
N o n - s p e c u l a t i v e and U p w a r d I n v o c a t i o n o f
C o n t i n u a t i o n s in a Paral le l L a n g u a g e

Luc Moreau*

Institut d'Electricit~ Montefiore, B28. Universit~ de Liege, Sart-Tilman, 4000 Liege,
Belgium. moreau~montefiore, ulg. ac. be

A b s t r a c t . A method of preserving the sequential semantics in parallel pro-
grams with first-class continuations is to invoke continuations non-speculati-
vely. This method, which prevents a continuation from being invoked as long
as its invocation can infringe the sequential semantics, reduces parallelism
by the severe conditions that it imposes~ especially on upward uses. In this
paper, we present new conditions for invoking continuations in an upward
way and both preserving the sequential semantics and providing parallelism.
This new approach is formalised in the PCKS-machine, which is proved to be
correct by showing that it has the same observational equivalence theory as
the sequential semantics.

1 Introduction
The cont inuat ion of an expression is the computa t ion tha t remains to be performed
after evaluat ing this expression [16]. Some programming languages like Scheme [14],
or SML of New Jersey [1] provide the user with two facilities to act on the in terpreter
continuation: the capture and the invocation. The capture of a continuation consists
in packaging up the current continuation as a first-class object so tha t it can be passed
to or re turned by functions like any other object. The invocation of a cont inuat ion
discards the current continuation and resumes the computat ion with the invoked
continuation.

Paral lel ism can be added to a language by some annotat ions tha t specify which
expressions should be evaluated in parallel [7]. These annotat ions are required to be
transparent; tha t is, parallel programs must re turn the same results as in the absence
of annotat ions.

Paral le l ism and first-class continuations can prevent the annotat ions for paral-
lelism from being t ransparent . Indeed, as continuations explicit ly encode the evalu-
at ion order, it is possible to write continuat ion-based programs tha t depend on this
order. Since parallel ism changes the evaluation order, combining both parallel ism
and first-class continuations can result in non=deterministic programs, which is in
opposi t ion to the definition of t ransparent annotat ions.

Previously [12, 10, 11], we proposed to invoke continuations non-speculatively
in order to preserve the t ransparency property. A continuation is invoked non-
speculat ively if its invocation can be performed only when it is proved not to in-
fringe the sequential semantics. The non-speculative approach essentially consists in
wait ing for some expressions to be evaluated before actual ly invoking the continua-
tion; these expressions are the ones tha t are evaluated before the invocation in the

+ This work was supported in part by the Belgian Incentive Program "Information Technol-
ogy" - Computer Science of the future, initiated by the Belgian State - Prime Minister's
Office - Science Policy Office. The scientific responsibility is assumed by its author.

727

sequential order. This method of invocation preserves the transparency property of
annotations, but it imposes such drastic conditions on continuation invocations that
it can seriously reduce parallelism in programs.

One usually distinguishes two usages of continuations [8]. If the invoked continu-
ation is a prefix of the current continuation, the invocation is downward; otherwise,
it is upward. A downward invocation simply consists in discarding a suffix of the
current continuation, i.e. it corresponds to an escape. In order to provide more par-
allelism, we devised [12, 10, 11] a mechanism able to reduce the number of expressions
for which a value had to be waited before a downward invocation of a continuation.
However, this mechanism [12, 10, 11] still imposes so severe conditions on upward
uses tha t it can reduce parallelism.

In this paper, we propose new conditions for invoking continuations in an upward
way without losing parallelism, but still preserving the transparency property. The
essence of our new approach relies on the observation that many uses of continuations
remain local to a part of a program; for instance, when the use of a continuation
(creation, invocation, storage) remains limited to a function. In such circumstances,
there is no need to coordinate the invocation of the continuation with expressions
that are evaluated in parallel in a part of the program that is unreachable by the
continuation.

The original contributions of this paper are the following:

- We propose a new version of the PCKS-machine, an abstract machine that eval-
uates parallel functional programs with first-class continuations. The machine
recognises upward uses of continuations and provides parallelism in such cases,
while retaining the non-speculative approach for invocation. This abstract ma-
chine formalises the semantics of continuations is an annotation-based parallel
language and can be regarded as a guideline for an implementation.

- We prove the correctness of the machine: the PCKS-machine returns the same
result for a program as a sequential machine would do for the same program
without annotations. Pu t differently, the semantics implemented by the PCKS-
machine guarantees the transparency of annotations for parallelism.
The proof essentially consists in proving that the observational equivalence the-
ories of the PCKS-machine and of the sequential machine are the same. The
proofs differs from the one in [10] and is much simpler.

This paper is organised as follows. We present Felleisen and Friedman's CK-
machine, an abstract machine that evaluates sequential functional programs with
first-class continuations. After giving the intuition of the annotations for parallelism
fork and pcall, we present the PCKS-machine, and its non-speculative approach to
continuations invocation. The basic approach is then modified to recognise the up-
ward use. In Section 5, we state some properties of the machine and prove its cor-
rectness. A comparison with related work and a conclusion end this paper.

2 T h e C K - M a c h i n e

The set of terms accepted by the CK-machine [4, 6] is denoted by Ack and is defined
as follows, where x is taken from a set of variables Vats and a from a set of constants
Csts.

M ::= V I (M M) (Terms)

V : : = e] x] (Ax.M) [(p,~) (Values)
c ::= cailcc I a (Constants)

: := (init) I (a fun V) [(a a r g M) (Continuation Code)

728

Terms can be values or applications (M1 /1//2) composed of an operator M1 and an
operand M2. Values can be constants, variables, abstractions (s or continuation
points (p, a). A continuation point represents a first-class continuation; p is a tag that
identifies all continuation points and ~ is a continuatzon code. Constants either belong
to a set of constants Csts or are the distinguished constant callcc. A continuation
code is an abstract data type that represents the rest of the computation in the CK-
machine; its meaning will be described below. We adopt Barendregt's convention and
terminology [2]. In an abstraction (Ax.M), a variable x in M occurs bound; variables
that are not bound by an abstraction are free. We define a program as a term without
free variables.

Felleisen and Friedman [4, 6] introduced the CK-machine, an abstract machine
that is characterised by two components: a control string C and a continuation K.
A configuration of the CK-machine is a pair (M, n}, where the term M of Ack is the
control string, and the continuation code ~ represents the rest of the computation,
i.e. what remains to be performed after evaluating the control string M. An example
of program annotated for parallelism can be found in [10].

In order to evaluate a term M with the CK-machine, we begin the computation
with the initial configuration (M, (init)}, and we end the computation when a termi-
nal configuration is reached; such a terminal configuration is of the form (V, (init)}.
Transitions between configurations follow Definition 1.

Def in i t ion 1 (CK-mach ine)

((M N), ~} ~ (M, (a arg N)) (operator)

(V, (n arg N)} A (N, (n fun V)} (operand)

(V, (~ fun (~x.M))) ~ (M{V/x}, ~) (fly)

(b, (n fun a)) ~-~ (5(a, b), n) if 5(a, b) is defined, and a, b e Csts. (5)

(V, (~; fun callcc)) ~-~ ((p, n), (n fun V)) (capture)

<V, (~ fun (p, no>)> ~ (V, no> (invoke)

[]

Rules operator and operand force a left-to-right evaluation order of components
of applications, using the continuation codes fun and arg which explicitly indicate
the part of an application that is already evaluated or remains to be evaluated. The
four last rules deal with similar configurations, whose continuation code is of the
form (n fun V), denoting that the value of the operator is V, and whose control
string is a value, which is the value of the operand. We say that the value of the
operator is ready to be applied on the value of the operand. Rules (/3v) and (5)
perform the fly and 5-reductions as in Plotkin's Av-calculus [13]. When the value of
the operator is the constant callcc, rule capture packages up the current continuation
t~ as a continuation point (p, ~) and generates a configuration where the value of the
operand is ready to be applied on the continuation point. Continuation points are
first-class values that can be used like regular abstractions: rule invoke describes the
behaviour of the CK-machine when a continuation point is applied on a value, which
is usually called invoking a continuation. We see that ~, the continuation of the call
of (p, n0) on V, is replaced by the invoked continuation n0.

We can abstract the evaluation process of the CK-machine by a function.

729

Def in i t ion 2 (eValck) Let M and V be a term and a value of Ack. The evalua-
tion function evalck is defined for M, written evalck(M) = V, if there are some
transitions from the initial configuration to a final configuration of the CK-machine:

(M, (init)) ~ * (V, (init)), where ~ * denotes the reflexive, transitive closure of ~ .
[]

3 P a r a l l e l i s m : p c a l l a n d f o r k

We accept two annotations for parallelism: pcall and fork. An expression (pcall M
N) means that the terms M and N should be evaluated in parallel; afterwards, the
value of M should be applied to the value of N. Hence, the pcall annotation provides
a fork-and-join type of parallelism.

The second annotation fork takes one argument and must appear in a sequence.
A sequence is a construct of the form (begin M N) , which is an abbreviation for
((,~d.N) M) with d not free in N (d fL FV(N)) . The expression (begin (fork M)
N) means that the terms M and N should be evaluated in parallel, and the value
of the sequence is the value of N.

Both pcall and fork must be transparent: the expressions (pcall M N) and
(begin (fork M) N) must be indistinguishable from (M N) and (begin M N) ,
respectively. Furthermore, we define the expression (begin (fork M) N) as (pcall
(begin M (~u.u)) N) . In the sequel, we shall only consider the annotation pcall.

4 T h e P C K S - M a c h i n e

The PCKS-machine [10, 11] is an abstract machine that evaluates parallel functional
programs with first-class continuations. This machine consists of a set of processes
running in parallel (P), where each process is a represented by a CK configuration,
and of a store (S) which specifies the coordination between the different processes.

The set of terms accepted by the PCKS-machine is called A~cks and is defined
by extending the grammar of Ack as follows, with a ranging over a set of locations
Loc.

M : : I (pcailMM)
~:: I (~left(c~,~,c~n,M)) I (~ r igh t (~m,~n)) J (stop)

The set Apcks extends the set Ack with a parallel application (pcall M1 Mi) composed
of an operator M1 and an operand Mi. The behaviour of the three new continuation
codes is explained below in the set of transitions of the PCKS-machine.

A configuration of the PCKS-machine consists of a set of processes and a store.
We distinguish two kinds of processes.

1. An active process is represented by a named CK-configuration (M, ~)n, where
M is a control string, i.e. a term of Apcks, t~ a continuation code, and n a process
name taken from a set of process identifiers Pid.

2. A dead process is represented by a special CK-configuration ($, (stop))n, where
the control string is the distinguished symbol $ and n is a process name of the
set Pid.

A store binds locations to their contents. Locations model addresses in a real com-
puter and are taken from a set Loc. Their content can be empty, can contain a value,
or can contain a special data structure, whose role will be explained in the sequel.
We shall use the letter p to range over processes, P over sets of processes, n over
names of processes (n C Pid), and c~ over locations (c~ C Loc).

730

A configuration AJ of PCKS-machine consists of a set of processes P and a store
a, and is written (P,a) . In order to evaluate a term M with the PCKS-machine,
we begin the computation with an initial configuration, which is composed of a
single process (M, (init)}no and an empty store. We end the computation when a
final configuration is reached, i.e. when a process is of the form (V, (init))n. We
can observe that an initial or a final configuration of the PCKS-machine contains a
process that is an initial or a final configuration of the CK-machine, respectively.

In order to specify the legal transitions between configurations of the PCKS-
machine, we first define a relation, called the CKS-transition, which can be applied
to a process (represented by a CK-configuration) and a store (S).

D e f i n i t i o n 3 (C K S - t r a n s i t i o n) A CKS-transition is a relation (p, al) ~8 (p, a2},
which associates a process p and a store al with a set of processes P and a store a2.
A CKS-transition is assumed to be performed atomically. []

Unlike a CK-transition, the applicability of a CKS-transition can depend on the
content of the store, and a CKS-transition can update the store (hence the returned
store a2). Furthermore, a CKS-transition produces a set of processes, instead of a
single process, because new processes can be created (by the pcall-construct).

In Definition 4, parallelism in the PCKS-machine is modelled by an interleaving
semantics. Then, the evaluation relation of the machine is formalised.

D e f i n i t i o n 4 (P C K S - t r a n s i t i o n) There is a transition between a PCKS configu-
P C K S

ration A,11 - - (P 1 , c r l) and a PCKS-configuration 342 - - (P 2 , a2} , written 341 ~-~

342 if there exists a process p and a set of process P such that (p, al) ~ (P, a2/
with p E/)1 and P2 - P1 \ {P} U P. Furthermore, transitions performed by processes
are supposed to be atomic. []

Def in i t i on 5 (evalpcks) Let M and V be a program and a value of Apcks. The

evaluation function is defined for M, written evarpcks(M) = V, if there exists a final

configuration 3dr that contains a process (If, (init))n, and such that, for the initial
PCKS* PCKS*

configuration 34~ = ({(M,(init)}~o},0 }, we have 3d~ ~ Adf, where ~-~

denotes the reflexive, transitive closure of PC K S []

It remains to define the CKS-transitions. The first four transitions of the CK-
machine (Definition 1) remains valid in the PCKS-machine. Now, let us see how a
process that is evaluating a parallel application is transformed. As indicated by rule
pcall in Definition 6, a new process, with a name n,, is created to evaluate the operand
N, while the process that was evaluating the parallel application has to evaluate the
operator M. The continuation ~ of the process evaluating the parallel application is
extended with a new continuation code for each process: left for the process evalu-
ating the operator and r i gh t for the one evaluating the operand. Furthermore, two
locations am and c~n are allocated; these locations are intended to receive the values
of the operator and of the operand, respectively. Since they explicitly appear in the
continuation codes left and r ight , they can be accessed by the processes evaluating
the operator and the operand.

731

D e f i n i t i o n 6

((pcall M N), a),~

(V, (~ right((~m, a~)))=

(V, (to right(am, a~)))~

(V, (~ left(am, a=, N)))~

(V, (t~ left(am, a=, N)))=

(V, (~ left(a,~, a~, N))/~

[]

~ (M, (to left(am, a , , N)))=, (N, (~ r ight(am, a=))), , (pcall)
with a fresh am ~ Loc, 3, fresh a,~ E Loc, a new n, E Pzd

(~C, (stop))~;cr(a~) ~-- V if cr(a.~)=• (stops)

cA~ (V, (~ fun ~(am)))=; a(a=) ~- V if a(am)#-L (ret~)

Lk2 (:~, (stop))=; G(a.~) ~ Y if a (am)=• A a (a=)=• (stopl)

~ (a(a=), (~ fun Y))n;(T(am) +-- V (ret-ll)
if ~(am)=• A ~al~?(~(a~))

(N,(~ fun V))= if a(am)#]_ (ret-nl)

A process knows tha t it has evaluated the operand of a parallel application,
because its control string is a value and its continuation is a code right. It can
access the content of the location am tha t appears in its continuation. If location
a m is empty (rule stoPr), it means tha t the operator is not evaluated yet, and the
application cannot be performed: so, the process evaluating the operand must be
stopped, which is represented by the dead process {$, (s top))~. On the contrary, if
the location am contains a value, this value is the value of the operator, and it can be
applied to the value of the operand as indicated by retr. In both cases, the location
an is updated with the value of the operand.

Symmetrically, a process knows tha t it has evaluated the operator of a parallel
application, because its control string is a value and its continuation is a code left.
It must be s topped if location a,~ is empty. If location an contains a value, two cases
must be distinguished.

1. The operator is evaluated for the first time, which can be observed by the fact
tha t location am is empty (cfr. rule ret-lz). Then, the value of the operator can
be applied on the value of the operand, after updat ing the location a m with the
value of the operator.

2. The operator has already been evaluated, which can be observed by the fact tha t
location a m is not empty (cfr. rule ret-nl). In order to preserve the sequential
semantics, the operand must be re-evaluated. Such a case corresponds to rule
operand which forces the operand of a sequential application to be re-evaluated.
The operand N of the parallel application can be retrieved from the code left of
the continuation where it explicitly appears.

So, locations a,~ and an are used to coordinate the processes evaluating the operator
and the operand. The location am is aimed at receiving the first value of the operator,
while the location aN is intended to receive the value of the operand. Definition 7
displays the CKS-transit ions related to continuations.

D e f i n i t i o n 7

(v, (,~ fun c~llcc)),~ ~ ((p,,~), (,~ fun V)),~

(v, ((init) fun (p, ~)))~ r (v, ~)~

(v, ((~1 fun V') fun (p, n)))~ ~ (V, (al fun (p, n)))=

(V, ((nl arg N) fun (p, n)))~ ~ (V, (nl fun (p, t~)))=

(capture)

(invoke~t)

(pruner)

(prunea)

732

(V, ((~1 left(am, a~, N)) fun (p, a}))n ~s (V~ (~1 fun (p, g)))~ (prunel)

(V,((nl right(am,a~)) fun (p,~))}~ ~ (V,(~I fun (p,~)))~ if ~(am)~s (prune~)

(V, ((al right(am, an)) fun (p, n)))~ cks ($, (stop)>~; ~(a.) *-- suspend((p, a>,V)(suspend~)
if a(am)=_l_

(V, (~ left(am,a~,N)))nck~ s (V',(n fun (p, ao))>~;a(a.~)§ (resome~)
if a(am)=_k A if ~(a~) = suspend((p, no}, V')

[]

Rule capture of the CK-machine is still valid in the PCKS-machine, but rule invoke
becomes unsound. Indeed, rule invoke, as designed in the CK-machine, can replace
the current continuation by an invoked continuation in a single transition; used in
the PCKS-machine, invoke would be able to replace a current continuation with a
code r igh t by the invoked continuation even though the operator corresponding to
the code r ight has not returned a value. Since the PCKS-machine must compute
the same results as the CK-machine, we replace rule invoke by three rules invokeznit,
prune/, and prun%. A single transition invoke of the CK-machine will be simulated
by a sequence of prune/ and prun% followed by invokei~,t in the PCKS-machine 2.
A rule like prune I (and similarly for prun%) is said to prune the continuation of a
process; indeed, the process continuation before transition ((~z fun V/) fun <p, n>)
is shortened to (nl fun <p, n)). A succession of prune/and prunea forms the abortive
phase where the continuation code of the process is pruned until invoke,~t can be
used. We can observe that invokei~it is an instance of invoke with n replaced by (init).

The mode of invocation of continuations in the PCKS-machine is said to be non-
speculative because a continuation is invoked only if its invocation does not infringe
the sequential semantics. Let us examine how such a mode of invocation behaves
in the presence of left and r ight . According to rule prunel, a continuation code
left can always be pruned. Indeed, a process (V, ((~;1 left(a,~, a~, N)) fun (p, n))>~
evaluates the operator of a parallel application; since the operator is evaluated before
the operand in a CK-machine, a continuation can always be invoked in the operator.

Symmetrically, if the operator of a parallel application is already evaluated and
the operand invokes a continuation, the code r ight can be pruned as specified by rule
prune~, because the execution of the PCKS-machine follows the CK-execution. On
the contrary, if the operator of a parallel application is not yet evaluated when the
operand invokes a continuation, the code r ight cannot be pruned if the sequential
semantics must be preserved; in such a case, rule suspend~ suspends the invocation
of the continuation, by storing in an a data-structure containing the continuation
and the value, and by stopping the process. The invocation of the continuation can
be resumed as soon as the process that was evaluating the operator yields its value,
as specified by rule resume~.

The rules of Definitions 1 (four first rules), 6, 7 specify a machine that evaluates
parallel programs with first-class continuations, while preserving the sequential se-
mantics. Unfortunately, in order to preserve the sequential semantics, rule suspendr
imposes so drastic conditions on the invocation of continuations that it can seriously
reduce parallelism in a parallel program with first-class continuations.

2 By a simple reorg~misation of the continuation of a process in two components, several
continuation codes arg and fun can be pruned in a single step as in the CK-machine
[11].

733

In the CK-machine, invoking a continuation replaces the current continuation by
the invoked continuation. In many usages of continuations, the invoked continuation
and the current continuation have a common prefix (in the worst case, the com-
mon prefix is simply the initial continuation init) . Hence, invoking a continuation is
equivalent to replacing a suffix of the current continuation by a suffix of the invoked
continuation. We can say that the invocation of a continuation has a local effect on
the computat ion because it only changes a suffix of the current continuation and
leaves the prefix unchanged.

In the PCKS-machine, instead of suspending the invocation of a continuation in
the operand of a parallel application when the operator has not yielded a value, we
can immediately reinstate the invoked continuation if the current continuation is a
prefix of it. (This corresponds to a local use of the continuation.) Let us define the
relation "is prefix of" on continuations.

D e f i n i t i o n 8 (E x t e n s i o n a n d Pre f ix) A continuation ~1 is a "one-step" exten-
sion of a continuation to2, written ~1 -3 ~2, if one of the following equality 3 holds.

gl ~ (tO2 fun V) al -= (a2 a rg N)
nl = (n2 left (am, o~n, N)) nl = (/~2 r igh t (am, an))

The relation extension is the reflexive, transitive closure of "one-step" extension and
is written nl ~_ he. We also say that k2 is a prefix of k~ if nl ~ n2. []

Rule suspendr of Definition 7 should be replaced by the rules of Definition 9.
Now, if the invoked continuation is not an extension of the current continuation, it
must be suspended by rule suspendr. Otherwise, rule invoke~p reinstates the invoked
continuation, while preserving the sequential semantics.

De f in i t i on 9

cks
(V, ((~1 right(am, a~)) fun (p, ~})}~ ~-~ (:~, (stop))~; a(a~)~--suspend((p, ~},V)(suspend~)

if a(a ,~)=• A ~ ~ (~1 right(a,~,a~))
cks

(V, ((~1 right(~m, a~)) fun (p, ~))}~ ~-4 (V, ~}~ (invoke~v)
if a (a m) = l A ~ ~ (tel r ight(am,a~))

[]

Thanks to the rules of Definition 9, the PCKS-machine not only evaluates par-
allel programs using first-class continuations, but also preserves parallelism in the
program, by avoiding to suspend local upward invocations. Invocations can be sus-
pended only in the presence of race conditions that might not preserve the sequential
result.

5 Properties

Our goal is to prove the soundness of the PCKS-machine with respect to the se-
quential semantics, which is implemented by the CK-machine. First, we define a
translation that removes the annotations for parallelism in a parallel program, i.e.
which returns the sequential version of a program.

3 The relation -7 uses the syntactic equality on terms and continuation codes. In practice,
the reorganisation of the continuation in two components, as suggested in footnote 2, can
be used for improving the efficiency o f .

734

D e f i n i t i o n 10 (Seque n t i a l Vers ion o f a T e r m) The sequential version of a term
M of Apcks is a term S[M] of ACk, defined as follows 4.

$[[(M N)]]
3~(pcall M N)~

S[Ax.M]
s[Cp,

8[xl
[]

= (3 [M] 3 [N]) S [(i n i t)]] c = (i n i t)
= (3 M] S N]) f u n V)] c = (S N c f u n SF])
= Ax.3[M] 8[(n a rg N)] c = (S~t~] c a rg 3~[N])
= Cp, s[]l
---- x, for x E Csts or E Vars

The major result of this section is the following theorem, which states that the
observational equivalence theories of the CK-machine and PCKS-machine are the
same.

T h e o r e m 11 Let M be a term of Apcks and 3[M] its sequential version.

evalck(3~M]]) = V zff evafpcks(M) = V'.
[]

In the sequel, we present the intuition of the proof. The transition pcall creates a
new active process to evaluate the operand of a parallel application. Such an operand
is evaluated in advance of the sequential order. The evaluation of the operand re-
mains in advance of the sequential order as long as the operator is being evaluated.
In order to identify the computations that are in advance of the sequential order,
we simply have to detect all the pcall transitions that were executed for which the
location am is empty, i.e. the operator is not evaluated yet. On the other hand, there
is a single computat ion that is not in advance of the sequential order: it is the process
tha t follows the left-to-right evaluation order. Let us call this process the mandatory
process and all other processes speculative.

In order to uniformly characterise the different kinds of computations (speculative
or mandatory) , we introduce the concept of target. Each computation evaluating an
expression is characterised by the continuation of this expression and the location
where to store the value of this expression. Intuitively, a target is a pair (location,
continuation) for a computation. First, let us slightly change the definition of a
final configuration of the PCKS-machine. We assume that the special location 0 is
allocated to receive the final value of the whole computation. We add an extra rule
to the PCKS-machine, called init, which stores the final result into location 0. A
PCKS-configuration will be said to be final if it contains a value in location 0.

(V, (init))~ ~ (:~, (stop))~; a(0) *- V (init)

Now, we can define the notion of target.

D e f i n i t i o n 12 (T a r g e t) Let A/[- CP, a) be a configuration" of the PCKS-Machine.
A target is a pair (a, a) containing a location a and a continuation a, charaeterising
a computat ion evaluating an expression with a continuation ~, and whose value is
intended to be stored in a. The set of targets of a configuration M is defined as
follows.

- The pair C0, (init)) is a target of ~4.
- If there are two locations am and a s that were allocated by a transition pcall,

such that the location am is empty, c~(am) = _L, then the pair
Can, (t~ r igh t (am, an))) is a target of M .

[]

4 The translation is not defined for continuation codes left and right because it is mean-
ingless to consider such codes independently of a store of the PCKS-machine.

735

The target (0, (init)} is said to be mandatory, while the others are speculative.
A target (a, h) is active if a (a) = Z. Each active process can be uniquely associated
with an active target. For this purpose, we define a new relation, called sequential
extension, which is a subset of the relation extenswn.

D e f i n i t i o n 13 (Seque n t i a l E x t e n s i o n) Let a be the store of a given PCKS-con-
figuration. A continuation ~1 is a "one-step" sequential extension of a continuation
~2 (with respect to a), written hi 2~ ~2, if one of the following equation holds.

hi -- (~2 fun V) . hi =- (h2 a rg N)
nl --- (n2 left ((~m, ~n, N))" ni -- (n2 r igh t (c~m, ~n)) if a(C~m) r _L

The relation sequential extension is the reflexive, transitive closure of "one-step"
sequential extenszon and is written ni 3 s h2. []

The active target a~sociated with an active process can be obtained by the fol-
lowing Definition, and it is easy to prove that there is a unique active process tha t
is associated with each active target.

D e f i n i t i o n 14 Let 3,t - (P, or} be a configuration of the PCKS-machine. Let g =
(a, ~) be a target of 34. The active process (M, ~t)n of P is assoezated with target g
if ~' D~ ~. We also say that the target of a continuation ~ is 9 = (a, h} if h' ~ h.
[]

In order to prove the soundness of the PCKS-machine, we proceed in two steps.
First, we define a translation of a PCKS-machine configuration into a term of Sabry
and Felleisen's),v-C-calculus [15]. Second, we prove that for any transition of the
PCKS-machine between two configurations 3all and 3,t2, the translations of 341
and 342 are provably equal in the)`v-C-calculus.

First, we define the translation of a configuration of the PCKS-machine. A config-
uration will be translated into a set of terms, one term for each target of the machine.
The translation of a configuration uses a process translation function P~ [~, a term
translation function T~ ~]l, and a continuation translation function C~ [, ~, specified
in Definitions 16, 17. By convention, we shall use the letter x to range over user vari-
ables, k to range over variables associated with targets, and v to range over variables
for continuations. The sets of these variables are supposed to be disjoined.

De f in i t i on 15 (M a c h i n e T r a n s l a t i o n) Let 34 - (P, a) be a PCKS-configuration.
Let { g i , . . . , 9n} be the targets of the machine, and let be { k i , . . . , kn} be fresh vari-
ables. Let p be an environment mapping each target g~ to variable k~. The translation
of the machine 34 is a set of terms, obtained as follows for each target 9i.

1. If target g~ is active, then let (M, ~} be its associated active process. The trans-
lation of 34 contains the term callcc)`ki.~P~[(M, h}].

2. If target gz is not active, then let M be the content of its non empty location a~.
The translation of 3// contains the term callcc)`k~.T~P~M~.

[]

Let us define the function that translates a process. It uses the term and the
continuation translation functions, which are mutually recursive.

D e f i n i t i o n 16 (P r o c e s s T r a n s l a t i o n) Let 3/l -- (P, a~ be a configuration of the
PCKS machine, with p a function mapping each target 9z of 3/t to a fresh vari-
able ki. The translation of a process (M,t~)n, written ~ (M , ~] l , is defined as
C~[~, : r y I M H, where T~M~ and C ~ , ~ are the translations of M and ~. []

736

Def in i t ion 17 (T e r m and C o n t i n u a t i o n Trans l a t ion) Let f14 -- (P, or) be a con-
figuration of the PCKS machine, with p a function mapping each target g~ of A4 to a
fresh variable ki. The translation of a term M, written T~;[M], is defined as follows.

:Yf~(p, ~)] = Av.A (k, C~[~,v~) with k~ = p(g,) ifg~ ~ (a , , ~) , ~ 2 ~ ~

The translation of a continuation ~ for a term M, written C~[n, M], is defined as:

C ~ (i n i t) , 3/f~ = M

C~[(n a r g N), M] = C ~ , (M Tf [N~)]
g~[(t~ fun V),M] = g;[a, (T:[V] M)]

C~[(n rlght(am, a~)), M] = C~[~, (T~P[~r(am)] M)] if ~r(a,~)#A_
C;~(n right(c~m,a~)), M] = M if e (a ,~)= l

[]

Lemma 18 states that for any transition between two configurations of the PCKS-
machine, terms that result from the translation of the configurations and that cor-
respond to a same target are provably equal in the A~,-C-calculus.

L e m m a 18 Let A4t -- (Pt, at) be a PCKS-configuration obtained after t transitions.
Let {g l , - . . , g~ } be the targets of the machine. Let e~ be the term that appears in
the translation of M for target gi~. For any configuration .Ms =- (P~, as) obtained
after s transitions, with s < t. Let e~ be the term associated with target g~ in the
translation of Ms , such that g~ -- g~.

The terms e~ and ei~ satisfy A~-C ~- e~{c~/k~}* = e~ for any k~ such that
3 ~ , p~(g~) = k~,p~(g~) = ~_, and c~ = 7~ , [(p , ~)] . []

Proofs of Theorem 11 and Lemma 18 can be found in Section 9.

6 R e l a t e d W o r k

This paper extends previous results [12, 10, 11] by devising a new criterion for invok-
ing continuations, which preserves the sequential semantics and provides parallelism
for upward uses.

Another annotation for parallelism is f u t u r e [7]; its semantics in a purely func-
tion language was stated by Flanagan and Felleisen [5]. They use this semantics to
statically analyse programs in order to perform a "touch optimisation", i.e. to remove
the touch operator when it can be predicted at compile-time that its argument is
never a placeholder. We could apply similar optimisations to improve programs effi-
ciency by predicting that an application site always invokes a "local" continuation,
i.e. a continuation that satisfies the side-condition of invokeup.

Research on the interaction of f u t u r e and continuations were mainly concerned
with the implementation. Ha]stead [7, page 19] gives three criteria for the semantics
of parallel constructs and continuations in a parallel Scheme. We list them here:

1. Programs using c a l l / c c without constructs for parallelism should return the
same results in a parallel implementation as in a sequential one.

737

2. Programs that use continuations exclusively in the single-use style should yield
the same results as in sequential Scheme, even if a parallel construct is wrapped
around arbitrary expressions.

3. Programs should yield the same results as in sequential Scheme, even if a parallel
construct is wrapped around arbitrary subexpressions, with no restrictions on
how continuations are used.

Our semantics satisfy these conditions. The first criterion is proved by the following
proposition: let M be a program of Ack, evalpcks(M) = evalck(M). The second and
third criterion are satisfied by Theorem 11. Rule ret-lz deals with the single-use style,
while ret-nt with the multiple-use.

Katz and Weise [9] proposed a implementation technique to provide a transparent
f u t u r e annotation for a language with first-class continuation; this technique was
successfully implemented by Feeley [3]. In Katz and Weise's approach, continuations
are invoked speculatively; that is, they are invoked as soon as possible, without
verifying whether their invocation preserves the sequential semantics. In addition, in
order to preserve the transparency of the annotation fu tu re , processes are threaded
by a legitimacy link. A process is legitimate if the code it is executing would have
been executed by a sequential implementation in the absence of parallelism. A result
is legitimate if it is returned by a legitimate process.

In an implementation where continuations are invoked speculatively, one can ex-
pect more speed up, at least theoretically, but more unnecessary computations might
be performed than in an implementation with non-speculative invocations. Hence,
the non-speculative approach allows the user to have a better control on speculative
computations. Furthermore, in the non-speculative approach, a first-class continu-
ation encodes the partial order that must be respected to preserve the sequential
semantics. So, first-class continuations can be seen as control operators for synchro-
nising computations; a program illustrating this property can be found in [10].

7 C o n c l u s i o n

In this paper, we have presented the PCKS-machine, an abstract machine that is able
to evaluate parallel functional programs with first-class continuations. This machine
is sound with respect to the sequential semantics. In the PCKS-machine, continua-
tions are invoked non-speculatively, i.e. their invocations are allowed only if they do
not infringe the sequential semantics. Although this mode of invocation intuitively
seems to reduce parallelism by very stringent conditions, the PCKS-machine proves
that parallelism can be preserved in programs with first-class continuations. The
PCKS-Machine can be considered as a guideline for implementation of continuations
in an annotation-based parallel language.

8 Acknowledgement

I am grateful to Daniel Ribbens and the anonymous referees for their helpful com-
ments.

9 A p p e n d i x : P r o o f s

Proof Lemma 18. We proceed by induction on the number of transitions t and by
case on the last transition. First, we consider the transitions that do not change the
sets of targets and for which the translations of M s and 2t4t are the same (init, ret-nl,
stopr , ret-nl, retr, operator, operand, suspendr).

738

(ret-nt) p~ = Pt and a~ = at. Let gi be the target of (V,(~ left (am, a m N)))
with Ps(g~) = Pt(g~) = ki. There exists an evaluation context E[], such that

-cal.cc k,.E[T : V] TA,[N] - cal'cc: k,.E[Tg'M Tg M].

Some rules do not change the set of targets and correspond to a reduction in the
Av-C-calculus (flv, capture, 5, pruner, prunea, prunel, pruner). For instance,

(capture) Ps = Pt and r = at. Let gi be the target of ((p,a), (a fun V)) , with
Ps(g~) = Pt(g~) = k,. There exists an evaluation context E[], such that ei~ =-
callccAki.E[callcc T~ ~ [[Y]]] and eit - callccAki.E[T~;I[V]] T~ ~ ~[(p, ~)]]. Further-
more, T~ ~]](p, ~)~ = Av .A (k ~ C~ ~ ~r~, v]) - Av A(k~ E[v]) because the evaluation
context J~[] was defined as E[] '= C~: ~ , []]] ~- C~ [[~, []]].

e,~ = e~t - callccAki.E[TS:IV]] Av.A(k~ E[v])] by (Cz~It) and (Czdem)

Rule pcall creates a new target.

(pca[I) This rule creates a new target g~ = (an, ~) , with ~ = (~ r igh t (am, a,~)).
So, we have Pt = Ps[gx *-- kx] and at = a~[am ~ -l-][an ~ _1_].
In the configuration .Adt, there is no other target with a continuation ~ because
am and a~ were freshly allocated. We have ext - ca[IccAk~.T p~][N]], with kz the
fresh variable associated with target g~. So, k~ ~_ F V (T p~ [IN]l).
Let g~ be the target of ((pcall M N), ~), with Ps(gz) = pt(gz) = ki. There exists
an evaluation context E[], such that ei~ = callecAk~.E[TP~]]M] TP~[N]]] =-- e~ t -
ca[[ccAki.E[T~ ~ IM] Tg* HN]]]

A target ga in Ads disappears after application of rules ret-lt, stop> ret-lt, resumer.
Here, we use the inductive hypothesis. For instance,

(ret- l l) Let g, be the target of (V, (n left (am, a,~, N))) with Ps(g,) = k, . Let g3
be the target with continuation (n r igh t (am, an)) in configuration Ad~. After
transition, target g3 disappears in Adt. We have that V9 7 ~ gy, Pt(g) = Ps(g), and
that P~(g3) = k3, but Pt(g3) is not defined, at = a~[am ~ V]. There exists an
evaluation context E[], such that

e~ -- callccAk,.E[T~ ~ [[Y] Ts ~ gNU] and e i t - callccAki.E[T~ ~ [[V]] T~ ~ [[a, (an)]]]
s (7 s U. .111

In Ad~, the term associated with target g3 is eas ~ callccAkj.T~Ecr~(an)]]. We
can find a transition pcall that has allocated locations am and a~. Let s ~ be this
transition. By inductive hypothesis and by Lemma 19, we have that

callccMca.T~f [[g]{cu/kv}* = cal lecAkj .T~ ~ [[g]] = callccAkj.T~ ~ [as(an)l]

with k 3 r FV(T~2[N]]) , with k~,k~ such that 3g~,g~,ps,(g~) = p~(g~) = k~,
pc (g~) = k~, p~, (g~) = • with ~ _ ~ ~ , and c~ = T~ ~ E(p, ~)]]. So,

= callccAki.E[T~* IV] callccAk a.Ts [N]] by (Ceum)

= ca llcckk,.E[Tf2 ~V~ ca llccAk a.Tf** [~, (a~)]]] by Inductive Hypothesis

= callcc: ,.E[r:= ((:%.r k" [V]]
by (Q,] ,) and (Czdem)

= cal lccAki .E[Tf f[[Y] (T p= [a (a n)] { (A v . A (k , E [T p= [Y]] v])) /k j })] by (fly)

= cal lccAk, .E[T~lV]] Tm[at(an)]]] - en by Lemma 19

739

We have T~ ~ IV]] -- T 0~, IV]I because the targets of any continuation point in F
are the same in 3/l, and Adt (put differently, there is no continuation point in F
with a target g3, by Lemma 20).
Although the content of an has not changed during the transition, the translation
T~ ~ lid(ten)I] differs from T~2 ~a(o~)]] because g3 is no longer a target in ~/tt. Each
continuation that belongs to target g3 in configuration Ads belongs to target gi
in configuration ~ l t .
Now, let us consider any term eus which is not associated with targets gi or g3"

We have eu~{()w.A(k~E[T~~ ~ v]))/]cj} = Cut by Lemma 19.

Both invoke~t and invok%p rely on Lemma 20, and their soundness is proved by
Cc~r. For instance,

(invok%p) p, = pt and a, = at. Let g~ - (a~,ai) be the target of
(V, ((al r lgh t (am, an)) fun(p ,a))) , with am = (a~ r i g h t (a m , a n)) and Ps(g~) =
p~(~,) =/c,.
By Lemma 20, since (p, a) is accessible by the process, the target g~ - (a3, ~J)

~s ~3 a n d ~ - I ~;~-~ t~ of ~ must be an ancestor of target g~. So, we have ~ _o~ , _ _ .
-n~ ~ ~ ~3. Since a~ and ~3 are both continuations of Therefore, we have ~ _ ~ _ ~

targets, ~ - ~ . Hence, there exists an evaluation context E[], such that

e,s =-- callcc~k~-(T~2 I (P, ~) ~ 7~2 I Vl) =- callccAk~.(()~v.Aki(E[v])) T~2 IV]])

= callcc)~k~.(E[T~]]V~]) by (fl~) and (Cc~) = e~t

[]

L e m m a 19 For all M E Apcks, for all gu,gv such that Ps(gu) = Pt(gu) = ku, and
P~(gv) = kv but Pt(gv) is undefined,

TS: [M]{c~/k~}* = 7~' [M]
with eu - T~*I(p, ~v)], ~v ___s, ~u, and {c~/kv}* denoting the substitution of all kv
by cu. []

Proof Lemma 19. By induction on the size of M. The interesting case is the continu-
e s ~i, and let gj - (c~3,~3) ation point. Let 9~ --= (am, a~) be the target of ~ in Ms , ~ -~8

be the target of ~ in Jt4t, ~ Z s ~j, with ~ -as ~j.

T 2 I@,

- I - , -

=_ (;~v.A((;~v.A(k 3 d~: ~ , , v])) d~: I~, v I {cJkv}*))

= (;~v.A((Xv.A(k 3 d~: [~,, vI)) E'[v])) (*), by IH

= (;~v.A(kS$~I~,,E'[v]l)) by g~ and abort

= (Av.A(kSg: lid, v])) by dfn. of CP'r ,lid, vii - TP*a, I[(P, ~)]l

(*) E ' [] is obtained by replacing in E [] --- C;*ga []] all terms that have a free O- t II Z ,

variable k~ : E ' [] - E[]{T~]N]/TS2~N]}. []

Let us prove that the target of a continuation is always an ancestor of the target
of a process tha t can access it.

L e m m a 20 If (p, ~) is a subexpression of M in process (M, ~'). Let ~, be the con-
tinuation of the target of ~, and let ~, be the continuation of the target of ~ . Then

740

S k e t c h o f P r o o f o f T h e o r e m 11

If evalpcks(M) = V, we know tha t)%-C F- T~P~M] = ~P~V~ by Lemma 18. So

evalvc(S[M~) is defined. By Felleisen and Fr iedman's Corollary 5.8 and Theorem 5.1
[4], evalck (S~[M]).

Symmetrical ly, if evalck(S~[M]) is defined, then evalpcks(M) is also defined be-

cause the PCKS-machine is able to simulate the CK-machine by always reducing the
manda to ry process. []

References

1. Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Jan
Maluszyfiski and Martin Wirsing, editors, Third International Symposium on Program-
ming Language Implementation and Logic Programming, number 528 in Lecture Notes
in Computer Science, pages 1-13, Passau, Germany, August 1991.

2. Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundatwns of Mathematics. North-Holland, 1984.

3. Marc Feeley. An E~ficient and General Implementation of Futures on Large Scale
Shared-Memory Multiprocessors. PhD thesis, Brandeis University, 1993.

4. Matthias Felleisen and Daniel P. Friedman. Control Operators, the SECD-Machine and
the A-Calculus. In M. Wirsing, editor, Formal Description of Programming Concepts
III, pages 193-217, Amsterdam, 1986. Elsevier Science Publishers.

5. Cormac Flanagan and Matthias Felleisen. The Semantics of Future and Its Use in
Program Optimization. In Proceedings of the Twenty Second Annual ACM S[GACT-
SIGPLAN Symposium on Principles o/Programming Languages, January 1995.

6. Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The Essence
of Compiling with Continuations. In Proe. SIGPLAN '93 Conference on Programming
Language Design and Implementatwn, SIGPLAN Notices, Vol. 28, pages 237-247, 1993.

7. P~obert H. Halstead, Jr. New Ideas in Parallel Lisp : Language Design, Implementa-
tion. In T. Ito and Robert H. Halstead, editors, Parallel Lisp : Languages and Systems.
US/Japan Workshop on Parallel Lisp. Japan., number 441 in Lecture Notes in Com-
puter Science, pages 2-57. Springer-Verlag, 1990.

8. Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining,Coroutines
with Continuations. Comput. Lang., 11(3/4):143-153, 1986.

9. Morry Katz and Daniel Weise. Continuing Into the Future: On the Interaction of
Futures and First-Class Continuations. In Proceedings of the I990 ACM Conference
on Lisp and Functional Programming, pages 176-184, June 1990.

10. Luc Moreau. The PCKS-machine. An Abstract Machine for Sound Evaluation of Par-
allel Functional Programs with First-Class Continuations. In European Symposium on
Programming (ESOP'94), number 788 in Lecture Notes in Computer Science, pages
424 438, Edinburgh, Scotland, April 1994. Springer-Verlag.

11. Luc Moreau. Sound Evaluation of Parallel Functional Programs with F~rst-Class Con-
tinuations. PhD thesis, University of Li@ge, June 1994. Also available by anonymous
ftp from f t p . montefiore, ulg. ac. be in directory pub/moreau.

12. Luc Moreau and Daniel Ribbens. Sound Rules for Parallel Evaluation of a Functional
Language with callcc. In ACM conference on Functional Programming and Computer
Architecture (FPCA'93), pages 125-135, Copenhagen, June 1993.

13. Gordon D. Plotkin. Call-by-Name, Call-by-Value and the h-Calculus. Theoretical Com-
puter Science, pages 125-159, 1975.

14. Jonathan Rees and William Clinger, editors. Revised 4 Report on the Algorithmic
Language Scheme. Lisp Pointers, 4(3):1-55, July-September 1991.

15. Amr Sabry and Matthias Felleisen. Reasoning about Programs in Continuation-Passing
Style. Lisp and Symbohc and Computation, Special Issue on Contznuations, 6(3/4):289-
360, November 1993.

16. Christopher Strachey and Christopher P. Wadsworth. A Mathematical Semantics for
Handling Full Jumps. Technical Monography PRG-11, Oxford University Computing
Laboratory, Programming Research Group, Oxford, England, 1974.

