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Abs t r ac t  This paper  shows how the Improvement Theorem--a semantic condi t ion  for 
the  to ta l  correctness of program transformation on hlgher-order functional p rog rams- -has  
practical  value in proving the  correctness of au tomat ic  techniques, including deforestation and 
supercompilation. This is aided by a novel formulation (and generalisation) of deforestation- 
like t ransformations,  which also greatly adds to the modulari ty of the proof with respect to 
extensions to bo th  the language and the t ransformation rules. 

1 I n t r o d u c t i o n  

T r ans fo rma t ion  of  recursive p rograms  Source-to-source transformation me- 
thods for functional programs, such as partial evaluation [JGS93] and deforesta- 
tion [Wad90,Chi90], perform equivalence preserving modifications to the defini- 
tions in a given program. These methods fall in to a class which have been called 
called generative set transformations [PS83]: transformations built from a small 
set of rules which gain their power from their compound and selective applica- 
tion. The classic example of this (informal) class is Burstall and Dartington's 
unfold-fold method [BD77]; many automatic transformations of this class can 
be viewed as specialised instances of unfold-fold rules. 

These methods improve the efficiency of programs by performing local opti- 
misations, thus transferring run-time computations to compile-time. In order to 
compound the effect of these relatively simple local optimisations (in order to 
get a speedup of more than an additive constant factor), it is desirable that such 
transformations have the ability to introduce reeursion. Transformations such 
as deforestation (a functional form of loop-fusion) and partial evaluation (and 
analogous transformations on logic programs) have this capability via a process 
of selectively memoising previously encountered expressions, and introducing 
recursion according to a "ddj& vu" principal [JGS93]. 

T h e  P r o b l e m  of  Correc tness  Program transformations should preserve the 
the extensional meaning of programs in order to be of any practical value. In 
this case we say that the transformation is correct. 

One might say that there are two problems with correctness - the first being 
that it has not been widely recognised as a problem! Because the individual trans- 
formation components often represent quite simple operations on programs and 
are obviously meaning-preserving, confidence in the correctness of such trans- 
formation met, hods or systems is high. The problem with this view, for trans- 
formations that can introduce recursion, is that correctness cannot be argued 
by simply showing that the basic transformation steps are meaning-preserving. 
Yet this problem (exemplified below) runs contrary to many informal (and some 
formal) arguments which are used in attempts to justify correctness of particular 
transformation methods. 
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To take a concrete (.but contrived) example to illustrate this point, consider 
the following transformation (where -~ denotes a function definition, and ~ is 
semantic equivalence with respect to the current definition): 

f ~ transform 
x = x + 4 2  * f x = x + f O  using 42 -~ f 0 

This example fits into the framework of the unfold-fold method (first apply the 
law 42 ~- 0 + 42, and fold 0 + 42 to get f 0), and thus illustrates the well- 
known fact that,  in general, unfold-fold transformations preserve only partial 
correctness. It also serves as a reminder that  one cannot argue correctness of a 
transformation method by simply showing that  it can be recast as an unfold-fold 
transformation. 

A S o l u t i o n ,  in  P r i n c i p a l  To obtain total correctness without losing the lo- 
cal, stepwise character of program transformation, it is clear that  a stronger 
condition than extensional equivalence is necessary. In [Sa95a] we present such 
a condition, improvement, and show that  if the local steps of a transformation 
are improvements (in a formal sense) then the transformation will be correct, 
and, a fort~ori, yield an "improved" program. The method applies to call-by- 
name and call-by-value functional languages, including higher-order functions 
and lazy data  structures. In [Sa95a] the improvement theorem was used to de- 
sign a method for restricting the unfold-fold method, such that  correctness (and 
improvement) are guaranteed. It is also claimed that  the improvement theorem 
has practical value in proving the correctness of more automatic transformation 
methods (without need for restrictions). 

In this paper we substantiate this claim. 

A S o l u t i o n ,  in P r a c t i c e  We consider two "automatic" program transforma- 
tions to illustrate the application of the improvement theorem. 

The first application [which we only have space to outline] is to a simple sys- 
tematisation (due to Wadler [Wad89]) of a well-known transformation to elimi- 
nate instances of the concatenate operator from functional programs. With only 
minor changes in the presentation, the improvement theorem is directly appli- 
cable, and thus correctness and improvement are guaranteed. 

The main application of the improvement theorem illustrated in this paper 
is more involved. We provide a total correctness proof for an automatic trans- 
formation based on a higher-order variant of the deforestation method [Wad90] 
(which implies the correctness of the transformations performed by the well- 
known first-order algorithm). To reason about the folding process, and to apply 
the improvement theorem, we need to reformulate the usual inductive style of 
definition to provide a stepwise account. With this new formulation (extended 
naturally to deal with higher-order functions) the proof of correctness 2 becomes 
strikingly simple, since it amounts to showing t h a t  each "step" is an improve- 
ment; the proof is robust with respect to the folding strategy, and is modular 
with respect to the transformation steps, so we also consider a generalisation of 
the "positive supercompilation" rule from [SGJ94]. To our knowledge this is the 
first proof of correctness for the results of recursive deforestation (for a first-order 
language or otherwise) which explicitly considers the essential folding steps. 

2 This does not consider termination aspects of deforestation algorithms, although we 
expect that the stepwise formulation will also be useful here. 
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R e l a t e d  W o r k  In the study of the correctness issues (in program transforma- 
tion of the kind addressed in this paper) it is typical to ignore the folding or 
memoisation aspects of the algorithms. This often because the correctness is- 
sues studied relate to the transformation algorithm rather than the correctness 
of the resulting program. For example, studies of correctness in partial evalua- 
tion [Gom92] [Pal93] [Wan93] [CK93] ignore the memoisation aspects entirely and 
deal with the orthogonal issue of the correctness of binding time analysis, which 
controls where transformation occurs in a program. Transformations considered 
by Steckler [Ste94] are quite orthogonal to the ones "studied here, since they 
concern local optimisations which are (only) justified by datafiow properties of 
the program in which they are performed. To the author's knowledge, the only 
other correctness proofs (of which we are aware) for automatic transformations 
of recursive programs which use some form of folding are in the study of related 
logic-program transformation, eg. [LS91] [Kom92]. For an extensive comparison 
of the improvement theorem with other general techniques for correct transfor- 
mations, see [Sa95b]. 

The remainder of the paper is organised as follows. S e c t i o n  2 deals with 
syntax, operational semantics and definition of operational approximation and 
equivalence for a higher-order functional language. In S e c t i o n  3 the defini- 
tion and properties of improvement are given, and the improvement theorem 
is stated. S e c t i o n  4 outlines the application of the improvement theorem to 
a concatenate-elimination transformation. S e c t i o n  5 applies the improvement 
theorem to prove correctness of the deforestation-like transformations. 

2 P r e l i m i n a r i e s  

We summarise some of the notation used in specifying the language and its op- 
erational semantics. The subject of this study will be an untyped higher-order 
non-strict functional language with lazy data-constructors. Our technical results 
will be specific to this language (and its call-by-name operational semantics), 
but the inclusion of a strict application operator and arbitrary strict primitive 
functions (which could include constructors and destructors for strict da ta  struc- 
tures) should be sufficient to convince the reader that  similar results carry over 
to call-by-value languages. 

We assume a fiat set of mutually reeursive function definitions of the form 
ef where a f  the arity of function f ,  is greater than zero. (For f X 1 . . . X ~ f  

an indexed set of functions we will sometimes refer to the arity by index, a i ,  
rather than function name.) f ,  g, h . . . ,  range over function names, x, y, z . . .  
over variables and e, el, e2 �9 �9 �9 over expressions. The syntax of expressions is as 
follows: 

e = x I f I el e2 (Variable; Function name; Application) 
el@e2 (Strict application) 
case  e of (Case expressions) 

c1(~1) : el . . . ~ ( ~ ) :  e~ 
e(g) (Constructor expressions and constants) 
p(~') (Strict primitive functions) 

The expression written e{~'f/E} will denote simultaneous (capture-free) sub- 
sti tution of a sequence of expressions K~ for free occurrences of a sequence of 
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variables ~, respectively, in the expression e. The term FV(e) will denote the 
free variables of expression e. Sometimes we will (informally) write substi tu- 
tions of the form { g/j} to represent the replacement of occurrences of function 
symbols g by expressions g. A context, ranged over by C, C1, etc. is an expres- 
sion with zero or more "holes", [], in the place of some subexpressions; C[e] is 
the expression produced by replacing the holes with expression e. Contrasting 
with substitution, occurrences of free variables in e may  become bound in C[e]; 
if C[e] is closed then we say it is a closing context (for e). 

O p e r a t i o n a l  S e m a n t i c s  The operational semantics defines an evaluation rela- 
tion (a partial  function) 1~. If  e~w for some closed expression e then we say tha t  
e evaluates to weak head normal form w, or e converges. The weak head normal  
forms, w, wl, w2, . . .  E WHNF are just  the constructor-expressions c(g), and the 
partially applied functions, re1 �9 �9 �9 ek, 0 _< k < a f .  For a given closed e, if there 
is no such w then we say the e diverges. We make no finer distinctions between 
divergent expressions, so "errors" and "loops" are identified. The operat ional  
semantics is a standard call-by-name one, and ~ is defined in terms of a one-step 
evaluation relation using the notion of a reduction context [FFK87]. Reduction 
contexts, ranged over b y / R ,  are contexts containing a single hole which is used 
to identify the next expression to be evaluated (reduced). 

D e f i n i t i o n  2.1 A reductzon context 1R is given inductively by the following gram- 
mar 

Now we define the one step reduction relation on closed expressions. We 
assume that  each primitive function p is given meaning by a part ial  function ~p]] 
from vectors of constants (according to the arity of p) to the constants (nullary 
constructors). We do not need to specify the exact set of primitive functions; it 
will suffice to note that  they are strict--M1 operands must  evaluate to constants 
before the result of an application, if any, can be re tu rned- -  and are only defined 
over constants, not over arbi trary weak head normal forms. 

D e f i n i t i o n  2.2 One-step reduction ~-+ is the least relation on closed expressions 
satisfying the rules given in Figure 1. 

el...e@ (*) 

/R[p(ff)] ~+/R[c'] ( i f  [p]]~ = c') 

Fig.  1. One-step reductzon rules 

In each rule of the form/R[e]  ~-~ /R[e'] in Figure 1, the expression e is referred 
to as a redex. The one step evaluation relation is deterministic; this relies on the 
fact that  if el ~-+ e2 then el can be uniquely factored into a reduction context 
/R and a redex e I such that  el = /R[eq .  
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D e f i n i t i o n  2.3 Closed expression e converges to weak head normal form w, 
e~w, if and only if e ~--~* w (where ~+* is the transitive reflexive closure of 
~ ) .  

From this we define the s tandard notions of operational approximat ion and 
equivalence. The operational approximation we use is the s tandard Morris-style 
contextual ordering, or observational approximation eg. [Plo75].The notion of 
"observation" we take is just  the fact of convergence, as in the lazy l ambda  
calculus [Abr90]. Operational equivalence equates two expressions if and only if 
in all closing contexts they give rise to the same observation - ie. either they 
both  converge, or they both diverge a. 

D e f i n i t i o n  2.4 (i) e observationally approximates  e ~, e ~ e ~, if for all contexts 
C such that C[e], C[e'] are closed, zf C[e]g then C[e']lf. 

(~i) e is observationally equivalent to e', e TM e', if e ~ e' and e' ~ e. 

3 I m p r o v e m e n t  

In this section we outline the main technical result f rom [Sa95a], which says 
that  if t ransformation steps are guided by certain optimisat ion concerns (a fairly 
natural  condition for a transformation),  then correctness of the t ransformation 
follows. 

The above notion of optimisation is based on a formal improvement-theory. 
Roughly speaking, improvement  is a refinement of operational approximat ion 
which says that  an expression e is improved by e ~ if, in all closing contexts, 
computa t ion  using e ~ is no less efficient than when using e, in terms of the 
number  of non-primitive function calls computed. From the point of view of 
p rogram transformation,  the impor tant  property of improvement  is that  it is 
subs t i tu t ive - -an  expression can be improved by improving a sub-expression. 
For reasoning about  the improvement  relation a more tractable formulation and 
some related proof  techniques are used. 

The improvement theorem shows that  if e is improved by e ~ (in addition to e 
being operationally equivalent to e ~) then a t ransformation which replaces e by e ~ 
(potentially introducing recursion) is totally correct; in addition this guarantees 
tha t  the t ransformed program is a formal improvement over the original. (Notice 
tha t  in the example in the introduction, replacement of 42 by the equivalent te rm 
f 0 is not an improvement  since the latter requires evaluation of an additional 
function call). 

D e f i n i t i o n  3.1 Closed expression e converges in n (E 1N) -steps to weak head 
normal form w, elf'~w if e~w, and this computation requires n reductions of 
non-primitive functions (rule (*), Fig. 1). 

We will be convenient to adopt the following abbreviations: 

aef "w lf,_<,~ d~ ~ = 3n. elf �9 e g "  = 3 w .  elf  �9 e = elf  & n _ < m  �9 e ~ < . ~ d o f  ~ < m  

Now improvement  is defined in an analogous way to observational approxima- 
tion: 

3 For this language if we choose to observe more - such as the actual constructor 
produced - or if we choose to observe only convergence to a constant rather than any 
WHNF, the observational approximation and equivalence relations will be unchanged. 
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D e f i n i t i o n  3.2 (Improvement) e is improved by e', e ~ e', if  for all contexts 

C such that C[e], C[e'] are closed, if  C[e]~ ~ then C[e']g <-~. 

It can be seen that ~ is a precongruence (transitive, reflexive, closed under 
contexts, ie. e ~ e' => C[e] ~ C[#]) and is a refinement of operational approx- 
imation, ie. e ~ # ~ e ~ # .  

3.1 T h e  I m p r o v e m e n t  T h e o r e m  

We are now able to state the improvement theorem. For the purposes of the 
formal statement, transformation is viewed as the introduction of some new 
functions from a given set of definitions, so the transformation from a program 
consisting of a single function 2 x A = e to a new version f x = ~ e' will be repre- 
sented by the derivation of a new function g x ~ #{g/f}.  In this way we do not 
need to explicitly parameterise operational equivalence and improvement by the 
intended set of function definitions. 

T h e o r e m  3.3 ([Sa95a])  Given a set of function definitwns, 
I { f ~ x l . . . x ~ ,  __a e,},er and a set {e,}ie I such that Fv(e~) C_ {Xl. . .x~,},  

�9 , ,  ' then f~ l> g~ whercg are new functions: {g, Xl . .x~, = 

The "standard" partial correctness result (see eg. [Kot78][Cou79]), which 
follows easily from a least fixed-point theorem for ~,  (the full details are given 

in [Sa95b]) says that if f x _4 e and e ~ e' then g ,.,f- f where g x _a e'{g/f}. 
Combining this with the improvement theorem, we get a condition for total 
correctness for transformations which are built by (repeated) application of a 
set of source-to-source transformations to the bodies of function definitions: 

C o r o l l a r y  3.4 I f  the basic steps of a transformation are equivalence-preserving, 
and are also contained in the improvement relation (with respect to the omgmal 
definitions) then the resulting transformation will be correct, an moreover, the 
resulting program will be an improvement over the original. 

3.2 P r o v i n g  I m p r o v e m e n t  

Finding a more tractable characterisation of improvement (than that provided 
by Def. 3.2) is essential in establishing improvement laws (and in the proof of the 
improvement theorem). The charaeterisation we use says that  two expressions 
are in the improvement relation if and only if they are contained in a certain 
kind of simulatzon relation. This is a form of context lemma eg. [Abr90,How89], 
and the proof of the characterisation uses previous technical results concerning 
a more general class of improvement relations [San91]. 

D e f i n i t i o n  3.5 A relation ZTr on closed exprcss,ons is an improvement simula- 
tion ~f for all e, e', whenever e ZT~ e', if e~nwl then #~<-nw2 for some w2 such 
that either: 

�9 ' ( i  C 1 . .  n ) ,  or (,) - c ( e , . .  = c(c  . . .  e ' ) ,  a n d  e, I n  e , ,  

(,i) Wl E Closures 4, w2 E Closures, and for all closed eo, (Wl co) 277~ (w2 c0) 

4 Closures is the set of function-valued results, ie. partially applied functions. 
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So, intuitively, if an improvement-simulation relates e to e ~, then if e converges, e ~ 
does so at least as efficiently, and yields a "similar" result, whose "components" 
are related by that  improvement-simulation. 

The key to reasoning about the improvement relation is the fact that  ~ ,  
restricted to closed expressions, is itself an improvement simulation (and is in 
fact the maximal improvement simulation)�9 Furthermore, improvement on open 
expressions can be charaeterised in terms of improvement on all closed instances. 
This is summarised in the following: 

L e m m a  3.6 ( I m p r o v e m e n t  C o n t e x t - L e m m a )  For all e, e ~, e ~ e' if  and 
only if there exists an improvement simulation ZTg such that for all closing sub- 
st~tutions ~, ecr ETg e~ (r. 

The lemma provides a basic proof technique, sometimes called co-induction: 

to show that  e ~ e ~ it is sufficient to find an improvement-simulation 
containing each closed instance of the pair. 

We conclude the section with some example laws which follow directly from 
this characterisation, or can be proved by exhibiting appropriate improvement 
simulations: 

Proposition 3.7 (i) 
(iiz) L~[case x of 

e1( 1) : e l  

e ~ + e ' ~ e  t>e' (~i) f x  t > e i f f x ~ = e  
I> case x of 

el(Y1) : ~[e l ]  

The first rule follows easily by showing that  the relation containing (e, e') to- 
gether with all syntactic equivalences is an improvement simulation. It is also 
easy to see that  if the reduction step is not the function call case (.) ,  then e' ~ e 
also holds. (ii) says that  unfolding is an improvement; this is just a consequence 
of (i), since each closed instance is in the one-step reduction relation. For the 
third law we construct a simulation relation in the manner of the first case, and 
reason from the operational semantics. 

4 A S i m p l e  A p p l i c a t i o n  

The simplest illustration of the application of the improvement theorem is to the 
verification of the correctness (and improvement) of a mechanisable transforma- 
tion which aims to eliminate calls to the concatenate (or append) function. The 
effects of the transformation are well-known, such as the transformation of a 
naive quadratic-time reverse function into a linear-time equivalent. The system- 
atic definition of the transformation used is due to Wadler [Wad89]. Wadler's 
formulation of this well known transformation is completely mechanisable, and 
the transformation "algorithm" always terminates. Unlike many other mecha- 
nisable transformations (such as deforestation and partial evaluation), it can 
improve the asymptotic complexity of some programs. 

After some initial definitions have been constructed, the core of the transfo- 
ination is a set of rewrite rules which are applied exhausively to the program. 
Without  any essential change to the definition of the transformation, we have ob- 
tained a strikingly simple proof of correctness by showing that all of the rewrites 
are improvements. 

[The details are omit ted for lack of space--see [Sa95b]] 
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5 D e f o r e s t a t i o n  and  P o s i t i v e  S u p e r c o m p i l a t i o n  

Deforestation [Wad90] is a transformation developed for first-order lazy func- 
tional programs, which aims to eliminate the construction of intermediate data  
structures (eg. trees, and hence the name). The aim of the transformation is 
the symbolic fusion of code which produces some data structure with the code 
which consumes it. The general aims of the transformation are well known in the 
transformation literature as a form of loop fusion; deforestation is an a t tempt  
to make this transformation systematic and thereby mechanisable. 

The deforestation algorithm is described by simple expression-level trans- 
formation of the expressions in a program, plus implicit (but essential) folding 
steps, whereby previously encountered expressions are identified, and recursion 
is introduced. The main body of work on this transformation concerns the re- 
striction of the transformation steps so that,  assuming folding, the algorithm 
terminates [FW88,Chi90,Sr Other work considers extensions of the algo- 
r i thm to richer languages eg. higher-order functions [MW92], and extensions to 
enable more powerful transformations [SGJ94]. 

The contributions of this section are: 

�9 a new stepwise formulation of the deforestation transformation; 
�9 a natural generalisation to higher-order functions; 
�9 a correctness proof which includes folding steps~ and shows that  any folding 

strategy based on the transformation history (not excluding the possibility 
of mutual  recursion) is correct. 

Regarding the correctness of the transformed programs, Wadler originally 
argued that  the expression level transformation is obviously correct (since it es- 
sentially uses just unfolding and simplifications which eliminate constructors). 
This fact is proved for a certain weak form of equivalence in [Sr (unfortu- 
nately the "weakness" in question is that  the equivalence relation is not closed 
under arbitrary substitution, so is not a congruence). But these properties, whilst 
necessary, do not in themselves imply correctness of the resulting programs, be- 
cause the transformation uses a memoisation process to implement folding 5. 
What  remains to be achieved, and what we achieve in the remainder of this 
section, is to show that  the resulting programs are equivalent to the originals - 
and in particular in the presence of folding. 

The Deforestation Transformation 

In most work studying deforestation (or fusion/driving), the language is a first- 
order subset of the language presented here, including just case-expressions (or 
equivalently, definition by pattern-matching) and recursive function calls. We 
will generalise this to a higher-order language but we will omit primitive function 
and strict application to simplify the presentation. The results of transformation 
using this generatisation are not substantially different from those achieved by 
Marlow and Wadler [MW92], but the presentation is more concise; in some sense 
this extension of the deforestation method to deal with higher-order functions is 
the canonical one, stemming from the fact that,  in addition to the case-reduction 
context, the language now has an application reduction context (JR e)', plus an 

5 Non recursion based approaches to deforestation [GLJ93] [SF93] do not encounter 
this problem, but cannot handle recursive definitions. 
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additional set of weak head normal forms--the partially applied functions. A 
similar generalisation is given by Nielsen and Serensen [NH94], where they study 
the relationship to partial evaluation. 

For reasons of space we do not present the original recursive formulation of 
the deforestation algorithm. 

5.1 Stepwise  Deforestat ion 

For the most part the folding process is left implicit in the definition of the 
transformation. But from the point of view of proving total correctness this is 
the meat of the problem. Combining folding with the standard deforestation 
algorithm is notationally rather complicated. In essence, the steps of the trans- 
formation must be sequentialised in some way, and a "memo-table" of terms 
encountered so-far must be threaded through the transformation. However, such 
a description commits the method to using a particular "transformation order" 
- eg. should the sub-expressions in the term c(el . . .  e ,)  be transformed left-to- 
right, breadth-first, or as is usual in the implicit definitions, independently. Not 
all transformation orders will lead to the same transformed program, but from 
the point of view of the correctness of the resulting programs, these issues are 
orthogonal. 

We will prove correctness for a finer-grained description of the transformation 
(than is usually given) via a one-step deforestation relation on terms, analogous 
to the one-step reduction relation (~ ) .  This is based on a novel combination of 
reductwn contexts (as implicit in earlier formulations of deforestation [FW88]) 
and passwe contexts which enable transformations to be pushed deeper into a 
term. 

Unlike the one-step reduction relation, the transformation rules we specify are 
not deterministic. This is because the resulting correctness results do not depend 
on the the transformation order; any strategies of applying the given rules (eg. 
breadth-first to obtain more possible folds) including restrictions (eg. to improve 
termination behaviour on a wider class of programs) will give correct programs. 
Folding can be described simply in terms of the transformation history - the 
sequences of expressions rewritten (and new function definitions introduced). A 
second benefit of the new presentation will be that additional rules can be added 
and the correctness proof will be completely modular. 

The basic deforestation rules are presented in Figure 2. To simplify presen- 
tation, we define a class of simple dynamic expressions - these are variables or 
variables applied to some expressions. Using this we define the passive contexts. 
These are the contexts which take no further part in the transformation and 
allow the transformations to be pushed further into an expression. 

D e f i n i t i o n  5.1 

(i) The simple dynamic expressions, ranged over by d are given by d = x I d e. 

(@ The passive contexts, ranged over by 1P, are single-holed contexts given by 

/ P = [ ]  I c a s e d o f . . . c , ( ~ , ) : / P . . .  I c ( . . . / P . . . )  

Recall that  the reduction contexts for this subset of the language are given by 

= [ ]  ] c a s e ~ o f  e l ( e l ) : e l . . . c ~ ( e ~ ) : e ~  I ~ e  
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L/9.ff~[ :f el . . .eo~f]  "--+ L/9[ :f~ yl.- .~/n] 
wh~re { y ~ . .  yo} = r v ( ~ [ ~  e ~ . .  e ~ ] )  
~ d  e~ y~. . .  y. g ~ [ ~ { e ~  . . .  e~e/x~...~.~ }] 

(d~) 

(d2) 

~ . t ~ [ r  d o~ c , ( ~ )  : e ~ . . . c ~ ( ~ )  : e .  ] (~3) 
~+ ~ [ c a s e  d o:f Cl(Xl) : ~ [ e l ] . . . C n ( ~ n ) : / ~ [ e n ] ]  

ffg.j~[:f, e l . .  " ea : f _k  ] ~ ff).ff~[:~o Y i . . .  Y3] (d4) 
wh~re { y l . . .  yj} = Fv(el  .. e ~ - k )  

a n d  f ~  Y l .  �9 �9 Y~ z l  �9 �9 �9 Zk  ~ e l {  e l  " " �9 e ~ f - k  Z l  �9 �9 . Z k / x  1 . . . x a  2 

Fig.  2. One-Step Deforestation Rules 

We w r i t e / P . ~  to denote the composition of passive and reduction contexts, so 
/PAR[el will denote the term h~ Note that contexts 1PAR include both the 
passive and the reduction contexts. 

Some comments are appropriate. The rules essentially mimic the action of the 
operational semantics, but for terms containing free variables, l~ule ( d l )  unfolds 
a function call occurring in a reduction context; the result of the unfolding of the 
call in the reduction context is represented indirectly by the introduction of a new 
function definition (introduced for the purpose of folding, in case this expression 
is re-encountered). It is assumed that  new function names are fresh. Rule (d2)  
is the standard case-reduction rule from the operational semantics. Rule (d3)  
is the "propagate-context" rule. Here a case expression, with an un-resolvable 
(dynamic) test, occurs in a reduction position, and so the reduction context is 
pushed into the branches. This is the generalisation of the "case-case" law in the 
original formulation of deforestation. Rule (d4)  is the case of a partially applied 
function where we force an unfolding via an auxiliary function. 

The role of the passive context is to allow the rules to drive deeper into a 
term, in the situation where the outer layer of the term cannot be transformed 
further. For example, if the outermost construct of the term is an un-resolvable 
case expression, then transformation can proceed to the branches. 

A p p l y i n g  t h e  R u le s  in  D e f o r e s t a t i o n  The deforestation algorithm begins 
with a top level expression, e0, which represents the program (containing some 
free variables) to be transformed. 

The one step deforestation rules can implement the deforestation process by 
applying them in the following manner. First abstract the free variables from 
e0 to form a new (non-recursive) definition f~ ~ g e0. Maintaining a distinction 
between the original functions in the program (ranged over by f ,  g . . . ) ,  and the 
new functions introduced by the transformation steps (henceforth ranged over 
by f~ g ~  including f~, transform the right-hand sides of the new functions 
by repeated (nondeterministic) application of the rules b u t  n e v e r  a p p l y i n g  r u l e  
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(dl) m order to unfold a new function. Rule (d3) is not applied when /R = [], 
since in this case the rule is the identity, and rule (d4) is not used i f /R  is an 
application context. 

Fo ld i ng  in D e f o r e s t a t i o n  In order to get the above Mgorithm to terminate in 
some non trivial cases we need to add folding, or memoization% Both rules (dl) 
and (d4) introduce new function definitions (without these rules termination 
would be assured, but uninteresting). The basic idea is to use a memo-table, 
which is accun:mlated during the transformation, to enable (dl) and (d4) to 
make use of previously defined functions. 

When there is a possibility of applying the rule (dl) to an expression of the 
form /P./R[f e l . . .  e~f] then we look into the memo-list. If there is an entry 

/ / r "S (/R'[f e 1 . . . % f ] , f  y> uch that  /R'[f e [ . . . e~ f ]0  = /R[f e l . . . e ~ f ]  where 0 is 

a renamm 9 (a substitution mapping variables to variables) then we transform 
/P,/R[f e l . . .  e~f] to /P[(f~ Otherwise we apply the rule as normal, intro- 
ducing a new function name f~ and add the pair (/R[f e l . . .  e~f], f~ to the 
memo-table. We memoise use of rule (d4) in the same way. 

E x a m p l e  5.2 Consider the following definitions: 

filterp xs ~ case xs of 
nil : nil 
cons(y, ys) : case p y of 

true : cons(g, f i l t e r  p ys) 
false : filter p ys 

map f xs ~ case xs of 
nil : n i l  
cons(z,  zs) : cons((f  z), mapf zs) 

c o m p o s e r  g x ~ f (g x) 

Writing compose in the usual infix style (e o e' = c o m p o s e e  e') we wish to 
transform the initial definition: 

f~  f p  a= (map f)  o (filterp) 

Now we transform the right hand side of the initial definition and the right-hand 
sides of subsequently introduced definitions. The initial transformation steps are 
given in Fig. 3; each derivation step (-,~) refers to the right-hand side of the 
preceding definition. 

After these steps the transformation can proceed to the two occurrences of 
the sub-term f i l t e r  p (map/zs)) (both of which occur in passive contexts) - -  
but these expressions (modulo renaming) have been encountered above at the 
first application of rule (dl) (and therefore would occur in the memo-table), so 

6 Although with this stepwise formulation we can simply stop the transformation at 
any point and we have a well-formed program. 
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( f i l t e r p )  o (map f )  ~ f~ p f  where 

f~l P f  xs a_ filterp (mapf xs) 
d l  
"-~ f~ p f xs where 

f~ p f zs ~ c a s e  (mapf xs) of  
nil : nil 
cons(y, ys) : c a s e  p y of  

true : cons(y,  filter p ys) 
false : filter p ys 

d l  
. . ~  f o 3 P f xs where 

fo m (case xs of 3pfxs = case 
nd : nil 
cons(z, zs): cons( ( f  z), raapf zs)) of  

nil : nil 
cons(y, ys) : c a s e  p y of 

true : cons(y,  f i l t e r  p ys) 
false : filter p ys 

d 3 d 2 d 2  .-..~.x.~..v+ 

case xs of 
nil : nil 
cons(z, zs) : c a s e  p (f  z) of 

true: cons( ( f  z), f i l t e r  p (mapf zs)) 
false : f i l t e r  p (mapf zs) 

Fig.  3. Initial Deforestation Steps 

we "fold", introducing a recursive calls to f~, obtaining: 

f~  p f  xs ~ f~ p f  xs 
f ~ . p f  xs ~ f ;  p f  xs 

f~p f xs ~- c a s e  xs of  
nil : nil 
cons(z, zs): c a s e  p ( f  z) of 

tr.e: eens((f z), pfzs) 
false : f ~  p f zs 

As is usual, we can eliminate the trivial intermediate functions f~ and f~ by 
post-unfolding [JGS93]. 

5.2 C o r r e c t n e s s  

Using the improvement theorem, to prove correctness it will be sufficient to 
prove that each transformation step is an improvement. This property holds 
because, as observed by Chin [Chig0], each new function call introduced by the 
transformation comes together with an unfolding step. This is, in turn, sufficient 
to justify the folding steps, since these are guaranteed to be improvements. 

P r o p o s i t i o n  5.3 e -.~ e ~ implies e ~ e ~. 
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PROOF. Straightforward using the congruence properties of improvement. [] 

There are generally considered to be three aspects to the correctness of defor- 
estation [Sr (i) termination of the algorithm, (ii) correctness of the resulting 
program, and (iii) non degradation of efficiency. It is not difficult to construct 
example programs for which the procedure does not terminate, so the effort in 
point (i) must be, eg., to find some syntactic characterisation of the programs for 
which the algorithm terminates (such a "treeless form") These issue is outside 
the scope of this paper. The improvement theorem deals with aspects (ii) and 
to some extent (iii); from the previous proposition it is a small step to show 
that the transformation yields equivalent programs, and these will be, formally, 
equally efficient (in terms of ~)  under call-by-name evaluation. 

Proposition 5.4 Deforestation yields totally correct programs in that any result 
of applying the deforestation steps (including folding) to a program will result in 
an improved program. 

PROOF. From the previous proposition, the basic steps are all in the improve- 
ment relation. Clearly they are also operational equivalences. Taking a "virtual" 
view of the transformation [TS84] in which we consider that the initial defini- 
tions of the new functions (introduced by the transformation steps) are already 
present at the beginning of the transformation, then the folding steps are essen- 
tially no different from any other rule: they replace an expression by an improved 
one. So by corollary 3.4 the result of the transformation equivalent to, and an 
improvement over, the original. [] 

On Efficiency Improvement relates to call-by-name. Under a call-by-need im- 
plementation the usual restrictions of the transformation seem sufficient to regain 
the improvement result under call-by-need. These restrictions are that only func- 
tions which are linear in their arguments should be transformed - -  see [Wad90], 
[Chi90]. Alternatively, duplication of sub-expressions (eg. Example 5.2 (fz) is 
duplicated in f~) can be avoided by the use of let-bindings, in the obvious way. 

On Robus tnes s  The correctness proof is dependent on the fact that the in- 
dividual steps (and hence the folding steps) are improvements, but not on the 
overall structure of the transformation. This means that the application of the 
transformation steps can be constrained, for example by use of annotations (eg. 
"blazing" from [Wad90]) without any additional proof obligation. Similarly, given 
any particular sequentialisation of the transformation steps, the memoisation 
process can be arbitrarily constrained in terms of both lookups and writes. In 
this sense any memoisation strategy is covered. 

It also means that we can add or replace transformation rules to increase 
the power of the method (eg. allowing folding to take advantage of more general 
expressions) and the only property that needs to be verified is that the new rule 
is an improvement. Language extensions, such as addition of primitive functions, 
are easily incorporated by extending the classes of dynamic expressions, passive 
and reduction contexts appropriately, and by adding any new reduction rules 
from the operational semantics. 

5.3 Driving and Positive Supercompilation 

In terms of transformational power (but ignoring termination issues) Turchin's 
droving techniques [Tur86] subsume deforestation. This increased power is due, 
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in part, to increased information-propagation in the transformation. Propaga- 
tion of the so-called "positive" information [GK93] can be easily added to the 
the one-step deforestation rules along the lines of [SGJ94]. The basic idea is 
that  when a case-expression has a variable in the test position, as in case y 
of ...c,(E~) : e , . . .  , within the ith branch we know that  free occurrences of 
y are equivalent to c,(E~). The effect of "positive information propagation" is 
achieved by substituting c~(s for all free occurrences of y in e,. The trans- 
formation seems trivial, but cannot be achieved by preprocessing because it is 
applied to terms generated on the fly by earlier unfolding steps. The effect of 
this extra power is illustrated in [SGJ94]. 

We achieve the natural higher order variant of this transformation rule by 
generalising the propagation from the single variable case, to any free occurrences 
of a simple dynamic expression d (Def. 5.1). Positive information propagation is 
implemented by adding the following rule. 

De f in i t i on  5.5 Define the following transformation rule (d5): 

d : ]  . [case d : ] 

where we assume the free variables in d and ~ are all distinct, and that we allow 
renaming of bound variables in a term. 

P r o p o s i t i o n  5.6 e ~ e ~ implies e ~ e ~ 

PaOOF. Straightforward using the fact that el~Le2 implies el ~ e2, together with 
congruence properties of improvement. [] 

In conclusion we mention an additional feature of Turchin's supercompilation, 
namely generalisation. This is a familiar concept in inductive proofs, and has a 
fairly direct analogy in program transformation (see eg. [BD77] [Tur86]), where 
in order to be able to fold one must proceed by transforming a more general 
function. In the transformation studied here we can model generalisation as fol- 
lows. Rule (dl) abstracts the free variables from a term and introduces a new 
function which replaces the term. Generalisation is enabled if we allow abstrac- 
tion of sub-terms other than just the free variables, thereby creating a more 
general new function f~ (We leave a discussion of what should be abstracted 
to a long version of the paper.) There is a corresponding generalisation of the 
folding process. The correctness of these variations are also easily proved from 
the congruence properties of the improvement relation. 
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