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ABSTRACT This paper concerns interprocedural dataflow-analysis problems in which the dataltow 
information at a program point is represented by an environment (i.e., a mapping from symbols to 
values), and the effect of a program operation is represented by a distributive environment transformer. 
We present an efficient dynamic-programming algorithm that produces precise solutions. 
The method is applied to ~olve precisely and efficiently two (decidable) variants of the interprocedural 
constant-propagation problem: copy constant propagation and linear constant propagation. The former 
interprets program statements of the form x := 7 and x := y. The latter also interprets statements of 
the form x := 5 * y + 17. 

1 I n t r o d u c t i o n  

This  paper  concerns how to find precise solutions to a large class of in terprocedural  dataflow- 
analysis problems in polynomial  time. Of the  problems to which our techniques apply, several 
variants  of the  interprocedural constant-propagation problem s tand out  as being of par t icular  
importance.  

In contras t  wi th  intraprocedurai dataflow analysis, where "precise" means "meet-over- 
al l-paths" [Ki173], a precise interprocedural dataflow-anaiysis a lgor i thm must  provide the  
"meet-over-all-valid-paths" solution. (A pa th  is valid if it respects the  fact t h a t  when  a 
procedure finishes it re turns  to the  site of the most  recent call [SP81, Ca188, LR91, KS92, 
Rep94, RSH94, RHS95].) In this  paper ,  we show how to find the  meet-over-all-valid-paths 
solution for a cer ta in  class of dataflow problems in which the  dataflow facts axe maps  ("envi- 
ronments" )  from some finite set of symbols D to some (possibly infinite) set of values L (i.e., 
the  dataflow facts are members  of Env(D, L)), and the  dataflow funct ions ("envi ronment  

t ransformers"  in Env(D, L) -~ Env(D, L)) dis t r ibute  over the  meet  operator  of Env(D, L). 
We call th is  set of datafiow problems the  In te rprocedura l  Dis t r ibut ive  Env i ronmen t  prob-  
lems (or IDE problems,  for short) .  

The  cont r ibut ions  of this  paper  can be  summarized as follows: 

�9 We in t roduce a c o m p a c t  g r a p h  r e p r e s e n t a t i o n  o f  d i s t r i b u t i v e  e n v i r o n m e n t  
t r a n s f o r m e r s .  

�9 We present  a d y n a m i c - p r o g r a m m i n g  a l g o r i t h m  for finding meet-over-all-valid- 
pa ths  solutions. For general IDE problems the  a lgor i thm will not  necessarily te rminate .  
However, we identify a subset  of IDE problems for which the  a lgor i thm does t e rmina te  
and  runs  in t ime O (ED3),  where E is the  number  of edges in the  program's  control-flow 
graph. 

�9 We s tudy  two na tu ra l  var iants  of the  cons tant -propagat ion  problem: copy-constant  
propagat ion  [FL88] and  l inear-constant  propagation,  which extends  copy cons tant  
propagat ion  by interpret ing s ta tements  of the  form x = a * y + b, where a and  b are 
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The environment transformers associated with edges out of call and exit nodes reflect 
the assignments of actual to formal parameters, and vice versa (for call-by-value-result 
parameters). For example, the transformer associated with edge n l  --+ sp in the supergraph 
of Figure t is Aenv.env[a ~ 7]. Aliasing (e.g., due to pointers or reference parameters) can 
be handled conservatively; if x and y might be aliased before the statement x := 5, then the 
corresponding environment transformer would be )~env.env[x --+ 5][y --~ (5 F] env(y))]. 

Linear constant propagation handles assignments of the form x := c and x := cl * y + c2 
where c, ci, and c2 are literals or user-defined constants. The environment transform- 
ers associated with these assignment statements are of the form: )~env.env[x --~ c], and 
)~env.env[x --+ cl * env(y) + c2], respectively. 

For other assignment statements, for example: x := y + z, the associated environment 
transformer is: )~env.env[x --+ _L]. This transformer is a safe approximation to the actual 
semantics of the assignment; the transformer that exactly corresponds to the semantics, 
)~env.env[x ~ env(y) + env(z)], cannot be used in the IDE framework because it is not 
distributive. [] 

3.5 T h e  M e e t  O v e r  A l l  Va l id  P a t h s  S o l u t i o n  

Def in i t ion  3.9 Let IP = (G*,D,L ,M)  be an IDE problem instance. The meet-over-a t l -  
va l ld-pa ths  solution of IP for a given node n E N*, denoted by MVPn,  is defined as 

follows: MVPn d_e_.f Vlqe VP(smain,n)M(q)(Q), where ~ is extended to paths by composition, 

i.e., M([ ]) = Aenv.env and M([et, e2, . . . ,  ej]) d e_f M(e3) o M(e j - I )  o . . .  o M(e2) o M(el ) .  
[] 

In an IDE problem, the environment transformer associated with an intraprocedural edge 
e represents a safe approximation to the actual semantics of the code at the source of e. 
Functions on call-to-return-site edges extract (fl'om the dataflow information valid immedi- 
ately before the call) datafiow hfformation about local variables that must be re-established 
after the return from the call. Functions on exit-to-return-site edges extract dataflow infor- 
mation that is both valid at the exit site of the called procedure and relevant to the calling 

procedure. 
Note that call-to-return-site edges introduce some additional paths in the supergraph 

that do not correspond to standard program-execution paths. The intuition behind the IDE 
framework is that the interprocedurally valid paths of Definition 3.3 correspond to '~paths 
of action ~' for particular subsets of the runtime entities (e.g., global variables). The path 
flmction along a particular path contributes only part of the dataflow information that 
reflects what happens during the corresponding run-time execution. The facts for other 
subsets of the runtime entities (e.g., local variables) are handled by different "trajectories", 
for example, paths that take "short-cuts" via call-to-return-site edges. 

4 Using Graphs to Represent Environment Transformers 

One of the keys to the efficiency of our datafiow:analysis algorithm is the use of a pointwise 
representation of environment transformers. In this section, we show that every distributive 

environment transformer t: Env(D, L) d~ Ens(D, L) can be represented using a set of func- 
tions Ft = {f~,,d[d t, d C D O {A}}, each of type L --+ L. ~-kmction fA,4 is used to represent 
the effects on symbol d that are independent of the argument environment. F~netion fd',d 
captures the effect that the value of symbol d ~ in the argument environment has on the value 
of symbol d in the result environment; if d does not depend on d t, then fd'.d = ),l.T. For 
any symbol d, the value of t(env)(d) can be determined by taking the meet of the values of 
D + 1 individual function applications: t(env)(d) = fA,d(T) V] ([Td, eDfd, d((env)(d')) ). 
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declare x: in teger  
p rog ram main 
begin 

call P(7) 
pr in t  (x) /* x is a constant here */ 

end 

procedure  P (value a : integer) 
b e g i n / *  a is not a constant here */ 

if  a > 0 then  
a:----a--2 
call P (a) 
a : = a + 2  

fi 
x : = - 2 * a + 5  
/* x is not a constant here */ 

end 

FIGURE 1. An example program and its supergraph G*. 

* An intraprocedurat c a l l - t o - r e t u r n - s i t e  edge from c to r; 
. An interprocedural c a l l - t o - s t a r t  edge from c to the start  node of the called procedure: 
�9 An interprocedural e x i t - t o - r e t u r n - s i t e  edge from the exit node of the called proce- 

dure to r. 

The call-to-return-site edges are included so that we can handle programs with local variables 
and parameters;  the dataflow functions on call-to-return-site and exit-to-return-site edges 
permit  the information about local variables that holds at the call site to be combined with 
the information about  global variables that  holds at the end of the called procedure. 

E x a m p l e  3.1 Figure 1 shows an example program and its supergraph. [] 

3 .2  I n t e r p r o c e d u r a l  P a t h s  

D e f i n i t i o n  3.2 A p a t h  of length j from node m to node n is a (possibly empty) sequence 
of j edges, which will be denoted by [el, e2 , . . . ,  e3], s.t., for all i, 1 <_ i < j - 1, the target of 
edge ei is the source of edge ei+l. Path concatenation is denoted by II. [] 

The notion of an "(interprocedurally) valid path" captures the idea that  some paths in 
G* do not respect the fact that  when a procedure finishes, control is transfered to the site 
of the most recent call. A "same-level valid path" is a valid path  that  starts and ends in the 
same procedure, and in which every call has a corresponding return. 

D e f i n i t i o n  3.3 The sets of s a m e - l e v e l  val id  p a t h s  and va l id  p a t h s  in G* are defined 
inductively as follows: 

�9 The empty path is a s a m e - l e v e l  va l id  p a t h  (and therefore a va l id  p a t h ) .  
�9 Path p I1 e ~s a 'va l ld  p a t h  if either e ~s not an exit-to-return-s~te edge andp  is valid 

or e is an exit-to-return-site edge and p = Pa I] ec II Pt where Pt is a same-level valid 
path, Pa is a valid path, and the source node of ec is the call node that matches the 
return-site node at the target of e. Such a path is a s a m e - l e v e l  va l id  p a t h  i f  Ph is 
also a same-level valid path. 
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We denote the set of valid paths from node m to node n by VP(m, n). [] 

3.3 E n v i r o n m e n t s  a n d  E n v i r o n m e n t  T r a n s f o r m e r s  

Def in i t ion  3.4 Let D be a finite set of program symbols. Let L be a fimte-height meet 
semi-lattice with a top element T. 3 We denote the meet operator by M. The set Env(D, L) 
of e n v i r o n m e n t s  is the set of functions from D to L. The following operations are defined 
on Env(D, L): 

�9 The meet operator on Env(D, L), denoted by envtMenv2, is )~d.(envl (d) M env2 (d)). 
�9 The top element in Env(D,L) ,  denoted by ~,  is )~d.T. " 
�9 For an environment env E Env(D,L) ,  d E D, and l E L, the expression env[d --+ 1] 

denotes the environment in which d is mapped to l and any other symbol d ~ ~ d is 
mapped according to env(d~). 

[] 

Example  3.5 In the case of integer constant propagation: 

�9 D is the set of integer program variables. 
�9 L = Z ~ w h e r e x E y i f f y = T , x = _ L ,  o r x = y .  Thus the height of Z Z i s 3 .  

In a constant-propagation problem, Env(D~L) is used as follows: If env(d) E Z then the 
variable d has a known constant value in the environment env; the value J_ denotes non- 
constant and T denotes an unknown value. [] 

Def in i t ion  3.6 An environment transformer t: Env( D , L ) --+ Env( D , L) zs d i s t r ibu t ive  

(denoted by t: Znv(D, L) -~ Env(D, L)) i f f for every envl, env2,. . ,  e Env(D, L), and d E D, 
(t([7~envi))(d) = ~i(t(envi))(d). Note that this equality must also hold for infinite sets of 
environments. [] 

3.4 T h e  D a t a f l o w  F u n c t i o n s  

A datafiow problem is specified by annotating each edge e of G* with an environment 
transformer that captures the effect of the program operation at the source of e. 

Def in i t ion  3.7 An ins tance  of an i n t e rp rocedura l  d i s t r ibu t ive  e n v i r o n m e n t  prob-  
lem (or IDE  prob lem for short) is a four-tuple, IP = (G*, D, L~ M),  where: 

�9 G* is a supergraph. 
�9 D and L are as defined in Definition 3.4. 

�9 M:E* -+ (Env(D,L) d Env(D,L))  is an assignment of distmbutwe environment 
transformers to the edges of G*. 

[] 

Example  3.8 In the case of linear constant propagation, the interesting environment trans- 
formers are those associated with edges whose sources are start nodes, call nodes, exit nodes, 
or nodes that represent assignment statements. 

Whether edges out of start nodes have non-identity environment transformers depends 
on the semantics of the programming language. For example, these edges' environment 
transformers may reflect the fact that a procedure's local variables are uninitialized at 
the start of the procedure; that is, the transformers would be: Aenv.env[xl -+ -L][x2 -+ 
J-]... [xn --+ _L] for all local variables xi. The environment transformers for the edges out of 
the start node for the program's main procedure may also reflect the fact that global variables 
are uninitialized when the program is started. For example, the environment transformer 
associated with edge Smain ~ n l  in the supergraph of Figure 1 is: )~env.)~d.• 

aHence, L is also complete and has a least element, denoted by J_. 
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literals or user-defined constants. The IDE problems that correspond to both of these 
variants fall into the above-mentioned subset; consequently, our techniques solve all 
ins tances  of these  cons t an t -p ropaga t ion  problems in  t i m e  O(E MaxVisible3), 
where "MaxVisible" is the maximum number of variables visible in any procedure of 
the program. The algorithms obtained in this way improve on the well-known constant- 
propagation work from Rice [CCKT86, GT93] in two ways: 

�9 The Rice algorithm is not precise for recursive programs. (In fact, it may fall into 
an infinite loop when applied to recursive programs). 

�9 Because of limitations in the way "return jump functions" are generated, the Rice 
algorithm does not even yield precise answers for all non-recursive programs. 

In contrast, our algorithm yields precise results,  for b o t h  recurs ive  a nd  non-  
recurs ive  programs.  

�9 Our dataflow-analysis algorithm has been implemented and used to analyze C pro- 
grams. Preliminary experimental results are reported in Section 6. 

The remainder of the paper is organized as follows: In Section 2 we introduce the copy 
constant-propagation and linear constant-propagation problems. Linear constant propaga- 
tion is used in subsequent sections to illustrate our ideas. In Section 3 we define the class of 
IDE problems. In Section 4, we define the compact graph representation of distributive envi- 
ronment transformers and show how to use these graphs to find the meet-over-all-valid-paths 
solution to a dataflow problem. Section 5 presents our dynamic-programming algorithm. In 
Section 5.4, we discuss the application of our approach to the copy constant-propagation 
and linear constant-propagation problems. Preliminary experiments in which our algorithm 
has been applied to perform linear constant propagation on C programs are reported in 
Section 6. Section 7 discusses related work. Section 8 gives an overview of how the work has 
been extended to perform demand-driven dataflow analysis. 

2 D i s t r i b u t i v e  C o n s t a n t - P r o p a g a t i o n  P r o b l e m s  

There are (at least) two important variants of the constant-propagation problem that fit 
into the framework presented in this paper: copy constant propagation and linear constant 
propagation. In copy constant propagation, a variable x is discovered to be constant either 
if it is assigned a constant value (e.g., x :-- 3) or if it is assigned the value of another variable 
that is itself constant (e.g., y := 3; x := y). All other forms of assignment (e.g., x := y + 1) 
are (conservatively) assumed to make x non-constant. 

Linear constant propagation identifies a superset of the instances of constant variables 
found by copy constant propagation. Variable x is discovered to be constant either if it is 
assigned a constant value (e.g., x := 3) or if it is assigned a value that is a linear function of 
one variable that is itself constant (e.g., y :-- 3; x := 2 ,  y + 5). All other forms of assignment 
are assumed to make x non-constant. 

3 T h e  I D E  F r a m e w o r k  

3.1 P r o g r a m  R e p r e s e n t a t i o n  

A program is represented using a directed graph G* - (N*, E*) called a supe rg raph .  G* 
consists of a collection of flow-graphs G1,G2,.. .  (one for each procedure), one of which, 
Gmain, represents the program's main procedure. Each flowgraph Gp has a unique s t a r t  
node sp, and a unique exit  node ep. The other nodes of the fiowgraph represent statements 
and predicates of the program in the usual way, except that a procedure call is represented 
by two nodes, a call node and a r e tu rn - s i t e  node. 

In addition to the ordinary intraprocedural edges that connect the nodes of the individual 
flowgraphs, for each procedure call, represented by call-node c and return-site node r, G* 
has three edges: 
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It is convenient to represent t as a graph with 2(D + 1) nodes and at most (D + 1) 2 edges, 
where each edge d ~ -~ d is annotated with the function fd',d as described above. (An edge 
function AI.T does not contribute to the final value of a symbol; therefore, the edges that 
would normally be annotated with that function can be omitted from the graph.) 

In this section we show that the meet-over-all-valid-paths solution in G* can be found by 
finding the "meet-over-atl-realizab]e-paths" solution of a related problem in a graph G#xp 
obtained by pasting together the representation graphs for every control flow edge in G*. 

4.1 A P o i n t w i s e  R e p r e s e n t a t i o n  o f  E n v i r o n m e n t  T r a n s f o r m e r s  

Defini t ion 4.1 Let t: Env(D,  L) ~ Env(D, L) be an environment transformer and let A 
D. The pointwise  represen ta t ion  oft ,  denoted by JRt: (DU{A}) • (DU{A}) --+ (L --+ L), 
is defined by: 

l 
id 
~l.t(n)(d) 

Rt (d td )  def s 
= id 

)d. t(a[d' --+ l])(d) 
l=T} 

O.W. 

d ~ = d = h  
d ~ =A,  dE D 

d ~, d E D A Vt.t(~[d ~ ~ / ] ) (d )  = t(fl)(d) 
d', d e D A Vl.t(~[d' -+ l])(d) = t ( a ) ( d ) n l  

O.W. 

Also, for a given representation R~: (D U {A}) • (D U {A}) -+ (L -+ L), the in te rpre ta t ion  

of Rt, [Rt~: E n v ( D , L )  -~ Env (D ,L )  is the distributive environment transformer defined by 

[Rt~(env)(d) d__ef Rt(A, d)(T) I-1 (F]d, EDRt(~  ~ d)(env(dr))) (1) 

Example  4.2 Figure 2 shows the pointwise representations of the environment transform- 
ers for linear constant propagation for the supergraph of Figure 1. O 

The intuition behind the definition of Rt is that "macro-function" t is broken down into 
"micro-functions" that are basically of the form )4.t(~[d ~ --~ l])(d). More precisely, all mica-o- 
functions Rt(dr, d), where d t r A, are co-strict variants of At.t(Q[d t -+ l])(d). The micro- 
functions Rt(A, d) are the only non-co-strict micro-functions; they play a role similar to 
the "gen" sets of gen-kill problems. The top function is used whenever possible, i.e., when 
)d.t(i'~[d ~ -+/])(d) is equal to Rt(A, d) and thus does not contribute to the right-hand side of 
(1). Finally, the identity function is used whenever possible, i.e., when the right-hand side 
of (1) will have the same value when id is substituted for Al.t(fl[d ~ --+ l])(d). 

T h e o r e m  4.3 For every t :Env (D ,L)  ~ Env(D,L) ,  t -- ~Rt~. 0 

Pointwise representations are closed under composition, as captured by the following 
definition and theorem. 

Defini t ion 4.4 The compos i t ion  Rt, ; R~  of pointu~se representations Rtl , Rt2: (DU{A} x 

(D t3 {A}) -4 (L -+ L) ~s defined by: (Rt~; Rt2)(d', d)(1) d__ef Rz~Du{A}Rt 2 (z, d)(Rt~ (d', z)(l)). 
[] 

T h e o r e m  4.5 For all t;, tz,. . . , tn: Env(D, L) -+ Env(D,  L), 
[Rt~;Rt2;-";Rt~] = tn o tn_l o . . .  o ti.  [3 

Definition 4.4 means that Rt~ ; Rt2 yields another representation graph. Theorem 4.5 means 
that the composition-of several environment transformers can be represented by a single 
representation graph. That is, environment transformers are "compressible": there is a bound 
on the size of the graph needed to represent any such function as well as the  composi t ions  
of  such functions! 
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K~ 

KI, 

1+2 

FIGURE 2. The labeled exploded supergraph for the running example program for the linear con- 
stant-propagation problem. The edge functions are all )~l.l except where indica.ted. 

4.2 T h e  L a b e l e d  E x p l o d e d  S u p e r g r a p h  

Definit ion 4.6 Let IP = (G* ,D,L ,M)  be an IDE problem instance. The labeled ex- 

p loded supe rg raph  of IP is a directed graph Gyp = (N #, E #) where N # d_e_f N* x (D U 

{A}) and E # d ef {(m,d') --+ (n,d) i m  --+ n E E*,RM(m~n)(d~,d) r .~I.T}. Edge labels are 

given by a function EdgeFn:E # --+ (L --+ L) defined to be: EdgeFn((m,d ~) -+ (n,d)) d_e_f 
RM(m_.~n  ) (d',  d). 

A path p in G#Ip is a realizable pa th  if  the corresponding path in G* is a valid path. 
We denote the set of realizable paths from an exploded-graph node em to an exploded-graph 
node en by RP(em,  en). Same-level realizable paths  are defined similarly. [] 

Example  4.7 Figure 2 contains the exploded supergraph for the running example program 
labeled with the non-identity EdgeFn functions. [] 

Definit ion 4.8 Let IP -- (G*, D, L, M)  be an IDE problem instance. The meet-over-al l -  
real izable-paths  solution of IP for a given exploded node en E N #, denoted by MRPen, 
is defined as follows: 

MRP e,~ def Mqe RP ( (S main ,h),en) P athF n ( q) (T) 

where PathFn is EdgeFn extended to paths by composition. [] 

We now state the theorem that is the basis for our algorithm for solving IDE problems: 

T h e o r e m  4.9 For every n C N* and d E D, ~VPn(d )  = MRP(n,d ). [] 
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The consequence of this theorem is that we can solve IDE problems by solving a related 
problem on the labeled exploded supergraph. 

5 A D y n a m i c  P r o g r a m m i n g  A l g o r i t h m  

In this section, we present an algorithm to compute the meet-over~all-valid-paths solution 
to a given dataflow problem instance IP. The input to the algorithm is the labeled exploded 
supergraph G#ip; when the algorithm finishes, for every exploded-graph node en E N #, 
vaI(en) = MRPen. The algorithm operates in two phases, which are shown in Figures 3 and 
4. In Phase I, the algorithm builds up path functions (recorded in PathFn) and summary 
functions (recorded in SummaryFn). Path functions and summary functions are defined 
in terms of edge functions (EdgeFn), and other path functions and summary functions. In 
Phase II, the path functions are used to determine the actual values associated with nodes 
of the exploded graph. 

5.1 P h a s e  I 

Phase I is performed by procedure ComputePathFunctions, shown in Figure 3. ComputePath- 
Fhnctions is a dynamic-programming algorithm that repeatedly computes path functions, 
which are functions from L to L, for longer and longer paths in G#Ip. The path functions to 
(n, d) summarize the effects of same-level realizable paths from the start  node of n's proce- 
dure p to (n, d). There may be a path function from {Sp, d 1) to (n, d) for all d I E D U {A}. 
ComputePathFunctions also computes summary functions, which summarize the effects of 
same-level realizable paths from nodes of the form (c, dl), where c is a call node, to (r, d), 
where r is the corresponding return-site node. 

ComputePathFunctions is a worklist algorithm that computes successively better approxi- 
mations to the path and summary functions. It starts by initializing path and summary func- 
tions to Al.T. The worklist is initialized to contain the path from (Smain , A) to (Smain , A), 
and the path function for that path is initialized to the identity function, id. On each itera- 
tion of the mMn loop, the algorithm determines better approximations to path and summary 
functions. 

To reduce the amount of work performed, ComputePathFunctions uses an idea similar to 
the "minimal-function-graph" approach [JM86]: Only after a path function for a path from 
a node of the form (Sp, dl) to a node of the form (c, d~) has been processed, where c is a call 
on procedure q, will a path from (Sq, d3) to (sq, d3) be put on the worklist - -  and then only 
if edge (c, d2) -+ (Sq, d3) is in E #. 

5.2 P h a s e  I I  

Phase II  is performed by procedure ComputeValues, shown in Figure 4. In this phase, the 
path functions are used to determine the actual MRP values assbciated with nodes of the 
exploded graph. Phase II  consists of two sub-phases: 

(i) An iterative algorithm is used to propagate values from the start  node of the main 
procedure to all other start  nodes and all call nodes. To compute a new approximation 
to the value at start  node (sp, d), EdgeFn(en, (sp; d)) is applied to the current approx- 
imation at all nodes en associated with calls to p. To compute a new approximation 
to the value at call node (c, d) in procedure q, PathFn((sq, dr), (c, d)) is applied to the 
current approximations at all nodes (Sq, d~). 

(ii) Values are computed for all nodes (n, d) that are neither start nor call nodes. This 
is done by applying PathFn((sp, d~), (n, d)) to MRP((sp, de}) for all d ~ (where p is the 
procedure that  contains n), and taking the meet of the resulting values. 

Note that  val((smain, A)) is initialized to • in Phase II(i). As a result _l_ is propagated 
to all nodes of the form (n, A). Because the function on an edge from one of these nodes to 
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p r o c e d u r e  ComputePathFunctions 0 
b e g i n  

for  all (sp, d'), (m, d) such that  m occurs in procedure p and d', d C D U {A} do 
PathFn((sp, d'), (m, d)) = .kl.T od 

for  all corresponding call-return pairs c, r and d J, d ~ D U {A} do 
SummaryFn((c, d/), (r, a~) = ~l.T od 

WorkList:= { (Smain, A) -~ (Smain , A)} 
PathFn( (Smain , A) -~ (Smain, A)) := id 
while  WorkList ~ 0 do 

Select and remove an edge (sp, dl) -~ I n, d2) from WorkList 
let  f = PathFn((sp, dl) -+ (n, d2)) 
swltch(n)  

case  n is a call node in p, calling a procedure q: 
for  each d3 s.t. (n, d2) ~ (sq,d3) e E # do 

Propagate ((8q, d3) -~ (sq, d3), id) od 
let r be the return-site node that corresponds to n 
for  each d3 s.t. e --- (n, d:) -4 (r, d3) E Z # do 

Propagate((sp, dl) --4 (r, d3), EdgeFn(e) 0 J:) od 
for  each d3 s.t. ]3 = SummaryFn((n, d:) --4 (r, d3)) ~ AI.T do 

Propagate((Sp, dl) -~ (r, d3), f3 0 f)  od endcase  
case  n is the exit node of p: 

for  each call node c that  calls p with corresponding return-site node r do 
for  each da,d5 s.t. (c, d4) -+ (sp,dl) e E # and (ep, d~) -+ (r, ds) E E # do 

let  fa = EdgeFn((c, d4) -+ (sp,dl)) and 
f5 = EdgeFn( (ep, d2) -~ (r, ds)) and 
f '  = (f5 0 f 0 f4)NSummaryFn((c, d4) --+ (r, ds)) 

if f '  r SummaryFn( (c, d4) --4 (r, ds)) t h e n  
SummaryFn((c, da) -4 (r, d5)) := f '  
le t  sq be the start node of c's procedure 
for each d3 s.t. f3 = PathFn((sq,d3) --4 (c, d4)) r s  do 

Propagate((Sq, d3) -+ (r, ds), f ' o  f3) od fi od od endcase  
defaul t :  

for  each (m, d3) s.t. (n, d2) -4 (m, d3) E E # do 
Propagate((sp, dl) --~ (m, d3), EdgeFn((n, d2) -+ (m, d3) ) 0 f )  od  endcase  

end  swi tch  od 
end  
p r o c e d u r e  Propagate(e, f)  
beg in  

let f '  = f•PathFn(e) 
if f~ ~ PathFn(e) t h e n  

PathFn(e) := f 
Insert e into WorkList fi 

end  

FIGURE 3. The algorithm for Phase I. 
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p r o c e d u r e  ComputeValues 0 
beg in  

/* Phase II(i) */ 
for each en E N # do val(en) := T od 
val((smain , A)) := .L 
WorkList:= { (Smain,A) } 
while  WorkList ~ 0 do 

Select and remove an exploded-gr@h node (n, d) from WorkList 
swi tch(n)  

case n is the start node of p: 
for each c tha t  is a call node inside p do 

for each d' s.t. f l  ___ PathFn((n,d) -+ (c, dl)) ~ )d.T do 
PropagateValue((c, d~),f'(val((Sv, d)))) od od endcase  

case n is a call node in p, calling a procedure q: 
for each d r s.t. (n, d) -+ (sq, s  E E# do 

PropagateValue( (sq, dl), EdgeFn( (n, d) -+ (sq, d') ) ( val ( (n, d)))) od endcase  
end  swi tch  od  

/* Phase II(ii) */ 
for each node n~ in a procedure p, that is not a call or a start node do 

for each d ~, d s.t. f '  -- PathFn((sp, d') -~ (n, d)) ~ Al.T do 
val((n, d)) := val((n, d)) ~ ]'(val((sp, d'))) od od  

end  
p r o c e d u r e  PropagateValue(en, v) 
beg in  

le t  v r = v ~ val(en) 
if  v' ~ val(en) t h e n  

val(en) :-- v' 
Insert en into WorkList fi 

end  

FIGURE 4. The algorithm for Phase II. 

a non-A node em is always a constant  function (see Definition 4.1), the  _L value at  (n ,A  / 
cannot affect the value at era. 

Example 5.1 When applied to the exploded graph of Figure 2, our algorithm discovers 
that x has the constant value -9 at node n3 (the print statement in the main procedure), 
and that a does not have a constant value at node sp (the start node of procedure P). 
During Phase I, the algorithm computes the following relevant path and summary func- 
tions: PathFn((sp,  a) -~ (n6, a)) = Al .1-  2, PathFn((sp,  a) -+ (ep ,x) )  = A l . -  2 . l + 5, 
SummaryFn( (n l ,A )  -+ (n2~x)) = ~l. - 9, PathFn((Smain,A ) -+ (n2, x)) = . k l . -  9, and  
PathFn( (Smain , A) -+ (n3, x) ) = AI. - 9. 

During  Phase  II(i), values are propagated as follows to discover t h a t  a is not  cons tant  

a t  node sp: val((smain,A)) := •  val((nl ,A))  := J_, val(Isp,a))  :=  7, val((n6, a)) :=  5, 
val((sp, a)) :=  5 I-1 7 ---- _L. 

Dur ing  Phase  II(ii), PathFn((Smain, A) --~ (n3, x)) is applied to val((smain, A)), produc-  
ing the  value - 9 .  [] 

5 . 3  T e r m i n a t i o n  a n d  C o s t  I s s u e s  

The  a lgor i thm of the  previous section does not t e rmina te  for all IDE problems;  however, it 
does t e rmina te  for all copy constant-propagat ion problems,  all l inear cons tan t -propaga t ion  
problems,  and,  in general, for all problems for which the  space F of value- t ransformer  
funct ions contains no infinite decreasing chains. (Note t ha t  it is possible to const ruct  infi- 
n i te  decreasing chains even in certain distr ibutive variants  of cons tan t  propagat ion  [SP81, 
page 206].) 
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The cost of the algorithm is dominated by the cost of Phase I. This phase can be carried 
out particularly efficiently if there exists a way of representing the functions such that the 
functional operations can be computed in unit-time. 

These termination and cost issues motivate the following definition: 

Def in i t ion  5.2 A class of value-transformer functions F C L ~ L has an efficient rep- 
r e sen ta t ion  if 

�9 id E F and F is closed under functional meet and composition. 
�9 F has a finite height (under the pointwise ordering). 
�9 There is a representation scheme for F with the following properties: 

Apply:  Given a representation for a ]unction f E F, for every I E L, ](1) can be 
computed in constant time. 4 

Compos i t ion :  Given the representations for any two functions f l ,  f2 E F, a repre- 
sentation for the function f l  o ]2 E F can be computed in constant time. 

Meet:  Given the representations for any two functions f l , f 2  E F, a representation 
]or the function flMf2 E F can be computed in constant time. 

EQU: Given the representations for any two functions fl~ f2 E F,  it is possible to test 
in constant time whether f l  = f2. 

Storage: There is a constant bound on the storage needed for the representation of 
any function f E F. 

An IDE problem instance IP = ( G*, D, L, M) is efficiently r ep resen tab le  z] for every 
e E E*, and dr, d E D, RM(e)(dr, d) E F for some class of functions F that has an eJ~cient 
representatwn. [] 

Note that in the above definition we do not impose any restrictions on RM(e)(d ~, d) when 
either d ~ or d is A. This is based on the assumption that the constant functions and the 
identity function can always be represented in an efficient manner. (Similarly, we assume 
that A1.T can always be represented in an efficient manner.) 

In describing the cost of the algorithm it is convenient to introduce the notions of path 
edge and summary edge. A path edge is a pair of exploded-graph nodes whose path function 
is not equal to AI.T; likewise, a summary edge is a pair of exploded-graph nodes whose 
summary function is not equal to hI.T. 

The source of a path edge is a node of the form (s, d), where s is the start node of some 
procedure; thus, there can be at most D + 1 path-edge sources in each procedure. Each 
iteration of Phase I extends a known path edge by composing it with (the function of) 
either an E # edge or a summary edge. There are at most O(ED 2) such edges. Because each 
edge e can be used in the operation "extend a path along edge e" once for every path-edge 
source, there are at most O(ED 3) such composition steps. 

For each path edge and summary edge fl'om an exploded node (n, A/, the path-function 
value can change at most height of L times. Similarly, path edges and summary edges 
emanating from other exploded nodes (n, d), d E D, can change at most height of F times. 
Consequently, the total cost of Phase I, and thus of the entire algorithm, is bounded by 
O(ED 3) (where the constant of proportionality depends on the heights of L and F.) 

5.4 S o m e  Ef f i c i en t ly  R e p r e s e n t a b l e  I D E  P r o b l e m s  

Copy C o n s t a n t  P r o p a g a t i o n  

In copy constant propagation, all of the constant functions Al.c are associated with edges of 
the form (m, A) -+ (n, d). The only functions on "non-A" edges are identity functions. Since 

4We assume a uniform-cost measure, rather than a logarithmic-cost measure; e.g., operations on integers 
can be performed in constant time. 
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id o i d  = id and id Mid = id, the class F = {id} is trivially a class of functions that has an 
efficient representation. 

L inear  C o n s t a n t  P ropaga t ion  

Linear constant propagation can be handled using the set of functions ~c = {Al.(a*l+b)Mc I 
a E Z -  {0}, b E Z, and c E Z~}. (The functions where a = 0 are the constant functions, and, 
as in copy constant propagation, these are all associated with "A" edges.) Every function 
] E/~r can be represented by a triple (a, b, c) where a E Z - {0}, b E Z, and c E Z~ where: 

T I = T  
f = )~l. (a * I + b) N c otherwise 

Fie has an efficient representation because: 

�9 i d  E Ftc 
�9 Longest chains in/~c have the form: Al.(a �9 l + b) ~ %l.(a �9 I + b) F] c ~ Al.• for some 

a,b,c E Z. 
�9 The four representation requirements are met: 

I~lPePlY: TriviM. 
et: 

l (al,bl,Cl Y]c2) al = a2,bl = b2 
(at,bl..Cl)R(a2,b2, c2) = (a l 'b l ' c )  c =  (al * t0 + bl) Nct Mc2, where 

l0 = (5I - b2)/(a2 - al) E Z 
(1,0,• o .w .  

Composi t ion:  (al, hi, c;) o (a2, b2, c2) = ((ala2), (alb2 + bl), ((alc2 + bl) M cz)). Here 
it is assumed that x ,  T = T , x  = x + T  = T + x  = T for x E Z. 

EQU:  All representations except that of ~l.2 are unique. Any t ~  triples in which 
c = • represents %1.2. However, equality can still be tested in unit time. 

The third component c is needed so that the meet of two functions can be represented. 
For example, consider the code fragment if --- t h e n  y :--- 5 * x - 7 else y := 3 * x + 1 
ft. Variable y is only constant after the if when the initial value of x is 4, and in this case 
y's value is 13. Therefore, the meet of the functions in the then- and else-branches for y in 
terms of x is represented by (5, -7,13). 

Linear constant propagation can be also performed on real numbers R~. In this case, the 
meet operation is slightly simpler because there no need to test whether a2 - a l  divides 
bl - b2 evenly - -  only that a2 # al if b2 # bt. 

6 P r e l i m i n a r y  E x p e r i m e n t s  

We have carried out a preliminary study to determine the feasibility of the dynamic- 
programming algorithm and to compare its accuracy and time requirements with those 
of the naive algorithm that considers all paths rather than just the realizable paths. (The 
latter approach is still safe, but may be less accurate than the algorithm that considers 
only realizable paths, For example, for the program in Figure 1, variable x would not be 
identified as a constant at the print statement in procedure main.) The two algorithms 
were implemented in C and used with a front end that analyzes a C progTa~n and generates 
the corresponding exploded supergraph for the integer linear constant-propagation problem, 
(Pointers were handled conservatively; every assignment through a pointer was considered 
to kill all variables to'which the "~z" operator is applied somewhere in the program; all uses 
through pointers were considered non-constant.) The study used five C programs taken from 
the SPEC integer benchmark suite [SPE92]. Tests were carried out on a Sun SPARCstation 
20 Model 61 with 64 MB of RAM. 
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Example 
compress 
eqntott 
gcc. cpp 
li 
8C 

Lines of code 
Source Preprocessed 

1503 657 
3454 2570 
7037 4079 
7741 6054 
8515 7378 

Procedures Calls N E D 
'15 28 1329 1464 77 
61 211 4015 4266 57 
71 306 6492 7344 91 
356 1707 13286 12648 56 
151 682 12366 13157 150 

TABLE 1. Sizes of the input programs. 

Example 
compress 
eqntott 
9cc. cpp 
h 
Sc  

Dynamic Programming 
Time Constants Lines/see. 

2.3 + .57 82 524 
4.53 + 1.59 9 564 
14.2 + 6.58 37 339 

51.69 + 43.23 2 81 
47.91 § 43.12 78 94 

Naive Algorithm 
Time Constants Lines/see. 

I .91 + .40 50 1147 
2.42 + .14 9 1349 
8.1 + .28 29 840 

9.96 + .34 2 752 
20.4 ~- 1.13 72 395 

TABLE 2. CPU times and number of constants discovered. 

Table 1 gives information about code size (lines of source code and lines of preprocessed 
source code) and the parameters that characterize the size of the control-flow graphs. Ta- 
ble 2 compares the cost and accuracy of the dynamic-programming algorithm and the naive 
algorithm. The running times are "user cpu-time" + "system cpu-time" (in seconds) for 
the algorithms once the exploded supergraph is constructed. The columns labeled "Con- 
stants" indicate the number of right-hand-side variable uses that were found to be constant. 
"Lines/sec2 indicates the number of lines of source code processed per second. 

7 R e l a t e d  W o r k  

The IDE framework is based on earlier interprocedural dataflow-analysis frameworks defined 
by Sharir and Pnueli [SP81] and Knoop and Steffen [KS92], as well as the interprocedural, 
fin#e, distributive, subset framework (or IFDSframework, for short) that we proposed earlier 
[RSH94, RHS95]. The IDE framework is basically the Sharir-Pnueli framework with three 
modifications: 

(i) The dataflow domain is restricted to be a domain of environments. 
(ii) The dataflow functions are restricted to be distributive environment transformers. 

(iii) The edge from a call node to the corresponding return-site node can have an associated 
dataflow function. 

Conditions (i) and (ii) are restrictions that make the IDE framework less general than the full 
Sharir-Pnueli framework. Condition (iii), however, generalizes the" Sharir-Pnueli framework 
and permits it to cover programming languages in which recursive procedures have local 
variables and parameters (which the Sharir-Pnueli framework does not). A different gener- 
alization to handle recursive procedures with local variables and parameters was proposed 
by Knoop and Steffen [KS92]. 

The IDE framework is a strict generalization of the IFDS framework proposed in [RSH94, 
RHS95]. In IFDS problems, the set of dataflow facts D is a finite set and the dataflow 
functions (which are in 2 D --+ 2 D) distribute over the meet operator (either union or inter- 
section, depending on the problem). Some IDE problems can be encoded as IFDS problems; 
however, an IDE problem in which L is infinite - -  such as the linear constant-propagation 
problem - -  cannot b& translated into an IFDS problem. Consequently, this paper strictly 
extends the class of interprocedural dataflow-analysis problems known to be solvable in 
polynomial time. However, even when L is finite, the algorithm presented in this paper will 
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perform much better than the algorithm for IFDS problems for many kinds of problems. For 
example, in the case of copy constant propagation, in any given problem instance the size 
of L is no larger than the number of constant titerals in the program. The IDE version of 
copy constant propagation involves environments of size D, where D is the set of program 
variables; by contrast, the IFDS version involves subsets of D x L. For some C programs 
that we investigated (of around 1,300 lines), the IFDS version ran out of virtual memory, 
whereas the IDE version finished in a few seconds. 

The algorithm for solving IDE problems yields an efficient polynomial algorithm for deter- 
mining precise (i.e., meet-over-all-valid-paths) solutions. For both copy constant propagation 
and linear constant propagation, there are several antecedents. A version of interprocedural 
copy constant propagation was developed at Rice and has been in use for many years. The 
algorithm is described in [CCKT86], and studies of how the algorithm performs in practice 
on Fortran programs were carried out by Grove and Torczon [GT93]. However, the Rice 
algorithm has two potential drawbacks that our algorithm does not have: 

�9 The Rice algorithm is not precise for recursive programs. (In fact, it may fall into an 
infinite loop when applied to recursive programs.) 

�9 Because of limitations in the way "return jump functions" are generated, the Rice 
algorithm does not yield precise answers for all non-recursive programs. 

We have also shown in this paper how to solve linear constant-propagation problems, 
which in general find a superset of the instances of constant variables found by copy constant 
'propagation. Several others have also examined classes of constant-propagation problems 
more general than copy constant propagation [Kar76, SKgl, GT93, MS93]. 

8 D e m a n d  D a t a f l o w  A n a l y s i s  

We have developed and implemented a demand algorithm for the IDE framework. The 
demand algorithm finds the value of a given symbol d E D at a given control flow graph 
node n E N*. Because of space limitations we confine ourselves to a brief summary of this 
work. 

The demand algorithm is similar to the dynamic-programming algorithm of Section 5; 
however, in the demand algorithm, path functions are computed during a backwards traver- 
sal of G#lp (i.e., edges are traversed from target to source). The relationship between the 
demand algorithm and the algorithm of Section 5 is similar to the relationship that holds 
for IFDS problems between the demand algorithm of [RSH94, HRS95] and the exhaustive 
algorithm of [RSH94, RHS95]. 

A different approach to obtaining demand versions of interprocedural dataflow-analysis 
algorithms has been investigated by Duesterwald, Gupta, and Sofia [DGS95]. In their ap- 
proach, for each query a set of dataflow equations is set up on the flow graph (but as if 
all edges were reversed). The flow functions on the reverse graph are the (approximate) in- 
verses of the forward flow functions. These equations are then solved using a demand-driven 
fixed-point-finding procedure. 

Our demand algorithm has the following advantages over the algorithm given by Duester- 
wald, Gupta, and Sofia: 

(1) Their algorithm only applies when L has a finite number of elements, whereas we 
require only that  L and F be of finite height. For example, linear constant propagation, 
where L has an'infinite number of elements, is outside the class of problems handled 
by their algorithm. 

(2) Instead of computing the value of d at n, their algorithm answers queries of the form 
"Is the value of d at n ~ / ? "  for a given x~lue 1 E L. In linear constant propagation, 
there is no way to use queries of this form to find the constant value of a given variable. 

(3) When restricted to IFDS problems, the worst-case cost of the Duesterwald-Gupta-Soffa 
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technique is O(E D 2D). In contrast, the worst-case cost of our demand algorithm is 
O(Z  D3). 

Duesterwald, Gupta, and Sofia also give a specialized algorithm that, for copy constant 
propagation, remedies problems (2) and (3). 
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