Process Improvement - The Way Forward

M M Lehman
Department of Computing
Imperial College of Science, Technology and Medicine
London SW7 2BZ

tel.:+44 (0)171 594 8214
fax: +44 (0)171 594 8215
email: mml@doc.ic.ac.uk

1 Introduction

Means for evolving, that is, developing, adapting and enhancing E—type1
[LEH80] software have been significantly advanced over the years. Continuing efforts
to improve the process of software evolution have produced numerous concepts,
methods, techniques and tools. High level languages, structured programming, abstract
data types, formal methods, non-procedural programming, CASE environments and
object orientation exemplify innovations expected to overcome problems that have for
so long [NAUG69] frustrated consistent, cost effective, on-time development of
functionally satisfactory and reliable software. Such innovation did indeed yield
process-local benefit. Introduction of structured programming and high level
languages, for example, greatly improved program design and coding. The study of
programming methodology [GRI78] led to major advances in computer science and to
the development of formal methods. These, in turn, provided opportunities for
increasing individual and small group effectiveness by facilitating CASE based
process mechanisation. Continuing technical innovation has played a significant role in
major growth in size and functional complexity of computing applications and
systems.

It has, however, not yielded a panacea, neither a silver bullet [BRO86] nor a
philosophers' stone [TUR86]. Many problems still haunt industrial software
development [GIB94]. Introduction of improved methods, techniques and tools into
practice has not yielded a consistent capability for planned, on time, controlled-cost
development of quality software, Nor has it resulted in major productivity growth, cost
reduction or faster response to user needs. It has proven equally difficult to achieve
major improvement in maintaining systems satisfactory as user needs and expectations
change in evolving application and operational domains. Software evolution from
concept to first installation and from release to release relies on processes still far from
satisfactory [GIB94].

Despite the belief of major industrial organisations to the contrary [MAJ93] it
may, of course, be unreasonable to expect order of magnitude improvement from
individual innovations or in the overall process. Anticipation of benefit is, after all, not
a proof that it is attainable. Software development is a creative, intellectual activity
requiring human involvement, learning, judgment, decision and revision. It can be
supported but not replaced by mechanisation. This by itself limits increases in global
process quality, productivity and responsiveness. Moreover, since the operational

! E-type software is informally defined as software that implements an application or
addresses a problem in the real world [LEH78]

environment undergoes continual change software products cannot, for long, remain
fault free [LEHO91]. The consequent need for continual change and evolution presents
a further major obstacle to overall process effectiveness. There may well be others.
Software development is intrinsically and will always remain a challenging and
hazardous enterprise.

Nevertheless, the consistent failure of innovative ideas to yield major
improvement in E-type processes despite their apparent effectiveness in S-type’
[LEH80,95] programming suggests that there may be some common cause or causes
constraining the former. If that is so, its identification should provide clues as to how
more effective software processes might be achieved.

One possible cause is immediately apparent. Technical development is only one
of many software process activities. Project management, user support, application
analysis, marketing and enterprise management, for example, all contribute to system
evolution, absorbing resources and impacting progress. All influence software process
and product attributes. Individual innovations impact directly only a fraction of the
total activity. Global impact of any single innovation must, therefore, be limited.

The slow rate of progress may also relate to the number or diversity of people
and organisations involved in E-type application development, the complexity of the
organisations and the processes executed and controlled or specific characteristics of
E-type systems [LEH94B]. Each of these factors could explain the continuing
difficulty in achieving major improvement.

2 Feedback and the Software Process

Recently a more basic constraint on process improvement has been suggested
[LEH94]. It relates to the role of feedback in S-type and E-type processes respectively.
By definition, the specification of an S-type program completely defines what is to be
implemented. Its operational domain is bounded by a specification which is
sacrosanct. Conformance to the specification completely determines, in a mathematical
sense, correctness of the program and its parts, If, at any time and for whatever reason,
the specification is considered unsatisfactory, if for example it does not fully address
client needs, a new one must be generated and a new program to satisfy it developed.
Each may be derivable from its predecessor. But technically both are new since
specification changes are ruled out by definition. Validation of the specification and,
when necessary, its revision is entirely separated from the process transforming the
specification into its program implementation. Feedback, iteration, backtracking over
process steps may be used to achieve convergence to a solution, to rectify errors or to
escape from blind alleys but not to increase fitness for purpose by change of the
specification. The global S-type process is, by definition, open-loop. In so far as
changing perceptions, opportunities and needs require adaptation, enhancement or
extension of an S-type system it evolves as a succession of new systems rather than by
changes to its parts.

In strong contrast, the applications and operational domains realised by E-type
programs are unbounded [LEH94B]. Knowledge about them cannot be absolute or
complete. As a model of the application in its domain the bounded E-type system is an

2 S-type software is required to be correct in the full mathematical sense with respect to
a fixed specification [LEH78]}

abstraction of reality. Behavioural judgments and pragmatic inputs about
implementation resources and technology play a major role in setting the properties of
the model. The gap between the reality of the application in its operational domain and
the system model is bridged by assumptions [LEH91]. This gap must be maintained
sufficiently narrow to ensure that, in usage, program behaves as required, that the
system as a model reflects reality to the extent needed. The concept of correctness
determining the acceptability of S-type programs is replaced by user satisfaction with
the domain covered, system behaviour, program functionality and program execution
[LEH91]. But experience, insight and understanding acquired during system evolution
and usage generate new perceptions, needs and opportunities, changing expectations
and criteria of satisfaction; and the external world also changes independently.
Constant observation and a stream of information drive, guide and control system
evolution to maintain user satisfaction as the application, its operational domain and
user perception of both change. Bounds are continually redrawn during development
and usage as feedback provides information and impetus for controlled change. The
very nature [TUR81,LEH91,95] of real world applications and of the E-type software
that models and implements them sets up continuing pressure for change and evolution
based on observation, experience, learning, judgment and decision. Some of the
information communicated serves to enlighten recipients. Other is used to control
future execution of the activity that generated the information. It constitutes genuine
feedback control [OXF81]. In contrast to S-type development the E-type process is
inherently closed loop with iteration and backtracking guided and controlied by
feedback from users, developers, managers and many others [LEH69,85]. The regular
system dynamics that results determines many of the characteristics of the evolution
process [BEL72, LEHS85].

The significance of feedback in the software process and its role in determining
the dynamics of that process has long been recognised. It was referred to in passing by
several speakers at the Garmisch Conference [NAUG9]. At about the same time it was
briefly discussed in the 1969 Programming Process [LEH69] report. The first tangible
evidence of an identifiable dynamics of evolution followed some years later [BEL72].
More detailed studies were reported in subsequent papers [BEL72, LEH85]. As an
example brief mention may be made of the early identification of the feedback
stabilised and controlled growth characteristics of OS/360 and other systems [LEH80]
as illustrated in the growth plot reproduced in the figure below.

Size
8000 -

7000 4 -

6000 4 ﬂ [

i+ 3 U

H]
5000 [0
n [
'
3 4000j bl
2 -

E 3000 -

2000-‘#
1000 -

[
0 2 4 6 8 101214 16 18 20 22 24 26

Sequence No.

Fig. 1 The growth of OS/360

The cyclic pattern discernible in this plot is characteristic of feedback systems.
As observed at the time [LEH72] "... the ripple is typical of a self stabilising process
with positive and negative feedback loops. From a long-range point of view the rate of
system growth is self-regulatory, despite the fact that many different causes control the
selection of work implemented in each release, with budgets varying, increasing
numbers of users reporting faults or desiring new capability, varying management
attitudes towards system enhancement, changing release intervals and improving
methods....". The period of instability beyond release twenty representing OS/360
fission some months after the 72 paper was published is equally indicative of the
feedback nature of the software release process. The oscillatory behaviour indicates a
loss of control over system evolution. It is consistent with all known facts that this
chaotic behaviour was triggered by over ambitious growth targets, that is, excessive
positive feedback.

Further analysis of these and observations on a number of other systems
[LEHS80] led to identification of five laws of program evolution [LEH74,78,85]. These
reflect human and organisational attributes and behaviour rather then software
technology. From within the technology they must, therefore, be accepted as laws.
More recent studies of organisational and managerial aspects of software process
dynamics have developed techniques for the exploitation of that dynamics {ABD91].
Taken together the results of this work provide the basis for an emerging theory of
software evolution [LEH85,91, ABD91].

3 A Consequence of Feedback Control

The 1969 - 72 studies from which the feedback nature of the software process
was first inferred were restricted to release level evolution. But information generation
and feedback play a major role at all levels of the process. Processes of E-type
evolution constitute multi-level, multi-loop feedback systems. Loop characteristics and
those of their mechanisms determine process dynamics. Such processes may therefore
be expected to display the stable behaviour which is the hallmark of feedback systems
in general [LEH94]. Despite changes in the characteristics of forward path elements

and in the operational environment externally observable system properties are held
relatively constant by negative feedback within specified limits over the operational
range until, as a consequence of excessive positive feedback, instability sets in.

The above observations may have been interpreted in the context of the
transformation processes applied to refine computer application concepts into solution
systems. After all, the 1970s investigation concentrated on technical development.
Their relevance is, however, much wider. Management, customer support, quality
assurance, process engineering and so on all apply feedback controls derived from
monitoring and reporting mechanisms, checks and balances. More feedback and
control comes from the organisational (business} environment. Technical developers
and their management seek to meet project goals. The software process is changed as
participants and software process engineers observe the effectiveness and
appropriateness of the current process, as technology advances. Organisational
processes use feedback procedures to ensure steady business and organisational
growth with disciplined product evolution as, for example, user experience and
changing client needs are reported and economic circumstances change.

There can be no doubt that feedback based control plays a significant role in
software development processes and in the improvement of such processes. In
accordance with the stability property of feedback controlled systems, changes to
forward path elements of such processes cannot, therefore, be expected to produce
major global improvement unless accompanied by commensurate changes to related
feedback mechanisms [LEH94]. Software process improvement must be pursued in the
context of the total process domain and the feedback controls that regulate its
behaviour. That domain includes, amongst others, users of all types, corporate
management, marketing, customer and user support, project, process and information
management, technical development, quality assurance, process engineering,
interaction with related processes, process improvement and monitoring of all these.
Such a broad focus provides a realistic framework for the study of process
effectiveness, process dynamics and changes in both.

The innovations listed in the opening paragraph were all forward path
mechanisms. Yet their introduction into practice did not, in general, include a
comprehensive review of total process-domain and its feedback controls. Thus though
their adoption may have changed local process properties it should not come as a
surprise that the wider impact was far less than expected. It is suggested that a
common factor constraining major software process improvement has been a lack of
attention to the impact of feedback on forward path innovation. Support for this
conclusion is provided by the positive contributions arising from the introduction of
innovative techniques such as inspection, reviews, prototyping, incremental and
evolutionary development and the emerging metrics technology. These techniques all
include a strong negative feedback control component. Their potential for major
impact on global process effectiveness provides further support for the feedback
hypothesis.

4 The FEAST Conjecture

The above above observations have been formalised in the following
conjecture:

(&3}

As a multi loop feedback system the E-type software process will display global
invariance characteristics

This conjecture includes three separate and distinct assertions

I The software evolution process for E-type systems constitutes a complex
feedback system :

II Process feedback is likely to limit the benefit derived from individual forward
path changes

III Major process improvement requires that changes to individual steps are
accompanied by adjustment of feedback paths and/or mechanisms

The first assertion is undeniable. The others follow from the global stability
characteristic property of other feedback systems. If, as seems likely, the software
process as a feedback system also possesses this property, improvement resulting from
changes to one of its forward path mechanisms will be constrained by pre-existing
negative feedback. To remove such constaints requires examination, probable
modification, possible removal of at least some of the feedback controls that are
almost certain to be in place. But can examination and adjustment of process feedback
can be systematised? Can software process feedback design be disciplined? The
general theory and practice of analysis, control and design of feedback systems is
advanced and well understood. A question arises in the case of the software process
because of the major, independent and creative role of the many individuals involved
in the process, the varied roles they fullfill, the unpredictable nature of their influence
on feedback information. Humans observe and participate in the process and in the
operation of its product. They manipulate and control information fed over paths that
link organisations, activities, spaces [BEN93] and people involved in system and
process evolution. They observe, interpret, verbalise, transform, communicate, assess,
decide, control and apply both forward and feedback information. They feed back
their interpretation to other units involved in the evolution. Each of these acts imposes
a personal stamp on the information. One must, therefore, ask whether human
involvement is so extensive, so ingrained, so individual, so judgmental, so creative that
meaningful and exploitable formalisation and modelling with optimised design and
integration of the feedback mechanisms is, at least for the moment, beyond reach,
cannot be disciplined? The issue is not the validity of the assertions but their practical
implications.

5 Exploiting Process Feedback

To exploit feedback one must be able to model the process and its dynamics.
Techniques currently employed in process modelling do not, in general, provide the
necessary facilities since they have not sought to reflect detailed feedback properties.
But relevant formalisms and methods have been developed in other areas.
Comprehensive techniques for feedback design and control of continuous and of
stochastic systems is embodied, for example, in control theeory and in dynamic
systems theory. Both have been extended and applied, though admittedly with limited
success, to systems involving humans; economic systems, organisational dynamics and
the application of control theory to software development [WOO79, LEH8S5, ABD91],
for example. There exists, therefore, a prima facie case suggesting that models
reflecting feedback mechanisms may be successfully developed and applied to the

design and improvement of software processes at least at levels of detail where
statistical abstraction of people activity has meaning. Such models are an essential tool
if the above conjecture is to be exploitable for the process of process improvement.
Modelling techniques that will permit the representation and evaluation of all aspects
of the process are an urgent necessity.

In the many spaces in which the process operates and at the many levels of
detail at which it occurs feedback may take one of two forms. Control feedback
describes the situation in which information derived from information originating at an
output of some process elemen is injected, after some delay, to an input of that or an
earlier element to effect some form of control. It is this meaning of feedback that is
studied in, for example, control theory where it refers to a control signal derived
directly from a mechanism, from the change in value of some output variable relative
to a previously observed value, from the rate of change of a variable and so on. But the
term feedback is also used colloquially to refer to information flow without any
indication as to how, where or when, if at all, that information is to be used. It provides
enlightenment, advances human understanding, facilitates learning. Since no control
information is derived, such feedback can have no analysable impact on the processes
from which it stems or which it reaches.

In the context of the software process both usages are relevant. At levels, where
interest and concern focus on the work of individuals, isolated, and in some sense
spontaneous and unpredictable, items of information are fed for use as seen fit by the
recipient. That recipient may choose not to act directly in response to the information
though it may, nevertheless, effect further action as a consequence of its impact on
understanding, viewpoint, attitude and so on. But any changes in the latter are all
internal to the individual or individuals concerned. As such, they cannot be reflected in
process models or formal descriptions of the system dynamic, at most, as noise or
randomised variations on unit inputs. Decision to take action (or to take no action), on
the other hand, leads to a control action. This situation is an instance of the first, the
normal, engineering usage of feedback. Whether these low level aspects of feedback
loops and mechanisms in the software process and their impact can be modelled and
exploited, requires further investigation .

At higher levels of the process there will be many continuing streams of
(discrete) information. The same distinction must, nevertheless be made. Where
information is simply absorbed its receipt will not directly impact the process. Where
the information is assessed for possible action a control signal is derived, though if the
decision is not to act (for the moment) that control signal may be a null signal. Here
too the term feedback is being used in its normal engineering connotation.
Nevertheless, because of the non determinacy of human involvement its modelling and
management poses difficult technical and managerial problems.

The belief that systematic techniques for the observation, measurement,
modelling and management of feedback can be developed stems from the fact that the
total information flow in the process generally involves many decisions. The
information fed back and, more significantly, the resultant action is a composite of
many inputs. These, whilst not absolutely predictable or independent, are amenable to
meaningful statistical representation and analysis [LEH80]. Consequent system
behaviour has been shown to display statistically normal properties [CHO81]. It is
therefore reasonable to expect that at these levels of the software process, control
theoretic and statistical process models reflecting the system dynamics can be

developed for use on their own or in conjunction with modelling techniques currently
in vogue. When statistical representation is not meaningful new formalisms will have
to supplement current process modelling techniques. At this level simulation
techniques would likely constitute an important element of the design and evaluation
process. ‘

6 Feedback as the Constraint on Process Improvement

Reasoning as outlined above has suggested that the common cause referred to
in section 1 is related to the feedback nature of the evolution process. Whether it
explains the failure of process innovations such as those identified in the opening
paragraph to produce impact of the order of magnitude anticipated at the global level
remains to be determined. In truth many, if not all, of the innovations yielded
significant benefit at the local level, improving the effectiveness of individual process
steps or activities significantly. As an example consider the conception and
introduction of high level languages. This certainly increased the quality, productivity
and predictability of program code development and its changeability by an order of
magnitude. What is now suggested is that the constraining effect of feedback has
prevented the full potential of such languages from being experienced at the global
level. And so for other innovations.

The feedback hypothesis provides an explanation that is consistent with an
established property of other feedback systems. But that observation by itself does not
prove that the lack of major advances in process improvement is due to this common
cause. It could still be primarily due to reasons specific to each innovation. In view of
the number of such failures a common cause must, however, be suspected. It is,
therefore, of interest to examine innovations individually in the context of processes
within which they have been employed to determine whether their limited impact at
the global level can be attributed to the constraining effect of feedback control. If it
can, it can be overcome by modifying the feedback structure. Failure would not prove
the conjecture invalid. It would cast doubt on its practical relevance.

In summary, from the facts that feedback systems, in general, display global
stability and resistance to change to a degree dependent on the detailed characteristics
of their feedback mechanisms and that the software evolution process constitutes a
feedback system, one must suspect that the benefits obtained from innovative changes
to forward path methods techniques or tools in the software evolution process will be
limited. The extent and degree of the constraining effect will depend on the
characteristics of the many individual feedback paths and on the interactions between
them. It may equally be anticipated that the global benefit obtained from
improvements in forward path technology can, in general, be increased by attention to
(adjustment of) the characteristics of relevant feedback mechanisms. It is thus tempting
to suggest that the feedback phenomenon explains why, despite the many innovative
concepts that have been introduced into forward path technology, it has proven so
difficult to achieve major improvement in the global software process. Whether this is
indeed so remains to be explored as does the question whether, if true, it can be
systematically exploited.

An aside is appropriate at this point. In papers at IFIP Congress '86 Brooks
[BROB86] and Turski [TUR86], respectively, pointed out that one must expect neither a
silver bullet nor a philosophers' stone to solve the software engineering problem once

and for all. The FEAST conjecture is not an exception. If it can be exploited, it may
make a significant contribution to improvement of the software evolution process. It
must be seen just as that, no more.

7 The FEAST Project- (Feedback, Evolution And Software
Technology)

Feedback control and its role in software evolution, the software process and
process evolution (improvement) are now being investigated with international
collaboration, in a project, FEAST, supported for its first year by a grant from the UK
Department of Trade and Industry. If successful, the project may be expected to have a
profound impact on the software development and maintenance processes and on the
process of process improvement The investigation will seek to verify the feedback .
conjecture and search for ways in which the feedback phenomenon may be exploited.

As already observed, the basic fact that the software evolution process
constitutes a feedback system is self evident. But has feedback really constrained the
benefit derived from the introduction of innovative concepts, methods, tools and
techniques in forward path mechanisms? How may feedback control be exploited?
Ideally one should be able to identify feedback paths that inhibited or damped the
benefit obtained from individual innovations in current industrial processes and to
explore beneficial changes to the feedback structure and mechanisms. This will require
the development of methods, techniques and tools whereby the process, including its
feedback mechanisms, may be modelled, evaluated and implemented or changed to
maximise the global benefit, however defined in any circumstance, obtained from each
innovation. Given success it this activity, exploitation means will follow.

As a first step it is intended to model the process and its properties using
appropriate techniques and representations to expose the role and impact of feedback
in software evolution. A preliminary model has already been derived from process
theory. Models derived from observation, measurement and analysis of industrial
processes will follow once the process is in full swing with industrial collaboration.
Detailed examination of the role and contribution of people in such mechanisms must
be included. A necessary precursor to extended modelling activity is the adoption of
formalism that permits adequate representation, at various levels of detail, of software
processes with their feedback loops and mechanisms. Exploration of suitable
techniques and representations must also include control theoretic and system
dynamics approaches as well as formal languages such as those currently used in
process modelling. Nevertheless, the proposed modelling activity will differ radically
from the process modelling currently in vogue. The latter tends to divert attention
from, even hide, feedback and global process properties in general. Project FEAST
will focus on them.

The insight and understanding developed in the early stages of this integrated
analysis of current software process technology will lead to process evaluation and
improvement in terms of both forward and loop properties. Exploitation of existing
and emerging development and support technology must be enhanced to address and
exploit feedback properties and thereby yield improved process attributes, Methods,
techniques and tools for the design and evaluation of feedback control mechanisms
must be developed. New and improved mechanisms exploiting the potential of
feedback must be developed. Finally, lessons learned must be applied to the extension

10

of process theory and the generation of principles and guidelines that will facilitate the
transfer of results of the study to software engineers responsible for design, support
and improvement of the software process, to software developers and to their
managements in industry and elsewhere.

FEAST studies have now (March 1995) been underway for some nine months.
During that time three workshops involving participants from industrial, academic and
research organisations in Canada, Finland, France, Norway, Poland, Portugal, UK and
USA have been held. The main focus so far has been on the identification and
definition of basic concepts, the adoption of outline definitions, preliminary
examination of project issues and objectives and consideration of how best and most
profitably the investigation shouid proceed. Funding by the UK Department of Trade
and Industry is about to end. The rate of progress from now (April 1995) will depend
on the further funding obtained. Success in the the project will ensure, sustain and
extend future advances in the software evolution (development ab initio, enhancement,
extension) process, yielding methods, tools and metrics for the systemisation of
process technology, effective evaluation techniques, support tools, further
improvement of the process. By its very nature the study will also make a significant
contribution to process theory and the development of a scientific base and framework
for software process technology.

The project is challenging but feasible. First practical results should be
available within two years from the availability of adequate support. But in view of the
difficulty of the issues under study and the spectrum of disciplines involved the main
body of results is likely to require 3 to 5 years to achieve. The degree of success and
the rate at which it is achieved will clearly depend, in part, on the funding obtained.
The calibre of people attracted to and participating in FEAST suggests that significant
progress can be anticipated.

References

[ABD91] Abdel-Hamid T and Madnick S E, Software Project Dynamics - An Integrated
Approach, Prentice Hall, Englewood Cliffs, NJ 07632, 263 p.

[BEL72] Belady L A and Lehman M M., An Introduction to Program Growth Dynamics, in
Statistical Computer Performance Evaluation, W Freiburger (ed), Academic
Press, New York, 1972, pp. 503 - 511

[BEN93] Benford S and Fahlen L, A Spatial Model of Interaction in Large Virtual
Environments, Proc. Third European Conf. on Comp. Supported Cooperative
Work - ECSCW '93, Milan, 1993, Michelis, Simona and Schmidt (eds), Kluwer
Acad. Publishers, pp. 109 - 124

[BRO86] Brooks F P, No Silver Bullet - Essence and Accidents of Software Engineering,
Information Processing 86, Proc. IFIP Congress 1986, Dublin, Sept. 1-5, Elsevier
Science Publishers (BV), (North Holland), pp. 1069 - 1076

[CHO81] Chong Hok Yuen C K S, Phenomenology of Program Maintenance and
Evolution, PhD Thesis, Dept. of Comp., Imp. Col. 1981

[GIB94] Gibbs W W, Software's Chronic Crisis, Scientific American, Sept. 2994, pps. 72 -
80

[GRI78] Gries D, Programming Methodology - A Collection of Articles by Members of
IFIP WG2.3, Springer Verlag, New York, 1978, 437 p.

[LEH69] Lehman M M, The Programming Process, IBM Research Report RC xxxx, also in
[leh85]

[LEH74]

[LEH78]

[LEHS80]

[LEH84]

[LEHS8S5]

[LEHO1]

[LEH94]

11

Lehman M M, Programs, Cities, Students - Limits to Growth, Imperial College.
Inaugural Lect. Series, vol. 9, 1970 - 1974, also. in [gri78], pp. 42 - 69 and
[1eh85], pp. 133 - 163

Laws of Program Evolution - Rules and Tools for Programming Management,
Proc. Infotech State of the Art Conf., Why Software Projects Fail, - Apr. 9 - 11
1978, pp. 11/1 - 25

Lehman M M, Programs, Life Cycles and Laws of Software Evolution, Proc.
IEEE Special Issue on Software Engineering, vol. 68, no. 9, Sept. 1980, pp. 1060
- 1076

Lehman M M, Stenning V and Turski W M, (1984). Another Look at Software
Design Methodology, ICST DoC Res. Rep. 83/13, June 1983. Also, Software
Engineering Notes, v. 9, no 2, April 1984, pp. 38 - 53

Lehman M M and Belady L A, Program Evolution, - Processes of Software
Change, Academic Press, London, 1985, 538 p.

Lehman M M, Software Engineering, the Software Process and Their Support,
IEE Softw. Eng. J. Spec. Iss. on Software Environments and Factories, Sept.
1991, vol. 6, no. 5, pp. 243 - 258

Lehman M M, Feedback, Evolution and Software Technology, Preprints of the
First FEAST Workshop, Imperial Col., June. 1994

[LEH94B] Lehman M M, The Characteristics of S- and E-Type Systems, Preprints of the

[LEHY5)
[MAJ93]
[NAU69]

[OXF81]

[TUR81}]

[TURS6]

[WOO079]

Second FEAST Workshop, Imperial Col., Nov. 1994

Lehman M M, Feadback, Evolution and Software Technology, Software Process
Newsletter, IEEE, Apr. 1995

Major J, Keynote Address, ICSE15, Baltimore, 17 - 21 May 1993

Naur P and Randell B, Software Engineering - Report on a Conference,
Sponsored by the NATO Science Committee, Garmisch, 1968, Scientific Affairs
Division, NATO, Brussels 39, 1969

See, for example, The Concise Oxford Dictionary, Seventh Edition, Apr. 1981, p.
355

Turski W M., Specification as a Theory with Models in the Computer World and
in the Real World, Infotech State of the Art Report, se. 9, no. 6, 1981, pp. 363 -
377

Turski W M And No Philosophers Stone Either, Information Processing 86, Proc.
IFIP Congr., Dublin, Sept. 1 - 5, 1986, Elsevier Sci. Pubs, London, pp. 1077 -
1080

Woodside C M, A Mathematical Model for the Evolution of Software, ICST CCD
Res. Rep. 79/55. Also in I. of Sys. and Softw. vol. 1, no. 4, Oct. 1980, pp. 337 -
345 and in [1eh85], pp. 339 - 354

