
Proving the Corlectness of R,ecursion-Based
Automatic Program Transformations

David Sands

DIKU, University of Copenhagen *

Abs t r ac t This paper shows how the Improvement Theorem--a semantic condi t ion for
the to ta l correctness of program transformation on hlgher-order functional p rog rams- -has
practical value in proving the correctness of au tomat ic techniques, including deforestation and
supercompilation. This is aided by a novel formulation (and generalisation) of deforestation-
like t ransformations, which also greatly adds to the modulari ty of the proof with respect to
extensions to bo th the language and the t ransformation rules.

1 I n t r o d u c t i o n

T r ans fo rma t ion of recursive p rograms Source-to-source transformation me-
thods for functional programs, such as partial evaluation [JGS93] and deforesta-
tion [Wad90,Chi90], perform equivalence preserving modifications to the defini-
tions in a given program. These methods fall in to a class which have been called
called generative set transformations [PS83]: transformations built from a small
set of rules which gain their power from their compound and selective applica-
tion. The classic example of this (informal) class is Burstall and Dartington's
unfold-fold method [BD77]; many automatic transformations of this class can
be viewed as specialised instances of unfold-fold rules.

These methods improve the efficiency of programs by performing local opti-
misations, thus transferring run-time computations to compile-time. In order to
compound the effect of these relatively simple local optimisations (in order to
get a speedup of more than an additive constant factor), it is desirable that such
transformations have the ability to introduce reeursion. Transformations such
as deforestation (a functional form of loop-fusion) and partial evaluation (and
analogous transformations on logic programs) have this capability via a process
of selectively memoising previously encountered expressions, and introducing
recursion according to a "ddj& vu" principal [JGS93].

T h e P r o b l e m of Correc tness Program transformations should preserve the
the extensional meaning of programs in order to be of any practical value. In
this case we say that the transformation is correct.

One might say that there are two problems with correctness - the first being
that it has not been widely recognised as a problem! Because the individual trans-
formation components often represent quite simple operations on programs and
are obviously meaning-preserving, confidence in the correctness of such trans-
formation met, hods or systems is high. The problem with this view, for trans-
formations that can introduce recursion, is that correctness cannot be argued
by simply showing that the basic transformation steps are meaning-preserving.
Yet this problem (exemplified below) runs contrary to many informal (and some
formal) arguments which are used in attempts to justify correctness of particular
transformation methods.

* Universitetsparken 1, 2100 Kebenhavn O; daveOdiku.dk

682

To take a concrete (.but contrived) example to illustrate this point, consider
the following transformation (where -~ denotes a function definition, and ~ is
semantic equivalence with respect to the current definition):

f ~ transform
x = x + 4 2 * f x = x + f O using 42 -~ f 0

This example fits into the framework of the unfold-fold method (first apply the
law 42 ~- 0 + 42, and fold 0 + 42 to get f 0), and thus illustrates the well-
known fact that, in general, unfold-fold transformations preserve only partial
correctness. It also serves as a reminder that one cannot argue correctness of a
transformation method by simply showing that it can be recast as an unfold-fold
transformation.

A S o l u t i o n , in P r i n c i p a l To obtain total correctness without losing the lo-
cal, stepwise character of program transformation, it is clear that a stronger
condition than extensional equivalence is necessary. In [Sa95a] we present such
a condition, improvement, and show that if the local steps of a transformation
are improvements (in a formal sense) then the transformation will be correct,
and, a fort~ori, yield an "improved" program. The method applies to call-by-
name and call-by-value functional languages, including higher-order functions
and lazy data structures. In [Sa95a] the improvement theorem was used to de-
sign a method for restricting the unfold-fold method, such that correctness (and
improvement) are guaranteed. It is also claimed that the improvement theorem
has practical value in proving the correctness of more automatic transformation
methods (without need for restrictions).

In this paper we substantiate this claim.

A S o l u t i o n , in P r a c t i c e We consider two "automatic" program transforma-
tions to illustrate the application of the improvement theorem.

The first application [which we only have space to outline] is to a simple sys-
tematisation (due to Wadler [Wad89]) of a well-known transformation to elimi-
nate instances of the concatenate operator from functional programs. With only
minor changes in the presentation, the improvement theorem is directly appli-
cable, and thus correctness and improvement are guaranteed.

The main application of the improvement theorem illustrated in this paper
is more involved. We provide a total correctness proof for an automatic trans-
formation based on a higher-order variant of the deforestation method [Wad90]
(which implies the correctness of the transformations performed by the well-
known first-order algorithm). To reason about the folding process, and to apply
the improvement theorem, we need to reformulate the usual inductive style of
definition to provide a stepwise account. With this new formulation (extended
naturally to deal with higher-order functions) the proof of correctness 2 becomes
strikingly simple, since it amounts to showing t h a t each "step" is an improve-
ment; the proof is robust with respect to the folding strategy, and is modular
with respect to the transformation steps, so we also consider a generalisation of
the "positive supercompilation" rule from [SGJ94]. To our knowledge this is the
first proof of correctness for the results of recursive deforestation (for a first-order
language or otherwise) which explicitly considers the essential folding steps.

2 This does not consider termination aspects of deforestation algorithms, although we
expect that the stepwise formulation will also be useful here.

683

R e l a t e d W o r k In the study of the correctness issues (in program transforma-
tion of the kind addressed in this paper) it is typical to ignore the folding or
memoisation aspects of the algorithms. This often because the correctness is-
sues studied relate to the transformation algorithm rather than the correctness
of the resulting program. For example, studies of correctness in partial evalua-
tion [Gom92] [Pal93] [Wan93] [CK93] ignore the memoisation aspects entirely and
deal with the orthogonal issue of the correctness of binding time analysis, which
controls where transformation occurs in a program. Transformations considered
by Steckler [Ste94] are quite orthogonal to the ones "studied here, since they
concern local optimisations which are (only) justified by datafiow properties of
the program in which they are performed. To the author's knowledge, the only
other correctness proofs (of which we are aware) for automatic transformations
of recursive programs which use some form of folding are in the study of related
logic-program transformation, eg. [LS91] [Kom92]. For an extensive comparison
of the improvement theorem with other general techniques for correct transfor-
mations, see [Sa95b].

The remainder of the paper is organised as follows. S e c t i o n 2 deals with
syntax, operational semantics and definition of operational approximation and
equivalence for a higher-order functional language. In S e c t i o n 3 the defini-
tion and properties of improvement are given, and the improvement theorem
is stated. S e c t i o n 4 outlines the application of the improvement theorem to
a concatenate-elimination transformation. S e c t i o n 5 applies the improvement
theorem to prove correctness of the deforestation-like transformations.

2 P r e l i m i n a r i e s

We summarise some of the notation used in specifying the language and its op-
erational semantics. The subject of this study will be an untyped higher-order
non-strict functional language with lazy data-constructors. Our technical results
will be specific to this language (and its call-by-name operational semantics),
but the inclusion of a strict application operator and arbitrary strict primitive
functions (which could include constructors and destructors for strict da ta struc-
tures) should be sufficient to convince the reader that similar results carry over
to call-by-value languages.

We assume a fiat set of mutually reeursive function definitions of the form
ef where a f the arity of function f , is greater than zero. (For f X 1 . . . X ~ f

an indexed set of functions we will sometimes refer to the arity by index, a i ,
rather than function name.) f , g, h . . . , range over function names, x, y, z . . .
over variables and e, el, e2 �9 �9 �9 over expressions. The syntax of expressions is as
follows:

e = x I f I el e2 (Variable; Function name; Application)
el@e2 (Strict application)
case e of (Case expressions)

c1(~1) : el . . . ~ (~) : e~
e(g) (Constructor expressions and constants)
p(~') (Strict primitive functions)

The expression written e{~'f/E} will denote simultaneous (capture-free) sub-
sti tution of a sequence of expressions K~ for free occurrences of a sequence of

684

variables ~, respectively, in the expression e. The term FV(e) will denote the
free variables of expression e. Sometimes we will (informally) write substi tu-
tions of the form { g/j} to represent the replacement of occurrences of function
symbols g by expressions g. A context, ranged over by C, C1, etc. is an expres-
sion with zero or more "holes", [], in the place of some subexpressions; C[e] is
the expression produced by replacing the holes with expression e. Contrasting
with substitution, occurrences of free variables in e may become bound in C[e];
if C[e] is closed then we say it is a closing context (for e).

O p e r a t i o n a l S e m a n t i c s The operational semantics defines an evaluation rela-
tion (a partial function) 1~. If e~w for some closed expression e then we say tha t
e evaluates to weak head normal form w, or e converges. The weak head normal
forms, w, wl, w2, . . . E WHNF are just the constructor-expressions c(g), and the
partially applied functions, re1 �9 �9 �9 ek, 0 _< k < a f . For a given closed e, if there
is no such w then we say the e diverges. We make no finer distinctions between
divergent expressions, so "errors" and "loops" are identified. The operat ional
semantics is a standard call-by-name one, and ~ is defined in terms of a one-step
evaluation relation using the notion of a reduction context [FFK87]. Reduction
contexts, ranged over b y / R , are contexts containing a single hole which is used
to identify the next expression to be evaluated (reduced).

D e f i n i t i o n 2.1 A reductzon context 1R is given inductively by the following gram-
mar

Now we define the one step reduction relation on closed expressions. We
assume that each primitive function p is given meaning by a part ial function ~p]]
from vectors of constants (according to the arity of p) to the constants (nullary
constructors). We do not need to specify the exact set of primitive functions; it
will suffice to note that they are strict--M1 operands must evaluate to constants
before the result of an application, if any, can be re tu rned- - and are only defined
over constants, not over arbi trary weak head normal forms.

D e f i n i t i o n 2.2 One-step reduction ~-+ is the least relation on closed expressions
satisfying the rules given in Figure 1.

el...e@ (*)

/R[p(ff)] ~+/R[c'] (i f [p]]~ = c')

Fig. 1. One-step reductzon rules

In each rule of the form/R[e] ~-~ /R[e'] in Figure 1, the expression e is referred
to as a redex. The one step evaluation relation is deterministic; this relies on the
fact that if el ~-+ e2 then el can be uniquely factored into a reduction context
/R and a redex e I such that el = /R[eq .

685

D e f i n i t i o n 2.3 Closed expression e converges to weak head normal form w,
e~w, if and only if e ~--~* w (where ~+* is the transitive reflexive closure of
~) .

From this we define the s tandard notions of operational approximat ion and
equivalence. The operational approximation we use is the s tandard Morris-style
contextual ordering, or observational approximation eg. [Plo75].The notion of
"observation" we take is just the fact of convergence, as in the lazy l ambda
calculus [Abr90]. Operational equivalence equates two expressions if and only if
in all closing contexts they give rise to the same observation - ie. either they
both converge, or they both diverge a.

D e f i n i t i o n 2.4 (i) e observationally approximates e ~, e ~ e ~, if for all contexts
C such that C[e], C[e'] are closed, zf C[e]g then C[e']lf.

(~i) e is observationally equivalent to e', e TM e', if e ~ e' and e' ~ e.

3 I m p r o v e m e n t

In this section we outline the main technical result f rom [Sa95a], which says
that if t ransformation steps are guided by certain optimisat ion concerns (a fairly
natural condition for a transformation), then correctness of the t ransformation
follows.

The above notion of optimisation is based on a formal improvement-theory.
Roughly speaking, improvement is a refinement of operational approximat ion
which says that an expression e is improved by e ~ if, in all closing contexts,
computa t ion using e ~ is no less efficient than when using e, in terms of the
number of non-primitive function calls computed. From the point of view of
p rogram transformation, the impor tant property of improvement is that it is
subs t i tu t ive - -an expression can be improved by improving a sub-expression.
For reasoning about the improvement relation a more tractable formulation and
some related proof techniques are used.

The improvement theorem shows that if e is improved by e ~ (in addition to e
being operationally equivalent to e ~) then a t ransformation which replaces e by e ~
(potentially introducing recursion) is totally correct; in addition this guarantees
tha t the t ransformed program is a formal improvement over the original. (Notice
tha t in the example in the introduction, replacement of 42 by the equivalent te rm
f 0 is not an improvement since the latter requires evaluation of an additional
function call).

D e f i n i t i o n 3.1 Closed expression e converges in n (E 1N) -steps to weak head
normal form w, elf'~w if e~w, and this computation requires n reductions of
non-primitive functions (rule (*), Fig. 1).

We will be convenient to adopt the following abbreviations:

aef "w lf,_<,~ d~ ~ = 3n. elf �9 e g " = 3 w . elf �9 e = elf & n _ < m �9 e ~ < . ~ d o f ~ < m

Now improvement is defined in an analogous way to observational approxima-
tion:

3 For this language if we choose to observe more - such as the actual constructor
produced - or if we choose to observe only convergence to a constant rather than any
WHNF, the observational approximation and equivalence relations will be unchanged.

686

D e f i n i t i o n 3.2 (Improvement) e is improved by e', e ~ e', if for all contexts

C such that C[e], C[e'] are closed, if C[e]~ ~ then C[e']g <-~.

It can be seen that ~ is a precongruence (transitive, reflexive, closed under
contexts, ie. e ~ e' => C[e] ~ C[#]) and is a refinement of operational approx-
imation, ie. e ~ # ~ e ~ # .

3.1 T h e I m p r o v e m e n t T h e o r e m

We are now able to state the improvement theorem. For the purposes of the
formal statement, transformation is viewed as the introduction of some new
functions from a given set of definitions, so the transformation from a program
consisting of a single function 2 x A = e to a new version f x = ~ e' will be repre-
sented by the derivation of a new function g x ~ #{g/f}. In this way we do not
need to explicitly parameterise operational equivalence and improvement by the
intended set of function definitions.

T h e o r e m 3.3 ([Sa95a]) Given a set of function definitwns,
I { f ~ x l . . . x ~ , __a e,},er and a set {e,}ie I such that Fv(e~) C_ {Xl. . .x~,},

�9 , , ' then f~ l> g~ whercg are new functions: {g, Xl . .x~, =

The "standard" partial correctness result (see eg. [Kot78][Cou79]), which
follows easily from a least fixed-point theorem for ~, (the full details are given

in [Sa95b]) says that if f x _4 e and e ~ e' then g ,.,f- f where g x _a e'{g/f}.
Combining this with the improvement theorem, we get a condition for total
correctness for transformations which are built by (repeated) application of a
set of source-to-source transformations to the bodies of function definitions:

C o r o l l a r y 3.4 I f the basic steps of a transformation are equivalence-preserving,
and are also contained in the improvement relation (with respect to the omgmal
definitions) then the resulting transformation will be correct, an moreover, the
resulting program will be an improvement over the original.

3.2 P r o v i n g I m p r o v e m e n t

Finding a more tractable characterisation of improvement (than that provided
by Def. 3.2) is essential in establishing improvement laws (and in the proof of the
improvement theorem). The charaeterisation we use says that two expressions
are in the improvement relation if and only if they are contained in a certain
kind of simulatzon relation. This is a form of context lemma eg. [Abr90,How89],
and the proof of the characterisation uses previous technical results concerning
a more general class of improvement relations [San91].

D e f i n i t i o n 3.5 A relation ZTr on closed exprcss,ons is an improvement simula-
tion ~f for all e, e', whenever e ZT~ e', if e~nwl then #~<-nw2 for some w2 such
that either:

�9 ' (i C 1 . . n) , or (,) - c (e , . . = c(c . . . e ') , a n d e, I n e , ,

(,i) Wl E Closures 4, w2 E Closures, and for all closed eo, (Wl co) 277~ (w2 c0)

4 Closures is the set of function-valued results, ie. partially applied functions.

687

So, intuitively, if an improvement-simulation relates e to e ~, then if e converges, e ~
does so at least as efficiently, and yields a "similar" result, whose "components"
are related by that improvement-simulation.

The key to reasoning about the improvement relation is the fact that ~ ,
restricted to closed expressions, is itself an improvement simulation (and is in
fact the maximal improvement simulation)�9 Furthermore, improvement on open
expressions can be charaeterised in terms of improvement on all closed instances.
This is summarised in the following:

L e m m a 3.6 (I m p r o v e m e n t C o n t e x t - L e m m a) For all e, e ~, e ~ e' if and
only if there exists an improvement simulation ZTg such that for all closing sub-
st~tutions ~, ecr ETg e~ (r.

The lemma provides a basic proof technique, sometimes called co-induction:

to show that e ~ e ~ it is sufficient to find an improvement-simulation
containing each closed instance of the pair.

We conclude the section with some example laws which follow directly from
this characterisation, or can be proved by exhibiting appropriate improvement
simulations:

Proposition 3.7 (i)
(iiz) L~[case x of

e1(1) : e l

e ~ + e ' ~ e t>e' (~i) f x t > e i f f x ~ = e
I> case x of

el(Y1) : ~[e l]

The first rule follows easily by showing that the relation containing (e, e') to-
gether with all syntactic equivalences is an improvement simulation. It is also
easy to see that if the reduction step is not the function call case (.) , then e' ~ e
also holds. (ii) says that unfolding is an improvement; this is just a consequence
of (i), since each closed instance is in the one-step reduction relation. For the
third law we construct a simulation relation in the manner of the first case, and
reason from the operational semantics.

4 A S i m p l e A p p l i c a t i o n

The simplest illustration of the application of the improvement theorem is to the
verification of the correctness (and improvement) of a mechanisable transforma-
tion which aims to eliminate calls to the concatenate (or append) function. The
effects of the transformation are well-known, such as the transformation of a
naive quadratic-time reverse function into a linear-time equivalent. The system-
atic definition of the transformation used is due to Wadler [Wad89]. Wadler's
formulation of this well known transformation is completely mechanisable, and
the transformation "algorithm" always terminates. Unlike many other mecha-
nisable transformations (such as deforestation and partial evaluation), it can
improve the asymptotic complexity of some programs.

After some initial definitions have been constructed, the core of the transfo-
ination is a set of rewrite rules which are applied exhausively to the program.
Without any essential change to the definition of the transformation, we have ob-
tained a strikingly simple proof of correctness by showing that all of the rewrites
are improvements.

[The details are omit ted for lack of space--see [Sa95b]]

688

5 D e f o r e s t a t i o n and P o s i t i v e S u p e r c o m p i l a t i o n

Deforestation [Wad90] is a transformation developed for first-order lazy func-
tional programs, which aims to eliminate the construction of intermediate data
structures (eg. trees, and hence the name). The aim of the transformation is
the symbolic fusion of code which produces some data structure with the code
which consumes it. The general aims of the transformation are well known in the
transformation literature as a form of loop fusion; deforestation is an a t tempt
to make this transformation systematic and thereby mechanisable.

The deforestation algorithm is described by simple expression-level trans-
formation of the expressions in a program, plus implicit (but essential) folding
steps, whereby previously encountered expressions are identified, and recursion
is introduced. The main body of work on this transformation concerns the re-
striction of the transformation steps so that, assuming folding, the algorithm
terminates [FW88,Chi90,Sr Other work considers extensions of the algo-
r i thm to richer languages eg. higher-order functions [MW92], and extensions to
enable more powerful transformations [SGJ94].

The contributions of this section are:

�9 a new stepwise formulation of the deforestation transformation;
�9 a natural generalisation to higher-order functions;
�9 a correctness proof which includes folding steps~ and shows that any folding

strategy based on the transformation history (not excluding the possibility
of mutual recursion) is correct.

Regarding the correctness of the transformed programs, Wadler originally
argued that the expression level transformation is obviously correct (since it es-
sentially uses just unfolding and simplifications which eliminate constructors).
This fact is proved for a certain weak form of equivalence in [Sr (unfortu-
nately the "weakness" in question is that the equivalence relation is not closed
under arbitrary substitution, so is not a congruence). But these properties, whilst
necessary, do not in themselves imply correctness of the resulting programs, be-
cause the transformation uses a memoisation process to implement folding 5.
What remains to be achieved, and what we achieve in the remainder of this
section, is to show that the resulting programs are equivalent to the originals -
and in particular in the presence of folding.

The Deforestation Transformation

In most work studying deforestation (or fusion/driving), the language is a first-
order subset of the language presented here, including just case-expressions (or
equivalently, definition by pattern-matching) and recursive function calls. We
will generalise this to a higher-order language but we will omit primitive function
and strict application to simplify the presentation. The results of transformation
using this generatisation are not substantially different from those achieved by
Marlow and Wadler [MW92], but the presentation is more concise; in some sense
this extension of the deforestation method to deal with higher-order functions is
the canonical one, stemming from the fact that, in addition to the case-reduction
context, the language now has an application reduction context (JR e)', plus an

5 Non recursion based approaches to deforestation [GLJ93] [SF93] do not encounter
this problem, but cannot handle recursive definitions.

689

additional set of weak head normal forms--the partially applied functions. A
similar generalisation is given by Nielsen and Serensen [NH94], where they study
the relationship to partial evaluation.

For reasons of space we do not present the original recursive formulation of
the deforestation algorithm.

5.1 Stepwise Deforestat ion

For the most part the folding process is left implicit in the definition of the
transformation. But from the point of view of proving total correctness this is
the meat of the problem. Combining folding with the standard deforestation
algorithm is notationally rather complicated. In essence, the steps of the trans-
formation must be sequentialised in some way, and a "memo-table" of terms
encountered so-far must be threaded through the transformation. However, such
a description commits the method to using a particular "transformation order"
- eg. should the sub-expressions in the term c(el . . . e ,) be transformed left-to-
right, breadth-first, or as is usual in the implicit definitions, independently. Not
all transformation orders will lead to the same transformed program, but from
the point of view of the correctness of the resulting programs, these issues are
orthogonal.

We will prove correctness for a finer-grained description of the transformation
(than is usually given) via a one-step deforestation relation on terms, analogous
to the one-step reduction relation (~) . This is based on a novel combination of
reductwn contexts (as implicit in earlier formulations of deforestation [FW88])
and passwe contexts which enable transformations to be pushed deeper into a
term.

Unlike the one-step reduction relation, the transformation rules we specify are
not deterministic. This is because the resulting correctness results do not depend
on the the transformation order; any strategies of applying the given rules (eg.
breadth-first to obtain more possible folds) including restrictions (eg. to improve
termination behaviour on a wider class of programs) will give correct programs.
Folding can be described simply in terms of the transformation history - the
sequences of expressions rewritten (and new function definitions introduced). A
second benefit of the new presentation will be that additional rules can be added
and the correctness proof will be completely modular.

The basic deforestation rules are presented in Figure 2. To simplify presen-
tation, we define a class of simple dynamic expressions - these are variables or
variables applied to some expressions. Using this we define the passive contexts.
These are the contexts which take no further part in the transformation and
allow the transformations to be pushed further into an expression.

D e f i n i t i o n 5.1

(i) The simple dynamic expressions, ranged over by d are given by d = x I d e.

(@ The passive contexts, ranged over by 1P, are single-holed contexts given by

/ P = [] I c a s e d o f . . . c , (~ ,) : / P . . . I c (. . . / P . . .)

Recall that the reduction contexts for this subset of the language are given by

= []] c a s e ~ o f e l (e l) : e l . . . c ~ (e ~) : e ~ I ~ e

690

L/9.ff~[:f el . . .eo~f] "--+ L/9[:f~ yl.- .~/n]
wh~re { y ~ . . yo} = r v (~ [~ e ~ . . e ~])
~ d e~ y~. . . y. g ~ [~ { e ~ . . . e~e/x~...~.~ }]

(d~)

(d2)

~ . t ~ [r d o~ c , (~) : e ~ . . . c ~ (~) : e .] (~3)
~+ ~ [c a s e d o:f Cl(Xl) : ~ [e l] . . . C n (~ n) : / ~ [e n]]

ffg.j~[:f, e l . . " ea : f _k] ~ ff).ff~[:~o Y i . . . Y3] (d4)
wh~re { y l . . . yj} = Fv(el .. e ~ - k)

a n d f ~ Y l . �9 �9 Y~ z l �9 �9 �9 Zk ~ e l { e l " " �9 e ~ f - k Z l �9 �9 . Z k / x 1 . . . x a 2

Fig. 2. One-Step Deforestation Rules

We w r i t e / P . ~ to denote the composition of passive and reduction contexts, so
/PAR[el will denote the term h~ Note that contexts 1PAR include both the
passive and the reduction contexts.

Some comments are appropriate. The rules essentially mimic the action of the
operational semantics, but for terms containing free variables, l~ule (d l) unfolds
a function call occurring in a reduction context; the result of the unfolding of the
call in the reduction context is represented indirectly by the introduction of a new
function definition (introduced for the purpose of folding, in case this expression
is re-encountered). It is assumed that new function names are fresh. Rule (d2)
is the standard case-reduction rule from the operational semantics. Rule (d3)
is the "propagate-context" rule. Here a case expression, with an un-resolvable
(dynamic) test, occurs in a reduction position, and so the reduction context is
pushed into the branches. This is the generalisation of the "case-case" law in the
original formulation of deforestation. Rule (d4) is the case of a partially applied
function where we force an unfolding via an auxiliary function.

The role of the passive context is to allow the rules to drive deeper into a
term, in the situation where the outer layer of the term cannot be transformed
further. For example, if the outermost construct of the term is an un-resolvable
case expression, then transformation can proceed to the branches.

A p p l y i n g t h e R u le s in D e f o r e s t a t i o n The deforestation algorithm begins
with a top level expression, e0, which represents the program (containing some
free variables) to be transformed.

The one step deforestation rules can implement the deforestation process by
applying them in the following manner. First abstract the free variables from
e0 to form a new (non-recursive) definition f~ ~ g e0. Maintaining a distinction
between the original functions in the program (ranged over by f , g . . .) , and the
new functions introduced by the transformation steps (henceforth ranged over
by f~ g ~ including f~, transform the right-hand sides of the new functions
by repeated (nondeterministic) application of the rules b u t n e v e r a p p l y i n g r u l e

691

(dl) m order to unfold a new function. Rule (d3) is not applied when /R = [],
since in this case the rule is the identity, and rule (d4) is not used i f /R is an
application context.

Fo ld i ng in D e f o r e s t a t i o n In order to get the above Mgorithm to terminate in
some non trivial cases we need to add folding, or memoization% Both rules (dl)
and (d4) introduce new function definitions (without these rules termination
would be assured, but uninteresting). The basic idea is to use a memo-table,
which is accun:mlated during the transformation, to enable (dl) and (d4) to
make use of previously defined functions.

When there is a possibility of applying the rule (dl) to an expression of the
form /P./R[f e l . . . e~f] then we look into the memo-list. If there is an entry

/ / r "S (/R'[f e 1 . . . % f] , f y> uch that /R'[f e [. . . e~ f]0 = /R[f e l . . . e ~ f] where 0 is

a renamm 9 (a substitution mapping variables to variables) then we transform
/P,/R[f e l . . . e~f] to /P[(f~ Otherwise we apply the rule as normal, intro-
ducing a new function name f~ and add the pair (/R[f e l . . . e~f], f~ to the
memo-table. We memoise use of rule (d4) in the same way.

E x a m p l e 5.2 Consider the following definitions:

filterp xs ~ case xs of
nil : nil
cons(y, ys) : case p y of

true : cons(g, f i l t e r p ys)
false : filter p ys

map f xs ~ case xs of
nil : n i l
cons(z, zs) : cons((f z), mapf zs)

c o m p o s e r g x ~ f (g x)

Writing compose in the usual infix style (e o e' = c o m p o s e e e') we wish to
transform the initial definition:

f~ f p a= (map f) o (filterp)

Now we transform the right hand side of the initial definition and the right-hand
sides of subsequently introduced definitions. The initial transformation steps are
given in Fig. 3; each derivation step (-,~) refers to the right-hand side of the
preceding definition.

After these steps the transformation can proceed to the two occurrences of
the sub-term f i l t e r p (map/zs)) (both of which occur in passive contexts) - -
but these expressions (modulo renaming) have been encountered above at the
first application of rule (dl) (and therefore would occur in the memo-table), so

6 Although with this stepwise formulation we can simply stop the transformation at
any point and we have a well-formed program.

692

(f i l t e r p) o (map f) ~ f~ p f where

f~l P f xs a_ filterp (mapf xs)
d l
"-~ f~ p f xs where

f~ p f zs ~ c a s e (mapf xs) of
nil : nil
cons(y, ys) : c a s e p y of

true : cons(y, filter p ys)
false : filter p ys

d l
. . ~ f o 3 P f xs where

fo m (case xs of 3pfxs = case
nd : nil
cons(z, zs): cons((f z), raapf zs)) of

nil : nil
cons(y, ys) : c a s e p y of

true : cons(y, f i l t e r p ys)
false : filter p ys

d 3 d 2 d 2 .-..~.x.~..v+

case xs of
nil : nil
cons(z, zs) : c a s e p (f z) of

true: cons((f z), f i l t e r p (mapf zs))
false : f i l t e r p (mapf zs)

Fig. 3. Initial Deforestation Steps

we "fold", introducing a recursive calls to f~, obtaining:

f~ p f xs ~ f~ p f xs
f ~ . p f xs ~ f ; p f xs

f~p f xs ~- c a s e xs of
nil : nil
cons(z, zs): c a s e p (f z) of

tr.e: eens((f z), pfzs)
false : f ~ p f zs

As is usual, we can eliminate the trivial intermediate functions f~ and f~ by
post-unfolding [JGS93].

5.2 C o r r e c t n e s s

Using the improvement theorem, to prove correctness it will be sufficient to
prove that each transformation step is an improvement. This property holds
because, as observed by Chin [Chig0], each new function call introduced by the
transformation comes together with an unfolding step. This is, in turn, sufficient
to justify the folding steps, since these are guaranteed to be improvements.

P r o p o s i t i o n 5.3 e -.~ e ~ implies e ~ e ~.

693

PROOF. Straightforward using the congruence properties of improvement. []

There are generally considered to be three aspects to the correctness of defor-
estation [Sr (i) termination of the algorithm, (ii) correctness of the resulting
program, and (iii) non degradation of efficiency. It is not difficult to construct
example programs for which the procedure does not terminate, so the effort in
point (i) must be, eg., to find some syntactic characterisation of the programs for
which the algorithm terminates (such a "treeless form") These issue is outside
the scope of this paper. The improvement theorem deals with aspects (ii) and
to some extent (iii); from the previous proposition it is a small step to show
that the transformation yields equivalent programs, and these will be, formally,
equally efficient (in terms of ~) under call-by-name evaluation.

Proposition 5.4 Deforestation yields totally correct programs in that any result
of applying the deforestation steps (including folding) to a program will result in
an improved program.

PROOF. From the previous proposition, the basic steps are all in the improve-
ment relation. Clearly they are also operational equivalences. Taking a "virtual"
view of the transformation [TS84] in which we consider that the initial defini-
tions of the new functions (introduced by the transformation steps) are already
present at the beginning of the transformation, then the folding steps are essen-
tially no different from any other rule: they replace an expression by an improved
one. So by corollary 3.4 the result of the transformation equivalent to, and an
improvement over, the original. []

On Efficiency Improvement relates to call-by-name. Under a call-by-need im-
plementation the usual restrictions of the transformation seem sufficient to regain
the improvement result under call-by-need. These restrictions are that only func-
tions which are linear in their arguments should be transformed - - see [Wad90],
[Chi90]. Alternatively, duplication of sub-expressions (eg. Example 5.2 (fz) is
duplicated in f~) can be avoided by the use of let-bindings, in the obvious way.

On Robus tnes s The correctness proof is dependent on the fact that the in-
dividual steps (and hence the folding steps) are improvements, but not on the
overall structure of the transformation. This means that the application of the
transformation steps can be constrained, for example by use of annotations (eg.
"blazing" from [Wad90]) without any additional proof obligation. Similarly, given
any particular sequentialisation of the transformation steps, the memoisation
process can be arbitrarily constrained in terms of both lookups and writes. In
this sense any memoisation strategy is covered.

It also means that we can add or replace transformation rules to increase
the power of the method (eg. allowing folding to take advantage of more general
expressions) and the only property that needs to be verified is that the new rule
is an improvement. Language extensions, such as addition of primitive functions,
are easily incorporated by extending the classes of dynamic expressions, passive
and reduction contexts appropriately, and by adding any new reduction rules
from the operational semantics.

5.3 Driving and Positive Supercompilation

In terms of transformational power (but ignoring termination issues) Turchin's
droving techniques [Tur86] subsume deforestation. This increased power is due,

694

in part, to increased information-propagation in the transformation. Propaga-
tion of the so-called "positive" information [GK93] can be easily added to the
the one-step deforestation rules along the lines of [SGJ94]. The basic idea is
that when a case-expression has a variable in the test position, as in case y
of ...c,(E~) : e , . . . , within the ith branch we know that free occurrences of
y are equivalent to c,(E~). The effect of "positive information propagation" is
achieved by substituting c~(s for all free occurrences of y in e,. The trans-
formation seems trivial, but cannot be achieved by preprocessing because it is
applied to terms generated on the fly by earlier unfolding steps. The effect of
this extra power is illustrated in [SGJ94].

We achieve the natural higher order variant of this transformation rule by
generalising the propagation from the single variable case, to any free occurrences
of a simple dynamic expression d (Def. 5.1). Positive information propagation is
implemented by adding the following rule.

De f in i t i on 5.5 Define the following transformation rule (d5):

d :] . [case d :]

where we assume the free variables in d and ~ are all distinct, and that we allow
renaming of bound variables in a term.

P r o p o s i t i o n 5.6 e ~ e ~ implies e ~ e ~

PaOOF. Straightforward using the fact that el~Le2 implies el ~ e2, together with
congruence properties of improvement. []

In conclusion we mention an additional feature of Turchin's supercompilation,
namely generalisation. This is a familiar concept in inductive proofs, and has a
fairly direct analogy in program transformation (see eg. [BD77] [Tur86]), where
in order to be able to fold one must proceed by transforming a more general
function. In the transformation studied here we can model generalisation as fol-
lows. Rule (dl) abstracts the free variables from a term and introduces a new
function which replaces the term. Generalisation is enabled if we allow abstrac-
tion of sub-terms other than just the free variables, thereby creating a more
general new function f~ (We leave a discussion of what should be abstracted
to a long version of the paper.) There is a corresponding generalisation of the
folding process. The correctness of these variations are also easily proved from
the congruence properties of the improvement relation.

ACKNOWLEDGEMENTS Thanks to Robert Glfick, John Hatcliff, Morten Heiner SOrensen, Kris-
tian Nielson and Phil Wadler for a number of invaluable discussions and feedback on earlier
drafts, and to the referees for suggesting a number of clarifications and improvements.

Refe rences [CK93] C. Consel and S. Khoo. On-line and

[Abr90] S. Abramsky. The lazy lambda calcu-
lus. In Research Topics in Functional
Programming. Addison Wesley, 1990.

[BD77] R. Burstall and J. Darlington. A
transformation system for developing
recursive programs. JACM, 24:44-67,
January 1977.

[Chi90] W. N. Chin. Automatic Methods for
Program Transformation. PhD thesis,
Imperial College, 1990.

off-line partial evaluation: Semantic
specification and correctness proofs.
Tech. Report, Yale, April 1993.

[Cou79] B. Courcelle. Infinite trees in normal
form and recursive equations having a
unique solution. Math. Systems The-
ory, 13:131-180, 1979.

[FFK87] M. Felleisen, D. Friedman,
and E. Kohlbecker. A syntactic theory
of sequential control. TCS, 52:205-237,
1987.

695

[FW88] A. Ferguson and P. Wadler. When
will deforestation stop. In 1988 Glas-
gow Workshop on Functional Program-
m~ng, Research Rep. 89/R4, 1988.

[GK93] R. Glfiek and A. V. Klimov. Occam's
razor in metacomputation: the notion
of a perfect process tree. In Static Anal-
ysis Syposium, LNCS 724, 1993.

[GLJ93] A. Gill, J. Launchbury, and S. Peyton
Jones. A short cut to deforestation. In
FPCA '93. ACM Press, 1993.

[Gom92] C. Gomard. A self-applicable par-
tial evaluator for the lambda calcu-
lus: correctness and pragmatics. ACM
TOPLAS, 14(2):147-172, 1992.

[How89] D. J. Howe. Equality in lazy com-
putation systems. In ~th LICS. IEEE,
1989.

[JGS93] N . D . Jones, C. Gomard, and
P. Sestoft. Partial Evaluation and Au-
tomatic Program Generation. Prentice-
Hall, 1993.

[Kom92] J. Komorowski. An introduction to
partial deduction. In Third Int. Work-
shop on Meta-Programming m Logic,
LNCS 649, 1992.

[Kot78]
L. Kott. About transformation system:
A theoretical study. In B. Robinet, edi-
tor, Program Transformations. Dunod,
1978.

[LSgl] J. W. Lloyd and J. Shepherdson. Par-
tial evaluation in logic programming. J.
Logic Programming~ 3-4(11), 1991.

[MW92] S. Marlow and P. Wadler. Defor-
estation for higher-order functions.
In Functional Programming, Glasgow
1992, Springer Workshop Series, 1992.

[NH94] K. Nielsen and M. Heine Serensen De-
forestation, partial exaluation and eval-
uation orders. Unpublished, DIKU,
Copenhagen, 1994.

[Pal93] 3. Palsberg. Correctness of binding
time analysis. J. Functional Program-
ming, 3(3), 1993.

[P1o75] G. D. Plotkin. Call-by-name, Call-
by-value and the A-calculus. TCS,
1(1):125-159, 1975.

[PS83] P. Partsch and R. Steinbruggen. Pro-
gram transformation systems. Comput-
ing Surveys, 15:199-236, 1983.

[San91] D. Sands. Operational theories of im-
provement in functional languages (ex-
tended abstract). In Fourth Glas-
gow Workshop on Functional Program-
ming, Springer Workshop Series, 1991.

[Sa95a] D. Sands. Total correctness by local
improvement in program transforma-
tion. In 22nd POPL. ACM Press, 1995.

[Sa95b] D. Sands. Total correctness by local
improvement in the transformation of
functional programs. DIKU, University
of Copenhagen, 48pages, January 1995.

[SF93] T. Sheard and L. Fegaras. A fold for
all seasons. In FPCA '93. ACM Press,
1993.

[SGJ94] M. H. Sr R. Glfick, and N. D.
Jones. Towards unifying partial evalu-
ation, deforestation, supercompilation,
and GPC. In ESOP'94. LNCS 788,
Springer Verlag, 1994.

[Sr M H Serensen. A grammar-based
data-flow analysis to stop deforesta-
tion. In CAAP'94, LNCS 787, 1994.

[Sr M H Serensen. Turchin's supercom-
piler revisited: An operational theory
of positive information propagation.
Master's thesis, DIKU, University of
Copenhagen, (RR 94/9) 1994.

[Ste94] P. Steckler. Correct Higher-Order Pro-
gram Transformations. PhD thesis,
Northeastern University, Boston, 1994.

[TS84] H. Tamaki and T. Sato. Unfold/-
fold transformation of logic programs.
In2nd Int. Logic Programming Con].,
1984.

[Tur86] V. F. Turchin. The concept of a su-
percompiler. ToPLaS, 8:292-325, July
1986.

[Wad89] P. Wadler. The concatenate van-
ishes. University of Glasgow. Unpub-
lished (preliminary version circulated
on the fp mailing list, 1987), November
1989.

[Wad90] P. Wadler. Deforestation: transform-
ing programs to eliminate trees. TCS,
73:231-248, 1990. (Preliminary version
in ESOP 88, LNCS 300).

[Wan93] M. Wand. Specifying the correctness
of binding time analysis. J. Functional
Programming, 3(3), 1993.

