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Abstract. This paper reports on the use of formal specifications in the development 
of a software maintenance tool for specializing imperative programs, which have 
become very complex due to extensive modifications. The tool is specified in terms 
of inference rules and operates by induction on the abstract syntax. The correctness 
of these rules is proved using rule induction. A Prolog prototype has been derived 
for Fortran programs, using the Centaur programming environment. 
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1 Introduction 

We have developed an original technique for specializing programs which are too 
difficult to maintain because they are too general. These programs are written in an 

imperative language (noted L in the sequel of this paper). This technique aims at 

understanding old programs, which have become very complex due to extensive 

modifications. From a given program and some form of restriction of its usage (e.g. the 

knowledge of some specific values of its input variables), this technique provides a 

simplified program, which behaves like the initial one when used according to the 
restriction. This approach is particularly well adapted to programs which have evolved 

as their application domains increase continually. 

Our technique is a variant of partial evaluation, a well known technique that has been 

used for optimization and to derive compilers from interpreters [10]. Partial evaluation 

of a subject program P with respect to input variables x I ..... Xm, Yl ..... Yn for the values 

Xl= c 1 ..... Xm= c m gives a residual program P', whose input variables are Yl ..... Yn and 

the executions of P(c 1 ..... Cm, Yl ..... Yn) and P'(Yl ..... Yn) produce the same results. 

Such a program is obtained by replacing variables by their constant values, by 

propagating constant values, and by modifying statements, for instance replacing each 

alternative whose condition simplifies to a constant value by the corresponding branch 

or unfolding loops when possible. But, our aim differs from the one of traditional partial 
evaluation. We do not try to optimize code but to improve its readability, mainly by 

simplifying it. For example, we never expand loops. 

In another paper we have explained the aim and use of our tool [3], but not it 's 
development. Here we will instead focus on the formal concepts we have used for 
developing it. Residual programs are used during maintenance. They are either 
visualized to locate anomalies while debugging or used as independent programs, 
instead of the initial ones. Thus, our tool - as software maintenance tool-  must 
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introduce absolutely no unforeseen changes in programs. Therefore, we have first to 
formally specify the specializer, then to prove the correctness of that specification with 
respect to the standard semantics, and eventually (third step) to prove the correctness of 

the implemented tool with respect to the specialization rules. We will develop here only 
the first two steps of the process. Indeed, from that specification, a Prolog prototype has 
been almost systematically derived by using the Centaur programming environment 
[4]. An industrial tool is being developed from that specification. 

Our specification is expressed by inference rules operating on the abstract syntax of the 
language L. More precisely, we have used the natural semantics formalism [9], 
augmented with some VDM [8] operators. Natural semantics has its origin in the work 
of G.Plotkin ([7], [11]). Under the name "structured operational semantics", he gives 
inference rules as a direct formalization of an intuitive operational semantics: his rules 
define inductively the transitions of an abstract interpreter. Natural semantics extends 
that work by applying the same idea (use of a formal system) to different kinds of 
semantic analysis (not only interpretation, but also typing, translation, etc.) 

This paper is organized as follows. First, we detail in section 2 some inference rules that 
formally specify our specializer. Next, section 3 presents proofs of correctness of our 

specializer rules with respect to the dynamic semantics of the imperative language L. 
Section 4 explains how we have prototyped our specializer and gives some quantitative 
results about the implementation of a prototype for specializing Fortran programs. 
Section 5 presents conclusions and future work. 

2 Inference Rules for Specialization 

2.1 The Specialization Strategy 

As explained in the introduction, we want to specialize a program for readability 
purposes, not for optimization ones, that is we want only to simplify it. What does it 
mean to simplify a program in that context? We believe that to remove useless code is 
always beneficial to program understanding. In that case the objective is compatible 

with that of program optimization (dead code elimination [2]), but this is certainly not 
the case in general. On the other hand, the replacement of (occurences of) variables by 
their values is not so obvious. The benefit depends on what these variables mean for the 
user: variables like PI, TAXRATE, etc. are likely to be kept in the code; on the 
contrary, intermediate variables used only to decompose some computations may be not 
so meaningful for the user, and he may prefer to have them removed. 

Replacing variables by their values may lead to dead code (by making the assignments 
to these variables useless) and thus gives more opportunities to remove code. However, 
this is certainly not a sufficient reason to do systematic replacement. Of course, even 
when there is no replacement, the known value of a variable is kept in the environment 
of our simplification rules, as it can give opportunities to remove useless code, for 
instance if the condition of an alternative may be evaluated thanks to that knowledge 
(and thus a branch may be removed). 
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The benefit of replacement depends not only on the kind of variable but also on the kind 
of user: a user who knows the application program well may prefer to keep the variables 
the meaning of which is already known to him; a user trying to understand an 

application program he does not know at all may prefer to see as few variables as 

possible. In fact, our experiments have shown that the system must be very flexible in 

that respect. Thus, our system works as follows. There are three options: no 

replacement, systematic replacement, and each replacement depending on the user. 

To specify the partial evaluation, we use inference rules operating on the L abstract 

syntax. The following part of this section first presents rules defining both the constant 

propagation process and the simplification process. Then, a third part details the rules 

for partial evaluation of statements. These new rules combine the propagation rules and 

the simplification rules. Note that these techniques are not new, but we specify and use 

them in a novel way. In this paper, we present only the rules for assignment and 
alternative statements. The other rules can be found in [3]. 

2.2 Propagation and Simplification Rules 

propag 
In the following, we use sequents such as H [ ' I : H '  (propagation), 

simpl PE H' 
H [- I " ' > I '  (simplification), and the combination of both H ~ I - - t~  I ' ,  (propagation 

and simplification). In these sequents: 

�9 H is the environment associating values to variables whose values are known before 
executing I. It is modelled by a VDM-like map [8], shown as a collection of pairs 
contained in set braces such as {variable --> constant .... }, where no two pairs have 
the same first elements. Our system initializes such maps by the list of variables and 
their initial values, supplied by the user. 

�9 I is a statement (expressed in a linear form of the abstract syntax of L). 

�9 I' is the simplified statement under the hypothesis H. 

�9 H'  is H which has been modified by the execution of I. 

�9 The superscript of the turnstile such asprapag, simpg or PE denotes the set of rules 
the sequent belongs to. 

In the sequents exhibited in this paper, we use the map operators dora, w, n,  =, f and ~ .  

�9 The domain operator dom yields the set of the first elements of the pairs in the map. 
�9 The union operator • yields theunion of maps whose domains are disjoint (in VDM, 

this operator is undefined if the domains overlap). 
�9 The intersection operator n of two maps yields the pairs common to both maps. 
�9 The equality operator = of two maps yields true if  and only if each pair of one map is 

a pair of the other map (and reciprocally). 

�9 The map override operator "~ whose operands are two maps, yields a map which 
contains all of the pairs from the second map and those pairs of the first map whose 
first elements are not in the domain of the second map. 

�9 When applied to a set and a map, the map deletion operator ~ yields those pairs in 
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the map whose first dements are not in the set. 

The examples of Figure 1 illustrate these definitions of map operators. 

m = {X--+ 5,B ~ true} dom(m) = {X,B} 

m u  {Y--+7} = {Y-+7, X--+5,B-+true} 

{B}~ m = {X--> 5} 

m n  {X--+ 5,B--+false} = {X--+5} 

n = {C--+false,X--+8} mt n = {X --+ 8, B ~ true, C -+false} 

nt m = {X --+ 5, B --+ true, C --+false} 

Fig. 1. Some map operators 

We have written some inference rules to explain how sequents are obtained from other 
sequents. Propagation rules are a special case of program verification rules: they 
perform only forward analysis and they propagate only equalities between variables and 
constants. Figure 2 presents six of the eight simplification and propagation rules for 
alternatives. If the condition C of an alternative evaluates to true, then: 

�9 the environment H' resulting from the propagation of H through the alternative is 
obtained by propagating H through the statements 11 of the then-branch (first rule: 
propagation), 

�9 the simplification of the alternative is the simplification of its then-branch (second 
rule: simplification). 

In the same way, there are two rules for an alternative whose condition evaluates to false 

(in these rules "true" becomes "false", "I1" becomes "I2", and "then" becomes "else"). 

Since these rules are very similar to the first two rules, they do not appear in Figure 5. 
They are shown with partial evaluation rules in Figure 4. 

eva~ p.repag 

H "~" C > bool(true) H [- I1: H' 
(1) propag 

H ~ if C then I 1 else 12 fi: H' 

(2) 

evag 
H ~ C > hoof(true) 

I 

simfl 
H ~" if C then 11 else 12 fi > I' 1 

Fig. 2 (begin) Propagation and simplification rules for alternatives 

If the condition C of an alternative is only partially evaluated to C', the propagation and 
the simplification proceed along both branches of the alternative: 

�9 the propagation of H through the then-branch Ij leads to an environment Hi, j=l,2. 
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The intersection of both environments is the final environment: if a variable has the 
same value in both environments H 1 and H2, that value is kept in the final 
environment, otherwise it is removed from the final environment (third rule: 
propagation). 
the simplification of the alternative yields the alternative whose condition is the 
partially evaluated condition C' and whose branches are the simplified branches of 
the initial alternative (fourth rule: simplification). 

eval propag propag 

~" C > C' C ' r  H ~- I , :H,  H k I2:H2 H 
(3) " prop,~g 

H ~ i fC then 11 elseI2 fi: HlnH2 

eval si~npt s~npl 
H ~ C > C' C' :~bool(B) H p I 1 "-""~I' 1 H F 12 "-'->I' 2 

(4) 
a~mp~ 

H ~ ff C then 11 else 12 fi > ff C' then I' 1 else I' 2 fi 

Fig. 2 (cont'd) Propagation and simplification rules for alternatives 

The fifth rule of Figure 2 is a propagation rule. It shows that information can sometimes 
be derived from the equality tests that control alternatives. If the condition of an 
alternative is expressed as an equality such as X=E, where X is a variable that does not 
belong to the domain of the environment H and E evaluates to a constant N, then the 
pair (X, N) is added to the environment related to the then-branch. 

Since the statements if  X #E then 11 else I2 f i  and if X=E then 12 else I l f i  are semantically 

equivalent, there is a corresponding rule (sixth rule) for a condition of an alternative 
expressed as an inequality such as X:E: in that case, the pair (X,N) is added to the 
environment related to the else-branch. Rules 5 and 6 express that only equalities 
between variables and constants can be added to the environment. Thus, if other 
information is expressed in the condition, it is not taken into account by the partial 
evaluator. 

Rules 5 and 6 have been generalized to conditions of alternatives expressed as 
conjunctions of equalities and disjunctions of inequalities (rules 5' and 6'). In these 
rules, we have used generalized AND (denoted A) and OR (denoted v). 

i= l,n i= l,n 
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eval prapag pr?pag 
H~ E > number(N) Xc~dom(H) H k,...) {X -g N} ~ II"H 1 H [ ' 1 2 : H  2 

pr~pag 
H ~- if (X=E)  then 11 elseI 2 f i :HlnH 2 (5) 

evag propag propag 
I 

H~ E ) number(N) X~dom(H) H ~ ' I I : H  1 H W { X - - ) N }  ~- I2:H 2 
propag 

(6) H [- tf (XcE)  thenI le lseI  2 f i :HlnH 2 

(y) 

(6') 

e v a  

V i, H~ E i > number(Ni) 
propag 

V i, X i ~ dora(H) H ~ {Xi --~ Ni}~. I 1 : H 1 
i = l , n  / 

propag 

H ~-I2: H 2 

propag 
H ~- if ( ^ Xi = Ei) then I 1 else 12 fi: HI~H z 

t = l , n  

e~a~ 
V i, H~ E i > number(Ni) 

p r o p a g  

V i ,  X i ,  dora(H) H ~ I I ' H  1 HL.,) {Xi-->NPii;~Pa~2"H 2 
i = 1,n 

propqg 
H ~- if ( v X i ~ E i )  thenI1 elseI2fi:Hlc~H2 

i=  1,n 

Fig. 2-(end) Propagation and simplification rules for altematives 

Since the simplification is performed in the context of the propagation, and the 
propagation uses the simplification of expressions, we have chosen to combine 
propagation and simplification in our rules. 

2.3 Combined Rules 

For every FORTRAN statement, we have written rules that describe the combination of 
the propagation and simplification systems. This combination ~ of these two 
systems is defined by: 

PE pr~pag si.mpl 
H~ I ' ' I ~ I ' , H '  iff H~ I:H' and H ~" I ~ I' 

From this rule, we may define inductively the ---I~relation. For instance, Figure 3 
specifies the rules for partial evaluation of assignments. The eval notation refers to the 
formal system of rules which simplifies the expressions. 
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If the expression E evaluates to a numerical constant N, the environment H is modified: 
the value of X is N whether X had already a value in H or not. With the kind of 
propagation we perform, the assignment X := E can be removed only if all possible uses 
of that occurrence of X do not use another value of X. For instance, in the sequence 

X := 2; if CODE ~ 5 then X := X+l fi; Y := X, 

the value 2 of X is propagated in the expression X+I but the assignment X:=2 can not 
be removed because in the assignment Y:=X, X comes either from X:=2 (value 2) or 
from X:=X+I (value 3). Thus, that sequence is only simplified to 

X := 2; if CODE # 5 then X := 3 fi; Y := X. 

To eliminate assignments that become useless after the partial evaluation, we use 

classical dead code elimination algorithms [2]. Thus, elimination of redundant 

assignments is performed in a separate optimization phase. 

If E is only partially evaluable into E',  the expression E is modified as part of the 
assignment X:= E and the variable X is removed from the environment if it was in it, 

because its value has become unknown. 

eva~ 

H ~- E ~ number(N) 
I 

g'Pa~ 

H 

X : = E  ~ X : = N ,  Ht{X-+N} 

- > E' ~ number (N) E E' 

H ]- X:=E 

Fig. 3. Partial evaluation of assignments 

The following examples illustrate these two cases. In Ex.1, as the value of the variable 
A is known, the new value of the assigned variable C is introduced in the environment. 
We suppose that the assignment C := A+I can be removed from the reduced program. 

In Ex.2, after the partial evaluation of the expression A+B, the value of C has become 

unknown. Such a case only happens when A and B do not have both constant values. 

Ex.1 {A--+1, C--+4} ~ C : = A + I  ~ s k i p , { A - - + l , C - + 2 }  

Ex.2 { A - - + I , C - - ~ 2 } ~  C : = A + B  ~ C : = I + B , { A - - + I }  

The rules for partial evaluation of alternatives are defined in Figure 4. If the condition 
C of an alternative evaluates to a logical constant, this alternative can be simplified to 
the corresponding simplified branch. If C is only partially evaluated to C', the partial 
evaluation proceeds along both branches of the alternative and the final environment is 
the intersection of the two environments resulting from the simplification of both 

branches (as explained previously, Fig. 2, rule (4)). 
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eval 

H ~- C > bool (false) 
/ I' H' H I2 ~ 2, 

H 
eva~ 

.}-c 
F I '  H ~ if C then I1 else I2 f i - - - - I ~  2, 

11 4 I' 1, H' > bool (true) H 

eva 

H -c > C '  

H ~ if C then 11 else 12 fi ~ I' 1, H' 

C' c b o o l ( B )  H ~I l i - - - .1~  I 'I ,H'I H ~- 12 I---1~I '2,H'2 

H [" i fC then 11 else 12 fi ~ i fC '  then 1' 1 else I' 2 fi, H' 1 n H' 2 

Fig. 4. Partial evaluation of alternatives 

3 Correc tness  o f  the P a r t i a l  E v a l u a t i o n  

Our aim in this section is to show how to prove that the specialization presented above 
is correct, with respect to the dynamic semantics of L, given in the natural semantics 

formalism. 

We will show that this is expressed by two inference rules, one expressing soundness 
(each result of the residual program is correct with respect to the initial program) and 
one expressing "R-completeness" (each correct result is computed by the residual 
program too). We use the term "R-completeness" (result-completeness) to avoid 
confusion with the completely different notion of specialization completeness (i.e. no 
further specialization could be done, which is not an issue here). As both programs are 
deterministic, we could have only one rule using equality, but the demonstration of our 
two rules is not more complicated and is more general (being also applicable for non- 
deterministic programs). Examples of proofs for the assignment and alternative 
statements are detailed in this section. 

3.1 Rules Proving Soundness and R-completeness 
To prove the simplification, we need a formal dynamic semantics of L and we must 
prove the soundness and R-completeness of the simplification rules with respect to that 
dynamic semantics. To express this dynamic semantics, we use the same formalism 
(natural semantics [9]) as for simplification. Thus, the semantic rules we give have to 

generate theorems of the form H ~  I: H ' ,  meaning that in environment H, the 

execution of statement 1 leads to the environment H' (or the evaluation of expression I 
gives value H'). These rules are themselves not proved: they are supposed to define ex 
nihilo the semantics of L, as G.Plotkin [11] and G.Kahn [9] did for languages like ML. 

To prove these rules would mean to have another formal semantics (e.g. a denotational 
one) and prove that the rules are sound and complete with respect to it. But there is no 
such official semantics for any imperative language. Thus that proof would rather be a 
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proof of consistency between two dynamic semantics we give. That is outside the scope 
of our work: we want to prove consistency between simplification and dynamic 
semantics, not between two dynamic semantics. 

Now how can we prove that the specialization system is sound and R-complete with 
respect to the dynamic semantics system? Instead of the usual situation, that is a formal 
system and an intended model, we have two formal systems: the specialization system 
(noted F•) and the dynamic semantics system (noted ~em): A program P is simplified 

to P' under hypothesis H o on some input variables if and only if Ho b P --, P' is a 

theorem of the specialization system. 

Let us call H the environment containing the values of the remaining input variables. 
Thus, H o w H is the environment containing the values of all input variables. With that 

initial environment, P' evaluates to H' if and only if Ho w t ~  P' : H' is a theorem of 

the dynamic semantics (sere) system. In a similar way, P evaluates to H' if and only if 

Ho u H P : is a theorem of the sere system 

Now, soundness of specialization with respect to dynamic semantics means that each 
result computed by the residual program is computed by the initial program. That is, for 
each P, P', H o, H, H': ifP is simplified to P' under hypothesis H o and P' executes to H' 

under hypothesis H o tj H, then P executes to H'under hypothesis H o u H. Thus 

soundness of simplification with respect to dynamic semantics is formally expressed by 
the first rule of Figure 5. 

R-completeness of simplification with respect to dynamic semantics means that each 
result computed by the initial program P is computed by the residual program P'. Thus, 
it is expressed by the second inference rule of Figure 5. In fact, our approach to prove 
simplification is very close to the approach of [5] to prove the correctness of translators: 
in that paper, dynamic semantics and translation are both given by formal systems and 
the correctness of the translation with respect to dynamic semantics of source and object 
languages is also formalized by inference rules (that are proved by induction on the 
length of the proof; here we will use rule induction instead). 

Note that both rules are not the most restricting rules (for instance their initial 
environment is Ho w H and not only H, to allow partial simplification). 

Ho[- p -,p, HouH - P' .I-r 
(soundness) 

H o u H  [- P : H '  ~em 

(R-completeness) 
s e r e  

H o u H  ~- P' :H'  

Fig. 5, Correctness of the program simplification 
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To prove both rules of Figure 5 concerning programs, we prove that they hold for any 
statement we specialize (remember that we do not analyze data declarations). Thus, we 
have to prove that both rules of Figure 6 hold. In these rules, I denotes a statement and 
I' denotes the corresponding specialized statement. 

P~ ~em 
Ho ~ I---- - - I~ I ' ,H'  H o u r i  ~ I ' :H"  

g s m  

H o u H  ~ I :H"  

PE sere 

Ho ~ I- - - - - - .~  I ' ,H'  H o u r i  ~ I :H"  

g e m  

H o u H  ~ I ' :H"  

(soundness) 

(R-completeness) 

Fig. 6. Correctness of the statements partial evaluation 

The dynamic semantics of L has been formalized by the sere system. The dynamic 
semantics rules for assignments and alternatives are propagation rules, as shown in 
Figure 7. For that reason, in the sere system, we have overloaded the ":" symbol 
representing the systempropeg, instead of using a new symbol. 

dge~ 

eyed 

H [- E > number(N) 
I 

H ~ X :=E" H?{X-)N} 

eva~ 

H [- c bool(true) H [- 
i I 

i 

if C then 11 else 12 fi: H' H 

Fig. 7. Dynamic semantics rules for assignments and alternatives 

TO prove the validity of the R-completeness and soundness rules, we use rule induction 
on the partial evaluation, and on the dynamic semantics. Indeed, the P g  and sere 
systems have been defined inductively. 

Our inductive hypothesis for soundness is the following property 1-I s , defined as 
PE 

II s (Ho,I,I',H') r (V Ho,I,I',H' I Ho [- I.---I~ I', H' : 
I 

follows: 

~ e m  S e •  

(v H,rI" H o u r i  I- I': H" ~ H o u r i  i- I: H")). 

The inductive hypothesis 17 c for R-completeness is defined in a similar way. The rule 
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induction operating on a formal system (either PE or gem) states that quadruples are 
only obtained by the rules belonging to this formal system. 

To construct our proof trees we use property Prop. 1, which states that if some (variable, 
value) pairs are added to an environment Ho, what had been already proved in this 
environment Ho still holds in the new environment Ho w H. 

evag 

Ho F C >V 
Prop.1 

eva~ 
Ho uH ~- C "' > V 

I 

3.2 Examples of Proofs of Soundness 

The following examples deal only with proofs of soundness. Proofs of R-completeness 
are similar. We start with treating simple statements, which are not composed of other 
statements. They form the basic cases of the proof. Figure 8 shows a proof of such a 
statement. The possible removal of assignment does not appear in the proof tree, since 
it is performed during a dead code elimination phase, subsequently to the evaluation of 
the expression of the assignment. ....... 

If  we assume that the partial evaluation rule 

eva~ 

E > number(N) H 

H F X : = E  ~ X:=N,  Ht{X-*N} 

holds, and by the rule of the gem system about assignment: 

ev~g 
I 

E > number(N) H 

H F X : = E H t { X - , N }  

then for any H o and H"  such that Ho ~3 H F X:=N : H", 

we have, H"  = (Ho u H)t {X-*N}, thus proving that the following proof tree holds: 

e~a~ 

H F E > number(N) 

eva~ ............... Prop. 1 

H o w H  F E > number(N) 

H o u H  F X : = E  ~ X:=N,  Ht{X--*N} 
rule for the assignment 
belonging to the sere systen 

thus proving that II s (H, X: =E, X: =N, Ht{X-*N}) holds. 
t ,  , , , , ,  ....... 

Fig. 8. Proof of soundness of an assignment partial evaluation 
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Once simple statements have been proved, we have to prove that the soundness rule 
holds for composite statements. Figure 10 shows a proof of soundness for an alternative 
whose condition evaluates to true. There is a similar proof for the case when the 

condition evaluates to false. 

I f  we assume that the rule 

evag PE 

Ho ~ C > bool(true) Ho ~ 11 " " ' ~ I ' 1 ,  H' 
PE 

Ho ~ ifC then I 1 else I2 fi .----I~ I'1, H' 

and the inductive hypothesis 17 s (H, II,I'I,H') hold, then we can deduce that: 
Se~ Se~ 

(VHo,H": H o u H  ~ I ' I : H " ~  H o u H  ~ I I :H" ). 

Furthermore, the dynamic semantics of  the if statement states that 
eval 

H ~" C > boot(true) H ~- II:H' 
/ 

H ~ if C then 11 else 12 fi: H' 

Then, we can state that: 
~emL ~e~ 

(VHo,H": H o u H /  I ' I : H " ~  H o u H  if C then Il else I2 fi: H" ). 

thus proving that H s (H, if C then Ilelse I2 fi, I'],H') holds. 

Fig. 9. Proof of soundness of an alternative whose condition evaluates to true 

4 Implementation of a Prototype 

This section describes the overall architecture of our specializer. Then, it gives 
quantitative results measured for a Fortran specializer. 

4.1 Architecture of the Specializer 

The specialization rules are very close to the ones we have implemented in the Centaur/ 
L environment. The Centaur system [4] is a generic programming environment 
parametrized by the syntax and semantics of programming languages. When provided 
with the description of a particular programming language, including its syntax and 
semantics, Centaur produces a language specific environment. The resulting 
environment consists of a structured editor, an interpreter/debugger and other tools, 
together with an uniform graphical interface. Furthermore, in Centaur, program texts 
are represented by abstract syntax trees. The textual (or graphical) representation of 
abstract syntax trees nodes may be specified by pretty-printing rules. Centaur provides 
a default representation. 

We have used such a resulting environment, Centaur/L, to build our specializer. From 
Centaur/L we have implemented an environment for specialization of programs written 
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in L. Figure 10 shows the overall architecture of this environment, where Centaur/L is 
represented by the grey part. 

Constraints L abstract  
on input and concrete  
variables ~yntaxes  

Initial / 
program 
(written in L) 

T)pul ~ tree manipulation 
programs [ tools ] 

residual prdgram (L) 

Fig. 10. The Centaur/L environment 

From a Centaur/L environment, we have written Typol programs to implement our 
specification rules. Typol is a language for specifying the semantic aspects of 
languages; it is included in Centaur, so that the system is not restricted to manipulations 
that are based solely on syntax. Typol is an implementation of natural semantics. It can 
be used to specify and implement static semantics, dynamic semantics and translations. 
Typol programs are compiled into Prolog code. When executing these programs, Prolog 
is used as the engine of the deductive system. 

Figure 11 shows two examples of Typol rules: a rule specializing an assignment whose 
expression does not evaluate to a constant value (1) and a rule specializing an 
alternative in its else-branch (2). These rules show Prolog primitives implementing map 
operators (their identifiers are italicized), nodes of abstract syntax trees (they are written 
in bold), and calls to Typol programs (their printing stands out in relief). 

evag (H I- E -> E') & nonvar (E') & deletion (H~ X, H') 
.......................................................................... (1) 
Env I- ass (name X, E) -> ass (name X, E'), Env' ; 

evag (H I- E -> logic_cst E') & false (E') & H I- I2 -> I2', H' 
................................................................................ (2) 
H 1- struct_if (Tag, E, I1, I2) -> lstat[I2'], H' ; 

Fig. 11. Some Typol rules for assignments and alternatives 
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4.2 Quantitative Results for Fortran Programs 

We have chosen Fortran to implement our technique for specializing imperative 
programs because Fortran is still widespread in scientific programming. We have 
exhibited a large class of scientific applications our approach is particularly well 
adapted to. We have written about 200 Typol rules to implement a Fortran specializer. 
10 rules express how to reach abstract syntax nodes representing simplifiable 
statements. 90 rules perform the normalization of expressions. Among the 100 rules for 
simplification, 60 rules implement the simplification of expressions. The 40 other rules 
implement the statements simplification. We have written about 25 Prolog predicates 
to implement the VDM operators we have used to specify the simplification. Thus, 
these operators are used in Typol rules as in the formal specification of the 

simplification. 

The partial evaluator may analyze any Fortran program, but it simplifies only a subset 
of Fortran 77. This subset is a recommended standard for developping the scientific 
applications we have studied. For instance, it does not analyze any goto statement (they 

are not recommended), but only goto statements that implement specific control 
structures (e.g. a while-loop). 

The average initial length of programs or subroutines we have analyzed is 100 lines of 
FORTRAN code, which is lengthier than the recommended length (60-70 lines). The 
reduction rate amounts from 25% to 80% of lines of code. That length reduction is 
obtained mostly by removal of code which is useless in the given context. Thus, it 
implies a direct improvement in readability. This reduction is specially important when 
there is a large number of assignments and conditionals. This is the case for most 
subroutines implementing mathematical algorithms. For subroutines whose main 

purpose is editing results or calling other subroutines, the reduction is generally not so 
important. 

5 C o n c l u s i o n  

We have used partial evaluation for programs which are difficult to maintain because 
they are too general. We have formally specified our specialization with inference rules 
expressed in the natural semantics formalism and augmented with some VDM 
operators. We have shown how to prove by rule induction the correctness of our formal 
system, given the standard semantics of the programming language. 

A protoype has been derived from this specification. We are now focusing on an 
industrial implementation of this prototype. This tool will be used by maintainers at the 
EDF, the national French company that provides and distributes electricity to the whole 
country. It will be developed by CEDRIC IIE and Simulog, a company that provided us 
with some basic tools including Centaur/Fortran. To obtain an insdustrial tool from the 
current prototype, we will take into account new operators from Fortran 90. Most of this 
work will consist first in adding new language concepts, that is new abstract syntax 
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operators, and seconly in defining for each new operator how the specialization rules 
are modified. 

Furthermore, the formal specification of our specializer is used as a reference document 
between people involved in the development of the specializer. It allows us to: 
�9 express the real semantics of each languge construct we simplify, 
�9 define precisely what are the interesting simplifications of statements, 
�9 exhibit and prove the specialization rules. With all extensions we take into account, 

the whole proof become rather tedious. Thus, we expect to use a theorem prover as 
COQ [6]. 
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