Algebraic methods: Theory, Tools, and Ap-
plications. Springer LNCS 394, June 1987.

19. William D. Young. A mechanically verified code generator. J. Automated Reaso-
ning, 5(4):493-518, 1989.

