
Reactive System Specification and Refinement
K. L a n o

Dept. of Computing, Imperial College, 180 Queens Gate, London SW7 2BZ.

Abstract . This paper describes formal approaches for reactive and real
time system specification and development, using a process of system-
atic translation from statechart descriptions of a system into a specifica-
tion language utilising real time logic (RTL), and refinement within this
language. Alternative implementation strategies using synchronisation
constraints and synchronisation code are also provided, together with
examples of development using the approach.

The approach provides a unitary formalism which combines statecharts,
RTL and temporal logic. Animation and proof tools are also briefly de-
scribed.

1 Introduction

Software applications whose main purpose is to interact in real time with external
systems or devices are termed 'reactive systems'. Examples include chemical
process control systems, or patient monitoring systems, in which response to
external events is a major part of the system requirements, and the timing of
these responses is also critical. More generally, many safety critical systems are
reactive or real time systems, for which formal specifications are becoming more
frequently required by standards. Thus a formal language capable of treating
issues of process scheduling, timing, concurrent execution and interrupts, and
of supporting reasoning about such aspects at a suitable level of abstraction, is
highly desirable.

In this context the use of an object-oriented paradigm is appropriate: objects
may correspond to reactive components whose behaviour can be specified in
isolation, or with real world concepts or entities, such as particular controlled
devices, thus enabling a systematic tracing of requirements through specifications
to code to be performed, supporting validation, assessment and maintenance.

The formal specification language Z ++ [10, 6, 8] will be considered as the l~asis
for a real time specification language. This paper extends the Z ++ language by
allowing the use of RTL formulae in the HISTORY clause of a class. In contrast to
VDM ++ [10], this formalism is more orientated towards discrete event syslems
rather than continuous variable dynamic systems [14]. However, the formalism
presented here could be used as a unifying semantics for much of VDM ++, and
was initially defined to serve this purpose.

Section 2 gives the syntax of Z ++ specifications, together with examples.
Section 3 summarises the temporal logic formalism used in the paper. Section 4
describes the development process intended to be used with the language, and
summarises the steps in this process. Section 5 introduces a refinement tech-
nique using semaphores to implement synchronisation constraints, and Section
6 describes refinement using syuchronisation code [13].

697

2 Z++/RTL Syntax

2.1 C la s se s

A Z ++ specification consists of a collection of class definitions, including generic
classes. A schematic Z ++ class is of the form:

CLASS C [T y p e P a r a m e t e r s]
EXTENDS Ances to r s
TYPES

Tdefs
FUNCTIONS

Axdefs
OWNS

e

INVARIANT

Invc
OPERATIONS

[*] m : IN -~ O U T ;

RETURNS
r : IN --+ O U T ;

, , . .

ACTIONS

Prem,c &
[*] m x y ==> Delta,c;

HISTORY Hc
END CLASS

Each of the clauses in the body of a class definition are optional, al though an
ACTIONS clause requires an OPERATIONS clause. The T y p e P a r a m e t e r s are a
list (possibly empty) of generic type parameters used in the class definition.
The EXTENDS list is the set of previously defined classes that are inherited by
this class. Local types, functions and constants can be defined in the TYPES and
FUNCTIONS clauses. The OWNS list gives a t t r ibute declarations. The INVARIANT
specifics t ime-invariant properties of the internal state. The default invariant is
t r u e .

The ACTIONS list gives the definitions of the various operations tha t can be
performed on instances of the object. The default action for a method, if no
action for it is listed, is the completely non-deterministic operation on the state
of the class and its parameter types. Input parameters are listed before the
output parameters in the action definitions. Z predicates, method invocations
and the B0 procedural code constructs of Abrial 's B Notat ion [11] can be used
to define methods. Operations are given explicit preconditions by the notat ions

P r e m , c ~ m x y ==>

m x y ----=> D e f m , c or PIlE P r e m , c THEN D e f m , c END

698

The default precondition is t rue . Methods with a preceeding * are internal
actions and are discussed further below. The HISTORY of a class is an l%TL
predicate, the forms of which are given in Section 3.

Details of the reference semantics of Z ++ are given in [6]. Essentially a class
name C, when used as a type, denotes a countably infinite set @C of references
to objects of C. A function

�9 c : @C -~ S t a t e c

then obtains actual object values (elements of the implicit state schema of C)
from these references. C denotes dom*c, the set of existing objects of C.

An operation N e w c creates a new instance of C and modifies the set of ex-
isting instances of C (and those of each identified supertype of C). A declaration
a : C in the OWNS list of another class is interpreted as a : @C.

2.2 Spec i f i ca t ion E x a m p l e s

Examples of properties which may be expressed in an abstract declarative man-
ner using Z++/RTL formulae are: "m initiates every t seconds, and in the order
of its requests":

Vi : 1N1 �9 T(m(x), i + 1) = T(m(x),i) + t

T(m(x),i) denotes the time that the i-th request for invocation of m(x)
received by the current object begins to execute, whilst t (Tm(x), i) denotes the
i-th time of the form T(m(x),j) . These may be different if invocations are not
initiated in the order that they are received by an object. The 'shortest job first'
protocol is stated:

Vi , j :N1 [~ (m , i) _ < T (m , j) .
f ((m, i) .x) < f ((m, j) .x) ~ ~'(m,i) _< l"(m,j)

That is, if (m, j) has not already started execution by the time the request for
(m, i) arrives, then (m, i) will be started first if it has a smaller value of some
priority assigning function f on parameter(s) x.

Liveness and fairness constraints can also be stated. An example of a complete
(but highly abstract) Z ++ class is a binary semaphore:

CLASS S e m a p h o r e

OPERATIONS

signal : --~ ;
r e l e a s e : --*

HISTORY
~fln(signal) > ~aet(release) A
#fin(release) +] > #act(slgnal)

END CLASS

self__mutex({signal, re lease)) and mu tex ({s igna l , re lease)) follow from the
remainder of the history constraint, which is implicitly quantified by a [3 T oper-
ator.

699

3 Z++/RTL Logic

3.1 Logic

E v e n t s

- For each method m of C: Tin(e), .Ira(e), ~ m (e) for e e IN, denoting
the initiation, termination and the arrival of a request at the object class,
respectively, of an invocation instance of re(e) ;

- 0 := t r u e , 0 := fa lse for a predicate 0 without modal operators, which
denote the events of this predicate becoming true or false, respectively.

These events, together with events of the form *--(n(xl), a) for a : S a supplier
object to C, and n a method of S (the sending of a request for a to execute
n (x l)) , are collectively referred to as B a s i c E v e n t c . The complete set of events
of C also include the following:

- T(n(xl) , a), l (n (x l) , a), --+(n(xl), a) where a and n are as above;

- +--(n(xl), a, b) where both a and b are supplier objects to C, a : S, and n
is a method of S.

The complete collection of events of C is denoted by E v e n t c .

T e r m s For a given class C, the following terms can occur in the formulae of its
RTL language:

1. variables V i : i E N - - only variables can be quantified over;

2. attributes of the class, its ancestors and supertypes;

3. f (e l , . . . , en) for an n-ary function symbol f and terms e l , . . . , en, and other
Z expressions in terms and schema texts;

4. te where e is an e v e n t o c c u r r e n c e (E, i) , where E is in E v e n t c - the t ime
of the i-th occurrence of E, i : N1;

5. O p (m (e) , i) where m C m e t h o d s (C) , e in the input type of m, i : N1 and
Op E {T, 1, --*}, and ~--((m(e), a), i) for a supplier object a : D and method
m of D;

6. e | and (De where e is a term, t a time-valued term - the value of e at t
and at the next method initiation, respectively;

7. #ac t (m(e)) , #fin(re(e)) , #req(m(e)) , #req (m) , # f in (m) , # a c t (m) for
m E m e t h o d s (C) ;

8. self .

700

r e q (i n) is the number of requests for in received by the current object up
to the present time, # a c t (m) the number of initiations of execution of m and
f i n (i n) the number of terminations of In.

Time-valued terms are arithmetic combinations of terms of the form 4 or
5 and elements of N. The time domain satisfies the axioms of the set of non-
negative elements of a totally ordered topological ring, with addition operation
+ and unit 0, and multiplication operation * with unit 1. Thus 1~1 C_ T I M E can
be assumed. Quantification over T I M E is not allowed.

Relativised versions # a c t (i n (e) , a), etc of event counters for suppliers a : D
to C are also included, as are attributes a . a t t of such suppliers.

In addition, method names in from supertypes D of C can be used in its
events. They will be interpreted (if unambiguous) as r in the semantics of
the language, where D _U r (3 is asserted in the specification.

A and *a can be referred to, for any class A in the specification. This enables
control over object sharing and aliasing.

F o r m u l a e For any class C the following are the formulae in its RTL language.

1. P (e l , . . . , e ,) for an n-ary predicate symbol P and terms el , . . . , e . ;

2. r A r r V r r =:~ r ~ r for formulae r and r

3. r for formulae r and time-valued terms t - "r holds at t ime t" ;

4. VSD �9 r 3 S D �9 r for declarations SD and formulae r

5. t::lr0, Q 0 and O0 for formulae 0;

6. <>r/?, <>0 for formulae 0;

7. e n a b l e d (i n) and e n a b l e d (i n (e)) for methods in, e in the input type of In,
and e n a b l e d (i n , a) for suppliers a of C.

t2r denotes that r holds at all times of the form T(in, i) for In a method of
C which are at or greater than the present time. (~)r denotes that r holds at
the next time of the form]'(in, i) (if there is any). In contrast [3 * and o* refer
to all present and future times.

A x i o m s Only selected axioms will be presented here. A full list, together with
details of the semantics and a proof of soundness, is contained in [7]. The axioms
include those of classical predicate logic in this language, and the axioms of the Z
mathematical toolkit. Of particular importance is a frame axiom which asserts
that attributes of C can only change in value if a method of (3 is currently
executing - it is a form of locality property in the sense of [4].

The ACTIONS specification of a method m is interpreted as:

(xi): Ve: IN; i: N1 �9 Prem,c@T(in(e),i)
Defm,c (in(e), i)/v']| T(in(e), i)

701

where the appropriate versions (m(e), i).xj of formal input or output parameters
are used in Prem,c or Defm,c.

Axioms of linear temporal logic (LTL) [15] hold in this formalism, including
the induction scheme:

r174 1),. . . ,t(Tm., 1)}) A D(r ~ C)r ~ nr

which holds for each LTL formula r where m e t h o d s (C) = { m l , . . . , mn}.
In [7] it is shown that a version of Manna-Pnueli logic [14] is provable from

Z ++/RTL, and that Z ++/RTL is conservative over Manna-Pnueli logic.

A b b r e v i a t i o n s me thods (C) abbreviates the set of methods of a class C, in-
cluding inherited methods.

a c t i v e (m) abbreviates # a c t (m) - #f in(m) , the number of currently active
instances of m. ~wa l t lng (m) abbreviates ~ r e q (m) - ~:act(m), the number of
instances of m awaiting execution.

de lay(m, i) abbreviates T(m,i) - -+(m,i). du ra t i on (m, i) abbreviates
l (m, i) - T(m, i). m u t e x ({ m l , . . . , m,}) abbreviates the assertion

n

#ac t ive(m1) = ~ # a c t i v e (m 0 V .. . V
i = l

#ac t ive (mn) = ~ ~ac t ive(mi)
i = l

se l f - -mutex({ml , . . . ,mn}) abbreviates ~ac t i ve (ml) < 1 A . . . A
~ac t ive (mn) < 1.

m abbreviates ~ac t ive (m) > 0.
f i res(t , i) denotes -~ (false@T(t,i)), that is, the object exists at this time

point.
A duraiive melhod m is a method which satisfies dura t ive(m) : Vi : 1~1 *

J.(m, i) > ~(m, i). A durative class is a class all of whose methods are durative.
For such a class, the property Vi :N1 * m| i) holds for each method m.

3.2 Semant ics

A model/2 of a Z ++/RTL specification S consists of a family (@C)ced~se~_of(S)
of countably infinite sets of object references for each class C of S, and a family
(/2c)C~dasse~of(S) with typing/2c : @C -+ O b j e c t c where O b j e c t c is the
set of pairs/~ = (a, ~) with the type

(c~, a) : (Bas l cEven tc * N1 --~ T IME) x (T I M E ~-* S t a t J c)

which satisfy a set of conditions corresponding to basic properties of events.
S t a t J c is S t a t e c with each declaration a t t : T of C replaced by art : T/~.

c~ assigns a time (not necessarily in the lifetime of the object) to each occur-
rence of an event of C, and cr gives the state of the object at each time point in
its history. From these the value of terms and formulae of ~:c can be computed
at each time point.

702

4 D e v e l o p m e n t P r o c e s s

The development process envisaged for the use of the language for real time
systems is as follows:

1. requirements capture and analysis of the problem, using a structured method
suitable for real time problems, such as OMT [16];

2. formalisation of structured method notations in Z++/RTL, using systematic
processes for the translation of object classes in OMT into Z ++ classes (simi-
lar to the processes for B AMN described in [11]) and statecharts into history
constraints. The abstract declarative nature of RTL allows fairness, liveness
and safety constraints to be stated in an implementation-independent man-
ner;

3. refinement of Z++/RTL specifications into implementation-oriented classes,
making use of reusable specified components and the code of these compo-
nents;

4. implementation of classes using classes which contain procedural code, with
timing information derived from a particular execution enviromnent being
used to prove the final refinement step.

In the following sections stages 2, 3 and 4 will be illustrated using a small
example. Larger applications are given in [7, 8].

4.1 Formal l sa t ion o f O M T Analysis Mode l s

Integrating formal and structured methods has a number of advantages as a
development approach: it can make use of the complementary strengths of these
two techniques, and it can make use of existing software engineering expertise,
rather than attempting to replace it. A recent survey on the use of formal meth-
ods in industry reported that 31% of those companies using formal methods were
using them in conjunction with structured methods [2].

O b j e c t Mode l s There are two main models which form the input to the for-
malisation process. The first is the Object Model which describes the entities
involved in the system, and their attributes, operations and the relationships
between them (including inheritance or subtyping). An object model describing
a railway station consisting of a set of track sections is shown in Fig. 1.

These models are used to build an initial outline specification, which will
later be enhanced by consideration of the dynamic model, and by the addition
of semantic detail which could not be expressed in the structured models.

The formalisation process is as follows:

1. For each entity C in the object model, create a Z ++ object class C;

2. Each attribute of C becomes an attribute of C, with corresponding type;

703

TrackSection L
F

platforms

Station

trains_in__station

Fig. 1. Object Model of Station

3. Each association r between entities C and D is examined to determine if both
directions of the association are required in the final system. The required
directions are then formalised as attributes r l of C, of type D (in the case of
a many-one or one-one association from C to D), or of type F(D) or seq(D)
(in the case of an unordered or ordered many-many or one-many association
from C to D, respectively). Similarly for the inverse map r2 from D to C, if
this is required;

4. If D inherits from C, then the clause EXTENDS C is placed in the header of
D. Conformant subtypes are expressed via suitable E assertions;

5. Operations are translated into outline specifications of operations, with how-
ever all signatures completed;

6. Formalisation of all assertions on an object model can be at tempted, using
the INVhRIhNT and HISTORY components of a class.

D y n a m i c M o d e l For reactive systems the dynamic model, based upon Harel
statecharts, is the most significant analysis model. Here we will consider exten-
sions of statecharts to include time bounds on transitions. The formalisation
process for dynamic models is:

1. Condition triggered transitions and anonymous (automatic) transitions are
formalised as operations which are internally invoked, whilst event-triggered
transitions are formalised as operations which are invokable from other ob-
jects;

2. states are formalised as elements of an enumerated set, and an at tr ibute
of this type is defined to record the current state. Methods formalising a
transition modify this variable appropriately;

3. t ime bounds [1, u] on transition t are expressed via the formula
Yi :I~1 �9 f i r e s (t , i) =:~ 1 _< d e l a y (t , i) _< u;

704

4. if t has source state $1 and destination state $2 (assumed distinct) and
guard condition cond , then:

(e n a b l e d (t) =- (s t a t e = S1) A cond) A
Vi : ~ 1 * 3j , k l , k 2 : N1 *

t ((s t a t e = S1) A c o n d := t r u e , j) = --+(t, i) A
((s t a t e = S1) A cond)@T(t, i) A
~(t , i) = t ((s t a t e = S1) := false, k l) A
~(t, i) : t ((s t a t e = $ 2) : : t r u e , k2)

If t is durative (in particular if $1 # $2) then the LTL properties

El(t =:~ C) (s t a t e - $2)) [::](t_. ~ s t a t e = S l)

can be derived (if t has no other source or destination);

5. if t has an associated action ac t on supplier object a, then:

Vi : 1~11 �9 3k3:I~11 �9 T(t , i) = ~--((act, a), k3)

6. event triggered transitions are formalised in the same way, however clause 4
is replaced by:

e n a b l e d (t (p)) ~_ (s t a t e = Sl) A
Vi : I~ 1 * ~ j : 1~ 1 *

(s t a t e : S1)@t (even t (p) , j) A
t (e v e n t (p), j) = ---,(t (p), i) A
(s t a t e = S1)@T(t(p), i)

Each class corresponding to a statechart is mutex and self-mutex. In addition
there are liveness constraints asserting that any non-terminal state must even-
tually be exited, and constraints asserting that states can only become true as
a result of a transition into them. If there are no self-transitions on S1 then the
assertion [::l(state = S1 :=~ t_A V . . . V t__a~) states that Sl can only be exited via
transitions t l , . . . , tn.

For example, consider the statechart of track sections shown in Fig. 2.
A track section is a defined contiguous segment of track which can be occupied

by at most one train at any time. In addition, it may be closed (eg, for engineering
work) so that no trains may enter the section. A train will take a minimum of
60 seconds to clear a track section, and a closed track section will be closed for a
minimum of 120 seconds. The corresponding outline class, with a state variable
t s t a t e : T S t a t e is:

CLASS TrackSect ion
TYPES

TS ta t e ::---- closed
OWNS

t s ta te : T S t a t e

I free [blocked

705

train_arrives
Free

~cl~" /pen[120,oo]~train_departs[60,oo]

Closed [

Blocked

Fig . 2. St~techart of T r a c k S e c t i o n

OPERATIONS

i n i t : -~;
t r a i n _ a r r l v e s : ~ ;
t r a l n _ d e p a r t s : --,;
o p e n : --*;
c lo se : --*

ACTIONS

i n l t ==>
t s t a t e r = f r ee ;

t r a i n _ a r r l v e s ==>
t s t a t e ' = b l o c k e d ;

t r a i n _ d e p a r t s ==>
t s t a t e ' = f r ee ;

o p e n = = >
t s t a t e ~ = f r e e ;

c lose ==>
t s t a t e ' = c l o s e d

HISTORY
m u t e x ({ in l t , t r a l n _ a r r i v e s , t r a i n _ d e p a r t s , o p e n , c lo se }) A
s e l f _ m u t e x ({ in i t , t r a i n _ a r r i v e s , t r a i n _ d e p a r t s , o p e n , c lose }) A
D (t r a i n _ a r r i v e s =~ t s t a t e = f ree) A
D (t r a i n _ d e p a r t s =~ t s t a t e = b l o c k e d) A
D (o p e n =~ t s t a t e = c losed) A
D(close =~ t s t a t e = f ree) A
V i : N1 �9 f i r e s (t r a i n _ d e p a r t s , i) =V 60 < d e l a y (t r a l n _ d e p a r t s , i) A

706

u i : I~1 �9 fires(open, i) =~ 120 _< delay(open, i)
END CLASS

There are additional logical properties which can be derived from the statechart.
More detail on the formalisation process, including the treatment of entry and
exit actions, activities within a state, nested statecharts and AND composition of
statecharts is given in [8]. The precision of the translation is such that statecharts
could be explicitly presented in the HISTORY clause of a class in place of (some)
temporal assertions.

4.2 Re f inemen t

Refinement in Z++/RTL corresponds to theory extension [6, 7]. That is, all
specified dynamic properties of a class C should be provable in any refinement
D of C. The notation for refinement of C by D, via a renaming r of the methods
of C, and a data refinement relation R on the combined states is C U r D.

Subtyping of classes is equated with class refinement, in contrast to [12], al-
though the roles of subtyping and refinement within the development process are
clearly distinguished. Alternative concepts of refinement, related to operational
compatibility [3], and strictly stronger than subtyping, are discussed in [7].

4.3 I m p l e m e n t a t i o n

In the final refinement of a subsystem, a restricted language is used, in which
methods are defined using constructs corresponding to procedural code struc-
tures, and in which types are restricted to be arrays, strings, object reference
types or scalars.

This language preserves refinement in the sense that ifa class D is a client of a
class C, and C1 refines C, then substituting C1 for C in D to produce a class D1
implies that D1 refines D. This supports compositional (separate) development
of subsystems. It is also direct to implement such classes in an object-oriented
programming language such as C++. Timing specifications for such implemen-
tations can be derived from the timing specifications of the hardware which is
the ultimate destination of the compilation process.

The RTL language is extended by times T(s, i), ~(s, i) and ~ (s , i) for each
statement occurrence s of the implementation language in C. These denote re-
spectively start, end, and request times for the i-th invocation of s within an
instance of C.

These times are assumed in general to be non-negative real numbers. The
approach of [5] is used: For each primitive operation op, which is one of: gadd r
(get an address), s tor (store a value in an address), eval(e) (evaluate expression
e), decl(W) (define storage for a variable of type T), br t , b r t l o o p (branch on
true), b r f , br f loop (branch on false), there are corresponding sets T(op) of
possible durations for this operation.

707

T(op) should always be a small finite set, thus allowing reasoning by case
analysis. The definition of T will vary between destination processor architec-
tures. An operation $ performs addition of such sets, ie: S 4- T - {s + t I s 6
S A t 6 T}. An example of the timing rules is:

A s s i g n m e n t The behaviour of assignment is given by:

-+(x := e, i) = T(x := e, i)
J.(x := e, i) - T(x := e, i) 6 T (g a d d r) 4- T(s to r) 4- T(eval(e))

That is, there is no delay in executing the assignment after its request, and
its duration is a sum of possible durations for its constituent steps.

5 Development Using Semaphores

A general approach for the refinement of classes with non-trivial synchronisa-
tion constraints is to utilise classes, such as semaphores, which provide specific
synchronisation facilities. That is, a class C with synchronisation requirements
expressed in its HISTORY clause will be refined by a class C_I which has a sup-
plier class S whose properties can be used to prove the requirements of C. C_I
itself may not need to contain any synchronisation mechanisms.

An example is the case where it is required that a particular method m is
self-mutex (Fig. 3). Synchronisation constraints of C are implemented using a

CLASS C

OWNS

OPERATIONS

m : X -+ Y;

ACTIONS

m x y ==> Defm;

HISTORY

s~lf_m.tex({ m })
END CLASS

CLASS C_I

OWNS

s: Semaphore;

OPERATIONS

m : X ~ Y;

ACTIONS

mxy

END CLASS

_--=>

BEGIN

s.signal ;
Code;
s.release

END;

Fig. 3. Refinement Using Semaphores

S e m a p h o r e instance, where C o d e implements the state transitions defined in
Defrn. The refinement is formally provable because:

a c t i v e (m) = # a c t (m) - # f i n (m)
= # a c t (s l g n a l , s) - # f in (r e l ease , s) < 1

from the history constraint of S e m a p h o r e .

708

Other examples are given in [8], including a development of the dining philoso-
phers problem using this approach.

6 Refinement Using Synchronisation Code

An alternative refinement route, which allows synchronisation and fairness re-
quirements expressed in a Z ++ specification to be discharged, makes use of the
concept of synchronisation code [13]. This involves the definition of state transfor-
mations on synchronisation variables which are performed at event occurrences.
An event is either the creation of an object, a reception of a request for a method
execution, the start of an execution of a method, or the termination of execution
of a method. Thus the approach is consistent with the Z++/RTL formalism, and
with statecharts.

Synchronisation variables and functions over these are then used to control
the permission to execute methods via permission guards.

The refinement of a class (at the end of a data and procedural refinement
process) into a C + + class with synchronisation code can be formally checked
by an induction over events. This induction will be that the abstract declarative
history constraint of the Z ++ class is always true at each event time, with respect
to the translation between Z ++ and C + + variables.

As an example, consider the specification that requests of m are served in a
first-come, first-served manner (FCFS):

CLASS C
OPERATIONS

In:---,
HISTDRY

V i, j: NI I ~(m,i) < -~(m,D �9 T(m,i) _< T(m,D
END CLASS

An appropriate extended C + + class is (following [1~):

class C{

m() {}
synchronisation

int elk;

int arr_time local to m;

start(C) --> clk= O;

arrival(m) --> this_inv.arr_time = elk++;

m: there_is_no(p in waiting(m): p.arr_time < this_inv.arr_time);
}

The final clause here asserts that the this__inv invocation instance of m cannot
initiate execution unless the priority condition holds for this instance.

709

We can relate these two versions of C as follows. The concrete expression
th i s_ inv , axr_tirae refers to a local (synchronisation) variable of a specific in-
stance (m, i) of an invocation of in. This can be formalised as (m, i).arr_tiine.
From the code it follows that: (m, i) .arr_time = clk| i).

By induction on events it can be shown that this value is also

previous_requests(m, --+(m, i)) = #{j : 1~1] ~ (m , j) < ~ (m , i)}

(The only relevant events are those listed in the concrete class, and it is assumed
that object creation occurs before any (in, i) invocation.)

The set wai t ing(m) of outstanding invocation instances of m has the formal
counterpart waiting__instances(m, t) = {i: 1~1] --*(m, i) < t A --1 (T(m, i) <
t)} for each time-valued term t.

Therefore the concrete guard has corresponding formal permission require-
ment

V i : N i *
(-, B p i n d : l~l] p ind E wai t ingAnstances(m,]'(m, i)) *

previous._request s(m, --+(m, pind)) <
previous_requests(m, ~ (m , i)))| i)

Given this, it is impossible for there to be p ind < i with --*(m, p ind) <
~ (m , i) but T(m,i) < T(m, pind).

Assume otherwise. Then p ind E wai t ingAnstances(m, t(m, i)). But

previous_requests(m, ~ (m , pind)) < previous_requests(m, ~ (m , i))

since p ind is a member of the second set and not the first (and
previous_requests(m, t) is monotonically increasing with t), contradicting the
guard for m.

Tools

Animation and proof tools have been developed for this formalism. Animation is
based upon the checking of proposed scenarios expressed as sequences of events.
The tool allows a sequence of events and corresponding times to be incremen-
tally constructed, checking permission guards, duration and delay constraints,
synchronisation constraints involving event counters, and mutual exclusion prop-
erties. Post-states are generated from pre-states, with user interaction being re-
quired if there is non-determinism in the method specification [9].

Conclusions

This paper has detailed development processes for real time system development
which integrate structured and formal methods in an object-oriented framework,
and which combine the benefits of these methods. The proposed formalism pro-
vides many of the facilities of real time formalisms such as interval logic [1] or
RTTL [14] without excessive notational overhead.

710

R e f e r e n c e s

1. J. F. Allen: Maintaining knowledge about temporal intervals, CACM, 26(11):832-
843, November 1983.

2. S. Austin, G. I. Parkin: Formal Methods: A Survey, National Physical Laboratory,
Queens Road, Teddington, Middlesex, TWl l 0LW, March 1993.

3. R. Duke, P. King P, G. Smith: Formalising Behavioural Compatibility for Reactive
Object-oriented Systems, in P roe 14th Aust ra l ian t e m p t . Sci. Conf. (ACSC-
14), 1991.

4. J. Fiadeiro, T. Malbaum: Sometimes "Tomorrow" is "Sometime", in Tempora l
Logic, D. M. Gabbay and H. J. Ohlbach (editors), LNAI 827, Springer-Verlag
1994, 48-66.

5. C. Fidge: Proof Obligations for Real-Time Refinement, Proceedings of 6 th Re-
f inement Workshop, Springer-Verlag Workshops in Computing, 1994.

6. K. Lane: Refinement in Object-oriented Specification Languages, Proceedings of
6 th Ref inement Workshop, Springer-Verlag Workshops in Computing, 1994.

7. K. Lane: Formal Object-oriented Specification of Real Time Systems, Dept. of Com-
puting, Imperial College, 1994.

8. K. Lane: Software Specification and Development in Z ++, to appear in Th e Z
Handbook , J. Bowen and M. Hinchey (eds.), McGraw-Hill 1995.

9. K. Lane: Reasoning Techniques in VDM ++, AFRODITE project report
AFRO/IC/KL/RT/V1, Dept. of Computing, Imperial College, 1994.

10. K. Lane, H. Haughton: Objec t -o r ien ted Specif icat ion Case Studies, Prentice
Hall, 1993.

11. K. Lane, H. Haughton: Improving the Process of System Specification and Re-
finement in B, Proceedings of 6th Ref inement Workshop, Springer-Verlag
Workshops in Computing, 1994.

12. B. Liskov, J. Wing: Family Values: A Behavioral Notion of Subtyping, School of
Computer Science, Carnegie Mellon University, report CMU-CS-93-187, 1993.

13. C. McHale, S. Baker, B. Walsh, A. Donnelly: Synchronisation Variables, Amadeus
Project report TCD-CS-94-Ol, University of Dublin, 1994.

14. J. S. Ostroff: Tempora l Logic for Rea l -Time Systems, John Wiley, 1989.
15. A. Pnueli: Applications of Temporal Logic to the Specification and Verification

of Reactive Systems: A Survey of Current Trends, Cur ren t Trends in Con-
currency, de Bakker J., de Roever W.-P., Rozenberg G. (Eds), Springer-Verlag
Lecture Notes in Computer Science, Vol. 224, 1986.

16. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Ob jec t -Or i en ted
Model l ing and Design, Prentice-Hall International, 1991.

