Skip to main content

Higher-order tableaux

  • Higher-Order Logic
  • Conference paper
  • First Online:
Book cover Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 918))

Abstract

Even though higher-order calculi for automated theorem proving are rather old, tableau calculi have not been investigated yet. This paper presents two free variable tableau calculi for higher-order logic that use higher-order unification as the key inference procedure. These calculi differ in the treatment of the substitutional properties of equivalences. The first calculus is equivalent in deductive power to the machineoriented higher-order refutation calculi known from the literature, whereas the second is complete with respect to Henkin's general models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 3(36):414–432, 1971.

    Google Scholar 

  2. Peter B. Andrews, 1973. letter to Roger Hindley dated January 22, 1973.

    Google Scholar 

  3. Peter B. Andrews. On connections and higher order logic. Journal of Automated Reasoning, 5:257–291, 1989.

    Article  Google Scholar 

  4. Hendrik P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-Holland, 1980.

    Google Scholar 

  5. E. W. Beth. Semantic entailmentand formla derivability. Medelingen von de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde, 18(13):309–342, 1955.

    Google Scholar 

  6. E. W. Beth. Semantic entailmentand formla derivability. In J. Hintikka, editor, The Philosophy of Mathematics, pages 9–49. Oxford University Press, 1969. First published in [Bet55].

    Google Scholar 

  7. Melvin Fitting. First-Order Logic and Automated Threorem Proving. Springer Verlag, 1990.

    Google Scholar 

  8. Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte der Mathematischen Physik, 38:173–198, 1931. English Version in [?].

    Google Scholar 

  9. Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81–91, 1950.

    Google Scholar 

  10. K. J. J. Hintikka. Form and content in quantification theory. Acta Philosophica Fennica, 8:7–55, 1955.

    Google Scholar 

  11. J. Hindely and J. Seldin. Introduction to Combinators and Lambda Calculus. Cambridge University Press, 1986.

    Google Scholar 

  12. Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic. PhD thesis, Case Western Reserve University, 1972.

    Google Scholar 

  13. Gérard P. Huet. Résolution d'Équations dans des Langages d'ordre l,2,⋯,w. Thèse d'État, Université de Paris VII, 1976.

    Google Scholar 

  14. D. C. Jensen and T. Pietrzykowski. Mechanizing ω-order type theory through unification. Theoretical Computer Science, 3:123–171, 1976.

    Article  Google Scholar 

  15. Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the Resolution Principle. PhD thesis, Universität des Saarlandes, 1994.

    Google Scholar 

  16. Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon University, 1983.

    Google Scholar 

  17. F. Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis, Carnegie-Mellon University, Pittsburgh Pa., 1987.

    Google Scholar 

  18. Dag Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.

    Google Scholar 

  19. S. Reeves. Semantic tableaux as a framework for automated theorem-proving. In J. Hallam and C. Mellish, editors, Advances in Artificial Intelligence, AISB-87, pages 125–139. Wiley, 1987.

    Google Scholar 

  20. Raymond M. Smullyan. A unifying principle for quantification theory. Proc. Nat. Acad Sciences, 49:828–832, 1963.

    Google Scholar 

  21. Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.

    Google Scholar 

  22. Wayne Snyder. A Proof Theory for General Unification. Progress in Computer Science and Applied Logic. Birkhäuser, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Baumgartner Reiner Hähnle Joachim Possega

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kohlhase, M. (1995). Higher-order tableaux. In: Baumgartner, P., Hähnle, R., Possega, J. (eds) Theorem Proving with Analytic Tableaux and Related Methods. TABLEAUX 1995. Lecture Notes in Computer Science, vol 918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59338-1_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-59338-1_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59338-6

  • Online ISBN: 978-3-540-49235-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics