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Abstract. Traditional information modelling methods have been concerned 
with the important task of checking whether a model correctly and adequately 
describes a pieco of reality and/or the users' intended requirements, that is, 
with model validation. In this paper, we present a new method for model 
validation which can be applied to conceptual models based on the concept of 
transaction. It provides explanations of the results of model execution. We 
extend the facilities of methods developed so far in this context by providing 
answers to questions about the value of derived information, to questions 
about how an information can be made true or false, and to hypothetical 
questions. 

1 Introduction 

This paper describes a new method for explaining the behaviour of conceptual models 
of  information systems. The method aims at improving the validation of conceptual 
models. By validation we mean the process of checking whether a model correctly and 
adequately describes a piece of reality and/or the users' intended requirements [Gu193]. It 
is widely recognised that validating a conceptual model is an important task in 
Information Systems Engineering, and a broad variety of techniques and tools have been 
developed over recent years to support designers in that task. Among the support 
capabilities that are used (or have been investigated) there are [Bub88]: paraphrasing 
specifications in natural language [RoP92,DaI92], generation of  abstractions and 
abstracts of  specifications [JeC92], animation and symbolic execution [LaL93], 
explanation generation [Gu193,GuW93], infological simulation and semantic 
prototyping [-LTP91,LiK93]. 

Our method contributes to model validation by providing explanations of  the results 
of model execution. Specifically, we can explain, in several complementary ways, why 
some facts hold (or do not hold) in the information base 0B), why some facts have been 
inserted to (or deleted from) the IB, how some intended effect on the IB can be achieved, 
and what would have happened if some other input had been given (hypothetical 
explanation). 

This paper extends our previous work on model execution explanations, which 
focused on deductive conceptual models. In [COO92] we presented a method, based on 
plan generation techniques, which explains how some intended effect on the information 
base can be achieved. In [San93,San94] we described a method for explaining the 
temporal behaviour, through execution, of a model. Both methods were implemented. 

We now present the result of extending our previous work to usual conceptual 
models of information systems, based on the concept of  transaction rather than on 
deductive rules. The new method is limited by the fact that we do not consider the 
internal structure of  transactions, while in our previous methods we know the full 
details of  the effect of each external event (roughly, transactions) on the information 
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base. Even so, we believe that the method provides helpful explanations in a rather 
simple and precise way. 

For the sake of presentation, we describe the system in terms of four levels of 
explanations, from the simplest to the most complex level. For each level, we describe 
the explanations that can be obtained, the requirements for an explanation system able 
to give them, and the techniques and procedures that can be used. In Section 2 we deal 
with explaining the current contents of the information base. Section 3 deals with 
explaining the reasons for changes in a single transition of the information base. We 
will see that we need to record the transactions that are executed, and their effect,. Section 
4 moves a step forward and considers explanations taking into account the full history 
of changes. Finally, in Section 5 we describe the hypothetical explanations we can 
provide. The paper ends with the conclusions. 

2 Explaining the Contents of the Information Base 

The most elementary level of explanation in our method is that of explaining the 
current contents of the lB. At this level, we can only provide limited answers to the 
questions about why a fact is true and why a fact is false in the current lB state. In this 
section, we describe the requirements for a system to provide such explanations, and the 
procedures that may be used. 

2.1 Requirements 

Answering the above questions requires knowing the structure of the IB. This 
knowledge is, of course, available in all conceptual models. In general, we may assume 
that the I13 consists of two parts: Base and Derived. The Base part includes all facts that 
are inserted, modified and deleted directly by the transactions, while the Derived part 
includes all facts that are derived from base and/or derived facts, by means of deduction 
rules. 

Each conceptual modelling language provides a set of concepts and syntactic features 
to define the slructure of the lB. Our method can be adapted to most languages. We will 
assume the I13 contains facts of a given set of fact types. Each fact type consists of a 
name and a set of arguments. Base facts are updated by transactions, while derived facts 
are defined by deduction rules and, thus, their extension is defined declaratively. We will 
use the clausal form of logic, augmented with negation, to define deduction rules. 

companies(company, name) 
engaged_in(company, project) derived 

engaged_in(C,P) 6-- consortium(P,C), belongs_to(E,C), works_on(E,P) 
employees(employee, name) 
belongs_to(employee, company) 
works_ on(employee, project) 
projects(project, name) 
consoaium(project, company) 
active(project) derived 

active(P) 6- projects(PJg), engaged in(C,P) 
inactive(project) derived 

inactive(P) 6-- projects(p,N), not active(P) 
integrity constraints 
icl ~ works_on(E,P), not projects(p,N) 
ic2 ~-- companies(C,N), not engaged in(C,P) 

Figure I. Example of IB structure 
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We will also take into account, on the next levels of explanation, the integrity 
constraints on the IB. For the sake of !miformity, we define the constraints in denial 
form by means of integrity rules, which have the same form as the deduction rules. 

Figure 1 is an example of the slructure of an IB that we will use throughout this 
paper. The example has been adapted from [JMS92]. Note that we include two integrity 
rules. The first slates that employees can only work in projects, while the second states 
that all companies must be engaged in some project. 

It can be seen that there is a straightforward correspondence between our IB structure 
and that of ER [Che76], SDM [HAMS1], NIAM [NH89] and many others. Note that not 
all of  them include a derived part in the 113. Our method is even adaptable to languages 
based on the relational data model. In such case, views are derived fact types and their 
definition is a deduction rule. 

2.2 Procedures  

We now describe how answers to the questions given above can be obtained. Our 
approach to the problcan is based on the solutions explaining the success of queries in 
the field of deductive databases [Lio87]. In fact, we can view the IB modelled by a 
conceptual model as a deductive database D. At any given state, the extensional part of 
D consists of all base facts that are true at this state, while the intensional part of D 
will be defined by the deduction rules of the conceptual model. Now, the problem of 
explaining the value of a derived fact is equivalent to the problem of explaining the 
success of a query in a deductive database, as we explain below. 

why./?. Assuming that factfholds in the IB, the explanation depends on whether its 
fact type is base or derived. If it is base, we cannot provide any explanation at this level. 
If it is derived, we can give an explanation based on its deduction rules. 

Intuitively, an explanation of why a derived factf is  true in the current state of the 
IB is supposed to detail the reasoning involved in proving thatf is  true. We will adopt 
here the most common approach for explaining the success of queries in the field of 
deductive databases [L1o87]. This approach considers that exhibiting an interpretation (or 
a trace) of the SLDNF proof tree is adequate for that kind of reasoning. 

We will show this approach using the specifications of Figure 1. Assume that in the 
current state the following base facts are true: 
cnmpanles(comp, name) projects(proj, name) consortium(proj, comp) 

upe un_polit,cat pl  odissea pl  upc 
employees(crop, name) belongs_to(crop, comp) works_on(crop, proj) 

toni toni mayol toni upe toni pl  
joan joan sistac joan upe joan pl  

At this state, if the user queries the system about the value of derived fact active(p1) the 
answer will be "active(pl) is true". Now, the user can ask why this derived fact is true. 
The explanation given by the system consists of the deduction rule used to prove the 
desired fact (CM rule) and the corresponding set of instantiated literals. Then, the user 
can require more explanations for those literals representing derived information, as can 
be seen in the following. 

why(active(pl))? 
active(pl) because: 
Ixojects(pl,odissea) and engaged--m(upc,pl). 
CM rule: active(P) ~- projects(P,N), engaged_in(C,P) 
engaged_in(upc,pl) can be further explained 
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why(engaged_in(upe, p 1))? 
engaged in(upc,pl) because: 
consortium(pl,upc) and belongs_to(jcan, upc) and works_on0oan,pl). 
CM rule: engaged_in(C,P) ~-- consortium(P,C), belongs_to(E,C), works_on(E,P) 

Sometimes, the truth value of a derived fact has several explanations, each one 
corresponding to a successful branch of the proof tree. In our the example ease 
engaged_in(upc,pl) has the following alternative explanation: 

alternative_explanation(engaged_in(upc,p 1))? 
engaged_in(upe,pl) because: 
cousortium(p 1 ,upc) and belongs_to(toni,upc) and works_on(toni,p 1 ). 
CM rule: engaged_in(C,P) <--- consortium(P,C), belongs_to(E,C), works_on(E,P) 

why_notfi  A second capability consists in explaining why an information is false at 
the current state. See [OIS95] for the details and examples of how we answer this kind 
of question. Our approach is based on the work described in [DeT89,Dec91]. 

3 Explaining the Changes to the Information Base 

The second level of explanation in our method is that of explaining the changes 
(transitions), induced by a transaction, from the previous to the current state of the lB. 
At this level, we improve the reasoning capabilities described in the previous level by 
giving explanations about why a fact has been inserted or deleted in the last transition, 
and providing the set of possible updates to make a given fact true or false at the next 
state. 

3.1 Requirements 

Answering the above kind of question requires knowing the transactions that have been 
executed, and their effect on the lB. Our method does not require knowing the internal 
details of the transactions. We will see that many helpful explanations can be given 
using only the knowledge of which updates have been performed by the transaction. 

For each execution of a transaction, we record a fact of type 
trans_log(name,parameters, time), with the name of the transaction, the list of its 
parameters (which may be empty) and the execution time. Without loss of generality, 
we assume that only one transaction is executed at a given time. We will use, in the 
next section, the execution time of transactions as identifiers for the states of the IB. 

A transaction performs, among other things, several updates to the IB. An update 
may be an insertion or a deletion of a base fact. For each insertion of a fact of type p(x), 
where x is a set of arguments, we need to record a fact of type tp(x,time), where time is 
the transaction time. We assume that inserted facts do not hold at the previous state. 

Similarly, for each deletion of a fact of type p(x) we need to record a fact of type 
5p(x,time). We assume that deleted facts hold at the previous state. 

For example, suppose that transaction change_assignment removes an employee 
from a given project and assigns him/her to another. Assume that, at time 10, the 
transaction is executed, changing employee mar/a from project odissea to projectfolre. 
We would record the following facts: 

trans_log (change assignment, [maria,odissea, folre], 10), 
8works..on (maria, odissea, 10), and tworks_on (maria, foke,10) 
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Note that these facts may be obtained easily in most specification execution 
environments, and, in fact, some of  them already capture traces of the transaction 
execution [LiK93]. 

3.2 The Internal  Events  Model  

A transaction performs updates to only base facts of the information base. If we want to 
be able to give explanations of derived facts, we need to know how updates to base facts 
propagate to derived facts. Tiffs knowledge is given by the Internal Events Model (Ib2vi), 
which is a model that can be obtained automatically from deduction rules. The model 
has been deseribed in [OlO1,Urp93] and it is briefly reviewed below. 

The key concept of an IEM is that of internal event. Let IB be an information base, 
U an update and IB' the updated information base. We say that U induces a transition 
from IB (the previous state) to IB' (the new state). We assume, for the moment, that U 
consists of an unspecified set of base facts to be inserted and/or deleted. Due to the 
deduction rules, U may induce other ulxlates on some derived facts. Let p be one of such 
fact types, and let p' denote the same fact type evaluated in IB'. We associate with p an 
insertion event predicate tp, and a deletion event predicate bp, defined as: 

(1) VX (tp(X) (-> p'(X) ^ -~p(X)) 
(2) VX (Sp(X) (-4 p(X) ^ -~p'(X)) 

where X is a vector of variables. From the above we have the equivalences [Urp93]: 
(3) v x  fg fx )  ~ ( o ( x )  ^ -~ 8pfX)) v tp(X))  
(4) VX (-~p(X) (-> (up(X) ^ -~ tp(X)) v 8p(X)) 

Let us consider a derived predicate p. Assume that the def'mition of p consists of m 
rules, m>l. For our purposes, we rename predicate symbols at the head of the rules as 
Pl ..... Pn and we add the set of clauses: 

(5) p(X) ~ pi(X) i = 1.an 

Consider now one of the rules pi(X) ~ Li,1 ^. . .^ Li,n. When this rule is to be 
evaluated in the new state, its form is p'i(X) ~ L'i,1 ^...^ L'i,n, where L'i,r (r = 1..n) is 
obtained by replacing the predicate q of Li,r by q'. Then, if we replace each literal in the 
body by its equivalent expression given in (3) or (4) we get a new rule, called transition 
rule, which defines the new state predicate P'i in terms of old state predicates and events. 

For example, the transition rule corresponding to inactive'l in Figure 1 is given by: 
inactive' 1 (P) ~-- ((projects(P,N) ^ --, 8projects(P,N) ) v tprojects(P,N)) ^ 

((-~ctive(P) ^ -~ tactive(P)) v 8active(P)) 

which, after distributing ^ over v ,  is equivalent to the four transition rules: 
inactive'l,l(P) ~-- projects(P,N) ^ --1 8projects(P,N') ^ ~active(P) ^ --1 tactive(P) 
inactive'l,2(P) ( -  projects(P,N) ^ -~ 8projects(P,N) ^ 8active(P) 
inactive'l,3(P) <-- tprojects(P,N) ^ -active(P) ^ -~ tactive(P) 
inactive'l,4(P) ~ tprojects(P,N) ^ 8active(P) 

with: 
inactive'l(P) ~-- inactive'l,j(P) j = 1..4 

The transition rules for predicates engaged_in, active, icl and ic2 would be obtained 
similarly. 

Insertion predicates tp were defined in (1) as: VX (tp(X) ~ p'(X) ^ --,p(X)) 

If there are m rules for predicate p, then p'(X) ~-> p'l(X) v.. .v p'm(X). Replacing p'(X) 
in (1) we obtain: 

tp(X) <-- P'i(X) ^ ~p(X) i = 1..m 
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which are called the insertion internal events rules of predicate p. In the example above, 
there would be only one rule (since m = 1): 

tinactive(P) ~ inactive'l(P) ^ -4nactive(P) 

Similarly, deletion predicates 8I) were defined in (2): VX (SpOi) o p(X) ^ ~p'(X)) 

If there are m rules for predicate p, we then have: 
8p(X) ~ Pi(X) ^ -,p'(X) i = 1..m 

and replacing p'(X) by its equivalent definition p'(X) o p'I(X) v...v p'm(X) we obtain: 
8p(X) ~ pi(X) A ",p'I(X) ^...A --,p'm(X) i -- 1.xa 

This set of rules is called the deletion internal events rules for predicate p. In our 
example, there would be only one rule (since m = 1): 

8inactive(P) (--- inactive(P) ̂  ~inactive'l(P) 

The set of transition, Insertion internal event and deletion internal event rules is 
called the Internal Events Model (IEM). These rules allow us to deduce which induced 
insertions and deletions happen in a transition, in terms of old slate facts and events. In 
most cases, these rules can be substantially simplified, using the procedure described in 
[OLi91,Urp93]. Note that the Internal Events Model will be relevant even if our method 
is used in a language that does not consider derived facts. Recall that integrity 
constraints can be seen as rules defining when an inconsistency fact (icl, ic2 in our 
example) holds. The insertion internal events rules for inconsistency predicates give the 
conditions upon which consistency is violated. 

From the IEM, we compute the induced updates on derived facts, and store the result 
in a way similar to the base updates. For example, assume that, at the current state, the 
information base contains the following base facts: 
companies(comp, name) proJects(proj, name) consortlum(proj, comp) 

upe un_polit..cat pl  odissea 

employees(emp, name) 
toni toni mayol 
joan joan sistac 
maria maria costal 

pl  upc 
p2 folre p2 upr 
p3 dream p3 upc 

belongs to(crop, comp) works_on(crop, proj) 
toni upc toni p3 
joan UlX~ joan p3 
maria upe maria p l 

which, implicitly, induce the derived facts: 
engaged_in(company, project) active(project) inactive(project) 

upc pl pl  p2 
upc p3 p3 

Assume now that transaction: 
trans log (change assignment,[maria, odissea, folre], 10), 
8works_on (maria,pl,10), tworks_on (maria,p2,10) 

is executed at time 10. The computed induced updates would be recorded as: 
5engaged_in (upc, pl,10), tengaged_in (upc,p2,10), 8active (pl,10), tactive (p2,10), 
8inactive (p2,10), tinactive (pl,10) 

3.3 Procedures  

Figure 2 depicts the architecture of our explanation system. There must be some kind of 
tracing system that traces the transactions executed (and adds a trans-log fact to 
"updates3, captures the insertions to (and deletiom from) the Information Base (and adds 
an tp or 8p fact to "updates') and computes the induced insertions and deletions (adding 
also the corresponding tp or 8p facts to 'Updates'). Such a tracing system may be 
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implemented in several ways, depending on the execution environment. The figure also 
shows all the sources used in giving explanations. 

! ICon   IX, 

System 

Figure 2. System architecture 

We will now describe how answers to the questions described above can be obtained. 

why f?. Assuming that factfholds in the IB, the explanation depends on whether its 
fact type is base or derived. If it is base, there are two possible explanations for fact f 
being true: 

- f  has been inserted by last transaction, or 
- f  was already true at previous state (and it has not been deleted). 

Let us resume the execution of our example case at the point it was left in the previous 
subsection. Now, assume that at time 13, a transaction change_project(dream,odissea) 
moves all employees working on project dream to project odissea. The resulting set of 
base facts will be: 
eompanles(r 

upe 

employees(emp, name) 
toni toni mayo1 
joan joan sistac 
maria maria costal 

and the set of derived facts: 
engaged_in(company, projeeO 

upe pl 
upc p2 

name) proJects(proj, name) eonsortlum(proj, comp) 
un_polit..cat p 1 odissea p 1 upe 

p2 folre p2 upc 
p3 dream p3 upe 

belongs_to(emp, comp) works on(emp, proj) 
toni upe toni pl 
joan upe joan pl 
maria npe maria p2 

active(project) Inactive(project) 
pl p3 
p2 

At this time, if the user queries the system about the value of base fact 
works_on(toni,pl) the answer will be "works_on(toni,pl) is true", and the explanation 
will be as follows: 

[ why(works_ on(toni,pl))? I 
las[ transaction chan g e_.proj ect( d~xan, odissea ) I [ works_on(toni,pl) has been inserteTd., by 
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If fac t f  is derived, the explanation of why tiffs fac t f i s  Irue given on the frs t  level 
can be substantially improved using the IEM. In particular, the use of the IEM allows 
us to reason in terms of the change induced in the transition from previous to current 
state. Reasoning in this way, there are two possible explanations for factfbr true: 

- An insertion off  has been induced, or 
- fwas  already true at previous state (and its deletion has not been induced). 

In the In'st case, the user may be interested in the reasons for the change from the 
previous to the current state, that is, in explanations of why the insertion of a factfhas 
been induced. This is catered for the why_inserted explanations. 

why.inserted t? The answer gives the reasons why derived f a c t f  was inserted in the 
last transition. The desired explanations can be obtained from the internal events rules. 
From an analysis of the SLDNF proof free of the corresponding insertion internal event 
fact (tJ) we can obtain the set of updates on base facts, performed by the last Iransaction, 
that induced the insertion off. 

Assume that the current IB state is the result of the execution of transaction 
change__project(dream,odissea) at time 13. At this state, ff the designer wants to know 
why engaged_in (upe,pl) holds, the explanation will be as follows: 

why(engaged_in (upc,pl))? 
engaged_in (upc,pl) because: 
consordtma(pl,upc) and belongs_to(toni, upc) and works_on(toni,p 1). 
CM rule- engaged in(C,P) ~- consortinm(P,C), belongs_to(E,C), works_on(E,P). 
engaged_in(upc,pl) has been induced by last transaction: change_project(dream, oc~ssea 

whLinserted(engaged_in(upc,p 1))? 
inserted(eagaged in(upc,pl)) because: 
works_on (toni,p1) has been inserted. 

alternative_explanation(inserted(engaged_in(upc,pl)))? 
inserted(engaged_in(upc,p 1)) because: 
works_on (joan, p1) has been insetted. 

why_not f i  Assuming that factfdoes not hold in the IB, the explanation depends on 
whether its fact type is base ct derived. If it is base, there are two possible explanations 
for factfbeing false: 

- fhas  been deleted by last transaction, or 
- fwas  already false at previous state (and it has not been inserted). 

I f f i s  derived, we can provide explanations of why it is false at the current state in 
terms of the change induced in the transition from the previous state. Now, the use of 
the IEM allows us to give two possible explanations for factfbeing false: 

- A deletion o f f  has been induced), or 
- fwas  already false at previous state (and its insertion has not been induced). 

As before, the reasons for the induced deletion can be obtained using the why_deleted 
explanations. 

why_deleted f?. The answer gives the reasons why derived f ac t f  was deleted in the 
last transition. As in the case of why_inserted, the desired explanations can be obtained 
from the internal events rules. From an analysis of the SLDNF proof tree of the 
corresponding deletion internal event fact (Sf) we can obtain the set of updates on base 
facts, perftxmed by the last transaction, that induced the deletion off. 
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In our example case, if at time 13 the designer wants to know why active(p3) does 
not hold, the explanation will be as follows: 

why_not(active(p3))? 
active(p3) is false because: 
[engaged in(p3,C)] is false 
active(p3) has been impficifly deleted by last transaction: change.Froject(dream,odissea 

why_deleted(active(p3))? 
deleted(active(p3 )) became: 
works_on (toni,p3) has been deleted and works_on (joan,p3) has been deleted. 

howl?. Assuming that factf is  currently false, the answer to this question consists in a 
set of base updates to the current state such that f will hold in the next state, and the 
information base will mantain its consistency. Note that we cannot provide here a 
simple solution for base facts (like "insert f into the IB"), because some integrity 
constraint could be violated. 

Providing answers to this question is equivalent to view updating in deductive 
databases. The information base can be seen as a deductive database, and the request to 
make a factftrue can be seen as an insertion request of f i n  a view updating method. 

Several methods for the solution of the view update problem do exist. We use the 
Events Method presented in [TeO92,Ten92]. The method is based on the Internal Events 
Model described above. 

For example, if we assume that the current IB state is the result of the execution of 
transaction change_project(dream,offtssea) at time 13, derived fact engaged_in(upc,p3) is 
false. If the designer wants to know how to make it true, the system answers in the 
following way: 

how(engaged_in(upc,p3))? 
possible translations: 
[insert works_on(maria,p3)] 
[insert works on(toni,p3)] 
[insert works_on(joan,p3)] 
[insert belongs to(E, upc) and insert works_on(E,p3)] 

In order to apply the desired update, the designer should choose and execute a 
transaction that modifies the IB in the way shown by one of the proposed translations. 
Note that the proposed translations maintain the information base consistency. Our 
method takes into account the integrity constraints, and translations that would leave the 
information base inconsistent are not generated. 

In our example case, the designer could choose a transaction assign(joan, dream) to 
assign employee joan to project p3. This would imply the engagement of company upc 
to project p3. 

how_not f?. Assuming that f ac t f  currently holds, the answer to this question consists 
in a set of base updates to the current state, such tha t f  will be false in the next state, 
and the information base will maintain its consistency. We solve this problem as in the 
previous question, but now considering a delete request. 

4 Explaining the Historical Evolution of the Information Base 

The third level of explanation in our method shows the temporal evolution of the IB. At 
this level we can explain why a fact was true or false at a past state, what was known 
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about a fact type at a given state, the intea'vals during which a fact has been true, and the 
set of states when a fact has been updated. In this section, we describe the procedures 
that may be used to obtain this kind of explanation. The knowledge needed to provide 
such explanations is exactly the same as on the previous level. 

4.1 Procedures 

If we want to be able to give explanations about the historical evolution of the IB, we 
need to know the value of base and derived facts at each state, from the initial to the 
current one. We will show that this knowledge can be obtained from the requirements 
established at the previous level. 

The fast requirement was to store all transactions executed from the initial state, and 
the corresponding updates. With this information we can 'reconstruct' the IB contents at 
any state. With respect to base predicates, it is easy to define the value of a base 
predicate p(X) at a given state s in terms of the insertion and deletion events occurred 
until s, as follows: 

VX (p(X,S) ~-> lp(X,S1) ^ SI<S ^ ~ 3S2 (Sp(X,S2) ^ SI<S2<S) 

meaning that a fact p(x) is true at state s if it has been inserted in a state sl before s and 
has not been deleted between sl  and s. Recall that we identify states by the execution 
time of the wansaction. 

With respect to derived predicates, we only have to apply a minor transformation to 
deduction rules to take the state into account. For example, the deduction rule for 
predicate engaged_in would be transformed as: 

engaged_in(C,P,S) ~ consortium(P,C,S), belongs_to(E,C,S), works_on(E,P,S) 

why f a t  s? Assuming that fac t fwas  true at state s, the explanation depends on 
whether its fact type is base or derived. If it is base, there is only one possible 
explanation for factfbeing true at s, which consists in identifying the transaction that 
inserted it. Then, iff=p(k) we have to look for a transaction such that: 

trans_log(name,parameters,S1) ^ SI<_s ̂  tp(k,S1) ^ ~ 3S2 (Sp(k,S2) ^ S l<S2<_s) 

Assume, for example, that the current IB slate is the result of the execution of 
transaction assign(joan, dream) at time 16. At this time, ff the user queries the system 
about the value of  base fact works_on(maria, p2) at state 13 the answer will be 
"works_on(maria,p2) was true at state 13", and the explanation is as follows: 

i 
why(works_on(maria, p2)) at 137 I 

works_on(maria,p2) was true at 13 because: 
transactionchange_assignment(maria, odissea, folre) executed at time 10 has 
inserted it, and no transaction between 10 and 13 has deleted it. 

If f ac t f  is derived, the explanation of whyfwas true in a given state s is exactly the 
same as that provided on previous levels for the current state. It can be obtained with the 
same technique, but taking into account the set of facts that were true at s. 

why_not f a t  s? Assuming that factfwas false at state s, the explanation depends on 
whether its fact type is base or derived. If it is base, there are two possible explanations 
for factfbeing false at s: 

- factfwas never inserted in the IB before s. 
- factfwas deleted by a transaction before s. 

If f =  p(k), we identify the first case when the following condition holds: 
3S1 (tp(k,S1) ^ S1 < s) 
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In the second case, we have to look for a transaction such that: 
trans_log(name,parameters,S1) A SI<_s A 8p(k, S1) a ~ 3S2 (tp(k,S2) ^ S I<S2<_s) 

For example, if at state 16 the user queries the system about the value of base fact 
works on(toni,p3) at state 13, the answer will be "works on(toni,p3) was false at state 
13", and the explanation is: 

I 
why_not(works_on(toni,p3)) at 137 ' ' ' ! 

works on(toni,p3) was false at 13 because: 
transaction change_.project(drea_m;folre) executed at time 13 has deleted it. 

I f  f a c t f  is derived, the explanation of why f w a s  false in a given state s is exactly 
the same as that provided on previous levels for the current state. It can be obtained with 
the same technique, but taking into account the set of facts that were true at s. 

what_known_about fact type at s? To obtain a list of  all facts of  the given type 
that were true at state s we have only to evaluate the extension of the corresponding 
predicate at this state, as explained at the beginning of this section. 

whenfi The answer to the question about when a f ac t f  holds in the IB can be obtained 
from the stored updates. It does not depend on whether the corresponding fact type is 
base or derived. Basically, we have to look for all the pairs of  consecutive insertion- 
deletion events of the required fact. 

There are two possible answers to the question when J?.: 
- factfhas  never been true. 
- the set of intervals during which factfhas  been true. 

If  f =  p(k), we identify the first case when the condition --, 3S (tp(k,S)) holds. If  this 
condition does not hold, we have to look for all the intervals [S1,$2] such that: 

tp(k,S1) ^ 8p(k,S2) ^ $2 > S1 ^ --1 3S3 (Sp(k,S3) A S1 < $3 -< $2) or 
tp(k,S1) ^ ~ 3S3 (Sp(k,S3) A $3 > S1) ^ $2 = current_state 

In our example case, the following explanations could be obtained at state 16. 

w hen(employees(enric, endc pastor))? i 
employees(enric, enric pastor) has never been true 

when(works_on(joan,p3))? 
works_on(joan,p3) has been true f rom state 1 to state 13 and at current state 

In the case of derived facts there is an alternative solution to answer this query, 
which does not require the use of the internal events. It consists in the evaluation of fact 
f, using the deduction rules, for each state from the initial to the current one. 

when [11513'7. The answer to the question about when an update [tlS]f occurred can be 
obtained from the stored updates. It does not depend on whether the corresponding fact 
type of f is base or derived. We have to look for all the events updating f a c t f  which 
have occurred from the initial to the current state. 

There are two possible answers to the question when [tlS~ 
- the update has never ~.zanred. 
- the set of states in which the utxlate has occurred. 

If f =  p(k), we identify the first case when the condition -1 3S ([tl~]p(k,S)) holds. If  
this condition does not hold, we have to look for all the states S such that [tlS]p(k,S). 

We can also consider the case in which f is not fully instantiated. That is, f has the 
form p(k,Y), Y being a set of variables. Then, the system will answer giving the set of 
tuples (y,s) such that [tlS]p(k,y,s) holds, if any. 
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5 Explaining the Effect of Hypothetical Past Updates 

The last level of explanation in our method is that of explaining the effect of a potential 
update in the past. In this section, we describe the procedures that may be used. The 
knowledge needed to provide such explanations is exactly the same as on the third level. 

5 . 1  P r o c e d u r e s  

w h a t _ i f  [ t l S ] p ( k )  a t  s on f? The system has to evaluate the impact that a potential 
update [tlS]p(k) performed at state s would have on fact f a t  the current state. Given that 
a transaction performs updates on only base facts of the IB, the fact type of p(k) is 
always base. The fact type o f f  can be base or derived. The answer consists in the 
difference between the current value o f f  and its hypothetical value if the update had been 
performed at state s. 

As already mentioned, our explanation method does not consider the internal 
structure of transactions. In particular, we ignore the conditions under which each 
transaction performs updates to base facts. Then, the only way to evaluate the impact of 
a hypothetical update on a past state is to simulate a new execution of all transactions 
occurring since that state. This simulation can be done using the information about the 
transactions and their corresponding updates stored at execution time. 

Also, we have to ensure that the IB consistency will be mantained from state s to 
the current state. Our method guarantees this condition by checking that the update does 
not violate any integrity constraint at the state in which it is performed, and by 
checking that transactions executed after s preserve this consistency. In addition, we 
may also ensure that, at every state, some implicit assumptions are preserved. Namely, 
that insertions and deletions are effective (insertions add non-existing information and 
deletions remove existing information). Such conditions are treated as constraints. 

As a consequence, the procedure to obtain explanations regarding what_if [tlS]p(k) at 
s o n f  is as follows: 

- Make the hypothesis that the update [tlS]p(k) is performed at state s. 
- Ensure that the update does not violate any integrity constraint at s, by evaluating 

the inconsistency rules at this state. 
- For each transaction occurring from s to the current state, check if the state 

resulting from the application of its updates is consistent, by evaluating the 
inconsistency rules. Then, two cases are possible: 

(1) The transaction violates some integrity constraints. In this case, the 
explanation will be: "This update leads the IB to an inconsistent state 
when transaction name(parameters) is simulated at time t." 

(2) No integrity constraint is violated. In this case, the system evaluates fac t f  
at the resulting state, and gives the difference with respect to the real 
value of f a t  the current state. 

Note that to evaluate the integrity constraints at each state, our method does not have to 
rebuild each state from s to the current one. We can obtain the value of base and derived 
facts at any state from the stored events, as explained in Subsection 4.1. Therefore, the 
inconsistency rules can be evaluated at each state like any deduction rule. In our example 
case, the integrity constraints would be transformed to take the state into account as: 

icl(S) ~ works_on(E,P,S), not projects(P,N,S) 
ic2(S) <--- companies(CM,S), not engaged_in(C,P,S) 

Assume, for example, that the current IB state is the result of the execution of 
transaction new..project(p4,bloom) at time 20. The following explanations could be 
obtained at this state. 
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what_if 8works_on(maria, p2) at  13 on active(p2)? 
active(92) is currently true, but it would be false if the update was performed. 

what_if tcompanies(uab,univ_aut6n_de_barna) at 16 on engaged_in? 
This update would violate integrity constraint icl at state 16. 

what_if 5projects(p3) at 13 on active? 
This update leads the IB to an inconsistent state when transaction assign(joan, dream) 
is slmulatexl at time 16. Integrity constraint ic2 would be violated. 

i 

what_if_not [tlS]p(k) at s on f? Assuming that an update [tl~]p(k) was performed by 
a transaction at state s, the system has to evaluate the impact that the absence of this 
update would have on fact f at the current state. Given that a transaction performs 
updates on only base facts of the IB, the fact type of p(k) is always base. The fact type 
o f f  can be base or derived. The answer consists on the difference between the current 
value of f and its hypothetical value if the update was not performed at state s. The 
procedure to obtain explanations about what_if_not [tlS]p(k) at s o n f  is similar to the 
previous case. Both kinds of hypothetical explanations can also be combineck 

6 Conclusions  

We have presented a method for explaining the behaviour of conceptual models of 
information systems. The method assumes a conceptual model in terms of information 
base structure (with base and, optionally, derived facts), integrity constraints and 
transactions. Therefore, the method may be adapted in most current methodologies. 

Our method contributes to model validation by providing explanations about the 
results of model execution. It provides, with a simple architecture, useful answers to 
questions about why (or why no0 a fact holds in the current state, why a fact has been 
inserted (or deleted) in a transition, how a fact can be made true (or false), why (and 
when) a fact has been true in the past and what would have happened if past updates had 
been different. 

Answers to some of the above questions are given by some existing explanation 
systems. We extend them by providing answers to questions about derived facts, to 
questions about how a fact can be made true or false, and to hypothetical questions. 

Our method is based mainly on results obtained in the field of deductive databases. 
We have seen how the procedures developed in that field for explaining the results of 
queries, or their failure, and for updating consistent knowledge bases may be useful for 
behaviour explanation of conceptual models. In this sense, our method links these two 
fields. 
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