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Abstract. So many software development methods have been introduced in 
the last decade, that one can talk about a "methodology jungle". To aid the 
method developers and evaluators in fighting their way through this jungle we 
propose a systematic approach for measuring properties of methods. We 
describe two sets of metrics, which measure the complexity of diagrammatic 
specification techniques on the one hand, and of complete systems 
development methods on the other hand. Proposed metrics provide a 
relatively fast and simple way to analyse the technique (or method) properties, 
and when accompanied "Mth other selection criteria, can be used for 
estimating the cost of learning the technique and the relative complexity of a 
technique compared to others. To demonstrate the applicability of the metrics, 
we have applied them to 34 techniques and 15 methods. 

1. Introduction 
Recent years have witnessed the appearance of new software development paradigms 
and methods. Examples of these are object-oriented analysis and design methods, and 
business process reengineering methods. However, we feel that there is room for 
improvement in the analysis of these methods and in understanding their use and 
functionality. Though, some attempts have been made to compare existing methods 
(e.g. see [Cha91]), the studies lack rigor and sound conceptual foundation, and they 
are mostly based on ad hoc feature analysis techniques. Some recent attempts [Son92, 
Hon93] have proposed more systematic approaches, based on a common formal 
metamodel of method, that hold the promise of a more systematic and analytic way to 
compare methods. Yet, they are still mainly used for making tabular comparisons of 
method's parts and properties. 

Simultaneously there is a lack of CASE tools to support these methods. 
Brinkkemper and Tolvanen [Bri89, To193] have tackled the problem of adaptation of 



201 

methods by metamodelling. The rapid growth of the number of both methods and their 
support environments has led to the proposition of a new area called Computer Aided 
Method Engineering, or CAME for short [Slo93, Kum92]. Method engineering is 
defined here, according to Heym & Osterle, as the disciplined process of building, 
improving or modifying a method by means of specifying the method's components 
and their relations [Hey93]. 

We claim that by using a metamodel and a CAME environment for method 
engineering, we can achieve two goals simultaneously: first we can compare the 
methods analytically, and second, we can try out these methods in a situation, where 
methods have a platform that supports the storage and representation of descriptions 
made with these tools. Earlier work in this area has mainly concentrated on 
constructing method modelling (or metamodelling) languages [Bri90, To193] or 
building support environments for them [Che91, Sor88, Smo91b]. Earlier attempts to 
use metamodels for method comparison [Oei94] have mainly concentrated upon 
mapping metamodels into some "supermethod" or comparing metamodels by 
identifying their common parts [Hon93]. Instead we try to find quantitative measures, 
that can be computed without human judgement. 

In this paper, we try to establish an approach which is systematic, automatic 
and easy to use for method measurement. We propose a metric approach and present a 
suite of metrics for methods. These metrics measure the complexity of the method or 
technique. Complexity is here classified into two categories: the complexity of 
learning and understanding the method, which is caused by the number of different 
constructs used in a technique or method [Tei80], and the complexity of the products, 
which is caused by the number of describing properties of objects and relationships. 

The metrics can be used at least in two purposes, first, by method engineers to 
check the method properties and second, by method users to aid in the selection of 
methods, based on their measurable properties. The first aspect should be emphasized 
at the current status of method development, as we see a rapid appearance of new 
method categories, such as object-oriented [Boo94, Coa91] or business engineering 
methods [Dav90]. There is a clear push to develop new methods and consequently the 
method developers are in a hurry to come up with their own developments and variants 
of methods in the "fashionable" categories. The second aspect is more problematic, 
because the metrics by themselves cannot be used to judge the "goodness" or the 
appropriateness for the task of the method, instead they should be used together with 
approaches such as metamodel hierarchies [Oei94] and classification frameworks 
[Iiv83]. 

To test our claims we apply proposed metrics over a variety of well known 
methods. As a by-product, a set of tools for analysing methods within the MetaEdit 
CAME tool are introduced. The adaptation of the metrics into other CAME (and 
CASE) environments should be straightforward. 

This paper is organized as follows. In the next section, we present the 
metamodelling technique used to describe techniques. In section 3, we present the 
proposed metrics and in section 4 these metrics are applied to a number of techniques 
and methods in the MetaEdit environment. The last section discusses the results and 
proposes some future directions for research. 



202 

2. Methods and the method engineering environment 

Techniques of interest here consist of traditional graphical formalisms, such as Data 
Flow Diagrams, Entity Relationship Diagrams or Object Diagrams. Thus these 
techniques describe the object systems by objects and their relationships. In most cases 
the relationships and objects can have attributes or properties. The techniques usually 
describe only one aspect of an object system (such as data flows or state changes etc.). 
There is also a need to apply multiple views to describe the object system. In those 
cases we use organised sets of techniques, called methods. Methods contain several 
techniques, their interconnections and the use process of these techniques, but we 
currently limit our investigation to meta data models of the techniques and methods. 
An example of a method is Object Modelling Technique [Rum91] which consists of 
several techniques such as Class Diagrams, Data Flow Diagrams and Object State 
Diagrams. We chose those because their popularity and generality in the class of OO 
methods. 

To be able to compare and analyse techniques, we need a way to describe them. 
This systematic way is called here a metamodelling technique. We use here the OPRR 
metamodelling technique, proposed by Welke [We192] and enhanced by Smolander 
[Smo91] to model the techniques and methods. The use of one metamodelling 
language gives us a neutral and non-biased basis to compare the properties of 
techniques, and it provides a common background for the formulation of metrics. 
Because we have also a CAME and a CASE shell environment, MetaEdit, which 
incorporates the OPRR model [Smo91b], we can develop automatically OPRR models 
and generate prototype support environments for a specified technique. In the 
following sections we describe the CAME environment, the static structure and the 
concepts of the OPRR technique and develop a model of OMT Class Diagrams 
[Rum91] using the OPRR technique. 

2.1. The metrics environment 

We have earlier developed tools for method engineering in Metaedit, one of which is a 
tool for developing methods with OPRR graphically (see [Ros94b]). It has been used 
to develop new methods for MetaEdit itself. We have currently implemented a 
collection of nearly forty development techniques [Ros94]. 

To test the metrics proposed in this paper, and to demonstrate the applicability 
of automating metrics computation procedures, we have implemented a metrics 
calculation package by using MetaEdit's report definition capabilities. List of 
techniques and methods, with the obtained metrics values is in Appendixes 1 and 3. 
The metrics computations and graphical outputs were produced using SPSS for 
Windows statistical package [SPS94]. 

2.2. The definition of the OPRR technique 

The acronym OPRR comes from the words Object, Property, Role, and Relationship 
which are the meta-types in OPRR [Smo91]. Welke [We188] defines the meta-types in 
the following way: 

�9 Object is a "thing" which exists on its own. Examples of objects are process, 
flow, store, source, module, etc. 
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flow, store, source, module, etc. 

�9 P r o p e r t i e s  are the describing[qualifying characteristics associated with the 
other meta-types. Typical properties include name,description, etc. 

�9 R e l a t i o n s h i p  is an association between two or more objects. For example, there 
may be a relationship between a source and a process meaning that the process 
uses  the  source. 

�9 Ro l e  is the name given to the link between an object and its connection with a 
relationship. From the example above, the process would be the user  and the 
source would be the or ig in  of the data. 
Formally, a meta-model of a technique can be defined in OPRR as a six-tuple 

M = (O,P,R,X,r ,p) ,  where 

O is a finite set of object types 
P is a finite set of property types 
R is a finite set of relationship types 
X is a finite set of role types 

r is a mapping r :R-+  Xxgo(O 

In other words, r is a total mapping from the relationship types to sets of 
cartesian products. This mapping shows the bindings of the relationships to 
their roles and of the roles to object types, that can act in those roles. 

p is a mapping p: NP ~ go(P), where NP = {O u R u X} is the set  of n o n - p r o p -  

er ty  types.  In other words, NP is a partial mapping from the non-property types 
to all subsets of property types. The mapping defines the property types 
associated with the non-property types. 
In the sequel we will use indexes, e.g. O T and M T to indicate the meta model of 

a particular technique T. As said earlier we consider a method M to be a set of 
techniques. The meta model of the method is thus M,~ = UM~,  because we omit here 

T~M 

the interconnections between methods. The metamodel of a method has been added to 
the original OPRR definition in [Smo91] to allow a simple handling of methods, which 
contain sets of techniques. 

2.3. OPRR Definition of an example technique 

We use here the definition of OMT method's Class Diagram technique [Rum91] as a 
source of metric values. OMT is an object-oriented method, which uses extensively 
graphical diagrams to describe information systems. The Class Diagrams are used for 
analysing and modelling class hierachies and the associations between classes. Their 
representations are depicted in Figure 3. Classes are connected to each other by 
Inheritance, Aggregation or Association relationships. Classes are connected to 
Objects by Instantiation relationships. 

The Class Diagrams have been formally specified using the OPRR model. The 
result is the graphical OPRR model depicted in figure 2. (See [Smo91, Ros94b] for the 
definition of the graphical OPRR technique). 
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Fig. 1. Basic concepts of Class Diagrams. 

The model contains some "dummy" objects in addition to those mentioned 
above to handle ternary relationships of the method with the binary OPRR 
relationships. The same method definition can be expressed in a sixtuple 

McD = (O, P, R, X, r, p) shown in table 1. 

From ( 

To (Cf~ ~:at~gor',') / / / / / \ A~s~or (n~ type) 

Fig. 2. Part of the OPRR Model of the Class Diagram technique of OMT ]Ros94/ 
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O= {Class, Disjoint divider, Divider, Object, Subclass group} 
P= {Class name, Group name, ID, Object name, Aggregation name, Association name, Attributes, 

Discriminator, Link Attributes, Operations, Ordered, Qualifier, Role name, Cardinality } 
R= {Aggregation 1 to 1, Aggregation l to M, Association (optional to 1), Association (optional to 

many), Association (optional to optional), Association 1 to 1, Association 1 to many, 
Association many to many, Generalisation, Generalisation/Specialisation, Instantiation, 
Qualified association 1 to 1, Qualified association 1 to many, Qualified association many to 
many, Specialisation } 

X= { Ass 1 part, Ass M part, Ass opt part, Assembled to, Gen from, Gen to, Generalisation part, 
Instantiates, Part of, Qualified 1 part, Qualified M part, Specialisation_part, Superclass part, 
is instance of} 

r=- {<Aggregation 1 to 1, {<Assembled to, {Class }>, < Part of, {Class}>}> 
<Aggregation 1 to M, {<Ass M part, {Class, Class }>, < Assembled to, {Class}>}>, 
<Association (optional to 1), {<Ass 1 part, {Class }>, < Ass opt part, {Class}>}>, 
<Association (optional to many), {<Ass opt part, {Class }>, < Ass M part, {Class, Class}>}>, 
<Association (optional to optional), {<Ass opt part, {Class }>, < Ass opt part, {Class}>}>, 
<Association 1 to 1, {<Ass 1 part, {Class }>, < Ass l part, {Class}>}>, <Association 1 to 
many, {<Ass M part, {Class, Class }>, < Ass 1 part, {Class}>}>, <Association many to many, 
{<Ass M part, {Class, Class }>, < Ass M part, {Class, Class}>}>, 
<Generalisation/Specialisation, { <Specialisation_part, { Class }>, < Generalisation part, 
{Class}>}>, <Instantiation, {<is instance of, {Class }>, < Instantiates, {Object}>}>, 
<Qualified association 1 to 1, {<Ass 1 part, {Class }>, < Qualified 1 part, {Class}>}>, 
<Qualified association 1 to many, {<Qualified 1 part, {Class }>, < Ass M part, {Class, 
Class}>}>; <Qualified association many to many, {<Ass M part, {Class, Class }>, < Qualified 
M part, {Class}>}>} 

p= {<Class, {Class name, Operations, Attributes}>, <Disjoint divider, {ID, Discriminator}>, 
<Divider, {ID, Discriminator}>, <Object, {Object name, Attributes}>, <Subclass group, 
{Group name}>, <Ass 1 part, {Role name}>, <Ass M part, {Qualifier, Cardinality, Role 
name, Ordered}>, <Ass opt part, {Role name}>, <Assembled to, {Role name}>, <Qualified 1 
part, {Qualifier, Role name}>, <Qualified M part, {Qualifier, Role name, Cardinality}>} 

Table 1. OPRR definition of Class Diagrams 

This example will be used in the following chapters as a source to define metric 
values. 

3. Metrics for techniques and methods 

This chapter outlines a number of metrics and their purpose. The metrics are derived 
and enhanced from metrics proposed in the earlier literature on the complexity of  
specification techniques [Tei80]. W e  describe the metrics on two levels: the technique 
level, which describes the characteristics of  one technique and on the method level, 
which describes the complexity of  a set of  techniques. 

Complexi ty is here classified into two categories: the complexity of learning 
and understanding the method, which is caused by the number of different constructs 
used in the technique or method [Tei80], and the complexity of the products, which is 
caused by the number of  describing properties of objects and relationships. W e  are not 
trying to derive normative values such as "quality" or "learnability" from the measures, 
because these are not direct numerical attributes of  the models [Fen94]. 

To avoid reported problems of  design and specification metrics [Alb83, Hen81 ] 
i.e. poor  theoretical foundations, being hard to analyse, and being flawed derivatives 
of  code measures [Ki tg l ,  Roc94], we try to present the thing to be measured, a formal 
mathematical  basis of  the metric for the measure and guidelines for the interpretation 
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of the obtained values. Also the metrics are defined so that they are directly 
computable from the properties of the methods [Fen94]. 

For each metric the following is described: The formula for computing the 
metric, a brief explanation of the metric and the expected values of the metric and their 
interpretation. The expected values are given as box-plots, that have been obtained 
from the collection of techniques. The collection is represented in appendix 1. A box- 
plot is a five number summary of (minimum, lower quartile, median, higher quartile, 
maximum) [Tuk77]. The box-plot gives an interval, where the values should locate. If 
tighter intervals are needed, one could use for example box-plots or medians and 
variances from a category of techniques. For example in case of Class Diagrams we 
could use a group of object description methods. The box-plots can be found in 
Appendix 2. 

The quartiles and median give the range of expected values for a given metric 
and most of the methods will fall into the range between a lower and upper quartile. If 
we find a significantly lower or higher value, there will be a need to analyse the 
reasons for that, and either change the method model or accept the the model as it is. 

The metrics suggested here are not expected to produce nice regressions, and to 
infinitely come closer to a certain numerical value, as in traditional software science 
[Hal77]. The obtained metric values have the usual properties of metric data, i.e. the 
distributions are discrete, heavily skewed and there are a lot of outliers [Kit91], which 
make the usual statistical techniques unsuitable. Thus we apply data analysis and 
outlier analysis to unterstand the reasons for abnormal values. As Kitchenham points 
out, [Kit91] the interpretation of the results makes metric values meaningful, not their 
comparison with some arbitrarily given values. Yet, to make the judgements easier, we 
have derived some guiding values from the available material. The comparison of 
metric values between methods of similar species should be particularly fruitful. 

3.1. Technique level 

We assume a technique MT =(OT,PT,RT,X.r,rT,PT ) . We use the function n(A) to 

denote the number of elements in the set of A. As all sets are considered to be finite 
(see section 2), this function always yields finite numbers. 
Independent measures. The first measure is the number of object types used per 
technique. This measure, and the following two, are used while analysing the 
complexity of the technique on the basis of the number of concepts to be learned. They 
were suggested already by Teichroew et al. [TeiS0]. The greater the number, the more 
complicated the technique. On the other hand, the technique with more concepts 
should also be able to capture more precise or detailed information about the object 
system, as claimed by Oei and Falkenberg [Oei94]. 

1. n(OT) 

The count of object types per technique. This metric shows the number of 
individual object types used to specify object systems. In the case of Class Diagrams, 
we find out that n(Oc~,~o~,gr,~) = 5. This can be compared to the box-plot in appendix 

2, and this shows, that the value is somewhat big, in the maximum line. 
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2. n(Rr) 

The count of relationship types per technique. This is the number of concepts, 
which are used for describing connections between objects. The value 
n ( R e ~ D ~ )  = 15 is marked as extreme value in the box-plot. The reason for the big 

number is partially the way of modelling the particular method in OPRR, because all 
the subtypes of relationships with different cardinalities have been modelled with 
separate relationship types. The reason for this choice is that the technique has been 
modelled for use with a CASE tool and the relationships with different graphical 
appearance have been modelled as different types. 

The reader should notice, that the lower quartile and the minimum have the 
same value (1), and thus the number of relationship types tends to be quite low, 
between 1 and 5 for most techniques. 

3. n(P~) 
The number of property types per technique. The value n(Pc,,~Di,g~) = 14, is 

in the upper quartile line, but most CASE tools allow the specification of various 
properties per object or relationship type, so n(PT) can be rather high in comparison 

to n(Or) and n(Rr). The reader should notice, that this is not the construct used 

directly in the following metrics, because the next metrics count properties per object, 
or a relationship type. 

The following three metrics (formulae 5, 7 and 9) suggest metrics, that measure 
the complexity of the description of the object or relationship types. 

4. Po(Mr,o)= n(pr(O)), where o ~ O  r 

1 ~Po(MT,o ) 5. Po(MT,O)- n(OT)o,OT 
The fourth formula is the number of properties for a given object type. It is 

defined separate by, in order to be able to define the method level summaries later. 
The fifth formula is the average number of properties per object type. This metric 
shows the average internal complexity of the object types in technique. The value 
Po(Mc~Dia,~) = 2 is quite typical, and it seems that most of the techniques fall into 

the range between one to three properties per object type. 

6. PR(MT,e)=n(pT(e))+ •n(p(x. i ) ) ,  where i=(1,0) and e ~ R  T 
x~rr (e) 

V. PR(MT)= 1 , 2Po(MT,o ) 
n(Rr) ,~RT 

The sixth formula is the number of properties of a relationship type and its 
accompanying role types. The inner sum of the equation counts the number of 
properties for all the role types associated with the current relationship type. Formula 
seven counts the average number of properties per relationship type. This metric 
shows the complexity of the interface between object types. The value 

PR(Mc~o~,~ ) = 4.0 is quite normal. 
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8 jill whe ej= 0 and o OT 

1 
9. Ro(M~)-n(Or)  o~n(Ro(MT,o)) 

Formula 8 gives the number of  relationship types that can be connected to a 
certain object type. Formula 9 gives the average number of  relationship types that can 
be connected to a given object type. This metric measures, how complicated it is to 
select the right connection between object types. For example a requirements analysis 
technique can just use one connection type, whereas a detailed design technique can 
present a large number of slightly different relationship types. 

This metric was chosen instead of, for example the average number of object 
types, that can be connected by a given relationship type, because in the usual use the 
developers are faced with the selection of a relationship type between objects instead 
of making first a relationship and then selecting object types for the relationship. The 

value for R o ( M c ~ D i ~ )  = 4.4, which is in the upper quartile line and shows, that the 

method has quite simple descriptions of the interfaces between objects (formula 7 
above), but a high number of relationship types in the interface. The result can be 
interpreted that the complexity of using the relationships in this method is in the 
selection of the right relationship type and not in describing further the connection the 
relationship represents. 
Aggregate metrics. The independent metrics above described the individual 
characteristics of techniques. In this section we propose some aggregate metrics, that 
can be used to measure the overall complexity of the technique. 

P~176 ,where i = (1,0) and 10. C(Mv,o) = • pR(Mx,e) 
{ RI~R'~bEr:(R, --b.i)~,(3ffc(bj ):(o~.j ))} 

j :(0,1) 

11. C ( M x ) :  ,i  , s  
ntO j o OT 

The quotient (formula 10) shows the division of work in this technique, i.e. are 
things described by their internal properties, or external connections. The quotient will 
get higher values if there are many properties and a few relationship types with a few 

The value for C(Mc~Di,g~,m)= 0,91 is quite close to the median line, and it properties. 

shows that the method gives considerable importance to external connections. 

12. C'(M~) = ~]n(O~)2 + n(RT)2 + n(P~) 2 

The total conceptual complexity of a technique is not a straightforward 
measure, but we use the sum vector of the individual complexity factors of formula 1, 
2 and 3. We propose to use it as the complexity vector in a xyz-coordinate system, that 
can be compared with other techniques. 
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In figure 3 we show the xy-plot of objects and relationships. It shows that Class 
Diagrams are more complex than average in number of relationships, but average in 
number of objects. 

O b j e c t s  
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~ o o 
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,i ~ 1"0 1"2 1"+ 16 
R e l a t i o n s h i p s  

Fig. 3. Object / Relationship for Techniques 

�9 C l a s s  D i a g r a m  

3 . 2 .  M e t h o d  l e v e l  m e t r i c s  

Methods are here treated as collections of individual techniques, and thus we are 
omitting the problems related to the complexity of interconnected methods, due to the 
used meta modelling techniques inability to tackle with multiple techniques and their 
connections. This area clearly needs to be addressed in the future, but currently there 
is a lack of formal models of method interconnections as well as clear and 
unambigious decription of these interconnections in the methods [Ke194]. Thus 
method level complexities are simply summaries of individual technique complexities. 

The cumulative complexities for method are counted first for each of the 
object, relationship and property types. 

13. n ( O ) :  ~n(Or)  
T~M 

14.  n(R )= ~n(R~) 
15. n(P+)= 

TeM 

The following are the aggregate complexity metrics for the method level. 
16. C(M)=  EC(Mr)  

T e ~  

= 4n(O•)+  n(RM)2 + n(PM) 17. c ' (M)  2 

The cumulative complexity can either be defined as the cumulative value of 
each individual technique's complexity, or we can take the sum vector of the totals of 
formulae 13, 14 and 15. The cumulative complexity returns a value, that explains the 
total complexity of the method. The sum vector identifies the "style" of the method, 
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i.e. whether it describes the object systems by the properties, or relationships or 
objects, and whether these are used in a coherent and consistent style. 

The values for OMT are the following: n(OoM~)=13, n(RoM~)=19 and 

n(t'o~)= 26. The total complexity value is: C'(MoM~)= 35.92. In Appendix 3 the 

values of these metrics are given for 15 methods. The reader should notice that we 
haven't divided the complexities by the number of techniques in a method n(Yvf). This 

would hide the overall complexity of methods with a large number of techniques. 

Objects 
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Fig. 4. Object / Relationship for Methods 

On the method level it can be useful to check out the balance of individual 
techniques in the methods: i.e. if one of the techniques is very heavily loaded (i.e. has 
much more concepts than others), or the parts of the method are very different in style, 
this should be made explixit. In the case of OMT the Class Diagrams use 14 of the 
total of 19 relationship types and the other measures also have highest numbers in 
CD's. This means that the CD's are hard to learn and they are probably quite important 
for the method, because the main attention in development has been devoted to them. 
The checking ot the balancing can be done by counting the methods internal variances 
of each of the metrics and pointing out strange or extraordinary values. 

4. D i scuss ion  a n d  future  research 

In this paper we have proposed a set of metrics to evaluate the complexity of software 
development techniques and methods. By doing so we wish to guide and instruct the 
method developers to understand and analyse more systematically methods they 
suggest. Our goal is to establish one set of instrumental tests, that can be easily, and in 
a cost effective manner, used in evaluating methods. The proposed metrics are 
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relatively simple due to the fact, that they are easier to understand and there is not 
much point in developing more complex metrics before we know more about the 
nature and measuring of methods. 

One interesting comparison could be made between the implementations of the 
same techniques or methods in different CASE tools. This could show some 
differences in the complexity of the use of one technique in different tool 
environments. Similarly the various implementations of rule checking in Entity 
Relationship diagramming and Data Flow diagramming in CASE tools has been 
compared by Vessey [Ves92]. The metrics have been applied here only with OPRR- 
models, but their adaptation for ER-based metamodels in other CASE tools should be 
straightforward. 

The metrics proposed here analyse only the conceptual part of the techniques, 
and they should be accompanied with a set of metrics for the complexity of the 
resulting models. The analysis of resulting models could be used to verify the method 
complexity. There should be a negative correlation between the complexity of the 
method and the size of the produced models, if the methods conceptual complexity 
leads into greater expressiveness [Oei94]. We believe, that there is a balance between 
learnability and expressive power of the method, and the organisations selecting 
methods should be aware of the fact, that more powerful methods are harder to learn, 
but can be more effective for experienced users. 

Furthermore the metrics should be tested by method developers and in that way 
we could reach a set of metrics that can predict the properties of techniques such as 
learnability and model size. 

The limitations of the approach proposed here are: first, there is no way of 
representing constraints of the technique in OPRR and OPRR can only model the 
static aspects of the techniques. Secondly, OPRR is not capable of dealing 
appropriately with interconnected methods. Third, our values should be complemented 
with empirical experience from practical applications of methods in use. 

In the future we'll have to consider integrated methods and derive metrics for 
them. In that work we'll need better understanding of integration of techniques and 
how that complicates, or simplifies, the methods. Also we should gather empirical 
material about the learnability of different techniques and their implementations and 
about the use of different constructs in different techniques. 
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Appendix 1. Values obtained from 34 techniques 

This table lists the values o f  34 techniques mode l led  by O P R R  in the MetaEd i t  

envi ronment .  The  table shows the name of  the method,  the name of  the technique and 

the values  obta ined for the formulae,  which are referred by their  number  in the main 

text. 

Method Technique 1 2 3 5 7 9 11 12 
Yourdon Entity Relationship 3 2 6 2,33 1,67 ,50 1,44 7 

Attribute Diagram 
Yourdon Data Flow Diagram 3 2 6 1,67 2 1 ,42 7 
Yourdon Structure Chart 1 1 4 2 1 2 ,67 4,24 
Yourdon State Transition 3 1 5 2 1 4 ,40 5,92 

Diagram 
OODA Class Diagram 3 9 10 4,67 5 1,44 ,70 13,78 
OODA Module Diagram l 0 1 4 3 1 1 1,50 10,82 
OODA Object Diagram 1 6 8 5 6 4 ,17 10,05 
OODA Process Diagram 2 1 6 4 1 3 1 6,40 
OODA State Transition 3 1 4 1 1 3 ,25 5,10 

Diagram 
JSP Data Structure 1 1 3 3 1 3 3,32 

Diagram 
JSP Program Structure 2 2 5 2,50 1,50 1,75 5,74 

Diagram 
OOAD Object Oriented 3 5 6 2,33 4 1 ,37 8,37 

Analysis and Design 
OOAD Service Chart 3 2 7 2,67 2 ,50 ,89 7,87 
OOAD Object State Diagram 1 1 3 2 1 1 1 3,32 
OMT Class Diagram 5 15 14 2 4,40 4 ,91 21,12 
OMT Data Flow Diagram 3 3 8 1,67 3 2 ,19 9,06 
OMT State Diagram 4 1 4 1,50 1 2 ,50 5,74 
FUSION Object Model 4 4 8 2 2,25 ,75 ,54 9,80 
FUSION Object Interaction 2 1 7 3 1 3 ,75 7,35 

Graph 
MOSES O/C Model 4 8 10 4,50 6 1,88 ,67 13,42 
MOSES Event Model 1 1 6 3 t 4 ,60 6,16 
Shlaer/ Information Structure 2 4 8 2,50 2 5 1,06 9,17 
Mellor Diagram 
Shlaer/ Action Data Flow 2 4 7 2,50 3 1,75 ,30 8,31 
Mellor Diagram 
Shlaer/ State Transition 3 1 5 2 1 4 ,40 5,92 
Mellor Diagram 
OSA Object Behavior 3 4 6 3 4 1 ,38 7,81 

Model 
OSA Object Interaction 1 2 4 1 2 2,50 ,14 4,58 

Model 
OSA Object Relationship 5 7 11 1,80 2,20 1,57 ,75 l 3,96 

Model 
Goldkuhl Activity model 5 5 8 1,60 2,80 ,20 ,55 10,68 
Demeter Demeter 3 2 5 4 2 ,50 1,33 6,16 
Express EXPRESS-G 5 6 13 2,20 4 2,67 ,14 15,17 
SSA Structured Systems 3 2 10 3 2 2 ,50 10,63 

Analysis 
SSA Entity Relationship 3 2 6 2,33 1,67 ,50 1,44 7 

Attribute Diagram 
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RTSA Real-Time Structured 5 7 4 2,20 4,20 1 ,30 9,49 
Analysis 

RTSA Entity Relationship 3 2 6 2,33 1,67 ,50 1,44 7 
Attribute Diagram 

RTSA Structure Chart 1 1 4 2 1 2 ,67 4,24 
RTSA State Transition 3 1 5 2 1 4 ,40 5,92 

Diagram 

Appendix  2. Boxplots  for Techniques  

The 5-point box-plots can be read as (from left to right): bar representing minimun, 
box starting from lower quartile, in the box there is the median bar and end of the box 
is the upper quartile, fifth bar is the maximum. The outliers are indicated by a marker 
with the name of the technique (objects number with the * indicating Booch module 
diagrams is an example). Notice, that the scales differ from figure to figure to ease the 
reading of the boxes. 

Module Diagram 

I Class Diagram 

0 

I 
C l a ;  Diagram 

~ g ~ f0 fz 1"4 

Fig. 5. Boxplots for formulae 1, 2 and 3 for techniques 
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Fig. 6. Boxplots for formulae 5, 9, 7, 10 for techniques 

Appendix 3. Values obtained from 15 methods 
Method n* 13 14 15 16 17 

FUSION 2 6 5 15 1,20 17,15 
JSP 2 3 3 8 9,06 
MOSES 2 5 9 16 2,11 19,58 
OMT 3 12 19 26 3,58 35,92 
OOAD 3 7 8 16 ,88 19,56 
OODA 5 19 18 32 2,44 46,15 
OSA 3 9 13 21 1,54 26,36 
RTSA 4 12 11 19 1,27 26,65 
Shlaer/Mellor 3 7 9 20 3,44 23,39 
SSA 2 6 4 16 1,25 17,63 
Yourdon 4 10 6 21 1,50 24,16 

* n is the number  of techniques in the method 


