Skip to main content

Modeling and analysis of some neural mechanisms for the genesis and control of respiratory pattern

  • Neuroscience
  • Conference paper
  • First Online:
From Natural to Artificial Neural Computation (IWANN 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 930))

Included in the following conference series:

  • 812 Accesses

Abstract

Simulations were developed in the framework of the network theory of respiratory rhythmogenesis. The main goals were: (i) to develop computational models of neural mechanisms that provide the genesis and control of both respiratory oscillations and specific patterns of respiratory neurons, and (ii) to test some hypotheses about the neural mechanisms of respiratory rhythmogenesis on the basis of an analysis of these models. Our specific objectives were to understand the mechanisms of integration and specific roles of intrinsic properties of respiratory neurons, network properties of their interconnections, and effects of afferent feedback in the genesis and control of the respiratory pattern. The models of single respiratory neurons were developed in the Hodgkin-Huxley style. The single neuron models produce the specific firing patterns of respiratory neurons recorded experimentally (i.e. adapting and ramping bursts). Different model versions of the respiratory rhythm generator have been considered. They consist of interconnected neurons and vagal feedback from lung stretch receptors. The models demonstrate a stable respiratory rhythm and specific patterns of respiratory neuronal discharges. The performances of the models are compared and analyzed in light of existing hypotheses and physiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. N. Botros & E. M. Bruce. (1990) Neural network implementation of the three-phase model of respiratory rhythm generation. Biol. Cybern. 63: 143–153.

    PubMed  Google Scholar 

  2. G. W. Bradley (1986) The effect of CO2, body temperature and anesthesia on the response to vagal stimulation. In B. Duron (Ed.) Respiratory Centers and Afferent Systems, 139–154. Paris: INSERM

    Google Scholar 

  3. T. H. Bryant, S. Yoshida, D. de Castro & J. Lipski (1993) Expiratory neurons of the Botzinger complex in the rat: A morphological study following intracellular labeling with biocytin. J. Comp. Neurology. 335: 267–282.

    Google Scholar 

  4. M. I. Cohen & J. L. Feldman (1977) Models of respiratory phase-switching Federation Proc. 36: 2367–2374

    Google Scholar 

  5. J. Champagnat, T. Jacquin & D. W. Richter. (1986) Voltage-dependent currents in neurons of the nuclei of the solitary tract of rat brainstem slices. Pflugers Arch. 406: 372–379.

    PubMed  Google Scholar 

  6. J. Champagnat & D. W. Richter. (1994) The Roles of K+ conductance in expiratory pattern generation in anaesthetized cats. J. Physiol. 479: 127–138.

    PubMed  Google Scholar 

  7. J. Champagnat, D. W. Richter, T Jacquin & M. Denavit-Saubie. (1986) Voltage-dependent conductances in neurons of the ventrolateral NTS in rat brainstem slices. In C. von Euler & H. Langercrantz (Eds.) Neurobiology of the Control of Breathing, 217–221. New York: Raven.

    Google Scholar 

  8. M. S. Dekin & P. A. Getting. (1987) In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns. J. Neuroplysiol. 58: 215–229.

    Google Scholar 

  9. J. Duffin. (1991) Amodel of respuatory rhythm generation. Neuroreport 2: 623–626.

    PubMed  Google Scholar 

  10. C. von Euler (1986) Brainstein mechanism for generation and control of breathing pattern. In Handbook of physiology. The respiratory system II (N. S. Cheraack & J. G. Widdicombe Eds.), 1–67. Washington: Am. Physiol. Soc.

    Google Scholar 

  11. J. L. Feldman (1986) Neurophysiology of breathing in mammals. In Handbook of physiology. Section 1. vol. 4.(F. E. Bloom ed.), 463–524. Bethesda, MD: Am. Physiol. Soc.

    Google Scholar 

  12. S. Geman & M. Miller (1976) Computer simulation of brainstem respiratory activity. J. Appl. Physiol. 41: 931–938.

    PubMed  Google Scholar 

  13. A. Gottshalk, M. D. Ogilvie, D. W. Richter & A. I. Pack (1994) Computational aspects of the respiratory pattern generator. Neural Comput. 6: 56–68.

    Google Scholar 

  14. L. Grelot, A. L. Bianchi, S. Iscoe & J. E. Remmers. (1988) Expiratory neurones of the rostral medulla: anatomical and functional correlates. Neurosci. Lett. 89: 140–145.

    PubMed  Google Scholar 

  15. J. R. Huguendard & D. A. McCormick (1992) Simulation of the currents involved in rhythm oscillations in thalamic relay neurons. J. Neurophysiol. 68: 1373–1383.

    PubMed  Google Scholar 

  16. J. R. Hugueudard & D. A. McCormick. Vclamp and Cclamp. A Computational Simulation of Single thalamic relay and cortical pyramidal neurons. Neural Simulation Instruction Manual.

    Google Scholar 

  17. S. Klages, M. C. Bellingham, & D. W. Richter (1993) Late expiratory inhibition of stage 2 expiratory neurons in the cat — A correlate of expiratory termination. J. Physiol. 70: 1307–1315.

    Google Scholar 

  18. C. K. Knox (1973) Characteristics of inflation and deflation reflexes during expiration in the cat J. Physiol. 36: 284–295.

    Google Scholar 

  19. E. E. Lawson, D. W. Richter, D. Ballantyne & A. Kuhner (1989) Peripheral chemoreceptor inputs to medullary inspiratory and postinspiratory neurons of cats. Phlugers Arch. 414: 523–533.

    Google Scholar 

  20. D. A. McCormick & J. R. Huguenard (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68: 1384–1400.

    PubMed  Google Scholar 

  21. S. Mifflin, D. Ballantyne, S. Backman & D. W. Richter. (1985) Evidence for a calcium-activated potassium conductance in medullary respiratory neurons. In A. Bianchi & M. Denvait-Saubie (Eds.) Nemgenesis of Central Respiratory Rhythm, 179–182. Lancaster, UK: MTP.

    Google Scholar 

  22. M. D. Ogilvie, A. Gottschalk, K. Anders, D. W. Richter & A. I. Pack. (1992) A network model of respiratory rhythmogenesis. Am. J. Physiol. 263: R962–R975.

    PubMed  Google Scholar 

  23. J. E. Remmers, D. W. Richter, D. Ballantyne, C. R. Bainton & J. P. Klein (1986) Reflex prolongation of stage I of expiration. Phlugers Arch. 407: 190–198.

    Google Scholar 

  24. D. W. Richter & D. Ballantyne. (1983) A three phase theory about the basic respiratory pattern generator. In M. Schlafke, H. Koepchen & W. See (Eds.) Central Neurone Environment, 164–174. Berlin: Springer.

    Google Scholar 

  25. D. W. Richter, D. Ballantyne & J. E. Remmers. (1986) How is the respiratory rhythm generated? A model. Naws Physiol. Sci. 1: 109–112.

    Google Scholar 

  26. D. W. Richter, J. Champagnat, T. Jaquim & R. Benacka (1993) Calcium currents and calcium-dependent potassium currents in mammalian medullary respiratory neurons. J. Physiol. 470: 23–33.

    PubMed  Google Scholar 

  27. D. W. Richter, J. Champagnat & S. W. Mifflin. (1986) Membrane properties involved in respiratory rhythm generation. In C. von Euler & H. Langercrantz (Eds.) Neurobiology of the Control of Breathing, 141–147. New York: Raven.

    Google Scholar 

  28. D. W. Richter, F. Heyde & M. Gabriel. (1975) Intracellular recordings from different types of medullary respiratory neurons of the cat J. Neuropliysiol. 38: 1162–1171.

    Google Scholar 

  29. J. E. Rubio (1972) A new mathematical model of the respiratory center. Bull. Math. Biophys. 34: 486–481.

    Google Scholar 

  30. M. Sammon, J. R. Romaniuk & E. N. Bruce (1993) Bifurcations of the respiratory pattern produced with phasic vagal stimulation in the rat. J. Appl. Physiol, 75: 912–936.

    PubMed  Google Scholar 

  31. S. W. Schwarzacher, J. S. Smith & D. W. Richter. (1991) Respiratory neurons in the pre-Botzinger region of cats (Abstract) EurJ. Physiol. 418, Suppl. 1: R17.

    Google Scholar 

  32. W. M. Yamada, C. Koch & P. B. Adams (1989) Multiple cannel and calcium dynamics. In C. Koch & I. Segev (Eds.) Methods in Neuronal Modeling, 97–133. Cambridge: MIT.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Francisco Sandoval

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rybak, I.A., Paton, J.F.R., Schwaber, J.S. (1995). Modeling and analysis of some neural mechanisms for the genesis and control of respiratory pattern. In: Mira, J., Sandoval, F. (eds) From Natural to Artificial Neural Computation. IWANN 1995. Lecture Notes in Computer Science, vol 930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59497-3_162

Download citation

  • DOI: https://doi.org/10.1007/3-540-59497-3_162

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59497-0

  • Online ISBN: 978-3-540-49288-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics