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Abstract. A novel theory for cell di�erentiation is proposed, based on

simulations with interacting arti�cial cells which have metabolic net-

works within, and divide into two when the �nal product is accumu-

lated. Results of simulations with coupled chemical networks and divi-

sion process lead to the following scenario of the di�erentiation: Up to

some numbers of cells, divisions bring about almost identical cells with

synchronized metabolic oscillations. As the number is increased the os-

cillations lose the synchrony, leading to groups of cells with di�erent

phases of oscillations. At later stage this di�erentiation is �xed in time,

and cells spilt into groups with di�erent chemical constituents sponta-

neously, which are transmitted to daughter cells by cell divisions. Hierar-

chical di�erentiation, origin of stem cells, and anomalous di�erentiation

by transplantations are also discussed with relevance to real biological

experimental results.

(Keywords: di�erentiation, metabolic network, cell division, clustering,

open chaos)

1 Introduction

It is often believed that the cell di�erentiation is completely determined by genes,

with some regulatory networks among them[1]. Since genes interact with proteins

and other chemicals, however, the di�erentiation process is not so simple. Indeed,

there are some experiments, which cast a question to this widely accepted picture

on the cell di�erentiation: As reported in [2], E. Coli cells with identical genes

may split into several groups with di�erent enzymatic activities. Rubin [3], in

a series of papers, has shown that the tumor formation strongly depends on

the history of the cultivation of cells over several generations, which are not

explained by mutations.

In the previous paper[4] we have proposed a novel mechanism which poten-

tially explains the spontaneous cell di�erentiation based on cellular interactions.

The background of this theory lies in recent developments of the clustering theory

of globally coupled chaotic elements [5], where chaos leads to the di�erentiation

of identical elements through interaction among them. The relevance of dynamic

change of relationships among elements to biological networks has been discussed

[6].



In the present paper we extend the previous model[4] to show how cells

are di�erentiated successively into di�erent types. Here we adopt autocatalytic

metabolic reaction networks in each cell, while interactions among cells are con-

sidered through the medium contacting with cells. We have explicitly included

the cell division process, which leads to the increase of the number of cells. Thus

the number of equations, consequently the degrees of freedoms of our model in-

crease with time, and our problem provides an example of open chaos discussed

earlier [4, 6]. Through our simulations it is shown that the cells lose totipotent

ability, as the cells divide, in consistency with well-known fact in the cellular

biology. It should be noted that the chemical composition of a cell is inherited

by its daughter cells, without imposing any genetic constraints. Furthermore,

emergence of stem cells and hierarchical di�erentiation of cellular types are also

discussed.

In our model cells interact through a well stirred medium, and no spatial

variation is included. Our results show that di�erentiation starts by a dynamic,

rather than spatial, mechanism in contrast with Turing instability. Indeed our

dynamic scenario is consistent with the experimental reports of di�erentiation

in a well stirred medium [2].

2 Model

The biochemical mechanisms of the cell growth and division are very compli-

cated, which include a variety of catalytic reactions. The reaction occurs both

at the levels of inter- and intra- cells. Here we study a class of models which

captures the metabolic reaction and cellular interactions.

Our model for cell society consists of

{ Metabolic Reaction Network within each Cell : Intra-cellular Dynamics

{ Interaction with Other Cells through Media: Inter-cellular Dynamics

{ Cell Division

The basic structure is same as the previous model [4], although the present

model includes metabolic network rather than a simple set of reactions, to cope

with the complexity in a real cellular system.

(A) Metabolic Reaction

First we adopt a set of some chemicals' concentrations as dynamical vari-

ables in each cell, and also those in the medium surrounding the cells. We use

the following variables; a set of concentrations of chemical substrates x

(m)

i

(t),

the concentration of m-th chemical species at the i-th cell, at time t. The corre-

sponding concentration of the species in the medium is denoted as X

(m)

(t). We

assume that the medium is well stirred, and neglect the spatial variation of the

concentration. Furthermore we regard the chemical species x

(0)

( or X

(0)

in the

media) as playing the role of the source for other substrates.

The metabolic reactions are usually catalyzed by enzymes, which are induc-

tive and are again synthesized with the aids of other chemicals x

(j)

. Assuming



that the dynamics for enzymes is faster, we adiabatically solve the reaction equa-

tions of enzyme concentrations, to represent the concentration by those of the

substrates (x

(j)

) corresponding to the synthesis [4]. For simplicity we assume

that this synthetic reaction is linear in x

(j)

, and adopt the Michaels-Mentens

type reaction. Here we use the notation Con(m; `; j) which takes the value 1

when there is a metabolic path from the chemical m to ` catalyzed by the chem-

ical j, and takes 0 otherwise. In other words, a metabolic path x

(m)

! x

(`)

produces x

(`)

, with the aid of the chemical j when Con(m; `; j) = 1. Here the

choice of connected paths depends on each chemical `, and generally there can be

several paths for the production of `. Thus the reaction from the chemical m to

` aided by the chemical j leads to the term e

1

x

(j)

i

(t)x

(m)

i

(t)=(1 + x

(m)

i

(t)=x

M

),

where x

M

is a parameter for the Michaels-Mentens form. The coe�cients for

chemical reactions are taken to be identical (e

1

) for all paths.

In addition, we assume that there is a path to the �nal product, from all

x

(k)

, leading to a linear decay of x

(k)

, with a coe�cient �. Summing up all these

processes, we obtain the following contribution of the metabolic network to the

growth of x

(`)

i

( i.e., dx

(`)

i

(t)=dt);

Met

(`)

i

(t) = e

1

x

(0)

i

(t)x

(`)

i

(t)+

P

m;j

Con(m; `; j)e

1

x

(j)

i

(t)x

(m)

i

(t)=(1+x

(m)

i

(t)=x

M

)

�

X

m

0

;j

0

Con(`;m

0

; j

0

)e

1

x

(`)

i

(t)x

(j

0

)

i

(t)=(1 + x

(`)

i

(t)=x

M

)� �x

(`)

i

(t); (1)

where we note that the two terms with

P

Con(� � �) represent metabolic paths

coming into ` and out of ` respectively.

When m = `, the reaction is regarded as autocatalytic, in the sense that

there is a positive feedback to generate the chemical k. (In general, it is natural

to assume that a set of chemicals work as an autocatalytic set.) Later we will

study the case only with autocatalytic reactions, in a more detail.

(B) Active Transport and Di�usion through Membrane

A cell takes chemicals from the surrounding medium. Thus cells interact

with each other indirectly through the medium. It is expected that the rates of

chemicals transported into a cell are proportional to their concentrations outside.

Further we assume that this transport rate also depends on the internal state of

a cell. Since the transport here requires energy [1], the transport rate depends

on the activities of a cell. To be speci�c, we choose the following form;

Transp

(m)

i

(t) = (

X

k=1

x

(k)

i

(t))X

(m)

(t) (2)

The summation (

P

k=1

x

(k)

i

(t)) is introduced here to mean that a cell with

more chemicals is more active. We choose the above bi-linear form for simplic-

ity, although a nonlinear dependence on

P

k=1

x

(k)

i

(t) with a positive feedback

e�ect leads to qualitatively similar results. Besides the above active transport,

the chemicals spread out through the membrane by a normal di�usion process

written as



Diff

(m)

i

(t) = D(X

(m)

(t)� x

(m)

i

(t)) (3)

Combining the processes (A) and (B), the dynamics for x

(m)

i

(t) is given by

dx

(0)

i

(t)=dt = �e

1

x

(0)

i

(t)

X

`

x

`

i

(t) + Transp

(0)

i

(t) +Diff

(0)

i

(t); (4)

dx

`)

i

(t)=dt = Met

(`)

i

(t) + Transp

(`)

i

(t) +Diff

(`)

i

(t); (5)

Since the present processes are just the transportation of chemicals through

membranes, the sum of the chemicals must be conserved. The dynamics of the

chemicals in the medium is then obtained by converting the sign, i.e.,

dX

(m)

(t)=dt = �

N

X

i=1

fTransp

(m)

i

(t) +Diff

(m)

i

(t)g; (6)

where N is the number of cells, which can change in time by cell divisions.

Since the chemicals in the medium can be consumed with the 
ow to the cells,

we need some 
ow of chemicals (nutrition) into the medium from the outside.

Here only the source chemical X

0

is supplied by a 
ow into the medium. By

denoting the external concentration of the chemicals by X

0

and its 
ow rate per

volume of the medium by f , the dynamics of source chemicals in the media is

written as

dX

(0)

(t)=dt = f (X

0

�X

0

) �

N

X

i=1

fTransp

(0)

i

(t) +Diff

(0)

i

(t)g: (7)

(C) Cell Division

Through chemical processes, cells can replicate. For the division, accumu-

lation of some products is required. In our model the �nal product, generated

from all chemical species, is assumed to act as the chemical for the cell division.

(This �nal product can be regarded as DNA).

Z

T

t

0

(i)

dt

X

k

� � x

(k)

i

(t) > R (8)

is satis�ed, where R is the threshold for the cell replication. Here again, choices

of some other division conditions can give qualitatively similar results as those

to be discussed. We note that the division condition satis�es an integral form

representing the accumulation.

When a cell divides, two almost identical cells are formed. The chemicals

x

(m)

i

are almost equally distributed. "Almost" here means that each cell after a

division has (

1

2

+ �)x

(m)

i

and (

1

2

� �)x

(m)

i

respectively with a small "noise" �, a

random number with small amplitude, say over [�10

�3

; 10

�3

]. We should note

that this inclusion of imbalance is not essential to our di�erentiation. Indeed any

tiny di�erence is ampli�ed to yield a macroscopic di�erentiation. It should be

noted that for simplicity the volume of a cell is approximated to be constant

except for a short span for the division. During the short span for the division,

the volume is twice and thus the concentration is made half in the above process.



3 Few remarks on internal dynamics

Before presenting the dynamics of cell society, let us brie
y describe the nature

of metabolic reaction given by (1). Roughly speaking, the dynamics strongly

depends on the number of autocatalytic paths. If the number is large, only few

chemicals are activated, and all other chemicals' concentrations vanish. In this

case no metabolic paths are active, since the ongoing reaction is just the chemical

0 (source)! x

(k)

! the �nal product, without any reactions x

(k)

! x

(`)

. On the

other hand, when the number of autocatalytic paths is small, many chemicals are

generated, but their concentrartions do not oscillate and are �xed in time. When

the number of autocatalytic paths is medium, non-trivial metabolic reactions

appear. Some, (not necessarily all) chemicals are activated. The concentrations of

chemicals oscillate in time, which often shows a switching-like behavior: That is,

chemicals switch between low and high values successively. This type of switching

behavior is also seen in the randomly connected Lotka-Volterra equations as

saddle-connection-type dynamics [7].

In the present paper we discuss cases with a medium number of autocatalytic

paths, since they lead to non-trivial metabolic oscillations.

4 Proposed Scenario on cell di�erentiation

We have carried out several simulations of our model with k = 8, 16 or 64, with

a variety of randomly chosen metabolic networks with connections from 2 to 6

per chemicals. Through these simulations, we propose the following scenario of

the cell di�erentiation. Here we describe our scenario together with numerical

results for a given network, although simulations with a variety of metabolic

networks support the scenario rather well.

(1)Metabolic Oscillation of chemicals and Synchronized Division

Chemical concentrations within each cell oscillate in time by the metabolic

reaction process, which provides the basis of the following di�erentiation process.

Up to some number of cells, the oscillations are coherent, and all cells have

almost same concentrations of chemicals. Accordingly, the cells divide almost

simultaneously, and the number of cells increase as 1,2,4,8. It is interesting to

note that cells in most real organisms are not di�erentiated up to some number

of divisions.

(2) Clustering by Phases of Oscillations

As the division process proceeds, the metabolic oscillation starts to lose its

synchrony. Cells often separate into several groups with distinct phases of os-

cillations, while the synhorny is preserved within each group of cells. Thus the

di�erentiation sets in. At this stage, however, the di�erentiation is not yet �xed.

In other words, only the phases of oscillation are di�erent by cells, but the

temporal averages of chemicals, measured over some periods of oscillations, are

almost identical per cells. As has been discussed[4], this temporal clustering cor-

responds to time sharing for resources, since the ability to get them depends



on the chemical activities of cells. In Fig.1a), the temporal averages and snap-

shot values of some chemicals are plotted in the order of the birth time of cells.

Here the averages are almost identical, but the snapshot chemical values starts

to show slightly di�erent values. The di�erence here, indeed, is a trigger to the

�xed di�erentiation at the next stage.
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(3) Fixed Di�erentiation

After some divisions of cells ( for example, at the stage of 32 cells) di�erences

in chemicals start to be �xed by cells. When we measure the average chemicals

over periods of oscillations, amounts of chemicals as well as the ratios of chemicals

di�er by cells. Thus cells with di�erent chemical compositions are generated. This

di�erentiation of cells is not only for the strength of activities [4], but also for

the compositions of chemicals. In Fig.1b)-e), we have plotted the averages of

chemicals for di�erent temporal regimes. Distinct two groups of cells are created

when the cell number is 32 in the �gure. ( see the item (6) for the further

di�erentiation at a later stage).

It is noted that the phase di�erence still remains by each group. Thus there
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are two levels of di�erences by cells, one for the change of phases of metabolic

oscillations, and the other for the �xed di�erentiation. Indeed this two-level

di�erentiation gives a source for the hierarchical organization, since the phase

di�erence within each group leads to further �xed di�eretiations later. It is also

interesting to note that the phase di�erence is by "analogue" means, while the

�xed di�erentiation of averages is discrete, where cells are separated "digitally".

(4)Separation of inherent time scales

When di�erentiated, two groups of cells show distinct orbits, which lie in

di�erent regimes in the k-dimensional phase space fx(j)g. In Fig.2, we have

plotted overlaid orbits of two groups of cells. In each group, the oscillation phases

are di�erent by cells but the orbits fall in the same attractor, while the di�erence

of orbits between the two groups is clearly discernible.

Another important feature here is the di�erentiation of the oscillation fre-

quency. One group of cells oscillates faster than the other group. Typically cells

with lower activities oscillate in time more slowly with smaller amplitudes. Thus

inherent time scales di�er by cells, and the division speeds of cells are also dif-

ferentiated. Indeed, one group of cells divide faster than the other group of cells.

(5) Transmission of Di�erentiation to Daughter Cells

After the �xed di�erentiation, characteristic chemical compositions of each

group are inherited by their daughter cells. Daughters of a cell of a given type

keep the same character. Indeed, the cells with weaker activities in Fig.1, are

successive daughters of an \ancestor" cell with such activity. In other words,

when the system enters into this stage, a cell loses totipotency. By using the
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Fig. 1. Average chemical concentrations of x

k

(i). The cell index is de�ned in the order

that the cell is born. Throughout the �gures we use the parameters e

1

= 1, s = 40,

D = 0:02; f = 0:5, � = 0:2, and R = 100, with the metabolic network of k = 8

chemicals, with 4 randomly chosen autocatalytic paths, although a variety of networks

with the connection number from 2 to 4 lead to similar patterns of di�erentiation. The

average is taken over the time steps while the cell number remains 16 (Fig.1a), 32 (

Fig.1b), 64 (Fig.1c), 124 ( Fig.1d), and 248 (Fig.1e). For reference, the snapshot values

of two chemicals are also overlaid in Fig.1a).

term in the cell biology [1], we call that the determination of a cell has occurred

at this stage, since daughters of one type of cells preserve its type.

It is important to note that the chemical characters are \inherited" just

through the initial conditions of chemicals after the division, without any exter-

nal implementation for a genetic transmission. The almost "digital" distinction

of chemical characters, noted previously, is relevant to their preservation into

daughter cells, since analogue di�erences may easily be disturbed by a possible

noise at the division process.

(6) Hierarchical Di�erentiation

Further di�erentiation and determination of cells proceed successively in

time. New types of cells are generated hierarchically. For example after two
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Fig. 2. Orbits of metabolic oscillations. Plotted are (x

5

i

(t); x

8

i

(t)) for time steps 1500

to 2000. ( The piecewisely-discontinuos character in the orbit is just an artifact in the

plot, since the data are sampled by 0.5 second due to the limited memory of data

space, and the orbit, of course, shows a smooth change). In Fig. 2a), overlaid are orbits

for the cell index 1,4,5,7,8,13,14,15,16, which have same average chemical characters

as seen in Fig.1. Note that the oscillation phase di�ers by cells. The orbits of the cell

2,3,9,10,11 are plotted in Fig.2b), where the di�erence between the "strong" type cell

in Fig.2a) is clearly discernible ( also note the di�erence of scales).

types of cells are di�erentiated ( let us call them type-A and type-B cells for the

moment) at the �rst stage, the type-A cell is di�erentiated into A1 and A2. Here

the di�erence between A1 and A2 ( for example that of chemicals or the fre-

quency) is smaller than that between A and B. (see the two levels of \stronger"

chemicals in Fig.1c)d)). Once this di�erentiation occurs, this character is �xed

again, and after some time, such characters are determined by its daughter cells.

With the cell divisions, this hierarchical determination of cells successively con-

tinues. For example daughters of type-B cells di�erentiate into B1 and B2 at

a later stage. Examples of these successive determinations can be seen in Fig

1d)-e).

Since the daughters of A (B) cells can be either A1 (B1) or A2 (B2) cells, the

A cell is regarded as the stem cell over the later A1 and A2 cells. The daughters

of A1 cells, on the other hand, remain to be A1-type cells, and may further

di�erentiate into cells with smaller di�erences ( say A11 and A12 cells). In this

case, the A1 cell can again be a stem cell over a narrower group of cells.



5 Further Remarks on Dynamic Di�erentiation

It is useful to make some remarks about the mechanism how the above scenario

works and to give some possible predictions on the stability of di�erentiation

processes.

1) Initiation of the di�erentiation

In our simulation, the di�erentiation starts after some divisions have occurred

( e.g., the number of cells becomes 16). Since the division leads to almost equal

cells, a minor di�erence between the two cells must be enhanced to lead to a

macroscopic di�erentiation. We have con�rmed that a tiny di�erence of chemi-

cals of very low concentrations is ampli�ed to make a macroscopic di�erence of

other chemicals with higher concentrations. It is interesting to note that such

chemical with a low concentration is important, rather than those with high con-

centrations. This observation reminds us of a certain protein [1] that is known

to have a signal transmission in order to trigger a switch to di�erentiation with

only a small number of molecules.

2) Stability of our scenario

It should be noted that our scenario, although based on the chaotic insta-

bility, is rather robust against changes of initial conditions. Of course, which

cell becomes one given type can depend on the initial conditions. The number

distribution of each type of cells, on the other hand, is stable against a wide

change of initial conditions. Still, if we start from a totally di�erent type of ini-

tial conditions, such as those with many identical cells, the results can change

as is discussed later.

3) Memory as the inherited initial condition

The di�erentiation in our scenario is originated in the interaction among

cells, but the chemical characters of a cell are later memorized as the initial

condition after the division. The di�erentiation with the interactionmechanism is

reversible, while the latter mechanism leads to the determination. It is interesting

to note that the determination is not implemented in the model in advance, but

emerges spontaneously at some stage when the cell number N exceeds some

value.

In the natural course of the di�erentiation and in our simulations in x4, how-

ever, it is not possible to separate the memory in the inherited initial condition

from the interaction with other cells. To see the tolerance of the memory as

the inherited initial condition, one of the most e�ective methods is to pick up a

determined cell and transplant it within a variety of surrounding cells, that are

not seen in the \normal" course of the di�erentiation and development. Let us

discuss some results of this \transplantation" experiments.

4) Transplantation of cells

In real biological experiments on the di�erentiation, some \arti�cial" initial

conditions are adopted by transplantations of some types of cells. To check the

validity of our scenario and to see the tolerance of the memory in the inherited



initial condition, we have made several numerical experiments taking a variety

of \arti�cial" initial conditions. As the initial conditions we choose determined

cells at a later stage and mix them with undi�erentiated cells at the earlier stage,

to make the following observations.

i) Starting from few determined cells of the same type in addition to undif-

ferentiated cells

The former group of cells keep its type, whose o�springs remain as the same

type. Thus the determination is preserved, and the memory in the inherited

initial conditions is robust against the change of cell interactions. The undi�er-

entiated cells, on the other hand, start to di�erentiate to form many types of

cells.

ii) Starting only from few di�erentiated cells of the same type

We have found either that the cells lose the non-trivial metabolic reaction,

or that they start to di�erentiate again to generate di�erent types of cells. Here

the trivial reaction means that only one or two chemicals take non-zero values,

without any ongoing reaction among the chemicals fx

j

g ( i.e., the only direct

path of the source x

0

! x

m

! the �nal product is active). This type of cells with

trivial reactions divides faster since the metabolic path way is direct. Taking also

into account the fact that these cells destruct the chemical order sustained in the

cell society, one may regarded them as tumor cells. The formation of these tumor

cells depends on initial densities of determined cells, which may be compared

with the experiments by Rubin [3].

6 Discussions and Biological Implications

To sum up we have proposed a novel scenario on the cell di�erentiation, based

on the interacting cells with the metabolic oscillations and the clustering of cou-

pled oscillator systems[5]. The model, without any external mechanism, leads

to successive spontaneous di�erentiations, which are transmitted to daughter

cells. It is interesting to note that a variety of experimental results can be un-

derstood from this point of view, such as the loss of totipotency, the origin of

stem cells, the hierarchical di�erentiation, the separation of division speeds by

the di�erentiation, the germ-line segregation, and the importance of chemicals

of low concentrations for the trigger to the di�erentiation.

In the present paper we have not included a cell death process. When it is

included, our model leads to a stationary distribution of di�erentiated cells at a

later stage, when the cell number reaches its maximum[8]. Local interactions in

space are not included either, to focus on the dynamic clustering process. The

inclusion of a local interaction is rather straightforward, and indeed some simu-

lations in a 2-dimensional space lead to the spatial organization of di�erentiated

cells as well as the developmental process of some forms[8].

As a dynamics of many interacting agents, our results also provide novel

interesting viewpoints. In particular we have succeeded in showing a mechanism

of division of labors through the di�erentiation, as the segregation into active



and inactive groups. It is interesting to extend the idea of the present paper to

economics and sociology, and to discuss the origin of di�erentiation, diversity,

and complexity there.

So far our results are rather universal as long as individual dynamics allows

for some oscillations, and will be theoretically grounded by the studies of globally

coupled dynamical systems, in particular, the spontaneous di�erentiation as the

clustering [5]. Existence of a variety of chemicals in our problem leads to the

\dual" clustering, both for the cell index and the chemical species. Construction

of a minimal model with the dual di�erentiation will be an interesting problem

as a dynamical systems theory, in future. Besides this viewpoint of coupled

dynamical systems, it should be noted that our system is \open-ended" in the

sense that the degrees of freedom increase with the cell division, where the

notion of \open chaos" [6] will be useful to analyze the mechanism of the cell

di�erentiations.
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