
Precise Interprocedural Dataflow Analysis
with Applications to Constant Propagat ion 1

Mooly Sagiv, 2 Thomas Reps, and Susan Horwitz
Compute r Sciences Depar tment , University of Wisconsin-Madison

1210 West Dayton Street, Madison, WI 53706 USA
Electronic mail: {sagiv, reps, horwitz}~cs.wisc.edu

ABSTRACT This paper concerns interprocedural dataflow-analysis problems in which the dataltow
information at a program point is represented by an environment (i.e., a mapping from symbols to
values), and the effect of a program operation is represented by a distributive environment transformer.
We present an efficient dynamic-programming algorithm that produces precise solutions.
The method is applied to ~olve precisely and efficiently two (decidable) variants of the interprocedural
constant-propagation problem: copy constant propagation and linear constant propagation. The former
interprets program statements of the form x := 7 and x := y. The latter also interprets statements of
the form x := 5 * y + 17.

1 I n t r o d u c t i o n

This paper concerns how to find precise solutions to a large class of in terprocedural dataflow-
analysis problems in polynomial time. Of the problems to which our techniques apply, several
variants of the interprocedural constant-propagation problem s tand out as being of par t icular
importance.

In contras t wi th intraprocedurai dataflow analysis, where "precise" means "meet-over-
al l-paths" [Ki173], a precise interprocedural dataflow-anaiysis a lgor i thm must provide the
"meet-over-all-valid-paths" solution. (A pa th is valid if it respects the fact t h a t when a
procedure finishes it re turns to the site of the most recent call [SP81, Ca188, LR91, KS92,
Rep94, RSH94, RHS95].) In this paper , we show how to find the meet-over-all-valid-paths
solution for a cer ta in class of dataflow problems in which the dataflow facts axe maps ("envi-
ronments") from some finite set of symbols D to some (possibly infinite) set of values L (i.e.,
the dataflow facts are members of Env(D, L)), and the dataflow funct ions ("envi ronment

t ransformers" in Env(D, L) -~ Env(D, L)) dis t r ibute over the meet operator of Env(D, L).
We call th is set of datafiow problems the In te rprocedura l Dis t r ibut ive Env i ronmen t prob-
lems (or IDE problems, for short) .

The cont r ibut ions of this paper can be summarized as follows:

�9 We in t roduce a c o m p a c t g r a p h r e p r e s e n t a t i o n o f d i s t r i b u t i v e e n v i r o n m e n t
t r a n s f o r m e r s .

�9 We present a d y n a m i c - p r o g r a m m i n g a l g o r i t h m for finding meet-over-all-valid-
pa ths solutions. For general IDE problems the a lgor i thm will not necessarily te rminate .
However, we identify a subset of IDE problems for which the a lgor i thm does t e rmina te
and runs in t ime O (ED3), where E is the number of edges in the program's control-flow
graph.

�9 We s tudy two na tu ra l var iants of the cons tant -propagat ion problem: copy-constant
propagat ion [FL88] and l inear-constant propagation, which extends copy cons tant
propagat ion by interpret ing s ta tements of the form x = a * y + b, where a and b are

1This work was supported in part by a David and Lucile Packard Fellowship for Science and Engineering,
by the National Science Foundation under grants CCR-8958530 and CCR-9100424, by the Defense Advanced
Research Projects Agency under ARPA Order No. 8856 (monitored by the Office of Naval Research under
contract N00014-92-J-1937), by the Air Force Office of Scientific Research under grant AFOSR-91~0308, and
by a grant from Xerox Corporate Research. Part of this work was done while the authors were visiting the
University of Copenhagen.

2On leave from IBM Scientific Center, Haifa, Israel.

652

The environment transformers associated with edges out of call and exit nodes reflect
the assignments of actual to formal parameters, and vice versa (for call-by-value-result
parameters). For example, the transformer associated with edge n l --+ sp in the supergraph
of Figure t is Aenv.env[a ~ 7]. Aliasing (e.g., due to pointers or reference parameters) can
be handled conservatively; if x and y might be aliased before the statement x := 5, then the
corresponding environment transformer would be)~env.env[x --+ 5][y --~ (5 F] env(y))].

Linear constant propagation handles assignments of the form x := c and x := cl * y + c2
where c, ci, and c2 are literals or user-defined constants. The environment transform-
ers associated with these assignment statements are of the form:)~env.env[x --~ c], and
)~env.env[x --+ cl * env(y) + c2], respectively.

For other assignment statements, for example: x := y + z, the associated environment
transformer is:)~env.env[x --+ _L]. This transformer is a safe approximation to the actual
semantics of the assignment; the transformer that exactly corresponds to the semantics,
)~env.env[x ~ env(y) + env(z)], cannot be used in the IDE framework because it is not
distributive. []

3.5 T h e M e e t O v e r A l l Va l id P a t h s S o l u t i o n

Def in i t ion 3.9 Let IP = (G*,D,L ,M) be an IDE problem instance. The meet-over-a t l -
va l ld-pa ths solution of IP for a given node n E N*, denoted by MVPn, is defined as

follows: MVPn d_e_.f Vlqe VP(smain,n)M(q)(Q), where ~ is extended to paths by composition,

i.e., M([]) = Aenv.env and M([et, e2, . . . , ej]) d e_f M(e3) o M(e j - I) o . . . o M(e2) o M(el) .
[]

In an IDE problem, the environment transformer associated with an intraprocedural edge
e represents a safe approximation to the actual semantics of the code at the source of e.
Functions on call-to-return-site edges extract (fl'om the dataflow information valid immedi-
ately before the call) datafiow hfformation about local variables that must be re-established
after the return from the call. Functions on exit-to-return-site edges extract dataflow infor-
mation that is both valid at the exit site of the called procedure and relevant to the calling

procedure.
Note that call-to-return-site edges introduce some additional paths in the supergraph

that do not correspond to standard program-execution paths. The intuition behind the IDE
framework is that the interprocedurally valid paths of Definition 3.3 correspond to '~paths
of action ~' for particular subsets of the runtime entities (e.g., global variables). The path
flmction along a particular path contributes only part of the dataflow information that
reflects what happens during the corresponding run-time execution. The facts for other
subsets of the runtime entities (e.g., local variables) are handled by different "trajectories",
for example, paths that take "short-cuts" via call-to-return-site edges.

4 Using Graphs to Represent Environment Transformers

One of the keys to the efficiency of our datafiow:analysis algorithm is the use of a pointwise
representation of environment transformers. In this section, we show that every distributive

environment transformer t: Env(D, L) d~ Ens(D, L) can be represented using a set of func-
tions Ft = {f~,,d[d t, d C D O {A}}, each of type L --+ L. ~-kmction fA,4 is used to represent
the effects on symbol d that are independent of the argument environment. F~netion fd',d
captures the effect that the value of symbol d ~ in the argument environment has on the value
of symbol d in the result environment; if d does not depend on d t, then fd'.d =),l.T. For
any symbol d, the value of t(env)(d) can be determined by taking the meet of the values of
D + 1 individual function applications: t(env)(d) = fA,d(T) V] ([Td, eDfd, d((env)(d'))).

653

declare x: in teger
p rog ram main
begin

call P(7)
pr in t (x) /* x is a constant here */

end

procedure P (value a : integer)
b e g i n / * a is not a constant here */

if a > 0 then
a:----a--2
call P (a)
a : = a + 2

fi
x : = - 2 * a + 5
/* x is not a constant here */

end

FIGURE 1. An example program and its supergraph G*.

* An intraprocedurat c a l l - t o - r e t u r n - s i t e edge from c to r;
. An interprocedural c a l l - t o - s t a r t edge from c to the start node of the called procedure:
�9 An interprocedural e x i t - t o - r e t u r n - s i t e edge from the exit node of the called proce-

dure to r.

The call-to-return-site edges are included so that we can handle programs with local variables
and parameters; the dataflow functions on call-to-return-site and exit-to-return-site edges
permit the information about local variables that holds at the call site to be combined with
the information about global variables that holds at the end of the called procedure.

E x a m p l e 3.1 Figure 1 shows an example program and its supergraph. []

3 .2 I n t e r p r o c e d u r a l P a t h s

D e f i n i t i o n 3.2 A p a t h of length j from node m to node n is a (possibly empty) sequence
of j edges, which will be denoted by [el, e2 , . . . , e3], s.t., for all i, 1 <_ i < j - 1, the target of
edge ei is the source of edge ei+l. Path concatenation is denoted by II. []

The notion of an "(interprocedurally) valid path" captures the idea that some paths in
G* do not respect the fact that when a procedure finishes, control is transfered to the site
of the most recent call. A "same-level valid path" is a valid path that starts and ends in the
same procedure, and in which every call has a corresponding return.

D e f i n i t i o n 3.3 The sets of s a m e - l e v e l val id p a t h s and va l id p a t h s in G* are defined
inductively as follows:

�9 The empty path is a s a m e - l e v e l va l id p a t h (and therefore a va l id p a t h) .
�9 Path p I1 e ~s a 'va l ld p a t h if either e ~s not an exit-to-return-s~te edge andp is valid

or e is an exit-to-return-site edge and p = Pa I] ec II Pt where Pt is a same-level valid
path, Pa is a valid path, and the source node of ec is the call node that matches the
return-site node at the target of e. Such a path is a s a m e - l e v e l va l id p a t h i f Ph is
also a same-level valid path.

654

We denote the set of valid paths from node m to node n by VP(m, n). []

3.3 E n v i r o n m e n t s a n d E n v i r o n m e n t T r a n s f o r m e r s

Def in i t ion 3.4 Let D be a finite set of program symbols. Let L be a fimte-height meet
semi-lattice with a top element T. 3 We denote the meet operator by M. The set Env(D, L)
of e n v i r o n m e n t s is the set of functions from D to L. The following operations are defined
on Env(D, L):

�9 The meet operator on Env(D, L), denoted by envtMenv2, is)~d.(envl (d) M env2 (d)).
�9 The top element in Env(D,L) , denoted by ~, is)~d.T. "
�9 For an environment env E Env(D,L) , d E D, and l E L, the expression env[d --+ 1]

denotes the environment in which d is mapped to l and any other symbol d ~ ~ d is
mapped according to env(d~).

[]

Example 3.5 In the case of integer constant propagation:

�9 D is the set of integer program variables.
�9 L = Z ~ w h e r e x E y i f f y = T , x = _ L , o r x = y . Thus the height of Z Z i s 3 .

In a constant-propagation problem, Env(D~L) is used as follows: If env(d) E Z then the
variable d has a known constant value in the environment env; the value J_ denotes non-
constant and T denotes an unknown value. []

Def in i t ion 3.6 An environment transformer t: Env(D , L) --+ Env(D , L) zs d i s t r ibu t ive

(denoted by t: Znv(D, L) -~ Env(D, L)) i f f for every envl, env2,. . , e Env(D, L), and d E D,
(t([7~envi))(d) = ~i(t(envi))(d). Note that this equality must also hold for infinite sets of
environments. []

3.4 T h e D a t a f l o w F u n c t i o n s

A datafiow problem is specified by annotating each edge e of G* with an environment
transformer that captures the effect of the program operation at the source of e.

Def in i t ion 3.7 An ins tance of an i n t e rp rocedura l d i s t r ibu t ive e n v i r o n m e n t prob-
lem (or IDE prob lem for short) is a four-tuple, IP = (G*, D, L~ M), where:

�9 G* is a supergraph.
�9 D and L are as defined in Definition 3.4.

�9 M:E* -+ (Env(D,L) d Env(D,L)) is an assignment of distmbutwe environment
transformers to the edges of G*.

[]

Example 3.8 In the case of linear constant propagation, the interesting environment trans-
formers are those associated with edges whose sources are start nodes, call nodes, exit nodes,
or nodes that represent assignment statements.

Whether edges out of start nodes have non-identity environment transformers depends
on the semantics of the programming language. For example, these edges' environment
transformers may reflect the fact that a procedure's local variables are uninitialized at
the start of the procedure; that is, the transformers would be: Aenv.env[xl -+ -L][x2 -+
J-]... [xn --+ _L] for all local variables xi. The environment transformers for the edges out of
the start node for the program's main procedure may also reflect the fact that global variables
are uninitialized when the program is started. For example, the environment transformer
associated with edge Smain ~ n l in the supergraph of Figure 1 is:)~env.)~d.•

aHence, L is also complete and has a least element, denoted by J_.

655

literals or user-defined constants. The IDE problems that correspond to both of these
variants fall into the above-mentioned subset; consequently, our techniques solve all
ins tances of these cons t an t -p ropaga t ion problems in t i m e O(E MaxVisible3),
where "MaxVisible" is the maximum number of variables visible in any procedure of
the program. The algorithms obtained in this way improve on the well-known constant-
propagation work from Rice [CCKT86, GT93] in two ways:

�9 The Rice algorithm is not precise for recursive programs. (In fact, it may fall into
an infinite loop when applied to recursive programs).

�9 Because of limitations in the way "return jump functions" are generated, the Rice
algorithm does not even yield precise answers for all non-recursive programs.

In contrast, our algorithm yields precise results, for b o t h recurs ive a nd non-
recurs ive programs.

�9 Our dataflow-analysis algorithm has been implemented and used to analyze C pro-
grams. Preliminary experimental results are reported in Section 6.

The remainder of the paper is organized as follows: In Section 2 we introduce the copy
constant-propagation and linear constant-propagation problems. Linear constant propaga-
tion is used in subsequent sections to illustrate our ideas. In Section 3 we define the class of
IDE problems. In Section 4, we define the compact graph representation of distributive envi-
ronment transformers and show how to use these graphs to find the meet-over-all-valid-paths
solution to a dataflow problem. Section 5 presents our dynamic-programming algorithm. In
Section 5.4, we discuss the application of our approach to the copy constant-propagation
and linear constant-propagation problems. Preliminary experiments in which our algorithm
has been applied to perform linear constant propagation on C programs are reported in
Section 6. Section 7 discusses related work. Section 8 gives an overview of how the work has
been extended to perform demand-driven dataflow analysis.

2 D i s t r i b u t i v e C o n s t a n t - P r o p a g a t i o n P r o b l e m s

There are (at least) two important variants of the constant-propagation problem that fit
into the framework presented in this paper: copy constant propagation and linear constant
propagation. In copy constant propagation, a variable x is discovered to be constant either
if it is assigned a constant value (e.g., x :-- 3) or if it is assigned the value of another variable
that is itself constant (e.g., y := 3; x := y). All other forms of assignment (e.g., x := y + 1)
are (conservatively) assumed to make x non-constant.

Linear constant propagation identifies a superset of the instances of constant variables
found by copy constant propagation. Variable x is discovered to be constant either if it is
assigned a constant value (e.g., x := 3) or if it is assigned a value that is a linear function of
one variable that is itself constant (e.g., y :-- 3; x := 2 , y + 5). All other forms of assignment
are assumed to make x non-constant.

3 T h e I D E F r a m e w o r k

3.1 P r o g r a m R e p r e s e n t a t i o n

A program is represented using a directed graph G* - (N*, E*) called a supe rg raph . G*
consists of a collection of flow-graphs G1,G2,.. . (one for each procedure), one of which,
Gmain, represents the program's main procedure. Each flowgraph Gp has a unique s t a r t
node sp, and a unique exit node ep. The other nodes of the fiowgraph represent statements
and predicates of the program in the usual way, except that a procedure call is represented
by two nodes, a call node and a r e tu rn - s i t e node.

In addition to the ordinary intraprocedural edges that connect the nodes of the individual
flowgraphs, for each procedure call, represented by call-node c and return-site node r, G*
has three edges:

656

It is convenient to represent t as a graph with 2(D + 1) nodes and at most (D + 1) 2 edges,
where each edge d ~ -~ d is annotated with the function fd',d as described above. (An edge
function AI.T does not contribute to the final value of a symbol; therefore, the edges that
would normally be annotated with that function can be omitted from the graph.)

In this section we show that the meet-over-all-valid-paths solution in G* can be found by
finding the "meet-over-atl-realizab]e-paths" solution of a related problem in a graph G#xp
obtained by pasting together the representation graphs for every control flow edge in G*.

4.1 A P o i n t w i s e R e p r e s e n t a t i o n o f E n v i r o n m e n t T r a n s f o r m e r s

Defini t ion 4.1 Let t: Env(D, L) ~ Env(D, L) be an environment transformer and let A
D. The pointwise represen ta t ion oft , denoted by JRt: (DU{A}) • (DU{A}) --+ (L --+ L),
is defined by:

l
id
~l.t(n)(d)

Rt (d td) def s
= id

)d. t(a[d' --+ l])(d)
l=T}

O.W.

d ~ = d = h
d ~ =A, dE D

d ~, d E D A Vt.t(~[d ~ ~ /]) (d) = t(fl)(d)
d', d e D A Vl.t(~[d' -+ l])(d) = t (a) (d) n l

O.W.

Also, for a given representation R~: (D U {A}) • (D U {A}) -+ (L -+ L), the in te rpre ta t ion

of Rt, [Rt~: E n v (D , L) -~ Env (D ,L) is the distributive environment transformer defined by

[Rt~(env)(d) d__ef Rt(A, d)(T) I-1 (F]d, EDRt(~ ~ d)(env(dr))) (1)

Example 4.2 Figure 2 shows the pointwise representations of the environment transform-
ers for linear constant propagation for the supergraph of Figure 1. O

The intuition behind the definition of Rt is that "macro-function" t is broken down into
"micro-functions" that are basically of the form)4.t(~[d ~ --~ l])(d). More precisely, all mica-o-
functions Rt(dr, d), where d t r A, are co-strict variants of At.t(Q[d t -+ l])(d). The micro-
functions Rt(A, d) are the only non-co-strict micro-functions; they play a role similar to
the "gen" sets of gen-kill problems. The top function is used whenever possible, i.e., when
)d.t(i'~[d ~ -+/])(d) is equal to Rt(A, d) and thus does not contribute to the right-hand side of
(1). Finally, the identity function is used whenever possible, i.e., when the right-hand side
of (1) will have the same value when id is substituted for Al.t(fl[d ~ --+ l])(d).

T h e o r e m 4.3 For every t :Env (D ,L) ~ Env(D,L) , t -- ~Rt~. 0

Pointwise representations are closed under composition, as captured by the following
definition and theorem.

Defini t ion 4.4 The compos i t ion Rt, ; R~ of pointu~se representations Rtl , Rt2: (DU{A} x

(D t3 {A}) -4 (L -+ L) ~s defined by: (Rt~; Rt2)(d', d)(1) d__ef Rz~Du{A}Rt 2 (z, d)(Rt~ (d', z)(l)).
[]

T h e o r e m 4.5 For all t;, tz,. . . , tn: Env(D, L) -+ Env(D, L),
[Rt~;Rt2;-";Rt~] = tn o tn_l o . . . o ti. [3

Definition 4.4 means that Rt~ ; Rt2 yields another representation graph. Theorem 4.5 means
that the composition-of several environment transformers can be represented by a single
representation graph. That is, environment transformers are "compressible": there is a bound
on the size of the graph needed to represent any such function as well as the composi t ions
of such functions!

65~v

K~

KI,

1+2

FIGURE 2. The labeled exploded supergraph for the running example program for the linear con-
stant-propagation problem. The edge functions are all)~l.l except where indica.ted.

4.2 T h e L a b e l e d E x p l o d e d S u p e r g r a p h

Definit ion 4.6 Let IP = (G* ,D,L ,M) be an IDE problem instance. The labeled ex-

p loded supe rg raph of IP is a directed graph Gyp = (N #, E #) where N # d_e_f N* x (D U

{A}) and E # d ef {(m,d') --+ (n,d) i m --+ n E E*,RM(m~n)(d~,d) r .~I.T}. Edge labels are

given by a function EdgeFn:E # --+ (L --+ L) defined to be: EdgeFn((m,d ~) -+ (n,d)) d_e_f
RM(m_.~n) (d', d).

A path p in G#Ip is a realizable pa th if the corresponding path in G* is a valid path.
We denote the set of realizable paths from an exploded-graph node em to an exploded-graph
node en by RP(em, en). Same-level realizable paths are defined similarly. []

Example 4.7 Figure 2 contains the exploded supergraph for the running example program
labeled with the non-identity EdgeFn functions. []

Definit ion 4.8 Let IP -- (G*, D, L, M) be an IDE problem instance. The meet-over-al l -
real izable-paths solution of IP for a given exploded node en E N #, denoted by MRPen,
is defined as follows:

MRP e,~ def Mqe RP ((S main ,h),en) P athF n (q) (T)

where PathFn is EdgeFn extended to paths by composition. []

We now state the theorem that is the basis for our algorithm for solving IDE problems:

T h e o r e m 4.9 For every n C N* and d E D, ~VPn(d) = MRP(n,d). []

658

The consequence of this theorem is that we can solve IDE problems by solving a related
problem on the labeled exploded supergraph.

5 A D y n a m i c P r o g r a m m i n g A l g o r i t h m

In this section, we present an algorithm to compute the meet-over~all-valid-paths solution
to a given dataflow problem instance IP. The input to the algorithm is the labeled exploded
supergraph G#ip; when the algorithm finishes, for every exploded-graph node en E N #,
vaI(en) = MRPen. The algorithm operates in two phases, which are shown in Figures 3 and
4. In Phase I, the algorithm builds up path functions (recorded in PathFn) and summary
functions (recorded in SummaryFn). Path functions and summary functions are defined
in terms of edge functions (EdgeFn), and other path functions and summary functions. In
Phase II, the path functions are used to determine the actual values associated with nodes
of the exploded graph.

5.1 P h a s e I

Phase I is performed by procedure ComputePathFunctions, shown in Figure 3. ComputePath-
Fhnctions is a dynamic-programming algorithm that repeatedly computes path functions,
which are functions from L to L, for longer and longer paths in G#Ip. The path functions to
(n, d) summarize the effects of same-level realizable paths from the start node of n's proce-
dure p to (n, d). There may be a path function from {Sp, d 1) to (n, d) for all d I E D U {A}.
ComputePathFunctions also computes summary functions, which summarize the effects of
same-level realizable paths from nodes of the form (c, dl), where c is a call node, to (r, d),
where r is the corresponding return-site node.

ComputePathFunctions is a worklist algorithm that computes successively better approxi-
mations to the path and summary functions. It starts by initializing path and summary func-
tions to Al.T. The worklist is initialized to contain the path from (Smain , A) to (Smain , A),
and the path function for that path is initialized to the identity function, id. On each itera-
tion of the mMn loop, the algorithm determines better approximations to path and summary
functions.

To reduce the amount of work performed, ComputePathFunctions uses an idea similar to
the "minimal-function-graph" approach [JM86]: Only after a path function for a path from
a node of the form (Sp, dl) to a node of the form (c, d~) has been processed, where c is a call
on procedure q, will a path from (Sq, d3) to (sq, d3) be put on the worklist - - and then only
if edge (c, d2) -+ (Sq, d3) is in E #.

5.2 P h a s e I I

Phase II is performed by procedure ComputeValues, shown in Figure 4. In this phase, the
path functions are used to determine the actual MRP values assbciated with nodes of the
exploded graph. Phase II consists of two sub-phases:

(i) An iterative algorithm is used to propagate values from the start node of the main
procedure to all other start nodes and all call nodes. To compute a new approximation
to the value at start node (sp, d), EdgeFn(en, (sp; d)) is applied to the current approx-
imation at all nodes en associated with calls to p. To compute a new approximation
to the value at call node (c, d) in procedure q, PathFn((sq, dr), (c, d)) is applied to the
current approximations at all nodes (Sq, d~).

(ii) Values are computed for all nodes (n, d) that are neither start nor call nodes. This
is done by applying PathFn((sp, d~), (n, d)) to MRP((sp, de}) for all d ~ (where p is the
procedure that contains n), and taking the meet of the resulting values.

Note that val((smain, A)) is initialized to • in Phase II(i). As a result _l_ is propagated
to all nodes of the form (n, A). Because the function on an edge from one of these nodes to

659

p r o c e d u r e ComputePathFunctions 0
b e g i n

for all (sp, d'), (m, d) such that m occurs in procedure p and d', d C D U {A} do
PathFn((sp, d'), (m, d)) = .kl.T od

for all corresponding call-return pairs c, r and d J, d ~ D U {A} do
SummaryFn((c, d/), (r, a~) = ~l.T od

WorkList:= { (Smain, A) -~ (Smain , A)}
PathFn((Smain , A) -~ (Smain, A)) := id
while WorkList ~ 0 do

Select and remove an edge (sp, dl) -~ I n, d2) from WorkList
let f = PathFn((sp, dl) -+ (n, d2))
swltch(n)

case n is a call node in p, calling a procedure q:
for each d3 s.t. (n, d2) ~ (sq,d3) e E # do

Propagate ((8q, d3) -~ (sq, d3), id) od
let r be the return-site node that corresponds to n
for each d3 s.t. e --- (n, d:) -4 (r, d3) E Z # do

Propagate((sp, dl) --4 (r, d3), EdgeFn(e) 0 J:) od
for each d3 s.t.]3 = SummaryFn((n, d:) --4 (r, d3)) ~ AI.T do

Propagate((Sp, dl) -~ (r, d3), f3 0 f) od endcase
case n is the exit node of p:

for each call node c that calls p with corresponding return-site node r do
for each da,d5 s.t. (c, d4) -+ (sp,dl) e E # and (ep, d~) -+ (r, ds) E E # do

let fa = EdgeFn((c, d4) -+ (sp,dl)) and
f5 = EdgeFn((ep, d2) -~ (r, ds)) and
f ' = (f5 0 f 0 f4)NSummaryFn((c, d4) --+ (r, ds))

if f ' r SummaryFn((c, d4) --4 (r, ds)) t h e n
SummaryFn((c, da) -4 (r, d5)) := f '
le t sq be the start node of c's procedure
for each d3 s.t. f3 = PathFn((sq,d3) --4 (c, d4)) r s do

Propagate((Sq, d3) -+ (r, ds), f ' o f3) od fi od od endcase
defaul t :

for each (m, d3) s.t. (n, d2) -4 (m, d3) E E # do
Propagate((sp, dl) --~ (m, d3), EdgeFn((n, d2) -+ (m, d3)) 0 f) od endcase

end swi tch od
end
p r o c e d u r e Propagate(e, f)
beg in

let f ' = f•PathFn(e)
if f~ ~ PathFn(e) t h e n

PathFn(e) := f
Insert e into WorkList fi

end

FIGURE 3. The algorithm for Phase I.

660

p r o c e d u r e ComputeValues 0
beg in

/* Phase II(i) */
for each en E N # do val(en) := T od
val((smain , A)) := .L
WorkList:= { (Smain,A) }
while WorkList ~ 0 do

Select and remove an exploded-gr@h node (n, d) from WorkList
swi tch(n)

case n is the start node of p:
for each c tha t is a call node inside p do

for each d' s.t. f l ___ PathFn((n,d) -+ (c, dl)) ~)d.T do
PropagateValue((c, d~),f'(val((Sv, d)))) od od endcase

case n is a call node in p, calling a procedure q:
for each d r s.t. (n, d) -+ (sq, s E E# do

PropagateValue((sq, dl), EdgeFn((n, d) -+ (sq, d')) (val ((n, d)))) od endcase
end swi tch od

/* Phase II(ii) */
for each node n~ in a procedure p, that is not a call or a start node do

for each d ~, d s.t. f ' -- PathFn((sp, d') -~ (n, d)) ~ Al.T do
val((n, d)) := val((n, d)) ~]'(val((sp, d'))) od od

end
p r o c e d u r e PropagateValue(en, v)
beg in

le t v r = v ~ val(en)
if v' ~ val(en) t h e n

val(en) :-- v'
Insert en into WorkList fi

end

FIGURE 4. The algorithm for Phase II.

a non-A node em is always a constant function (see Definition 4.1), the _L value at (n ,A /
cannot affect the value at era.

Example 5.1 When applied to the exploded graph of Figure 2, our algorithm discovers
that x has the constant value -9 at node n3 (the print statement in the main procedure),
and that a does not have a constant value at node sp (the start node of procedure P).
During Phase I, the algorithm computes the following relevant path and summary func-
tions: PathFn((sp, a) -~ (n6, a)) = Al .1- 2, PathFn((sp, a) -+ (ep ,x)) = A l . - 2 . l + 5,
SummaryFn((n l ,A) -+ (n2~x)) = ~l. - 9, PathFn((Smain,A) -+ (n2, x)) = . k l . - 9, and
PathFn((Smain , A) -+ (n3, x)) = AI. - 9.

During Phase II(i), values are propagated as follows to discover t h a t a is not cons tant

a t node sp: val((smain,A)) := • val((nl ,A)) := J_, val(Isp,a)) := 7, val((n6, a)) := 5,
val((sp, a)) := 5 I-1 7 ---- _L.

Dur ing Phase II(ii), PathFn((Smain, A) --~ (n3, x)) is applied to val((smain, A)), produc-
ing the value - 9 . []

5 . 3 T e r m i n a t i o n a n d C o s t I s s u e s

The a lgor i thm of the previous section does not t e rmina te for all IDE problems; however, it
does t e rmina te for all copy constant-propagat ion problems, all l inear cons tan t -propaga t ion
problems, and, in general, for all problems for which the space F of value- t ransformer
funct ions contains no infinite decreasing chains. (Note t ha t it is possible to const ruct infi-
n i te decreasing chains even in certain distr ibutive variants of cons tan t propagat ion [SP81,
page 206].)

661

The cost of the algorithm is dominated by the cost of Phase I. This phase can be carried
out particularly efficiently if there exists a way of representing the functions such that the
functional operations can be computed in unit-time.

These termination and cost issues motivate the following definition:

Def in i t ion 5.2 A class of value-transformer functions F C L ~ L has an efficient rep-
r e sen ta t ion if

�9 id E F and F is closed under functional meet and composition.
�9 F has a finite height (under the pointwise ordering).
�9 There is a representation scheme for F with the following properties:

Apply: Given a representation for a]unction f E F, for every I E L,](1) can be
computed in constant time. 4

Compos i t ion : Given the representations for any two functions f l , f2 E F, a repre-
sentation for the function f l o]2 E F can be computed in constant time.

Meet: Given the representations for any two functions f l , f 2 E F, a representation
]or the function flMf2 E F can be computed in constant time.

EQU: Given the representations for any two functions fl~ f2 E F, it is possible to test
in constant time whether f l = f2.

Storage: There is a constant bound on the storage needed for the representation of
any function f E F.

An IDE problem instance IP = (G*, D, L, M) is efficiently r ep resen tab le z] for every
e E E*, and dr, d E D, RM(e)(dr, d) E F for some class of functions F that has an eJ~cient
representatwn. []

Note that in the above definition we do not impose any restrictions on RM(e)(d ~, d) when
either d ~ or d is A. This is based on the assumption that the constant functions and the
identity function can always be represented in an efficient manner. (Similarly, we assume
that A1.T can always be represented in an efficient manner.)

In describing the cost of the algorithm it is convenient to introduce the notions of path
edge and summary edge. A path edge is a pair of exploded-graph nodes whose path function
is not equal to AI.T; likewise, a summary edge is a pair of exploded-graph nodes whose
summary function is not equal to hI.T.

The source of a path edge is a node of the form (s, d), where s is the start node of some
procedure; thus, there can be at most D + 1 path-edge sources in each procedure. Each
iteration of Phase I extends a known path edge by composing it with (the function of)
either an E # edge or a summary edge. There are at most O(ED 2) such edges. Because each
edge e can be used in the operation "extend a path along edge e" once for every path-edge
source, there are at most O(ED 3) such composition steps.

For each path edge and summary edge fl'om an exploded node (n, A/, the path-function
value can change at most height of L times. Similarly, path edges and summary edges
emanating from other exploded nodes (n, d), d E D, can change at most height of F times.
Consequently, the total cost of Phase I, and thus of the entire algorithm, is bounded by
O(ED 3) (where the constant of proportionality depends on the heights of L and F.)

5.4 S o m e Ef f i c i en t ly R e p r e s e n t a b l e I D E P r o b l e m s

Copy C o n s t a n t P r o p a g a t i o n

In copy constant propagation, all of the constant functions Al.c are associated with edges of
the form (m, A) -+ (n, d). The only functions on "non-A" edges are identity functions. Since

4We assume a uniform-cost measure, rather than a logarithmic-cost measure; e.g., operations on integers
can be performed in constant time.

662

id o i d = id and id Mid = id, the class F = {id} is trivially a class of functions that has an
efficient representation.

L inear C o n s t a n t P ropaga t ion

Linear constant propagation can be handled using the set of functions ~c = {Al.(a*l+b)Mc I
a E Z - {0}, b E Z, and c E Z~}. (The functions where a = 0 are the constant functions, and,
as in copy constant propagation, these are all associated with "A" edges.) Every function
] E/~r can be represented by a triple (a, b, c) where a E Z - {0}, b E Z, and c E Z~ where:

T I = T
f =)~l. (a * I + b) N c otherwise

Fie has an efficient representation because:

�9 i d E Ftc
�9 Longest chains in/~c have the form: Al.(a �9 l + b) ~ %l.(a �9 I + b) F] c ~ Al.• for some

a,b,c E Z.
�9 The four representation requirements are met:

I~lPePlY: TriviM.
et:

l (al,bl,Cl Y]c2) al = a2,bl = b2
(at,bl..Cl)R(a2,b2, c2) = (a l 'b l ' c) c = (al * t0 + bl) Nct Mc2, where

l0 = (5I - b2)/(a2 - al) E Z
(1,0,• o .w .

Composi t ion: (al, hi, c;) o (a2, b2, c2) = ((ala2), (alb2 + bl), ((alc2 + bl) M cz)). Here
it is assumed that x , T = T , x = x + T = T + x = T for x E Z.

EQU: All representations except that of ~l.2 are unique. Any t ~ triples in which
c = • represents %1.2. However, equality can still be tested in unit time.

The third component c is needed so that the meet of two functions can be represented.
For example, consider the code fragment if --- t h e n y :--- 5 * x - 7 else y := 3 * x + 1
ft. Variable y is only constant after the if when the initial value of x is 4, and in this case
y's value is 13. Therefore, the meet of the functions in the then- and else-branches for y in
terms of x is represented by (5, -7,13).

Linear constant propagation can be also performed on real numbers R~. In this case, the
meet operation is slightly simpler because there no need to test whether a2 - a l divides
bl - b2 evenly - - only that a2 # al if b2 # bt.

6 P r e l i m i n a r y E x p e r i m e n t s

We have carried out a preliminary study to determine the feasibility of the dynamic-
programming algorithm and to compare its accuracy and time requirements with those
of the naive algorithm that considers all paths rather than just the realizable paths. (The
latter approach is still safe, but may be less accurate than the algorithm that considers
only realizable paths, For example, for the program in Figure 1, variable x would not be
identified as a constant at the print statement in procedure main.) The two algorithms
were implemented in C and used with a front end that analyzes a C progTa~n and generates
the corresponding exploded supergraph for the integer linear constant-propagation problem,
(Pointers were handled conservatively; every assignment through a pointer was considered
to kill all variables to'which the "~z" operator is applied somewhere in the program; all uses
through pointers were considered non-constant.) The study used five C programs taken from
the SPEC integer benchmark suite [SPE92]. Tests were carried out on a Sun SPARCstation
20 Model 61 with 64 MB of RAM.

663

Example
compress
eqntott
gcc. cpp
li
8C

Lines of code
Source Preprocessed

1503 657
3454 2570
7037 4079
7741 6054
8515 7378

Procedures Calls N E D
'15 28 1329 1464 77
61 211 4015 4266 57
71 306 6492 7344 91
356 1707 13286 12648 56
151 682 12366 13157 150

TABLE 1. Sizes of the input programs.

Example
compress
eqntott
9cc. cpp
h
Sc

Dynamic Programming
Time Constants Lines/see.

2.3 + .57 82 524
4.53 + 1.59 9 564
14.2 + 6.58 37 339

51.69 + 43.23 2 81
47.91 § 43.12 78 94

Naive Algorithm
Time Constants Lines/see.

I .91 + .40 50 1147
2.42 + .14 9 1349
8.1 + .28 29 840

9.96 + .34 2 752
20.4 ~- 1.13 72 395

TABLE 2. CPU times and number of constants discovered.

Table 1 gives information about code size (lines of source code and lines of preprocessed
source code) and the parameters that characterize the size of the control-flow graphs. Ta-
ble 2 compares the cost and accuracy of the dynamic-programming algorithm and the naive
algorithm. The running times are "user cpu-time" + "system cpu-time" (in seconds) for
the algorithms once the exploded supergraph is constructed. The columns labeled "Con-
stants" indicate the number of right-hand-side variable uses that were found to be constant.
"Lines/sec2 indicates the number of lines of source code processed per second.

7 R e l a t e d W o r k

The IDE framework is based on earlier interprocedural dataflow-analysis frameworks defined
by Sharir and Pnueli [SP81] and Knoop and Steffen [KS92], as well as the interprocedural,
fin#e, distributive, subset framework (or IFDSframework, for short) that we proposed earlier
[RSH94, RHS95]. The IDE framework is basically the Sharir-Pnueli framework with three
modifications:

(i) The dataflow domain is restricted to be a domain of environments.
(ii) The dataflow functions are restricted to be distributive environment transformers.

(iii) The edge from a call node to the corresponding return-site node can have an associated
dataflow function.

Conditions (i) and (ii) are restrictions that make the IDE framework less general than the full
Sharir-Pnueli framework. Condition (iii), however, generalizes the" Sharir-Pnueli framework
and permits it to cover programming languages in which recursive procedures have local
variables and parameters (which the Sharir-Pnueli framework does not). A different gener-
alization to handle recursive procedures with local variables and parameters was proposed
by Knoop and Steffen [KS92].

The IDE framework is a strict generalization of the IFDS framework proposed in [RSH94,
RHS95]. In IFDS problems, the set of dataflow facts D is a finite set and the dataflow
functions (which are in 2 D --+ 2 D) distribute over the meet operator (either union or inter-
section, depending on the problem). Some IDE problems can be encoded as IFDS problems;
however, an IDE problem in which L is infinite - - such as the linear constant-propagation
problem - - cannot b& translated into an IFDS problem. Consequently, this paper strictly
extends the class of interprocedural dataflow-analysis problems known to be solvable in
polynomial time. However, even when L is finite, the algorithm presented in this paper will

664

perform much better than the algorithm for IFDS problems for many kinds of problems. For
example, in the case of copy constant propagation, in any given problem instance the size
of L is no larger than the number of constant titerals in the program. The IDE version of
copy constant propagation involves environments of size D, where D is the set of program
variables; by contrast, the IFDS version involves subsets of D x L. For some C programs
that we investigated (of around 1,300 lines), the IFDS version ran out of virtual memory,
whereas the IDE version finished in a few seconds.

The algorithm for solving IDE problems yields an efficient polynomial algorithm for deter-
mining precise (i.e., meet-over-all-valid-paths) solutions. For both copy constant propagation
and linear constant propagation, there are several antecedents. A version of interprocedural
copy constant propagation was developed at Rice and has been in use for many years. The
algorithm is described in [CCKT86], and studies of how the algorithm performs in practice
on Fortran programs were carried out by Grove and Torczon [GT93]. However, the Rice
algorithm has two potential drawbacks that our algorithm does not have:

�9 The Rice algorithm is not precise for recursive programs. (In fact, it may fall into an
infinite loop when applied to recursive programs.)

�9 Because of limitations in the way "return jump functions" are generated, the Rice
algorithm does not yield precise answers for all non-recursive programs.

We have also shown in this paper how to solve linear constant-propagation problems,
which in general find a superset of the instances of constant variables found by copy constant
'propagation. Several others have also examined classes of constant-propagation problems
more general than copy constant propagation [Kar76, SKgl, GT93, MS93].

8 D e m a n d D a t a f l o w A n a l y s i s

We have developed and implemented a demand algorithm for the IDE framework. The
demand algorithm finds the value of a given symbol d E D at a given control flow graph
node n E N*. Because of space limitations we confine ourselves to a brief summary of this
work.

The demand algorithm is similar to the dynamic-programming algorithm of Section 5;
however, in the demand algorithm, path functions are computed during a backwards traver-
sal of G#lp (i.e., edges are traversed from target to source). The relationship between the
demand algorithm and the algorithm of Section 5 is similar to the relationship that holds
for IFDS problems between the demand algorithm of [RSH94, HRS95] and the exhaustive
algorithm of [RSH94, RHS95].

A different approach to obtaining demand versions of interprocedural dataflow-analysis
algorithms has been investigated by Duesterwald, Gupta, and Sofia [DGS95]. In their ap-
proach, for each query a set of dataflow equations is set up on the flow graph (but as if
all edges were reversed). The flow functions on the reverse graph are the (approximate) in-
verses of the forward flow functions. These equations are then solved using a demand-driven
fixed-point-finding procedure.

Our demand algorithm has the following advantages over the algorithm given by Duester-
wald, Gupta, and Sofia:

(1) Their algorithm only applies when L has a finite number of elements, whereas we
require only that L and F be of finite height. For example, linear constant propagation,
where L has an'infinite number of elements, is outside the class of problems handled
by their algorithm.

(2) Instead of computing the value of d at n, their algorithm answers queries of the form
"Is the value of d at n ~ / ? " for a given x~lue 1 E L. In linear constant propagation,
there is no way to use queries of this form to find the constant value of a given variable.

(3) When restricted to IFDS problems, the worst-case cost of the Duesterwald-Gupta-Soffa

665

technique is O(E D 2D). In contrast, the worst-case cost of our demand algorithm is
O(Z D3).

Duesterwald, Gupta, and Sofia also give a specialized algorithm that, for copy constant
propagation, remedies problems (2) and (3).

R e f e r e n c e s

[Ca188] D. Callahan. The program summary graph and flow-sensitive interprocedural data flow
analysis. In SIGPLAN Conference on Programming Languages Design and Implementa-
tion, pages 47-56, 1988.

[CCKT86] D. Callahan, K.D. Cooper, K. Kennedy, and L. Torczon. Interprocedural constant prop-
agation. In SIGPLAN Symposium on Compiler Construction, pages 152-161, 1986.

[DGS95] E. Duesterwald, R. Gupta, and M.L. Sofia. Demand-driven computation of interproce-
dural data flow. In ACM Symposium on Principles of Programming Languages, pages
37-48, 1995.

[FL88] C.N. Fischer and R.J. LeBlanc. Crafting a Compiler. Benjamin/Cummings Publishing
Company, Inc., Menlo Park, CA, 1988.

[GT93] D. Grove and L. Torczon. A study of jump function implementations. In SIGPLAN
Conference on Programming Languages Design and Implementation, pages 90-99, 1993.

[HRS95] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. Unpub-
lished manuscript, 1995.

[JM86] N.D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal
function graphs. In A CM Symposium on Principles of Programming Languages, pages
296-306, 1986.
M. Karr. Affine relationship among variables of a program. Acta Inf., 6:133-151, 1976.

G.A. Kildall. A unified approach to global program optimization. In ACM Symposium
on Principles of Programming Languages, pages 194-206, 1973.
J. Knoop and B. Steffen. The interprocedural coincidence theorem. In International
Conference on Compiler Construction, pages 125-140, 1992.

W. Landi and B.G. Ryder. Pointer induced aliasing: A problem classification. In ACM
Symposium on Principles of Programming Languages, pages 93-103, 1991.

R. Metzger and S. Stroud. Interprocedural constant propagation: An empirical study.
ACM Letters on Programming Languages and Systems, 2, 1993.

T. Reps. Solving demand versions of interprocedural analysis problems. In International
Conference on Compiler Construction, pages 389-403, 1994.
T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In A CM Symposium on Principles of Programming Languages, pages 49-61,
1995.
T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph reacha-
bility. Technical Report TR 94-14, Datalogisk Institut, University of Copenhagen, 1994.
B. Steffen and J. Knoop. Finite constants: Characterizations of a new decidable set of
constants. Theoretical Computer Science, 80(2):303-318, 1991.
M. Sharir and A. Pnueli. Two approaches for interprocedural data flow analysis. In S.S.
Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 7, pages 189-234. Prentice-Hall, 1981.

SPEC Component CPU Integer Release 2/1992 (Cint92). Standard Performance Evalu-
ation Corporation (SPEC), Fairfax, VA, 1992.

[Kar76]

[Ki173]

[KS921

[La91]

[MS93]

[Rep94]

[RHS95]

[RSH94]

[SK911

[SP811

[SPE921

