
Modelling inheritance, composition and
relationship links between objects,
object versions and class versions

E. Andonoff*, G. Hubert**, A. Le Parc**, G. Zurfluh*

* Lab, CERISS, Univ. Toulouse I, 31042 Toulouse C&lex, France
Email : ando@cix.eict.fr

** Lab. IR1T p61e SIG, Univ. Toulouse HI, 31062 Toulouse C~dex, France
Email : {ando,hubert, leparc,zurfluh}@irit.fr

Abstract. This paper presents a conceptual object-oriented model which
allows to describe, in a unified framework, objects, object versions and
class versions. Three kinds of classes are used for such a modeling: object
classes, version classes and versionable classes. This paper approaches, in
greater details, the outcomes of representing links between these different
kinds of classes. The considered links are inheritance, composition and
relationship links. Most of system managing object versions and/or class
versions only partially approach this problem.

keywords. Object classes. Version classes. Versionnable classes.
Inheritance. Composition. Relationship.

1 Introduction

The concept of version was introduced to describe the evolution of real world entities
along time. The different states of entities are kept and correspond to their different
versions. The concept of version is important in computer aided design, technical
documentation or software engineering fields where managed data are
time-dependent [2].

Many current database systems allow to manage versions. In these systems,
versions are investigated at two abstraction levels: the object level and the class level.
Some systems have studied versions at only one abstraction level. For example,
Sherpa [14], 02 [20] or CIoSQL [15] have studied this concept at the class level
while Etic [9] has investigated it at the object level. Other systems, such as Orion [7]
[12], Encore [19], Iris [3], Avance [4], OVM [10] or Presage [18] have studied
versions at the two abstraction levels. But these studies are often (except Presage)
carried out without analysing the outcomes of both managemement of class versions
and object versions. Moreover, these studies partially deal with (or bypass) the study
of links and cardinalities between versions: composition is partially approached while
there is no work about inheritance and relationship.

97

On the other hand, current database design methods such as OMT [17], OOA [6],
OOM [16], O* [5] do not propose solutions to model versions in their conceptual
data models. Now, version modeling is an activity recovered from the conceptual
level [11]. Indeed, to exactly describe the real world, a designer must be able to tell if
an entity may evolve or if an entity class may evolve. So, he must have tools to
model object and class versions in the conceptual dam models he def'mes.

In this paper, we present a conceptual object model intended for object-oriented
database modeling. This model enables us to describe, in a unified framework,
objects, object versions and class versions. Three kinds of classes are used for such a
modeling: object classes, version classes and versionable classes. Object class
instances are objects of which one keeps only the last state. The instances of version
classes are object versions where only the value evol,r whereas the instances of
versionable classes are object versions whose value and schema evolve (the different
significant states are kep0. This paper investigates, in greater details, the outcomes of
modeling links between these different kinds of classes on objects and object versions.
The considered links are inheritance, composition and relationship links. Moreover,
operations on objects and classes are also discussed in this study.

This paper is organised as follows. Section 2 presents the main concepts of version
and particularly the concepts of object and class versions. Section 3 describes the
conceptual object model we have defined; it shows how we represent objects, object
versions and class versions using three kinds of classes. Sections 4, 5 and 6 approach
the outcomes of modeling inheritance, composition and relationship links between
these various kinds of classes. Section 7 is the conclusion.

2 The Concepts

The version concept is studied in a unified way at two abstraction levels which are the
object level and the class level.

2.1 Versions

In the real world, an entity has characteristics which may evolve during its life cycle:
the entity has different successive states.

In object-oriented databases, a real world entity is described by a unique object.
This object has a schema (i.e. a set of attributes and methods) and a value. The
schema and the value describe the last entity state.

In a version context, an entity is not described by a unique object but by a set of
objects (versions): it is possible to manage several entity states and not only the last
one. A version corresponds to one of the entity states. The entity versions are linked
by a derivation link; they constitute a version derivation hierarchy [11].

An entity class is described by a set of version hierarchies; each entity is described
by only one hierarchy.

When created, an entity is described by only one version (called root version). The
definition of every new entity version is done by derivation from a previous version.
Such versions are called derived versions [11] (e.g. El.vl is a derived version from

28

El.v0). Several versions may be derived from the same previous version. Such
versions are called alternatives [11] (e.g. El.v2 and El.v3 are alternatives derived from
EI.vl).

Real world OODB

-4

-4

El.v0 El,vl ~)

En.v0 ~ 3

;
I , O version
I O entity

I 1-'-] version j
I L..] class
I
i/r entity
: U class

Fig. 1. Representing entities with versions

A version is either frozen or working. A frozen version describes a significant and
final state of an entity. A frozen version may be deleted but not updated. To describe a
new state of this entity, we have to derive a new version (from the frozen one). A
working version is a version that temporarily describes one of the entity states. It
may be deleted and updated to describe a next entity state. The previous state is lost
for the benefit of the next state.

The default version of an entity [7] is a version pointed out by the database
�9 designer as the most representative version of the entity. It is unique for each entity

and may be chosen among the set of frozen or working versions.

2 . 2 Object Versions and Class Versions

In object-oriented databases, versions may be considered at two abstraction levels: the
object level and the class level. Evolution of objects may found expression in either
value evolution or schema evolution. If an entity evolution is described by a set of
versions having the same schema (there is only value evolution), one talks about
object version. If an entity evolution is described by a set of versions which do not
have the same schema (there is value and schema evolution), one talks about class
version: these different versions belong to different classes. Value evolution consists
in updating (in a partial or a total way) the attribute values of the considered object
version. Schema evolution consists in adding new attributes or new methods, or in
updating or deleting attributes or methods already defined, of the considered class
version.

Class or object evolution is realized by deriving an object or a class version. Thus,
derived or alternative object versions or class versions are created. These versions, like
entity versions, are linked by a derivation relationship; they constitute a version
derivation hierarchy (for objects and classes). The frozen, working and default version
notions are available for object and class versionsl The figure below illustrates object
and class versions concepts.

99

Real world C3 ,r - - - ~ p] l ~ n " " " " '

0 obj~t O entity~ I
! v e r s i o n

lll~ 0 " ' enuty i
q I versmn class i
! I
, - = - derivation of ,
, object version ,
i ~ r derivation of '
i - " ~ , T r - class version I C4 t J

Fig. 2. Object versions and class versions

3 T h e M o d e l

The data model we define is a conceptual model which takes its inspiration from the
OMT object model [17]. It enables to describe objects, object versions and class
versions.

3 . 1 O b j e c t C l a s s e s and L i n k s

Class is the unique tool for modeling real world entities. A class gathers a set of
objects having the same schema. The class schema describes the structure and
behaviour of its objects. The structure is represented by a set of (monovalued or
multivalued) auributes whose domain is a predefined class (integer, real...). Behaviour
is described by a set of methods described by their signature. Classes may be linked
by three kinds of links : inheritance links, composition links and relationship links.

3 . 2 I n h e r i t a n c e L i n k s

Inheritance models is-a link between objects. It allows to gather the common
properties (attributes and methods) of several classes, called subclasses, in a more
general class, called superclass. Inheritance is the mechanism allowing to transfer
properties from superclass to subclasses.

The model retains a specialization inheritance [1]: subclasses are
described defining new properties or redef'ming inherited properties. The
inheritance hierarchy of a class consists of the class itself and all the
classes belonging to the inheritance hierarchy of its subclasses.
Inheritance link is shown on opposite figure.

3 . 3 C o m p o s i t i o n L i n k s

Composition models is-part-of link between objects. It is a basic modeling tool to
describe complex objects [13]. A composition link is defined between two classes
when life cycles of objects belonging to the two classes are dependent [5] (e.g. the
creation of an object in a class causes the creation of an object in the other class).
Composition links are either exclusive or shared. If a link is an exclusive one, a
component object can only be a part of one composite object. If the link is a shared
one, a component object can be a part of several composite objects.

At last, the cardinality of a composition link is indicated in a conventional way: on
the one hand a,b (a in { O, 1 }, b in { 1 ,n }), and, on the other hand c,d (c= 1, d in { 1,n }).

A composition link is shown on opposite
figure. A diamond indicates the composite
class. The cardinality for the component class
indicates if the link is exclusive (1,1) or shared
(1,n). We can note that 0 is not authorized for
the component class [13].

composition

so N [- ~ Exclusive

Composition links were studied in Orion. [13] introduces the dependent
independent, exclusive and shared notions. The composition links we model
correspond to the dependent exclusive and dependent shared composite references of
Orion.

3 .4 Relationship Links

Relationship models is-linked-to link between objects. A relationship link is defined
between two classes when life cycles of objects belonging to the two classes are
independent [5]. The cardinality of a relationship link is indicated as before.

Relationship links are shown as follows:

The relationship links we model correspond to the relationship links defined in
OMT, OOA, OOM or O*, and to the independent exclusive and independent shared
composite references defined in Orion.

3 .5 Model Extensions

The model is extended to integrate the notions of object and class versions. In addition
to object classes (whose instances are objects), it allows to model two other kinds of
classes (whose instances are object versions): version classes and versionable classes.

Instances of version classes are object versions having only value evolution
whereas instances of versionable classes are object versions having value and schema
evolution. Version classes have a schema of which one keeps only the last state
whereas versionable classes have a schema that may evolve (different significant and
final states are kept). The different class versions describing schema evolution of a
versionable class are linked by a derivation link. Object evolution is represented by a
hierarchy of object versions belonging to one or more classes linked by a derivation
link. We can observe that a versionable class is also a version class.
Version classes, versionable Version class Versions of versionnable class
classes and derivation link between ~ ~
class versions of a versionable ~
class are shown as follows: i - ' -- '1 ' o & d , dl " Versionnable class

Inheritance, composition and relationship links (previously shown between object
classes) can be defined between the different kinds of classes. Different inheritance,
composition and ~lationship cases are conceivable.

101

The constraints underlying these kinds of classes make some cases inconsistent or
restrict the operations which can be performed on classes and their instances.

3.6 Operations

Operations which can be performed on classes (a) and their instances Co) are described
in the following table :

twn derive

object class no
version class no

versionable class yes

update
(a)

yes,(*)
yes (*)

create
Co)
yes
Y~
yes

delete

yes
yes
yes

d~ive Up~qte
(b)

no yes

yes yes(*)
yes yes (*)

Class operations allow to create a new class deriving an existing one (derive) or to
modify a class schema (update). Instance operations allow to create (from scratch) a
new instance (create), to delete an existing instance (delete), to create a new instance
deriving an existing one (derive) or to modify the instance values (update). We can
observe that the update (*) operation can only be performed to unfrozen object
versions (instances of version or versionable classes) or to unfrozen versionable
classes. These operations are detailed in the following sections. The links defined
between classes (inheritance, composition and relationships links) are also taken into
account.

4 In h er i t an ce

We fh'st describe the different inheritance cases and then study the instance and class
operations.

4.1 Inheritance Cases

A class belongs to one of the two following families : object or version. The object
family consists of object classes. The version family consists of version and
versionable classes. We can observe that a versionable class is less restrictive than a
version class in term of evolution because it allows schema evolution in addition to
value evolution.

We have defined two rules that indicate if an inheritance hierarchy is consistent.
These rules allow to organize in inheritance hierarchies classes belonging to the same
family (the instances of these classes evolve in a similar way: no evolution or value
and/or schema evolution). These rules are the following :

the subclasses and the superclass must belong to the same family, i.e, either
object family or version family;

the superclass category must not be less restrictive (in term of evolution) than
its subclasses categories.

Inheritance cases checking these rules are described below. Any other case is
forbidden.

"~02

Case 1 : s u p e r c l a s s

and subclasses are A
all object classes. [d...] r_t_]

Case 2 : superclass
and subclasses are
all version classes.

Case 3 : superclass and subclasses belong to the same
family: they are version classes or versionable classes.
Note that the subclasses are not less restrictive than the
superclass in term of evolution.

Case 4 : superclass and
subc l a s se s are all
versionable classes.

4 . 2 O p e r a t i o n s

Instance operations are only performed on subclasses leaf of the inheritance hierarchy
(the superclasses, i.e. the classes which are not leaf of a inheritance hierarchy, do not
have their o w n instances). These instance operations (create, delete, derive and update)
are available without restriction (as described in section 3.6).

With respect to inheritance cases, class operations (derive and update) may be
forbidden or performed with or without restriction:

casel
case2
case3
case4

derive
superclass

no

no

no

yes

dP.~ve
subclass

no

no

yes (1)
yes (2)

update
superclass

. y . e.s_. . (3) .

yes._(5)
yes (5)
yes (5)

U ~ t e .
subclass

. . . . y~_(6)
yes (6)
yes (6)

The following comments explain these different operations:

(1) schema derivation is permitted in a versionable subclass. This derivation
does not affect inherited attributes.

- (2) schema derivation is permitted in the versionable subclasses. If inherited
attributes are updated in the subclass, then there is repercussion of this
derivation on the superclass and on the other subclasses.

- (3) schema updating in a superclass causes schema updating in its subclasses.
This updating is propagated on subclasses instances.
(4) schema updating in a subclass is propagated on the superclass and the other
subclasses if this modification affects inherited attributes. This updating is
propagated on subclasses instances.

- (5) schema updating in a superclass is permitted if there are no frozen
instances in its subclasses. In this case, the comment (3) is applicable.

- (6) schema updating in a subclass is permitted if the subclass has no frozen
instances. In this case, the comment (4) is applicable.

103

5 C o m p o s i t i o n

We first describe the different composition cases and then study the instance and class
operations. For space limitations, we only present the composition links whose
cardinalities are (1,1/1,1), (1,1/1,n), (1,n/I,1) and (1,n/1,n). These cardinalities are the
most restrictive ones, and, therefore, the most interesting ones.

5.1 Composition Cases

A composition link may be defined between the three kinds of classes: object, version
and versionable classes. However, only the notion of object version must be
considered in composition study. Indeed, instances of version and versionable classes
are object versions. So, it is useless to distinguish version classes from versionable
classes.

We have defined one rule which indicates if a composition link is consistent. This
rule allows to organize in composition hierarchies the classes whose instances have
similar life cycles (i.e. dependent). This rule imposes not to have a composite class
which is version class, and a component class which is an object class.

The composition cases checking this rule are described below. Cases 1 and 3 are
studied in the literature while case 2 is never approached.

C a s e 1 :
composition
link between
object classes (~

I . r I

For each of the three

Case 2 :
composition link
between object
class (composite) (~
and version class 1.,,
(component)

Case 3 :
composition
link between
version classes

l , t : |

'1

)revious cases, we study how the integrity constraints
inherent in composition link cardinalities (they express the exclusive and sharing
notions) are taken into account at both object level and object version level. Note that
the chosen solutions limit the useless duplications of versions.

Case 1 : composition between object classes. This case is classic and is
widely approached in the literature. The solution we retain is the one proposed in [13]
(for more details, report to [13]).

Case 2 : composition between object class and version class. On the
one band, this case expresses a link between a composite class and one or more
hierarchies of component object versions, and, on the other hand, this case expresses a
link between one component object version and one (exclusive) or more (shared)
composite objects.

If the composition link is
exclusive, a component hierarchy is
a part of only one composite object.

If the composition link is shared,
a component hierarchy is a part of
one or more composite objects.

Composite class { (~ N. ~ forbkktm

" �9 " exclusive
Component class { ~ link

exclusive link

Composite class { ~ , ~

Component class I)Nr [
shared link { O----O O

Case 3 : composition between version classes. On the one hand, this case
expresses a link between a composite object version and one or more hierarchies of
component object versions, and, on the other hand, this case expresses a link between
a component object version and one (exclusive) or more (shared) composite object
versions.

If the composition link is
exclusive, a version of a
component hierarchy is a part of
only one composite hierarchy.

If the composition link is
shared, a version of a component
hierarchy is a part of one or more
composite hierarchies.

Composite class {~ 1~ Q O

/ i .'" exclusive
Component class f ~ j ~." link

exclusive link I.

Composite class {

Component class ~ ~]] , /
shared link ~ 0 . O'

so

This case is studied in most of system managing object versions (e.g. Presage,
Orion). Presage duplicates object versions. This solution allows to check the
integrity constraints which are inherent in composition links; but it causes the
(useless) creation of several object versions describing the same object evolution
states. The Orion solution consists in connecting the derived versions of an object to
the component generic object. Such a technic limits object version duplication but it
imposes to dynamically compute the derived versions.

5 . 2 Operations

Composition expresses that composite and component instance life cycles are
dependent. So, some operations performed on instances (create, delete, derive) must be
studied in details. The other ones are available as described in section 3.6.

Creation. The dependency of composite and component instance life cycles imposes
to create one (or more) component instance(s) when creating a composite
instance [13]. Exclusivity and sharing notions and the different composition cases
must also be taken into account.

Case 1 : composition between an object class A and an object class B. This case is
classic. We retain the solution proposed in [13].

105

Case 2 : composition between an object class A and a version class B. If the
composition link is monovalued for A (1,1), when a new object "a" is created in the
composite class A, it must be linked to a unique hierarchy of the component class B
(i.e. to all the versions of this hierarchy). If the link is multivalued for A (1,n), when
an object "a" is created in the composite class A, it must be linked to one or more
hierarchies of the component class B.

If the link is exclusive (1,1), the hierarchy in B must be a new one. If the link is
shared (1,n), the hierarchies in B are either existing or new hierarchies.

Case 3 : composition between a version class A and a version class B. If the
composition link is monovalued for A, a root version "a" of a new hierarchy created
in the composite class A must be linked to a unique version "b" of a hierarchy of the
component class B. If the link is multivalued, the root version "a" can be connected
to one or more version "b" of the component class B. These versions belong to
distinct hierarchies.

If the link is exclusive, the version "b" of the component class B is either a root
version of a new hierarchy, or a derived of a leaf version of a free hierarchy. A
component hierarchy is described as free when it has no leaf versions linked to a leaf
version of a composite hierarchy:

I, t D - ~ _ _ O t , , O - - ~ , , I C~176 class

I c S " I �9 S S I I t

I i t s S I ! ~L

not free hierarchy not free hierarchy

Fig. 3. Free hierarchies

If the link is shared, the versions "b" of the class B are either leaf versions of
existing hierarchies, or root versions of new hierarchies.

Deletion. The dependency of composite and component instance life cycles imposes
to delete one (or more) component instance(s) when deleting a composite
instance [13]. Exclusivity and sharing notions and the different composition cases
must also be taken into account.

Case I : composition between an object class A and an object class B. This case is
classic. We retain the solution proposed in [13].

Case 2 : composition between an object class A and a version class B. If the
composition link is exclusive, the deletion of an object "a" in the composite class A
causes the deletion of all its component hierarchies in the component class B (i.e. the
deletion of the versions belonging to these hierarchies). If the link is shared, the
component hierarchies are only deleted if they do not compose other objects
belonging to the composite class A.

Deleting a component hierarchy implies to connect the composite object to another
component hierarchy (according to link cardinality).

Case 3 : composition between a version class A a version class B. If the composition
link is exclusive, the deletion of a version "a" in the composite class A causes the
deletion of its component versions "b" belonging to the component class B except if
the component versions compose other versions ("aa") of the same composite
hierarchy. On the other hand, if the link is shared, the component versions "b" are
deleted only if they do not compose other versions.

The deletion of a component version causes the deletion of the corresponding
composite versions which are frozen (several successive derived versions can have the
same components). If the composite versions are working, they are not deleted but
linked to other component versions.

D e r i v a t i o n . Derivation is an operation which can only be performed on instances of
version classes. Only case 2 and case 3 are studied.

Case 2 : composition between an object class A and a version class B. A derived
version in the component class is automatically linked to the same composite objects
as the version it derives from (the previous one).

Case 3 : composition between a version class A and a version class B. If the
composition link is exclusive, the derivation of a composite version causes the
creation of a new version linked to one or more versions which can be :

- the same component versions as the composite version it derives from,

- derived versions of the component versions,
- versions which are roots of new hierarchies belonging to the component class,

- new versions derived from leaf versions of free component hierarchies
(cf 5.2.1).

If a composition link is shared, the result of composite version derivation is a
version which can also be linked to one or more leaf versions belonging to any
component hierarchy.

Deriving a component version causes deriving all the linked composite versions.
We can observe that this derivation does not cause the derivation of the other
components of the composite object; the other (composition and relationship) links
are not modified.

Composite class ~ - - ' - - ' ~ . . . ~ .
(2 composite hierarchies) { Other

deriving component , , \ /
causes x \ / \ '~ / } component
deriving composite " / x / ~ versions are

Component class r \ ~ \ J ~ not derived
(3 component hierarchies) t. ~ ~ . ~ ~ - / '
Shared composition link

Fig. 4. Consequences of component derivation

107

6 Relationship

We t-h-St describe the different relationship cases and then study the instance and class
operations. For space limitations, we only present the relationship links whose
cardinalities are (1,1/1,1), (1,Ill,n) and (1,n/1,n). These cardinalities are the most
restrictive ones, and, therefore, the most interesting ones.

6.1 Relationship Cases

A relationship link may be defined between the three kinds of classes: object,
version and versionable classes. However, only the notion of object version must be
considered in relationship study. Indeed, instances of version and versionable classes
are object versions. So, it is useless to distinguish version classes from versionable
classes. The relationship cases which must be studied are described below. Cases 1
and 3 are approached in the literature whereas case 2 is never investigated.

Case 1 : relationship link between object classes

Case 2 : relationship link between an object class
and a version class

Case 3 : relationship link between version
classes

For each of the three previous cases, we study how the integrity constraints
inherent in relationship link cardinalities are taken into account at both object level
and object version level. Note that the chosen solutions limit useless duplications of
versions.

Case 1: relationship between object classes. This case is widely studied in
the literature (OMT, OOA, OOM, O*). It is not presented in this paper.

Case 2: relationship between an object class and a version class. On
the one hand, this case expresses a link between an object and one or more hierarchies
of object versions, and, on the other hand, this case expresses a link between an
object version and one or more objects.

On the other hand, if the relationship link is monovalued for the object class A
(1,1), an object of A must be linked to only one current hierarchy of B.

The current hierarchy for an
object is the last hierarchy linked
to it. If a relationship link is
multivalued for the object class A
(1,n), an object must be linked to
one or more hierarchies of B.

al O - ~ , ~ current hierarchy current ~ ~.
link for al , 0 - - 0 - - 0 for al and a2

a2 0 .~-'-''" "~'"currentlink
fora

Object class A - (1,1) Version class B - (1,1)

Fig. 5. C u r r e n t h i e ra rch ie s

If a relationship link is monovalued for the version class B, a version of B must be
linked to a unique object of A. If the relationship link is multivalued for the version
class B, a version of B must be linked to one or more objects of A.

Case 3 : relationship between version classes. This case expresses a link
between an object version and one or more hierarchies of object versions.

If a relationship link is monovalued
for the class A, a version of A is
linked to only one hierarchy of B (and
vice versa). If the relationship link is
multivalued for the class A, a version
of A must be linked to one or more
hierarchies of B (and vice versa).

forbidden (card. I,I). A
version must be linked .'7"~"~6""'" O
to only one hierarchy. .

Version class A Version class B
(card. 1,1) (card. l j)

6 .2 Operations

Operations performed on instances (create, delete, derive) must be studied in details.
The other ones are available as described in section 3.6. The case 1 of relationship
between object classes, widely studied in the literature (OMT, OOA, OOM, O*),
is not presented here.

Creation.

Case 2 : relationship between an object class and a version class. If the relationship
link is monovalued for the object class A, a new object "a" created in A is linked to
only one version "b" of the version class B. If the relationship link is multivalued for
the class A, a new object "a" in the class A must be linked to one or more versions
"b" of the class B. These versions belong to distinct hierarchies.

If the relationship is monovalued for the version class B, a new object created in
the class A is linked to a version "b" of B which is either a leaf of a hierarchy of B
not yet linked to an object belonging to A (if it exists), or versions derived from leaf
versions of free hierarchies or a root of a new hierarchy of B. Multivaluation for the
class B does not restrict the set of leaf versions which must be linked to an object "a".

If the relationship link is monovalued for the version class B, a new version "b"
created in B (it is the root of a new hierarchy) is only linked to one object "a" of the
object class A. If the relationship is multivalued for B, the new version "b" must be
linked to one or more objects "a" of the class A.

Moreover, if the relationship link is monovalued for the object class A, the objects
"a" which must be linked to the version "b" are either new objects of A which are not
linked to a hierarchy of B (if they exist) or free objects.

A free object is an object which forbidden
is not linked to a leaf of a not free _ . . l - m ~
hierarchy of B (cf 4.2.1). o b j e c t - - - ~ ~ ~ : . . ~ ~/O--~-O---O

If the relationship link is free O " ~ - ~ o - ~ _
multivalued for the class A, an o b j e c t ~ t

object of the class A can be linked Object Class A j Version class B
tO any version of the class B. card 1,1 wed card 1,1

Fig. 6. Free objects

109

Case 3: relationstu'p between version classes. If the relationship link is monovalued
for the version class A, a new version "a" created in A (it is a root of a new hierarchy)
is linked to a unique version "b" of a hierarchy of the version class B.
If the relationship link is multivalued for the class A, a new version "a" created in A
must be linked to one or more versions, each belonging to distinct hierarchies of the
class B .

When the relationship is monovalued for the class B, the versions "b" linked to the
version "a" are either leaves belonging to existing hierarchies of B not yet linked to a
version of A (if they exists), or versions derived from leaf versions of free hierarchies,
or roots of new hierarchies of B. Multivaluation for the class B does not restrict the
set of leaf versions "b" which can be linked to the version "a".

Deletion. An instance (object or version) deletion is permitted when it is linked to
objects or to working versions. On the other hand, if the instance is linked to frozen
versions, deleting it causes the deletion of linked frozen versions. The relationship
links are obviously deleted.

D e r i v a t i o n . Derivation is an operation which can only be perforraed on instances of
version classes. Only case 2 and case 3 are studied.

Case 2 : relationstu'p between an object class and a version class. If the relationship
link is monovalued for the version class B, a new version "b" derived from a version
belonging to a hierarchy of B is linked to a unique object "a" of the object class A.
When the link is multivalued, the new derived version must be linked to one or more
objects of the class B.

The objects "a" which must be linked to the version "b" are either objects linked to
the version from which "b" is derived, or free objects (cf w 5.2.2).

Case 3 : relaticnship between version classes. When the relationship link is
monovalued for the version class A, a new version derived from a version belonging
to a hierarchy of A is linked to a unique version "b" of a hierarchy of B.
Multivaluation for A allows to link the version "a" to one or more versions "b", each
belonging to distinct hierarchies of B.

The versions "b" which can be linked to the version "a" are:

- versions linked to the version from which "a" is derived,

- derived versions from versions linked to the version from which "a" is derived,

- leaf versions belonging to hierarchies of B (if the link is multivalued for B) or
derived versions from leaf versions of free hierarchies of B (if the link is
mulfivalued for B),

- roots of new hierarchies.

When the relationship link is monovalued for B, the versions "b" which are linked
to the version "a" must not be linked to versions belonging to other hierarchies of A.
A multivalued relationship for B does not restrict the set of version "b" which can be
linked to the version "a".

7 C o n c l u s i o n

This paper has presented a conceptual model intended for object-oriented database
modeling. This model allows to describe, in a unified framework, objects, object
versions and class versions. Three kinds of classes are used for such a modeling:
object classes, version classes and versionable classes. Object class instances are
objects of which one keeps only the last state. The instances of version classes are
object versions where only the value evolve whereas the instances of versionable
classes are object versions whose value and schema evolve (the different significant
states are kept).

This paper investigates, in greater details, the outcomes of modeling links between
these different kinds of classes on objects and object versions. The considered links are
inheritance, composition and relationship links. Their cardinalities are also taken into
account. Moreover, operations on objects and classes are also discussed in this study.
Such a study has never been done for conceptual models. But it is partially approached
for logical models (database models):

Inheritance and relationship are not investigated.

Composition is tackled in most of system managing object classes.
Composition between object classes (case 1) and composition between version
classes (ca;e3) are studied but composition between object class and version
class (case2) is never met.

On the one hand, we can observe that the solution we propose in case 1 is
the same than the one proposed in Orion [13], and, on the other hand, we can
observe that the solution we propose in case 3 avoids to duplicate versions
describing the same states of an object evolution (Presage), and avoids dynamic
computing of derived versions (Orion [8]): these are directly linked with their
component objects.

Such a study allows to model object, version and versionnable classes from the
conceptual level. This study can be re-used to extend the data models of the current
object-oriented database design methods (OMT [17], OOA [6], OOM [16], O* [5])
so that they integrate version modeling capabilities.

R e f e r e n c e s

1. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik. The
object-oriented database system manifesto. 1st Int. Conf. on Deductive and
Object-Oriented Databases, Kyoto (Japan), Dec. 1989.

2. D. S. Batori, W. Kim. Modeling concepts for VLSI CAD objects. ACM
Transaction Cm Database Systems, Vol 10, n~ 1985.

3. D. Beech, B. Mahbod. Generalized version control in an object-oriented database.
4th Int. Conf. on Data Engineering, Los Angeles (USA), 1988.

4. A. Bjornerstedt, C. Hulten. Version control in an object-oriented architecture.
Object-oriented concepts, databases and applications, Edited by W. Kim, F.
Lochovsky, Addisson-Wesley publishing company, 1989.

111

5. J. Brunet. Modeling the worm with semantic objects. IFIP TC8 Int. ConL on
the Object-Oriented Approach in Information Systems, QuEbec, Oct. 1991.

6. P. Coad, Y. Yourdon. Object-oriented analysis. Yourdon Press publishing
company, 1990.

7. H.T. Chou, W. Kim. A unifying framework for version control in a CAD
environment. 12th Int. Conf. on Very Large Database, Kyoto (Japan), Aug.
1986.

8. H.T. Chou, W. Kim. Versions and change notification in object-oriented
database system. 25th Int. Conf. on Design Automation, Anaheim, June 1988.

9. M.C. Fauvet. D6finition et r6alisation d'un modNe de versions d'objets. 5~mes
J o ~ Bases de Donn6es Avanc6es, Gen~ve (Suisse), Sept. 1989.

10. W. Kafer, H. Sch6ning. Mapping a version model to a complex object data
model. 8th Int. Conf. on Data Engineering, Tempe (USA), Feb. 1992.

11. R. Katz. Toward a unified framework for version modeling in engineering
databases. ACM Computing Surveys, Vol 22, n~ 1990.

12. W. Kim, H.T. Chou. Versions of schema for object-oriented databases. 14th Int.
Conf. on Very Large Databases, Los Angeles (USA), Aug. 1988.

13. W. Kim. Composite object revisited. 14th ACM Int. Conf. on Managment of
Data, Portland (USA), June 1989.

14. G.T. Nguyen, D. Rieu. Schema evolution in object-oriented database systems.
Data and Knowledge Engineering, n~ North-Holland publishing company,
1989.

15. S. Monk, I. Sommerville. Schema evolution in object:oriented databases using
class versionning. ACM SIGMOD record, Vo122, n~ September 1993.

16. M. Rochfeld. Les mdthodes de conception orientdes objet. Conf6rence invitEe,
Congr~s INFORSID, Clermont-Ferrand (France), May 1992.

17. M. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen. Object-
oriented modeling and design. Prentice-Hall publishing company, Englewood
Cliffs, 1991.

18. G. Talens, C. Oussalah, M.F. Colinas. Versions of simple and composite
objects. 19th Int. Conf. on Very Large Databases, Dublin (Ireland), Sept. 1993.

19. S. Zdonik. Version management in an object-oriented database. Lecture Notes in
Computer Science n~ June 1986.

20. R. Zicari. A framework for schema updates in an object-oriented database
system. 7th Int. Conf. on Data Engineering, Kobe (Japan), April 1991.

