
A G e n t l e I n t r o d u c t i o n to Spec i f i ca t ion

E n g i n e e r i n g U s i n g a Case S t u d y in

T e l e c o m m u n i c a t i o n s *

Stephan Kleuker**
FB Informatik

University of Oldenburg, P.O. Box 2503
26111 Oldenburg, Germany

Abs t rac t

Software development based on formal methods is the only way to prov-
ably correct software. Therefore a method for the development of complex
systems in intuitive steps is needed. A suitable solution is the transformational
approach where verified semantics-preserving transformation rules are used to
come from a first verified specification to the desired system. A problem is
that for most industrial applications the system development never terminates
because requirements change and new functionalities have to be addled to the
system.

This paper describes a new approach for the development of extensible spec-
ifications in small intuitive steps. New transformation rules are introduced that
guarantee that intermediate results of development can be used for further steps.

keywords: extensible systems, formal software development, provably cor-
rect software

1 I n t r o d u c t i o n
Telecommunication networks are highly distributed systems, e.g. in Germany the
public telecommunications network contains some thousands of switching systems,
and they axe required to be highly reliable. It is demanded that every switching
system has an expected down time of at the most two hours in 20 years.

These switching systems have usually been built starting from some informal re-
quirements that have changed after some time. Today, the only established way of
'proving the correctness' of a system is extensive testing. Exhaustive testing is not
possible because of the complexity of software. An approach is needed for extensible,
provably correct software which fulfils given requirements.

Therefore it becomes a key issue to design communication system software that
provably and not only arguably meets its requirements. To come to some essen-
tial improvements of the current dissatisfying situation, the project Provably Correct
Communication N e t w o r k s - abbreviated as CoCoN - - was born. CoCoN is the
name of a researc h project carried out in close cooperatioh between Philips Research

*This research was supported by the Philips Research Laboratories Aachen as part of the project
CoCoN (Provably Correct Communication Networks)

**E-mail: Stephan.Kleuker@informatik.uni-oldenburg.de, Tel: +49-441-798-3124

637

Laboratories Aachen and the Department of Computer Science at the University of
Oldenburg. The overall goal of this project is to improve the software quality of future
communications systems. More precisely, the aim of the project CoCoN is to support
a stepwise and verified development of communication systems from the requirement
phase over the specification phase to an implementation. Our method is based on
results of the ESPRIT project ProCoS [3, 4, 6] (Provably Correct Systems).

ProCoS is a wide-spectrum verification project where embedded communicating
systems are studied at various levels of abstraction ranging from requirements' capture
over specification language and programming language down to the machine language.
It emphasizes a constructive approach to correctness, using stepwise transformations
between specifications, designs, programs, compilers and hardware.

But the application conditions of semantics-preserving transformation rules are
often very restrictive. Therefore it is impossible to guarantee that a specification
reached in a certain step of development can be transformed in any further step. For
large systems lots of calculations must be done to solve this problem.

Specification engineering introduced in this paper is a new approach where each
result of intermediate steps can be used without detailed information about further
steps. New transformation rules are introduced in this paper that preserve only cer-
tain requirements but have less restrictive application conditions. Proofs for other
requirements have to be done again where old proof structures can be reused.

Another important disadvantage of stepwise development techniques so far is that
extension and change of requirements of systems are not supported.But, most systems
have to be extended, i.e. they shall or must fulfil new, additional requirements not
known at the time they were designed. One example is the ever increasing demand
for the fast and flexible introduction of new value-added services and new features
into private as well as into public telecommunications networks. Intelligent networks
(IN) [1, 12], personal communications and computer-supported telecommunications
applications (CSTA) are just a few areas from which these services are emerging.
Adding more and more services to the telecommunications network must be supported
by a stepwise development of specifications.

Specification engineering can be used for the addition of new complex sequences
of communications to existing systems. Other approaches for an incremental design
of systems like [10, 22] describe only the development of asynchronous protocols with
the restriction that new communications are added one at a time.

The example in the next section is an intermediate result of a stepwise development
of a complete simple call handling. This result is used in CoCoN as a starting point
for the introduction of correct value added services. The initial steps of a stepwise
development with the transformational approach are left out here, they can be found
in [14]. These stages include a development initiated by an informal description of the
problem and the development of formal requirements in trace logic [23] that the system
must fulfil. A specification (or program) is called correct (or verified) with respect
to a set of formal requirements if it is proven that it fulfils each requirement. The
complete method including the idea of specification engineering which is introduced
in the following sections is sketched in the conclusions.

The next section presents a specification of a distributed call handling with fi-
nite automata. It follows an informal introduction to the extension of systems with
specification engineering which leads to an extension theorem. The fourth section

638

discusses the application of specification engineering in a specification language which
is more powerful than finite automata. The conclusions contain a short summary of
the CoCoN approach and possible further steps.

2 Specification with finite automata

~ 5 2 ~ T - i _ "..'J_ " ~ ,

Figure 1: Example of a representation of a call from telephone T~ to telephone T i

This section introduces a simple sort of call handling as a case study for a system that
should be extensible. Finite automata are used as specification language through the
following sections. Because the semantics of many specification languages is based
on extended automata (or transition systems) it is possible to transfer our extension
algorithm presented in the next section to other languages.

The systems in our case study are non-terminating and we assume that if a process
(represented by an automaton) terminates it returns to its initial state immediately. It
is possible to rewrite the following text for systems based on other types of automata.

In our example, automata are used to describe each telephone and the represen-
tation of a call in the network. A call between two sides i and j consists of four
automata: T,.o~;g for the originating side telephone, Origi_j for a representation of
the originating side in the network, Termj_i for a representation of a call from i
to j in the network and Ti,,..~ for the terminating side telephone. This situation is
sketched in figure 1. Note that one telephone T~ is represented by the two automata
Tio~,g and Tit,r,~. This specification is an intermediate result of a development after a
decomposition of the process network.

The interfaces (communications between the automata) and their informal mean-
ing are given in table 1 for communications between the network and the telephone
(the first letter indicates either the originating or the terminating side) and in table 2
for communications between the two processes representing a call in the network (each
communication starts with a small letter, here an subscript ij is used for messages
from i to j) .

The specification for each process is given in figure 2 (superscript o for initiated by
originating and superscript t for initiated by terminating side). Each communication
is marked to show whether it is an input (> c) or output (c >). Each automaton
starts in its initial state, marked by an initial arrow at the top. A communication
can only happen if it is possible as the next communication by the sender and the
receiver (fully synchronized communications). The automaton changes its state to
the following state after performing a communication. If a process described by an
automaton terminates (no communication can follow) it returns to its initial state
immediately. These final states and the first state can be seen as equal or connected
by an e-arc between them. There is no graphical presentation of this fact because it is
the same for each automaton and we can emphasize that an automaton ' terminates '
if no communication can follow.

639

from an originating side Tio,,v to a process Origi-j that represents a part of a call from i to j
inside the process network:.
Osetupl (Capital letter 0 for originating) initial message to the network
Oinformationi transmission of the complete number of terminating side
Odiseon u, originating side initiates call termination ('~ for "from user")
Odiseompl~ originating side acknowledges a call termination signal from network (indicated by n)
from Or!gi-i to ~or,,:
Oabortl Call is aborted by some reason like no free ilne or called side is busy
Oalertingi network indicates that it rings at-termlnating side
Oconnec~i terminating side has gone off-hook
Odiseon~ network indicates that terminating side has gone on-hook
Od!seompl~ network acknowledge s a call termination signal from or!ginating side
From T~ to'Term)-i and vice versa the dual communications to the explained ones.

Table 1: Communica t i ons be tween ne twork and t e l ephone

setupld
abortld
alertl,j
connectl d
disconi d
dlscompli.j

the initial message between the new processes
for an abort of a call
for ringing at the terminating side
for a completed connection
for disconnect initiated
for disconnect complete (acknowledge)

Table 2: C o m m u n i c a t i o n s be tween or ig ina t ing and t e r m i n a t i n g p a r t in the ne twork

T h e r e exis t two a u t o m a t a for each possible call in the speci f ica t ion, cal led Origi-i
and Termj_i (i # j, 1 < i , j < n). This p a r a m e t r i z a t i o n wi th i , j is a poss ib i l i ty to
work wi th a d y n a m i c number of processes (calls) in a s t a t i c model .

Our first specif icat ion descr ibes a call under the a s s u m p t i o n t h a t no i n t e r m e d i a t e
call t e r m i n a t i o n is possible. This assumpt ion was m a d e to a r r ive a t a first smal l and
eas i ly ver i f iable specif icat ion.

T h e fol lowing defini t ions are used to formal ize the behav iou r of c o m m u n i c a t i n g
a u t o m a t a (wi th close re la t ion to e.g. CSP [13]).

D e f i n i t i o n (s y n t a x o f an a u t o m a t o n) : An automaton A = (C o m , Q,~,qo) consists[
]of four par ts , a finite set Corn of communications (Comm(A) = Corn), a finite set Q of I
] s tates (States(A) = Q), a part ial function 6 : Q x Corn ---* Q which describes for a given
[s tate , and a communication the next state and the initial s ta te q0 E Q.

A t r ace is poss ib le in one a u t o m a t o n if there exis ts one sequence of s ta tes in the
a u t o m a t o n where the connect ing arcs are m a r k e d by the t race . A s t a t e where no
c o m m u n i c a t i o n can follow (te rmina t ion) is cal led a return state.

D e f i n i t i o n (p o s s i b l e t r a c e s a n d r e t u r n s t a t e s) : A trace is an element of Corn*. We
use t as typical let ter for traces. The transition function $ is extended in the usual way
from a single communication to traces (Let e be the empty word, ~(q, c) = q, 6(q,t.t') =
~(~(q, t), t '), t, t ' are traces). A trace t is possible in A iff $(q0, t) is defined.
The set return(A) C_ States(A) denotes the set of states in which A immediately returns
to its initial s ta te (return(A) = {q e States(A)[Vc e Comm(A) �9 ~5(q, c) is not defined)),
e.g. return(Ti~,~) = {7}. The projection �9 I �9 projects a trace on a set of communications
e .g .a .c .b .c I {a, b) = a.b.

As m e n t i o n e d before there exists one a u t o m a t o n for each poss ib le call in the net-
work. There fore we have to formal ize how these a u t o m a t a work t oge the r to descr ibe
the whole sys tem. The poss ib i l i ty of a t race in a para l le l c o m p o s i t i o n of two or more
a u t o m a t a requi res synchroniza t ion on common symbols anc~ is fo rma l i zed as follows:

640

,%
T. I o,,t,e,>

l ~
~ _ _ . ~ / ~ Oi~~176

/
,o o.,l

6 8 o2 o.,<
Orig i.; P~>~

"d 2 ~

. ,.~ / 7 2 . . \ I

"~ 7 Oabor, i" \

o oo -1 ,0 . 0~ I
~176] ~ : lOdisco~> /

J term �9 Tsetupj

Tc~ J> f ~ r t ~ g j>

n 4

Termi. i ~
" - I >s~tuPiJ

3 ,t~ \
/ >r,~,~gj \
/~,4 " \ >rcon,~ctj I alert~> \
(~,5 " \

; coar..~r j , '>
/

!

9 ' o , .~14 I
==o4. > ~"-r Yrd~o.~'. /

> , t l s c o m t ~ ~

Figure 2: Specification of a distributed call

Definition (parallel composi t ion): Let Ai = (Comi, Qi,$i, qo,), 1 < i < n be au-

tomata. A trace tr E (b Coral)* is possible in a parallel composition A1HA2[[...HA, iff
i = 1

tr 1 Coml is possible in each automaton Ai.
Formally: Vl < i < n 3qi E Qi * ~i(qo,,tr ~ Comi) = ql

Example: A trace Osetupi.Oinformationi.~etupq.alertji.Oalertingl is possible in
2~or~]] Origl-j, but not Osetupi.Oinformationi.Oalertingl.

For each communication c E Comm(Ai) rl Comm(Aj) a function from(c) determines the
sender and to(e) of the receiver, e.g. from(Osetupi) = Tio.,g, to(Tsetupj) = Tj

Two different processes in the network describing two different calls need not be
synchronized because they are independent of each other. If we take two traces of
these calls they can be mixed in any possible form to come to a new trace describing
the two calls at the same time. The mixture of traces is called merging. The mixture
of two or more automata is called interleaving. Therefore an interleaving operator for
automata is defined. A trace is possible in an interleaving of n au tomata iff it is a
mixture of traces each of which is possible in one of the automata. The difference
between interleaving and parallel operator is that no synchronization has to take place.

641

Defini t ion (inter leaving): Let Ai =(Comb, Qi, Si, qo~), 1 < i < n be automata. A trace

tr E (0 Coral)* is possible in an interleaving A I | A 2 | . . . |An iff
i = 1

Vl < i < n 3tl e Corn1 , . . . , t~ E Com~ �9 (3qb E Qi �9 ~;(q0,,tl) = qb)
' A t r E m e r g e (t l , . . . , t n) .

merge is defined as: Let tb be traces. Then
merge(t l , tn) = {all.a21 anl .a12.a22 an2 alk.a2k ank[

ali E Comb U {e} A tl = abl aik}

E x a m p l e : merge(a.b, c.d) = { a.b.e.d, a.e.b.d, a.c.d.b, c.a.d.b, e.a.b.d, e.d.a.b }

A telephone is described by two automata , one for the originating and one for
the terminat ing side. These au tomata are used alternatively, because in the simple
call handling a telephone can either be the originating or terminat ing side. Therefore
a third operator describes the alternative of n automata . A trace is possible in an
alternative iff it is possible in one of the automata .

Defini t ion (a l t : rna t ive) : Let Ai = (Comi, Qb,~b, qo.), 1 < i < n be automata. A trace]

tr E (bU_, Comb) is possible in an alternative A1 + A~ + . . . + a~ iff tr is possible in one I,

automaton. Formally: 31 < i ~ n 3qi E Ob �9 ~i(qo, , tr) = qi [

Example : Osetupb.Oinformationb is possible in T/o~,g + Tb,,~,~ but not Osetupi .Tsetupl .]
i

The underlying au tomata of the described processes can be summarized with the
previous remarks as:

I Example : Specification with finite a u t o m a t a .

A telephone T/is Tb = Tior,9 + T; The network is network = ~ ~ Callb_i.
i = 1 j=l,j#b

The simple switching system is S S S = T111...]lTnll ne tw~

This specification describes all possible behaviours because each possible call and
each set of possible active calls at the same t ime is described by the specification.
Note that there are traces possible in the specification tha t are not desired for the
final program. Therefore the au tomata describe a superset of the desired traces. Non-
desired traces are omit ted with an extension of the specification with local variables
(for details see section 4).

The following definitions are used in the next section to describe the extension of
systems and the resulting consequences for each subautomaton.

A relation between states of different processes is defined which is used to introduce
our t ransformation rules. The idea is to formalize that if a certain subprocess is in
the state p another subprocess might be in the state q.

Informally, ql is in K-relation I to qj iff it exists a possible trace t in Sb to ql and it
is possible to construct a trace t ' out of t to qi in S i in the following way: The same
communications of t w.r.t. Com m(Sb) M C o m m (S j) have to be used to produce t ' but
communications of C o m m (S j) - Com m(Sb) can be added anywhere in t ' .

Defini t ion (K-re la ted states)" Let S = 5'1 l[--- II S~ be a composition of n automata, I
Si, Sj (i r j) be two parts of S that are directly connected (i.e. with C o m m (S i) n I

[C o m m (S j) r 0) with initial states q0, and q~., qb a state of Sb and qj be a state of Sj.[
I Then qj is in K-relation to qi (abbreviated qb ' KsJ qj) iff]
I 3t, t' * ~i(qo,,t) .= qi A gj(qoj,t') = qi]
I A t ~ (Comm(Sb) 0 C o m m (S i)) = t' ~ (Comm(Sb) f~ C o m m (S j)))]

1K for German "Kommunikation"

642

Example: If we look at the processes Origi_j and Termj_i we observe that [
40rlg~_j KT~rr~:_, 2, 40rig,_: KTer~j_i 3, 40rigi_~ KTermj_~ 4, 40rigi-j KTcrmj_~ 6 (these I
states are marked black in figure 2) because after a trace �9 I
in Origi_j there are some communications in Termj_i after setuplj that are independent I
from Origi_j. It follows that if Origi_j is in the state 4 then Termj_i could be in one of]

[the states of {2, 3, 4, 6}.]

Remark: If we observe the state space of S (the Cartesian product of the state
spaces of the sub-systems) a state (q l , . . . , qn) can only be reached when for all 1 _<
i , j < n q{ If" qj holds, where K* is the transitive, irreflexive closure of all K-relations.

One basic requirement which a parallel non-terminating system must fulfil is
deadlock-freedom, i.e. there shall always be a possibility that a new communication
can happen. The following definition of deadlock freedom is more restrictive because
it ensures that after each possible trace t a new communication of each automaton of
a parallel system can happen in the future.

Definit ion (deadlock f reedom): Let S = $1][. . . 1[Sn be a parallel composition of]
automata, ~s be the transition function and q0s be the initial state of S. Then S is called [
deadlock free iff
Vt �9 (~s(qos, t) defined ~ (V1 < i < n 3t' * (~s(qos, t.t') defined A t' ~ Comm(Si) ~ z)))

3 The extension algorithm
The overall idea to develop verified specifications in small steps leads to the trans-
formational approach. Verified semantics-preserving transformation rules are used to
come from a first verified specification by applying these rules to the desired system.
If a specification fulfils a requirement then each result of the transformation will fulfil
this requirement, too. Verified transformations are used in projects like the Munich
CIP [19] and the ESPRIT basic research actions ProCoS I and II.

Case studies [6, 17] document that transformations are a suitable approach in
system design. But for larger examples the question arises how to come to a first
verified specification which guarantees that all desired transformation rules with their
restricting application criteria can be applied in later steps. Another question is what
happens to the transformational approach if system requirements are changed or new
features shall be added to the system. Therefore we concentrate on a new additional
technique in the following text which ensures that results of any development step
can be used for further developments.

New transformation rules are added in our approach which guarantee that cer-
tain requirements are still fulfilled but can change the overall semantics. Proofs for
requirements that are not guaranteed by the new rules have to be done agMn. But
practice shows that large parts of proofs done in previous steps can be reused. The big
advantage of our approach is that we come to less restrictive application conditions
for the transformation rules.

We illustrate our approach with our telephone example. Suppose we wish to drop
the assumption that a user cannot terminate a call at emy time. We use new trans-
formation rules of specification engineering for additional features to add possibilities
of call termination.

New features are introduced by taking two states of an existing automaton of one
subprocess and connecting them with a new (added) trace. Then, each related state of

643

OsetuPi>
7) or g 21;

/ ~ 3 ~ 'Oinf~176 i > "'?
(I /

>Oconnectil 1)4
\ ~ >Oconnect~ :.

>Oabort:\ -~"5 ~ :
t . n (, U :

O d i s c 2 p l ~ > ~ : m p l u

Orig i. j

>Odisc
. . � 9

:Odisct

>6

c

�9 U Odtscompl i r,

dis con ff ;
1

>discom

~>Osetup i

borti>

Figure 3: A first extension of the call termination at the originating side

the other automata of other subprocesses is calculated to make the new trace possible
and to guarantee that no new deadlocks are introduced.

A new trace is added to the system in the following way: First, we choose a state
of Ti~,g where a new call termination (Odiscon~) shall be possible. Then we calculate
which states of Origi_j, Termj_i and Tj are influenced. Finally, we have to extend
the system in each calculated state with a new trace to a return state to guarantee
that our system is deadlock free again. This extension is repeated for each possible
call termination�9 We give an introduction to this idea of stepwise engineering by two
extensions of our example:

E x a m p l e 1: We want to add a new call termination to the originating side Ti~,g.
A trace tl = Odiscon~.Odiscompl~ shall be possible in the state 2 to the return state
7 to indicate a new possible call termination. (The first communication of the new
trace is the dotted arrow in T~or,g in figure 3. If it is possible to use old parts of an
automaton then not the whole new trace is drawn in the automata. Instead of adding
tl from state 2 to 7 only the trace Odiscon~ is added from 2 to 8 because Odiscompl~
is the only possible next .communication in s t a t e 8.) We calculate for state 2 the
set of K_related states of Origi_j which contains only state 2. The trace tl is added
from state 2 to the return state 12 by introducing a new state 18. Then we calculate
for state 2 of Orig~_j the set of K_'related states of Termi_i which contains only the
initial state. Therefore nothing must be changed in Terrnj_i because this process
could not 'recognize' (is not influenced) that the new trace happens. The new system
is deadlock free again with an additional call termination possibility.

E x a m p l e 2: We add a call-termination to state 3 of T;o~,g. If Tio~,g reaches the

644

Ti ? o,,~>

/ >Oco#i#leCt'(4+ >Oater'~i "t

>oo'' t I

r

Orig i-j

18f . . ," ...,_ . . , ~ ~ , . , , ,: \

/o ' -\I d i $ c o m p l ~ >

/ ~ " . ' 4 7 " oo~m>\
t ...'_. ,, I o ~ t i > \
I 'o~,,o.~> A ~ " . \ ~u ~" . t

k -~3'<..._. "',:i'c~ >

- - - 12

Tconneaj > / T

k 1 rw,,,,'~9>
~t 4

Term j-i ~ ~>u~ q

3 ~ - \
/ >Talerti~&j N
l , 4 \

>r~o,,,~a i I ~Z, aji> . \
\ >Tr.onne.ctj \

9 , o 14

�9 o B >Tdi'zcon~l~

Figure 4: Another extension of the call termination

the state 3 the trace
I t I t 0 t r l r t t2 = Odiscon i .Odiscompli .discon6.discomplii.Tdiscon j .Tdiscomplj

describing a call termination through the system shall be possible. The exten-
sion steps axe documented in figure 4. The trace Odiscon~.Odiscompl~ (= t2 $
Comm(Tio,9)) connects state 3 and the return state 7 in Ti~,,. The set of K_related
states for state 3 of Tio~,9 in Origi_j is {3, 4, 5, 7,17}. Following the basic idea we have
to add t2 ~ Comm(Origi-i) to each of these states. But some optimization is possible.
First we can observe that in states 3 and 4 (dotted in figure 4) no communication
with T/c.,g can follow. Therefore communications from T~o.,g can be ignored without
running into deadlocks and no traces axe added in the states 3 and 4.

R e m a r k : This optimization can be added to the algorithm for calculating
K_related states. Note that this optimization need not be done but leads to
smaller extended systems.

For state 17 we calculate 17 Orig~-~ Krer,,j_~ 11 as the only K_related state in Termi_i.
But 11 is a return state and therefore Termi_j needs no information about the new
call termination in this case. Therefore only the trace Odiscon~.Odiscompl~ is added
from state 17 to 12 in Origi_i.

The complete trace t2 ~ Comrn(Origi_j) is added to the states 5 and 7 of Origl-i.
Next, we calculate for the states 5 and 7 the set of K_related states of Termj_i which
is {5, 6, 7, 8, 9}. For the states 5 and 8 it holds again that no communication with
the previous automaton (Origl-j) can follow. Therefore no trace is added for these

645

states. For state 9 we calculate 9 Terms-' K T~ 6 as the only K_related state in TA,.m.
This is a return state and therefore no information about the call termination needs
to be sent to Tj Therefore only a trace discon~j.discompl~i is added from state 9
to 11. (This trace already exists, nothing must be changed in the automaton.) The
trace t2 ~ Comm(Termj_i) is added to the states 6 and 7 of Term$_i.

The state 4 of Tj is the only K_related state for the states 6 and 7 of Termj_i.
The trace t2 ~ Comm(Tj) is added from 4 to 6. The new system is deadlock free
again with an additional call termination possibility.

The extension ideas used in the examples are formalized in general terms.
Throughout the following text S = $1 [] $2 l[. . .]1 S, will always be a parallel compo-

sition of n automata, t = cl.c2 c~ a trace over ~J Comm(Sj), Cl e Comm(S1), z,
j= l

a state of 5'1. (We will define an extension of $1 in zl with t. Since l[is commutative
$1 can be an arbitrary component of S.)

Traces are added that describe one path through the system initiated in one certain
state of one automaton. These traces have to fulfil certain requirements such that an
extension of the automata is possible. This is formalized as follows. It exists for each
trace t which is used for an extension a sequence of 'related automata ' . This sequence
consists of the names of the sender and the receiver of each communication. The
formal definition is:

Definition (index sequence of a trace): Let be S and t be as described above. The]
related index sequence of t in S is: s(t) := (from(cl), to(cl)) (from(cm), to(crn)) [
Example: t = Odiscon~.Odiscompl~, s(t) = (Tio~,9 , Origi_i).(Origi_i, T~,g).]

Sometimes it is simpler to reference the index of an automaton rather than the
complete name. Now, the new example 8(t) = (1,2).(3, 2).(1, 3).(x, y) (1 <, x, y, < n)
is analyzed. If we extend S with a trace t (with s(t) as described before) then we
begin with a calculation of K-related states in $2 of the extended state in $1 (refering
to the first pair (1, 2)). The next calculation is done for K-related states of $2 in 5'3.
The automata $1 and $3 are involved in the next communication (pair (1, 3)). These
automata are already extended and therefore no new calculation is needed. The next
communication belongs to the automata S= and S u.

If {x,y} C_ {1,2,3} then no calculation of states which have to be extended is
needed. If x e {1,2,3} and y ~ {1,2,3} (or y e {1,2,3} and x r {1,2,3}) then
it is possible to calculate the states of Sv (5'=) which have to be extended from Sz
(Sv). If x r {1,2,3} and y r {1,2,3} then it is impossible to calculate for the
related communication which states of S= and Sv have to be extended. There is no
relation to the previous communications of t. (It must be guaranteed that {x, y} gl
{1, 2, 3, 2, 1, 3} = {x, y} N {1, 2, 3} # 0 holds.) Therefore such traces shall be omitted.
This is done by the following definition.

iDefinition (traces that can be used for extensions): Let S and t be as described
above. A trace t fulfils the one-path-condition (abbreviated opcs(t)) for a system S iff

j -1
V2 < j < m * {to(cj), from(cj)} N (U {to(ck), from(c~)}) ~ 0

k=l

From now on we assume opcs(t). We calculate step by step for each communication
in t the set Rj of states of S i of K_related states of the next processes that have to

646

be extended. A set I collects the indices of automata that have been extended.
Automata in I do not have to be extended for t again because they already 'know'
that the system is performing the new trace. We can describe the extension Mgorithm
which calculates the states that have to be extended in the following way:

An a lgor i thm for calculat ing the sets o f s tates t ha t have to be ex tended
Inpu t : S = 5'1 I] & l] . . . I[Sn, t = Cl.C2 cm, Zl E State(S1).
Outpu t : R1 C State*(S1),...,Rn C_ States(Sn) sets of states of each automaton which
have to be extended with a new trace (a part of t).
In te rna l variable: I is the set of indices of the automata which aze already observed.

R~ := {z~};
I := {1};
for j = l t o m d o

if f rom(cj)r I then [Rfrom(r := K_related (R~o(c~),S~o(c~),Strom(cs));
x := z u {from(cj)} J

elsif to(cj) ~. I then [R~o(cD := K_related (Rlrom(cs) , Slrom(cD, Sto(cD);
x := z u {to(ei)} j

Note that from(cj) r I A to(cj) ~ I is always false because of opcs(t). It is possible
to optimize interactively (in dialogue with the specifier) the computation of Kjelated to
determine which states should be extended.

The optimizations mentioned in the examples could happen if the K_'elated states
are calculated. They should be done with an interactive tool which asks the user in
each case whether (s)he wants an optimization. Two typical optimization criteria are:
If x AKBy iS calculated then if y is initial or return state of B or if the intersection of
the next possible communications in y with Comm(A) is empty then y needs not be
added to the calculated set of K_related states.

It might happen that not every automaton Sj is directly related to t (t
Comm(Sj) = ~) but the new trace may influence Sj. Therefore we first assume
that after performing the algorithm I = { 1 , 2 , . . . , n } holds and present after the
extension theorem a general solution.

The next definition describes an extension of an automaton, i.e. that a new tra~e
is added between two existing states. A state z cannot be extended if the first com-
munication of the new trace is possible in z (to preserve the determinism of 5 the
a~sumption (*) is made).

Definition (adding a t race to an a u t o m a t o n) : Let T = (Corn, Q, 5, qo) be an automa-
ton, cj E Corn (1 < j < s), t = cl cs a trace, z C Q - return(T) and y E return(T)
states, (*) ~(z, cl) is not defined,
let ~ , . . . , z'~--1 be distinct, no elements of Q (new states used to make t possible).
The automaton T' = (Com, Q u (~, . . . , z~_i} ,~,qo) is derived from S by adding the

following trace to ~ of T in St: , - - - , o - - 4 , ~ c~ zl ~2 z2 . . . z._~, ---~,c* v
Then T' is called eztension of T in z with t (short: T' = ext(T, z, t)).

Note that y can be any return state of the automaton. It is easy to extend the
definition from a state z to a set of states R by stepwise adding the trace to each state
of R. The followiflg theorem proves the correctness of a typical new transformation
rule of specification engineering for the extension of distributed systems.

647

:Extension T h e o r e m : Let S, t, Sz, z~ be as declared above. Let Rj (1 _< j _< n) be the sets
of states computed by the extension algorithm. Let be S~ = ext(Sj, Rj, t ~ Comm(Sj))
(1 <: j < n) and S ' = S~ I] S~]1... II S~. Then the following holds:

- g) If .9 is deadlock free then S' is, too.
(ii) If a trace t ~ is possible in S then it is possible in S ~, too.

Proof sketch: (i): If the new trace is initiated in $~ then each related automaton will
get the possibility to work off the new trace because K_related states are extended and
therefore the information about the new trace is propagated to the whole system. No
mixture of old traces and new trades is possible because of the deterministic extension.
The one-path-condition guarantees that there is only one initial point for the new trace
and no other automaton as 5'i can start the new trace. Therefore no new deadlocks are
possible in S ~. (ii): Traces are only added to the old automata therefore all traces of S
are possible in S ~.

$I 11 2 $3

~2

13

b>

~4

>y

,s

$1 11
b>

>qi ;,

;s

~2 s3 sz

>a ~.x

;2
z> q b

',3

>q

/,
>a

;3

b>

;4
>y

;s
The initial deadlock free system is on the left-hand side. The extended
system (with ignoring $3) with a deadlock after a.x.q.a is in the middle.
The right-hand side shows the final extended deadlock free system.

Figure 5: An extension where not every au toma ta is direct ly influenced

For I ~ { 1 , 2 , . . . , n } we have to calculate the related s ta tes and add a t race c
from these states to a re turn state. The related states are the intersection of the
other K_related states. Therefore we have to compute the sets of related states of the
a u t o m a t a S i with j r I . These sets are (unique) solutions for the following equations:

V j � 9 n i = N K_related(Rk, Sk, Si)
k=l

A trace ~ can be added to an automaton T with init ial s ta te qo in a s ta te z if
Vc �9 Comm(T) �9 5(z, c) defined =~ 5(qo, c) not defined

holds. This condit ion guarantees a determinist ic behaviour because if T is in the
s ta te z it is dist inguishable whether the following communicat ion leads from s ta te z
or from s ta te q0 to another state. A small addit ional example is given in figure 5.

The sys tem $1 II $2 11 5'3 is deadlock free. A trace q is added to 5'1 and $2. This
t race is in i t ia ted in s ta te 2 of $1. From 2 s~ KS~ 2 and 2 s~ Ks2 3 follows tha t s ta te
3 is extended. (State 2 needs no extension because no communicat ion with 21 can
follow.) There is no communication w.r.t. $3 in t but Ss is influenced. If Ss is
not ex tended then the system is after the trace a.x.q.a in a deadlock ($2 is in the
s ta te 2 and 5"3 in the s ta te 2). If we do the calculations ment ioned above we get:
R1 = {2}, R2 = {3}, K_related(R1, Sz, $3) = {1, 2, 3}, K_related(R2, $2, $3) = {2} and
R3 = {1, 2, 3} N {2} = {2}. The initial communication x of 5'3 is not possible in the
s ta te 2 and therefore a trace r can be added from the s ta te 2 to the s ta te 1.

Many opt imizat ions of the Extension theorem (some are ment ioned in the exam-
p]es) are possible. If we use a different definition of possibIe traces then we have to

648

take care of states where the new traces end (return states are a rather simple ex-
ample). But this theorem is the starting point for the stepwise development of large
verified and extensible specifications. Future research will lead to descriptions of the
optimizations mentioned above. Note that closely related algorithms can be written
to delete traces or add alternatives (or regular languages) to existing systems.

4 Applying specification engineering to a speci-
fication language

Although finite automata are useful to describe communicating processes they axe not
powerful enough to describe certain dependencies. Therefore we only use automata
to describe a superset of all possible traces. A restriction on this set must be imposed
in the next step.

The requirements developed earlier (e.g. given in [14]) are analyzed to determine
if there are traces possible in the parallel composition of the automata which are not
allowed by the requirements. For example, we determine from the parallel composition
that it is possible that Ti~,g initiates a call to Tj,.~,, but T~.~,g may be connected to
any other telephone. The value j is transmitted in communication Oinformationl
(written as the pair (Oinformation~,j)). The next communication w.r.t, this call
shall be Tsetupj therefore the value j has to be stored and Tsetupi activated.

Therefore local variables are added to our specification. We can then formu-
late that a communication can happen only if a certain pre-condition over the local
variables (an enable-predicate) is fulfilled. After the execution of a communication a
post-condition (an effect-predicate) where values of local variables may change must be
fulfilled. Local variables are introduced for each process to formulate these predicates.

In our example Boolean variables setup[i], 1 < i < n, are used, one for each tele-
phone inside the process network. Their initial values are false. If a communication
(Osetup~,j) happens, the value of setup[j] is set to true. The communication Tsetupj
is possible only if the value of setup[j] is true. The value of setup[j] is false after the
communication Tsetupj is executed.

A communication-assertion is added for each communication (we refer to a com-
municated value which is transmitted by a communication c by writing @c.), e.g.:
corn Oinformationi write setup when true then setup[@Oinforrnation~]'
corn Tsetupj write setup when setupS] then -~setup~]'

Automata and communication assertions are summarized by the specification lan-
guage SL [18] developed in the ProCoS. In the ProCoS project it has been shown that
SL specifications can be transformed into occam-like programs [20, 21].

If we want to use our extension technique from the previous chapter, local vari-
ables have to be taken into account. Certain conditions for the enable predicates of
communications of new traces must be fulfilled. Sometimes, new local variables have
to be introduced to describe changes caused by a new trace. One idea is to transform
the idea of superposition of UNITY [9] to SL. Further transformation rules are devel-
oped that are only possible with local variables because situations that may lead to
deadlocks can be excluded by certain enable predicates over local variables. Due to
lack of space only this general information can be given.

The idea of st~ecification engineering can be used for many other specification
languages whose semantics is based on transition systems. Typical examples are SDL
[2] and LOTOS [15] which are widely used in the telecommunication area.

649

The specification engineering approach is used in SL for a stepwise development
of a verified complex description of a typical call handling. This call handling is
closely related to a Basic Gall State Model [8, 11] of the ITU-T (former CCITT) stan-
dardization committee which is a suitable starting point for the development of value
added services. Therefore specification engineering presents an intuitive technique for
a system designer to extend specifications in small verifiable steps.

5 C o n c l u s i o n s a n d f inal r e m a r k s
The transformational approach of ProCoS [18, 20] with verified semantics-preserving
transformation rules is extended by a new kind of transformation rules only preserving
several requirements. The extension is useful because semantics-preserving rules have
very restrictive application conditions and are often not suitable for system extensions.

step name of phase related subjects
informal description

1 requirement engineering informal requirements
formal requirements
typical system behaviour

2 initial specification superset of all possibilities
restriction
verification
decomposition

3 specification engineering extension of functionality
transformation
verification of new parts

Table 3: Phases in the development of extendable systems

Specification engineering is a way to come to large verified specifications by small
intuitive steps. In contrast to other formal methods the wish for extendable systems
is integrated. Basic ideas of specification engineering can be transferred to other lan-
guages based on extended finite state machines. Future research will cover possibilities
and limitations of this idea.

Typical phases of the development of extensible systems in the transformational
approach with specification engineering are summarized in table 3. The way to come
to a first verified specification are steps 1 and 2. An extension of a system deals with
a sequence of steps 1 and 3.

Formal proofs have to be done on computers. In ProCoS many transformation
rules from SL to OCCAM are implemented and verified [5]. These rules are used
in an interactive system. Tools have to be built for software engineers that support
specification engineering and proofs that requirements are fulfilled. Here, reuseability
of proofs will be an important part.

Next design steps will lead to a new service management process for value added
services. We try to develop a simple method that explains how new services can be
added to the system with a guarantee that no requirements are violated. The interplay
between different services, so called feature interaction [7], will be one important
research topic.

Acknowledgements . The author thanks M. Elixmann, A. Kehne, H. Tjabben
of Philips Research Laboratories Aachen and He Jifeng, E.-R. Olderog, M. Schenke
and the other members of the ProCoS Group in Oldenburg for helpful discussions.

650

References
[t] S. Ahramowski et al., CCITT Intelligent Network Capability Set-l: Concepts and

Limitations, Philips Research Laboratories Aachen, Technical lleport, November 1993
[2] F. Belina, D. Hogrefe, The CCITT-Specification and Description Language SDL, Com-

puter Networks and ISDN Systems 16 (1988/89) 311-341, North-Holland
[3] D. Bj~rner, H. Langm~ck, C.A.]%. Hoare, ProCoS I Final Deliverable, ProCoS Tech-

nical Report ID/DTII db 13/t, January 1993
[4] D. Bj~rner et al., A ProCoS project description: ESPRIT BRA 3104, Bulletin of the

EATCS, 39:60-73, 1989
[5] J. Bohn, tI. Hungar, Traverdi - Transformation and Verification of Distributed Sys-

tems, in M. Broy, S. Js (eds.): KORSO, Correct Software by Formal Methods,
to appear in LNCS (Springer-Verlag)

[6] :I.Bowen et al., Developing Correct Systems, 5th EuroMicro Workshop on Real-Time
Systems, Oulu, Finland, 1993, (IEEE Computer Society Press) 176-187

[7] E.J. Cameron et al., A Feature-Interaction Benchmark for IN and Beyond, IEEE
Communications Magazine, March 1993

[8] CCITT Recommendations Q.1200: Intelligent Networks, final version, WP XI/4.
Geneva. March 1992

[9] K.M.Chandy, J. Misra, Parallel Program Design, Addison-Wesley, 1988
[10] D. Y. Chao, D. T. Wang, An Interactive Tool for Design, Simulation, Verification,

and Synthesis of Protocols, Software - Practice and Experience, Vol. 24(8), 1994
[11] J.M. Duran, J. Visser, International Standards for Intelligent Networks, IEEE Com-

munications Magazine, February 1992
[12] J.J. Garrahan eta/., Intelligent Network Overview, IEEE Communications Magazine,

March 1993
[13] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, London, 1985
[14] S. Kleuker, Provably Correct Communication Networks (CoCoN) (Draft Version),

Philips P~esearch Laboratories Aachen, Technical Report, 1123/95, 1995,
[15] L. Logrlppo, M. Faci, M. Haj-Hussein, An Introduction to LOTOS, Computer Net-

works and ISDN Systems 23 (1992) 325-342, North-Holland
[16] E.-R. Olderog, Towards a Design Calculus for Communicating Programs, LNCS 527

(Springer-Verlag), p. 61-77, 1991
[17] E.-R. Olderog, S. R6ssig, A Case study in Transformational Design on Concurrent Sys-

tems, in M.-C. Gandel, J.-P. Jouannaud, eds., Proc. TAPSOFT '93, LNCS (Springer-
Verlag), 1993

[18] E.-R. Olderog et al., ProCoS at OIdenburg: The Interface between Specification Lan-
guage and OCCAM-like Programming Language. Technical Report, Bericht 3/92,
Univ. Oldenburg, Fachbereich Informatik, 1992

[19] It. A. Partsch, Specification and Transformation of Programs, Springer-Verlag, 1990
[20] S. R Sssig, A Transformational Approach to the Design of Communicating Systems,

PhD thesis, University of Oldenburg, 1994
[21] S. RSsslg, M. Schenke; Specification and Stepwise Development of Communicating

Systems, LNCS 551 (Springer-Verlag), 1991
[22] P. Zafiropulo et al., Towards A.nalyzing and Synthesizing Protocols, IEEE Transac-

tions on Communications, Vol COM-28, No. 4, April 1980
[23] J. Zwiers, Compositionality, Concurrency and Partial Correctness - Proof Theories

for Networks of Processes and Their Relationship, LNCS 321 (Springer-Verlag), 1989

