
A Method for Explaining the Behaviour of
Conceptual Models

Antoni Oliv6
Maria-Ribera Sancho

Facultat d~Inform~tiea, Universitat Polit~enica de Catahmya
Pan Gargallo 5, 08028 Barcelona - Catalonia

e-marl: {olivelribera } @ lsi.upe.es

Abstract. Traditional information modelling methods have been concerned
with the important task of checking whether a model correctly and adequately
describes a pieco of reality and/or the users' intended requirements, that is,
with model validation. In this paper, we present a new method for model
validation which can be applied to conceptual models based on the concept of
transaction. It provides explanations of the results of model execution. We
extend the facilities of methods developed so far in this context by providing
answers to questions about the value of derived information, to questions
about how an information can be made true or false, and to hypothetical
questions.

1 Introduction

This paper describes a new method for explaining the behaviour of conceptual models
of information systems. The method aims at improving the validation of conceptual
models. By validation we mean the process of checking whether a model correctly and
adequately describes a piece of reality and/or the users' intended requirements [Gu193]. It
is widely recognised that validating a conceptual model is an important task in
Information Systems Engineering, and a broad variety of techniques and tools have been
developed over recent years to support designers in that task. Among the support
capabilities that are used (or have been investigated) there are [Bub88]: paraphrasing
specifications in natural language [RoP92,DaI92], generation of abstractions and
abstracts of specifications [JeC92], animation and symbolic execution [LaL93],
explanation generation [Gu193,GuW93], infological simulation and semantic
prototyping [-LTP91,LiK93].

Our method contributes to model validation by providing explanations of the results
of model execution. Specifically, we can explain, in several complementary ways, why
some facts hold (or do not hold) in the information base 0B), why some facts have been
inserted to (or deleted from) the IB, how some intended effect on the IB can be achieved,
and what would have happened if some other input had been given (hypothetical
explanation).

This paper extends our previous work on model execution explanations, which
focused on deductive conceptual models. In [COO92] we presented a method, based on
plan generation techniques, which explains how some intended effect on the information
base can be achieved. In [San93,San94] we described a method for explaining the
temporal behaviour, through execution, of a model. Both methods were implemented.

We now present the result of extending our previous work to usual conceptual
models of information systems, based on the concept of transaction rather than on
deductive rules. The new method is limited by the fact that we do not consider the
internal structure of transactions, while in our previous methods we know the full
details of the effect of each external event (roughly, transactions) on the information

13

base. Even so, we believe that the method provides helpful explanations in a rather
simple and precise way.

For the sake of presentation, we describe the system in terms of four levels of
explanations, from the simplest to the most complex level. For each level, we describe
the explanations that can be obtained, the requirements for an explanation system able
to give them, and the techniques and procedures that can be used. In Section 2 we deal
with explaining the current contents of the information base. Section 3 deals with
explaining the reasons for changes in a single transition of the information base. We
will see that we need to record the transactions that are executed, and their effect,. Section
4 moves a step forward and considers explanations taking into account the full history
of changes. Finally, in Section 5 we describe the hypothetical explanations we can
provide. The paper ends with the conclusions.

2 Explaining the Contents of the Information Base

The most elementary level of explanation in our method is that of explaining the
current contents of the lB. At this level, we can only provide limited answers to the
questions about why a fact is true and why a fact is false in the current lB state. In this
section, we describe the requirements for a system to provide such explanations, and the
procedures that may be used.

2.1 Requirements

Answering the above questions requires knowing the structure of the IB. This
knowledge is, of course, available in all conceptual models. In general, we may assume
that the I13 consists of two parts: Base and Derived. The Base part includes all facts that
are inserted, modified and deleted directly by the transactions, while the Derived part
includes all facts that are derived from base and/or derived facts, by means of deduction
rules.

Each conceptual modelling language provides a set of concepts and syntactic features
to define the slructure of the lB. Our method can be adapted to most languages. We will
assume the I13 contains facts of a given set of fact types. Each fact type consists of a
name and a set of arguments. Base facts are updated by transactions, while derived facts
are defined by deduction rules and, thus, their extension is defined declaratively. We will
use the clausal form of logic, augmented with negation, to define deduction rules.

companies(company, name)
engaged_in(company, project) derived

engaged_in(C,P) 6-- consortium(P,C), belongs_to(E,C), works_on(E,P)
employees(employee, name)
belongs_to(employee, company)
works_ on(employee, project)
projects(project, name)
consoaium(project, company)
active(project) derived

active(P) 6- projects(PJg), engaged in(C,P)
inactive(project) derived

inactive(P) 6-- projects(p,N), not active(P)
integrity constraints
icl ~ works_on(E,P), not projects(p,N)
ic2 ~-- companies(C,N), not engaged in(C,P)

Figure I. Example of IB structure

14

We will also take into account, on the next levels of explanation, the integrity
constraints on the IB. For the sake of !miformity, we define the constraints in denial
form by means of integrity rules, which have the same form as the deduction rules.

Figure 1 is an example of the slructure of an IB that we will use throughout this
paper. The example has been adapted from [JMS92]. Note that we include two integrity
rules. The first slates that employees can only work in projects, while the second states
that all companies must be engaged in some project.

It can be seen that there is a straightforward correspondence between our IB structure
and that of ER [Che76], SDM [HAMS1], NIAM [NH89] and many others. Note that not
all of them include a derived part in the 113. Our method is even adaptable to languages
based on the relational data model. In such case, views are derived fact types and their
definition is a deduction rule.

2.2 Procedures

We now describe how answers to the questions given above can be obtained. Our
approach to the problcan is based on the solutions explaining the success of queries in
the field of deductive databases [Lio87]. In fact, we can view the IB modelled by a
conceptual model as a deductive database D. At any given state, the extensional part of
D consists of all base facts that are true at this state, while the intensional part of D
will be defined by the deduction rules of the conceptual model. Now, the problem of
explaining the value of a derived fact is equivalent to the problem of explaining the
success of a query in a deductive database, as we explain below.

why./?. Assuming that factfholds in the IB, the explanation depends on whether its
fact type is base or derived. If it is base, we cannot provide any explanation at this level.
If it is derived, we can give an explanation based on its deduction rules.

Intuitively, an explanation of why a derived factf is true in the current state of the
IB is supposed to detail the reasoning involved in proving thatf is true. We will adopt
here the most common approach for explaining the success of queries in the field of
deductive databases [L1o87]. This approach considers that exhibiting an interpretation (or
a trace) of the SLDNF proof tree is adequate for that kind of reasoning.

We will show this approach using the specifications of Figure 1. Assume that in the
current state the following base facts are true:
cnmpanles(comp, name) projects(proj, name) consortium(proj, comp)

upe un_polit,cat pl odissea pl upc
employees(crop, name) belongs_to(crop, comp) works_on(crop, proj)

toni toni mayol toni upe toni pl
joan joan sistac joan upe joan pl

At this state, if the user queries the system about the value of derived fact active(p1) the
answer will be "active(pl) is true". Now, the user can ask why this derived fact is true.
The explanation given by the system consists of the deduction rule used to prove the
desired fact (CM rule) and the corresponding set of instantiated literals. Then, the user
can require more explanations for those literals representing derived information, as can
be seen in the following.

why(active(pl))?
active(pl) because:
Ixojects(pl,odissea) and engaged--m(upc,pl).
CM rule: active(P) ~- projects(P,N), engaged_in(C,P)
engaged_in(upc,pl) can be further explained

15

why(engaged_in(upe, p 1))?
engaged in(upc,pl) because:
consortium(pl,upc) and belongs_to(jcan, upc) and works_on0oan,pl).
CM rule: engaged_in(C,P) ~-- consortium(P,C), belongs_to(E,C), works_on(E,P)

Sometimes, the truth value of a derived fact has several explanations, each one
corresponding to a successful branch of the proof tree. In our the example ease
engaged_in(upc,pl) has the following alternative explanation:

alternative_explanation(engaged_in(upc,p 1))?
engaged_in(upe,pl) because:
cousortium(p 1 ,upc) and belongs_to(toni,upc) and works_on(toni,p 1).
CM rule: engaged_in(C,P) <--- consortium(P,C), belongs_to(E,C), works_on(E,P)

why_notfi A second capability consists in explaining why an information is false at
the current state. See [OIS95] for the details and examples of how we answer this kind
of question. Our approach is based on the work described in [DeT89,Dec91].

3 Explaining the Changes to the Information Base

The second level of explanation in our method is that of explaining the changes
(transitions), induced by a transaction, from the previous to the current state of the lB.
At this level, we improve the reasoning capabilities described in the previous level by
giving explanations about why a fact has been inserted or deleted in the last transition,
and providing the set of possible updates to make a given fact true or false at the next
state.

3.1 Requirements

Answering the above kind of question requires knowing the transactions that have been
executed, and their effect on the lB. Our method does not require knowing the internal
details of the transactions. We will see that many helpful explanations can be given
using only the knowledge of which updates have been performed by the transaction.

For each execution of a transaction, we record a fact of type
trans_log(name,parameters, time), with the name of the transaction, the list of its
parameters (which may be empty) and the execution time. Without loss of generality,
we assume that only one transaction is executed at a given time. We will use, in the
next section, the execution time of transactions as identifiers for the states of the IB.

A transaction performs, among other things, several updates to the IB. An update
may be an insertion or a deletion of a base fact. For each insertion of a fact of type p(x),
where x is a set of arguments, we need to record a fact of type tp(x,time), where time is
the transaction time. We assume that inserted facts do not hold at the previous state.

Similarly, for each deletion of a fact of type p(x) we need to record a fact of type
5p(x,time). We assume that deleted facts hold at the previous state.

For example, suppose that transaction change_assignment removes an employee
from a given project and assigns him/her to another. Assume that, at time 10, the
transaction is executed, changing employee mar/a from project odissea to projectfolre.
We would record the following facts:

trans_log (change assignment, [maria,odissea, folre], 10),
8works..on (maria, odissea, 10), and tworks_on (maria, foke,10)

16

Note that these facts may be obtained easily in most specification execution
environments, and, in fact, some of them already capture traces of the transaction
execution [LiK93].

3.2 The Internal Events Model

A transaction performs updates to only base facts of the information base. If we want to
be able to give explanations of derived facts, we need to know how updates to base facts
propagate to derived facts. Tiffs knowledge is given by the Internal Events Model (Ib2vi),
which is a model that can be obtained automatically from deduction rules. The model
has been deseribed in [OlO1,Urp93] and it is briefly reviewed below.

The key concept of an IEM is that of internal event. Let IB be an information base,
U an update and IB' the updated information base. We say that U induces a transition
from IB (the previous state) to IB' (the new state). We assume, for the moment, that U
consists of an unspecified set of base facts to be inserted and/or deleted. Due to the
deduction rules, U may induce other ulxlates on some derived facts. Let p be one of such
fact types, and let p' denote the same fact type evaluated in IB'. We associate with p an
insertion event predicate tp, and a deletion event predicate bp, defined as:

(1) VX (tp(X) (-> p'(X) ^ -~p(X))
(2) VX (Sp(X) (-4 p(X) ^ -~p'(X))

where X is a vector of variables. From the above we have the equivalences [Urp93]:
(3) v x fg fx) ~ (o (x) ^ -~ 8pfX)) v tp(X))
(4) VX (-~p(X) (-> (up(X) ^ -~ tp(X)) v 8p(X))

Let us consider a derived predicate p. Assume that the def'mition of p consists of m
rules, m>l. For our purposes, we rename predicate symbols at the head of the rules as
Pl Pn and we add the set of clauses:

(5) p(X) ~ pi(X) i = 1.an

Consider now one of the rules pi(X) ~ Li,1 ^. . .^ Li,n. When this rule is to be
evaluated in the new state, its form is p'i(X) ~ L'i,1 ^...^ L'i,n, where L'i,r (r = 1..n) is
obtained by replacing the predicate q of Li,r by q'. Then, if we replace each literal in the
body by its equivalent expression given in (3) or (4) we get a new rule, called transition
rule, which defines the new state predicate P'i in terms of old state predicates and events.

For example, the transition rule corresponding to inactive'l in Figure 1 is given by:
inactive' 1 (P) ~-- ((projects(P,N) ^ --, 8projects(P,N)) v tprojects(P,N)) ^

((-~ctive(P) ^ -~ tactive(P)) v 8active(P))

which, after distributing ^ over v , is equivalent to the four transition rules:
inactive'l,l(P) ~-- projects(P,N) ^ --1 8projects(P,N') ^ ~active(P) ^ --1 tactive(P)
inactive'l,2(P) (- projects(P,N) ^ -~ 8projects(P,N) ^ 8active(P)
inactive'l,3(P) <-- tprojects(P,N) ^ -active(P) ^ -~ tactive(P)
inactive'l,4(P) ~ tprojects(P,N) ^ 8active(P)

with:
inactive'l(P) ~-- inactive'l,j(P) j = 1..4

The transition rules for predicates engaged_in, active, icl and ic2 would be obtained
similarly.

Insertion predicates tp were defined in (1) as: VX (tp(X) ~ p'(X) ^ --,p(X))

If there are m rules for predicate p, then p'(X) ~-> p'l(X) v.. .v p'm(X). Replacing p'(X)
in (1) we obtain:

tp(X) <-- P'i(X) ^ ~p(X) i = 1..m

17

which are called the insertion internal events rules of predicate p. In the example above,
there would be only one rule (since m = 1):

tinactive(P) ~ inactive'l(P) ^ -4nactive(P)

Similarly, deletion predicates 8I) were defined in (2): VX (SpOi) o p(X) ^ ~p'(X))

If there are m rules for predicate p, we then have:
8p(X) ~ Pi(X) ^ -,p'(X) i = 1..m

and replacing p'(X) by its equivalent definition p'(X) o p'I(X) v...v p'm(X) we obtain:
8p(X) ~ pi(X) A ",p'I(X) ^...A --,p'm(X) i -- 1.xa

This set of rules is called the deletion internal events rules for predicate p. In our
example, there would be only one rule (since m = 1):

8inactive(P) (--- inactive(P) ̂ ~inactive'l(P)

The set of transition, Insertion internal event and deletion internal event rules is
called the Internal Events Model (IEM). These rules allow us to deduce which induced
insertions and deletions happen in a transition, in terms of old slate facts and events. In
most cases, these rules can be substantially simplified, using the procedure described in
[OLi91,Urp93]. Note that the Internal Events Model will be relevant even if our method
is used in a language that does not consider derived facts. Recall that integrity
constraints can be seen as rules defining when an inconsistency fact (icl, ic2 in our
example) holds. The insertion internal events rules for inconsistency predicates give the
conditions upon which consistency is violated.

From the IEM, we compute the induced updates on derived facts, and store the result
in a way similar to the base updates. For example, assume that, at the current state, the
information base contains the following base facts:
companies(comp, name) proJects(proj, name) consortlum(proj, comp)

upe un_polit..cat pl odissea

employees(emp, name)
toni toni mayol
joan joan sistac
maria maria costal

pl upc
p2 folre p2 upr
p3 dream p3 upc

belongs to(crop, comp) works_on(crop, proj)
toni upc toni p3
joan UlX~ joan p3
maria upe maria p l

which, implicitly, induce the derived facts:
engaged_in(company, project) active(project) inactive(project)

upc pl pl p2
upc p3 p3

Assume now that transaction:
trans log (change assignment,[maria, odissea, folre], 10),
8works_on (maria,pl,10), tworks_on (maria,p2,10)

is executed at time 10. The computed induced updates would be recorded as:
5engaged_in (upc, pl,10), tengaged_in (upc,p2,10), 8active (pl,10), tactive (p2,10),
8inactive (p2,10), tinactive (pl,10)

3.3 Procedures

Figure 2 depicts the architecture of our explanation system. There must be some kind of
tracing system that traces the transactions executed (and adds a trans-log fact to
"updates3, captures the insertions to (and deletiom from) the Information Base (and adds
an tp or 8p fact to "updates') and computes the induced insertions and deletions (adding
also the corresponding tp or 8p facts to 'Updates'). Such a tracing system may be

18

implemented in several ways, depending on the execution environment. The figure also
shows all the sources used in giving explanations.

! ICon IX,

System

Figure 2. System architecture

We will now describe how answers to the questions described above can be obtained.

why f?. Assuming that factfholds in the IB, the explanation depends on whether its
fact type is base or derived. If it is base, there are two possible explanations for fact f
being true:

- f has been inserted by last transaction, or
- f was already true at previous state (and it has not been deleted).

Let us resume the execution of our example case at the point it was left in the previous
subsection. Now, assume that at time 13, a transaction change_project(dream,odissea)
moves all employees working on project dream to project odissea. The resulting set of
base facts will be:
eompanles(r

upe

employees(emp, name)
toni toni mayo1
joan joan sistac
maria maria costal

and the set of derived facts:
engaged_in(company, projeeO

upe pl
upc p2

name) proJects(proj, name) eonsortlum(proj, comp)
un_polit..cat p 1 odissea p 1 upe

p2 folre p2 upc
p3 dream p3 upe

belongs_to(emp, comp) works on(emp, proj)
toni upe toni pl
joan upe joan pl
maria npe maria p2

active(project) Inactive(project)
pl p3
p2

At this time, if the user queries the system about the value of base fact
works_on(toni,pl) the answer will be "works_on(toni,pl) is true", and the explanation
will be as follows:

[why(works_ on(toni,pl))? I
las[transaction chan g e_.proj ect(d~xan, odissea) I [works_on(toni,pl) has been inserteTd., by

19

If fac t f is derived, the explanation of why tiffs fac t f i s Irue given on the frs t level
can be substantially improved using the IEM. In particular, the use of the IEM allows
us to reason in terms of the change induced in the transition from previous to current
state. Reasoning in this way, there are two possible explanations for factfbr true:

- An insertion off has been induced, or
- fwas already true at previous state (and its deletion has not been induced).

In the In'st case, the user may be interested in the reasons for the change from the
previous to the current state, that is, in explanations of why the insertion of a factfhas
been induced. This is catered for the why_inserted explanations.

why.inserted t? The answer gives the reasons why derived f a c t f was inserted in the
last transition. The desired explanations can be obtained from the internal events rules.
From an analysis of the SLDNF proof free of the corresponding insertion internal event
fact (tJ) we can obtain the set of updates on base facts, performed by the last Iransaction,
that induced the insertion off.

Assume that the current IB state is the result of the execution of transaction
change__project(dream,odissea) at time 13. At this state, ff the designer wants to know
why engaged_in (upe,pl) holds, the explanation will be as follows:

why(engaged_in (upc,pl))?
engaged_in (upc,pl) because:
consordtma(pl,upc) and belongs_to(toni, upc) and works_on(toni,p 1).
CM rule- engaged in(C,P) ~- consortinm(P,C), belongs_to(E,C), works_on(E,P).
engaged_in(upc,pl) has been induced by last transaction: change_project(dream, oc~ssea

whLinserted(engaged_in(upc,p 1))?
inserted(eagaged in(upc,pl)) because:
works_on (toni,p1) has been inserted.

alternative_explanation(inserted(engaged_in(upc,pl)))?
inserted(engaged_in(upc,p 1)) because:
works_on (joan, p1) has been insetted.

why_not f i Assuming that factfdoes not hold in the IB, the explanation depends on
whether its fact type is base ct derived. If it is base, there are two possible explanations
for factfbeing false:

- fhas been deleted by last transaction, or
- fwas already false at previous state (and it has not been inserted).

I f f i s derived, we can provide explanations of why it is false at the current state in
terms of the change induced in the transition from the previous state. Now, the use of
the IEM allows us to give two possible explanations for factfbeing false:

- A deletion o f f has been induced), or
- fwas already false at previous state (and its insertion has not been induced).

As before, the reasons for the induced deletion can be obtained using the why_deleted
explanations.

why_deleted f?. The answer gives the reasons why derived f ac t f was deleted in the
last transition. As in the case of why_inserted, the desired explanations can be obtained
from the internal events rules. From an analysis of the SLDNF proof tree of the
corresponding deletion internal event fact (Sf) we can obtain the set of updates on base
facts, perftxmed by the last transaction, that induced the deletion off.

20

In our example case, if at time 13 the designer wants to know why active(p3) does
not hold, the explanation will be as follows:

why_not(active(p3))?
active(p3) is false because:
[engaged in(p3,C)] is false
active(p3) has been impficifly deleted by last transaction: change.Froject(dream,odissea

why_deleted(active(p3))?
deleted(active(p3)) became:
works_on (toni,p3) has been deleted and works_on (joan,p3) has been deleted.

howl?. Assuming that factf is currently false, the answer to this question consists in a
set of base updates to the current state such that f will hold in the next state, and the
information base will mantain its consistency. Note that we cannot provide here a
simple solution for base facts (like "insert f into the IB"), because some integrity
constraint could be violated.

Providing answers to this question is equivalent to view updating in deductive
databases. The information base can be seen as a deductive database, and the request to
make a factftrue can be seen as an insertion request of f i n a view updating method.

Several methods for the solution of the view update problem do exist. We use the
Events Method presented in [TeO92,Ten92]. The method is based on the Internal Events
Model described above.

For example, if we assume that the current IB state is the result of the execution of
transaction change_project(dream,offtssea) at time 13, derived fact engaged_in(upc,p3) is
false. If the designer wants to know how to make it true, the system answers in the
following way:

how(engaged_in(upc,p3))?
possible translations:
[insert works_on(maria,p3)]
[insert works on(toni,p3)]
[insert works_on(joan,p3)]
[insert belongs to(E, upc) and insert works_on(E,p3)]

In order to apply the desired update, the designer should choose and execute a
transaction that modifies the IB in the way shown by one of the proposed translations.
Note that the proposed translations maintain the information base consistency. Our
method takes into account the integrity constraints, and translations that would leave the
information base inconsistent are not generated.

In our example case, the designer could choose a transaction assign(joan, dream) to
assign employee joan to project p3. This would imply the engagement of company upc
to project p3.

how_not f?. Assuming that f ac t f currently holds, the answer to this question consists
in a set of base updates to the current state, such tha t f will be false in the next state,
and the information base will maintain its consistency. We solve this problem as in the
previous question, but now considering a delete request.

4 Explaining the Historical Evolution of the Information Base

The third level of explanation in our method shows the temporal evolution of the IB. At
this level we can explain why a fact was true or false at a past state, what was known

21

about a fact type at a given state, the intea'vals during which a fact has been true, and the
set of states when a fact has been updated. In this section, we describe the procedures
that may be used to obtain this kind of explanation. The knowledge needed to provide
such explanations is exactly the same as on the previous level.

4.1 Procedures

If we want to be able to give explanations about the historical evolution of the IB, we
need to know the value of base and derived facts at each state, from the initial to the
current one. We will show that this knowledge can be obtained from the requirements
established at the previous level.

The fast requirement was to store all transactions executed from the initial state, and
the corresponding updates. With this information we can 'reconstruct' the IB contents at
any state. With respect to base predicates, it is easy to define the value of a base
predicate p(X) at a given state s in terms of the insertion and deletion events occurred
until s, as follows:

VX (p(X,S) ~-> lp(X,S1) ^ SI<S ^ ~ 3S2 (Sp(X,S2) ^ SI<S2<S)

meaning that a fact p(x) is true at state s if it has been inserted in a state sl before s and
has not been deleted between sl and s. Recall that we identify states by the execution
time of the wansaction.

With respect to derived predicates, we only have to apply a minor transformation to
deduction rules to take the state into account. For example, the deduction rule for
predicate engaged_in would be transformed as:

engaged_in(C,P,S) ~ consortium(P,C,S), belongs_to(E,C,S), works_on(E,P,S)

why f a t s? Assuming that fac t fwas true at state s, the explanation depends on
whether its fact type is base or derived. If it is base, there is only one possible
explanation for factfbeing true at s, which consists in identifying the transaction that
inserted it. Then, iff=p(k) we have to look for a transaction such that:

trans_log(name,parameters,S1) ^ SI<_s ̂ tp(k,S1) ^ ~ 3S2 (Sp(k,S2) ^ S l<S2<_s)

Assume, for example, that the current IB slate is the result of the execution of
transaction assign(joan, dream) at time 16. At this time, ff the user queries the system
about the value of base fact works_on(maria, p2) at state 13 the answer will be
"works_on(maria,p2) was true at state 13", and the explanation is as follows:

i
why(works_on(maria, p2)) at 137 I

works_on(maria,p2) was true at 13 because:
transactionchange_assignment(maria, odissea, folre) executed at time 10 has
inserted it, and no transaction between 10 and 13 has deleted it.

If f ac t f is derived, the explanation of whyfwas true in a given state s is exactly the
same as that provided on previous levels for the current state. It can be obtained with the
same technique, but taking into account the set of facts that were true at s.

why_not f a t s? Assuming that factfwas false at state s, the explanation depends on
whether its fact type is base or derived. If it is base, there are two possible explanations
for factfbeing false at s:

- factfwas never inserted in the IB before s.
- factfwas deleted by a transaction before s.

If f = p(k), we identify the first case when the following condition holds:
3S1 (tp(k,S1) ^ S1 < s)

22

In the second case, we have to look for a transaction such that:
trans_log(name,parameters,S1) A SI<_s A 8p(k, S1) a ~ 3S2 (tp(k,S2) ^ S I<S2<_s)

For example, if at state 16 the user queries the system about the value of base fact
works on(toni,p3) at state 13, the answer will be "works on(toni,p3) was false at state
13", and the explanation is:

I
why_not(works_on(toni,p3)) at 137 ' ' ' !

works on(toni,p3) was false at 13 because:
transaction change_.project(drea_m;folre) executed at time 13 has deleted it.

I f f a c t f is derived, the explanation of why f w a s false in a given state s is exactly
the same as that provided on previous levels for the current state. It can be obtained with
the same technique, but taking into account the set of facts that were true at s.

what_known_about fact type at s? To obtain a list of all facts of the given type
that were true at state s we have only to evaluate the extension of the corresponding
predicate at this state, as explained at the beginning of this section.

whenfi The answer to the question about when a f ac t f holds in the IB can be obtained
from the stored updates. It does not depend on whether the corresponding fact type is
base or derived. Basically, we have to look for all the pairs of consecutive insertion-
deletion events of the required fact.

There are two possible answers to the question when J?.:
- factfhas never been true.
- the set of intervals during which factfhas been true.

If f = p(k), we identify the first case when the condition --, 3S (tp(k,S)) holds. If this
condition does not hold, we have to look for all the intervals [S1,$2] such that:

tp(k,S1) ^ 8p(k,S2) ^ $2 > S1 ^ --1 3S3 (Sp(k,S3) A S1 < $3 -< $2) or
tp(k,S1) ^ ~ 3S3 (Sp(k,S3) A $3 > S1) ^ $2 = current_state

In our example case, the following explanations could be obtained at state 16.

w hen(employees(enric, endc pastor))? i
employees(enric, enric pastor) has never been true

when(works_on(joan,p3))?
works_on(joan,p3) has been true f rom state 1 to state 13 and at current state

In the case of derived facts there is an alternative solution to answer this query,
which does not require the use of the internal events. It consists in the evaluation of fact
f, using the deduction rules, for each state from the initial to the current one.

when [11513'7. The answer to the question about when an update [tlS]f occurred can be
obtained from the stored updates. It does not depend on whether the corresponding fact
type of f is base or derived. We have to look for all the events updating f a c t f which
have occurred from the initial to the current state.

There are two possible answers to the question when [tlS~
- the update has never ~.zanred.
- the set of states in which the utxlate has occurred.

If f = p(k), we identify the first case when the condition -1 3S ([tl~]p(k,S)) holds. If
this condition does not hold, we have to look for all the states S such that [tlS]p(k,S).

We can also consider the case in which f is not fully instantiated. That is, f has the
form p(k,Y), Y being a set of variables. Then, the system will answer giving the set of
tuples (y,s) such that [tlS]p(k,y,s) holds, if any.

23

5 Explaining the Effect of Hypothetical Past Updates

The last level of explanation in our method is that of explaining the effect of a potential
update in the past. In this section, we describe the procedures that may be used. The
knowledge needed to provide such explanations is exactly the same as on the third level.

5 . 1 P r o c e d u r e s

w h a t _ i f [t l S] p (k) a t s on f? The system has to evaluate the impact that a potential
update [tlS]p(k) performed at state s would have on fact f a t the current state. Given that
a transaction performs updates on only base facts of the IB, the fact type of p(k) is
always base. The fact type o f f can be base or derived. The answer consists in the
difference between the current value o f f and its hypothetical value if the update had been
performed at state s.

As already mentioned, our explanation method does not consider the internal
structure of transactions. In particular, we ignore the conditions under which each
transaction performs updates to base facts. Then, the only way to evaluate the impact of
a hypothetical update on a past state is to simulate a new execution of all transactions
occurring since that state. This simulation can be done using the information about the
transactions and their corresponding updates stored at execution time.

Also, we have to ensure that the IB consistency will be mantained from state s to
the current state. Our method guarantees this condition by checking that the update does
not violate any integrity constraint at the state in which it is performed, and by
checking that transactions executed after s preserve this consistency. In addition, we
may also ensure that, at every state, some implicit assumptions are preserved. Namely,
that insertions and deletions are effective (insertions add non-existing information and
deletions remove existing information). Such conditions are treated as constraints.

As a consequence, the procedure to obtain explanations regarding what_if [tlS]p(k) at
s o n f is as follows:

- Make the hypothesis that the update [tlS]p(k) is performed at state s.
- Ensure that the update does not violate any integrity constraint at s, by evaluating

the inconsistency rules at this state.
- For each transaction occurring from s to the current state, check if the state

resulting from the application of its updates is consistent, by evaluating the
inconsistency rules. Then, two cases are possible:

(1) The transaction violates some integrity constraints. In this case, the
explanation will be: "This update leads the IB to an inconsistent state
when transaction name(parameters) is simulated at time t."

(2) No integrity constraint is violated. In this case, the system evaluates fac t f
at the resulting state, and gives the difference with respect to the real
value of f a t the current state.

Note that to evaluate the integrity constraints at each state, our method does not have to
rebuild each state from s to the current one. We can obtain the value of base and derived
facts at any state from the stored events, as explained in Subsection 4.1. Therefore, the
inconsistency rules can be evaluated at each state like any deduction rule. In our example
case, the integrity constraints would be transformed to take the state into account as:

icl(S) ~ works_on(E,P,S), not projects(P,N,S)
ic2(S) <--- companies(CM,S), not engaged_in(C,P,S)

Assume, for example, that the current IB state is the result of the execution of
transaction new..project(p4,bloom) at time 20. The following explanations could be
obtained at this state.

2z

what_if 8works_on(maria, p2) at 13 on active(p2)?
active(92) is currently true, but it would be false if the update was performed.

what_if tcompanies(uab,univ_aut6n_de_barna) at 16 on engaged_in?
This update would violate integrity constraint icl at state 16.

what_if 5projects(p3) at 13 on active?
This update leads the IB to an inconsistent state when transaction assign(joan, dream)
is slmulatexl at time 16. Integrity constraint ic2 would be violated.

i

what_if_not [tlS]p(k) at s on f? Assuming that an update [tl~]p(k) was performed by
a transaction at state s, the system has to evaluate the impact that the absence of this
update would have on fact f at the current state. Given that a transaction performs
updates on only base facts of the IB, the fact type of p(k) is always base. The fact type
o f f can be base or derived. The answer consists on the difference between the current
value of f and its hypothetical value if the update was not performed at state s. The
procedure to obtain explanations about what_if_not [tlS]p(k) at s o n f is similar to the
previous case. Both kinds of hypothetical explanations can also be combineck

6 Conclusions

We have presented a method for explaining the behaviour of conceptual models of
information systems. The method assumes a conceptual model in terms of information
base structure (with base and, optionally, derived facts), integrity constraints and
transactions. Therefore, the method may be adapted in most current methodologies.

Our method contributes to model validation by providing explanations about the
results of model execution. It provides, with a simple architecture, useful answers to
questions about why (or why no0 a fact holds in the current state, why a fact has been
inserted (or deleted) in a transition, how a fact can be made true (or false), why (and
when) a fact has been true in the past and what would have happened if past updates had
been different.

Answers to some of the above questions are given by some existing explanation
systems. We extend them by providing answers to questions about derived facts, to
questions about how a fact can be made true or false, and to hypothetical questions.

Our method is based mainly on results obtained in the field of deductive databases.
We have seen how the procedures developed in that field for explaining the results of
queries, or their failure, and for updating consistent knowledge bases may be useful for
behaviour explanation of conceptual models. In this sense, our method links these two
fields.

A c k n o w l e d g e m e n t s

The authors wish to thank the ODISSEA group for their comments and suggestions.
This work has been supported by the CICYT PRONTIC program, project TIC 680.

R e f e r e n c e s

[Bub88]

[C~76]

[COO92]

Bubenko,/.A. "Selecting a Strategy For Computer-aided Software
Engineering (CASE)", SYSLAB Rep. 59, University of Stockholm, 1988.
Chen.P.P. "The Entity-Relational model. Towards a unified view of data".
ACM Trans. on Database Systems, vol. 1, no. 1, March 1976, pp. 9-36.
Costal,D.; Oliv6,A. "A method for reasoning about deductive conceptual
models", Proc. of CAiSE 92, Manchester, May 1992, pp. 612-631.

25

[D~2]

[Decgl]

[DeT89]

[Gu193]

[GuW93]

[HalVlS1]

[JeC92]

[JMS92]

[LaL93]

[LiK931

[Llo87]
[LT~I]

[NH89]

[Oii91]

[O1S95]

[RoP92]

[Tern02]

[TeO92]

[San93]

[San94]

[Urp93]

Dalianis,H. "A method for validating a conceptual model by natural language
discourse generation", Proc. of CAiSE 92, Manchester, 1992, pp. 425 a A~.
Decker,H. "On Explanations in Deductive Databases", Proc. Third Workshop
on Foundations of Models and Languages for Data and Objects, Aigen,
September 1991, pp. 173-186.
Decker,H.; Ton~ic,A. "Towards a foundation of explanations in deductive
databases", Internal report ECRC, Munich 1989.
Gulla,J.A. "Explanation generation in information systems engineering',
PhD. Thesis. Norwegian Institute of Technology, Trondheim, 1993.
Gulla,J.A.;Willnm~n,G. "Using Explanations to Improve the Validation of
Executable Models", Proc. CAiSE 93, Paris, June 1993, pp. 118-142.
Hammer,M.;McLcod,D. "Database description with SDM: A semantic
database model". ACM TODS, vol. 6, no. 3, 1981, pp. 351-386.
Jesus,L.;Carapuqa, R. "Automatic Generation of Documentation for
Information Systems",Proc. CAiSE 92, Manchester, May 1992, pp. 48-64.
Jarke,M.; Mylopoulos,J.W.;Schmidt,J.W.;Vassiliou,Y. "DAIDA: An
Environment for Evolving Information Systems". ACM Trans. on
Information Systems, vol. 10, no. 1, January 1992, pp. 1-50.
Lalioti,V.; Loucopoulos,P. "Visualisation for Validation", Proc. CAiSE 93,
Paris, June 1993, pp. 143-164.
Lindland, O.I.;Krogstie,J."Validating Conceptual Models by Transformational
Prototyping", Proc. CAiSE 93, Paris, June 1993, pp. 165-183.
Lloyd, J.W. "Foundations of logic programming". Springer-Vexlag, 1987.
Loucopoulos,P.;Thcodoulidis,B.;Pantazis,D. "Business Rules Modelling:
Conceptual Modelling and Object-Oriented Specifications". In Van Assche,
F., Moulin,B.; Rolland, C. (cds.) "Object Oriented Approach in Information
Systems", North-Holland, 1991, pp. 322-342.
Nijsscn, G.M.; Halpin, T.A. "Conceptual Schema and Relational Database
Design. A fact oriented approach". Prentice Hall, 1989.
Oliv6, A. "Integrity constraints checking in deductive databases", Proc. of the
17th. VLDB, Barcelona, 1991, pp. 513-523.
Oliv6, A.; Sancho,M.R. "A Method for Explaining the Behaviour of
Conceptual Models - Extended version" Tech. Report LSF95-R
Rolland,C.;Proix, C. "A Natural Language Approach for Requirements
Engineering", Proc. CAiSE 92, Manchester, May 1992, pp. 257-277.
Tcnicnte, E. "El m~tode dcis esdevenimcnts interns per actualitzaci6 de vistes
en bases de dades deductives" (in catalan), Phi). Thesis, Universitat
Poli -t~nica de Catalunya, Barcelona, 1992.
Teniente, E; Oliv6, A. "The Events Method for View Updating in Deductive
Databases", Proc. EDBT~2, Vienna, 1992, pp. 245-260.
Sancho,M.R. "Explaining the bchaviour of a deductive conceptual model",
Proc. Fourth Intl. DAISD Workshop, Tech. Report LSI/93-25-R, Univcxsitat
Politbcnica de Catalunya, 1993, pp. 27-50.
Sancho,M.R. "Disscny de transaccions a partir de models conceptuals
deductius" (in catalan). Phi). Thesis, Univcrsitat Politb~nica de Catalunya,
Barcelona, 1994.
Urpi, A. "El mbtode dcls esdevcnimcnts interns per al cAlcul de canvis en
bases de dades deductives" (in catalan). Phi). Thesis, Universitat Politb.cnica
de Catalunya, Barcelona, 1993.

