
A Federated Approach to Tool Integration

Malek Bounab and Claude Godart

CRIN/CNRS BP 239, 54506 Vandceuvre-l~s-Nancy, France
E-mail: {bounab, godart} @loria.fr

Abst rac t . Due to enormous pressures from national and international
marketplaces, computer Integrated Manufacturing (CIM) has become a
tremendously important area for both research and development. How-
ever, the current state of the art is still characterized by islands of au-
tomation. In order to connect these islands, appropriate frameworks have
to be developed to integrate heterogeneous computer Aided Design (CAD)
tools. We present in this paper a federated approach to tool integration
in distributed and heterogeneous environments making tools evolve in
an autonomous way. We have experimented this approach by integrat-
ing PROPEL 1 and SPEX 2 CAD tools in the DMMS (Design Management and
Manufacturing system) environment backed by a c o m m o n PCTE a repos-
itory.

1 Introduction

CIM environments have known, these recent years, a tremendous expansion due
to enormous pressures from national and international marketplaces. The pur-
pose of CIM environments is to integrate all processes carried out within an
enterprise. However, these environments are still characterized by heterogeneous
islands of automation composed of monolithic CAD tools. Therefore, integrating
tools becomes a key issue to offer homogeneous environments allowing (i) an
uniform underlying communication system for events notification and messages
interchanging between tools (control integration) (ii) an uniform repository in
which all data are stored and shared (data integration) (iii) an uniform "look
and fell" which enable users to swith between different tools easily (presentation
integration) and (iv) an uniform and coordinated processing of activities with
other tools (process integration).

We focus in this paper on the data integration dimension. A standard ap-
proach consists in integrating all data into a large centralized database (like in
GANDALF [1], CPS [2] and PECAN [3]). Though, tools involved in CIM environ-
ments are generally spread over different locations. On the other hand, a com-
mon representation doesn't always matches tools data modeling requirements

PROPEL is a p roduc t of ITMI
SPEX is a p r o d u c t of TNI, CRAN and SPIE-TRINDEL
P C T E iS an ISO s t a n d a r d providing an open repos i tory for sof tware deve lopment .
We use in our expe r imen t an i m p l e m e n t a t i o n of PCTE 1.5 n a m e d E m e r a u d e V12.5,
p r o d u c t of GIE EMERAUDE

270

and it is often necessary to use different data models. Heterogeneous distributed
databases (HDDB) seem to fulfill both previous requirements since they allow
tools, scattered on different locations, to use data models which best fit their
data modeling (eg: DATAPLEX [4] and IMDAS [5]). However, tools have to access a
global schema, representing all data managed by HDDB, even for their own data,
implying a loss of autonomy and performance.

This paper addresses the problem of tool integration in distributed and het-
erogeneous CIM environments where tool autonomy is an important require-
ment. We propose a federated approach built on the architecture of a federated
database [6] preserving tools autonomy regarding the distribution and the hetero-
geneity of data. We present in section 2 the integration architecture and method-
ology followed to build tool federations. This methodology is experimented in the
DMMS (Design Management and Manufacturing system) environment backed by a
common PCTE repository. We focus in this paper particularly on data integration
during the design step. Different integration steps leading to tool interoperability
are described in section 3 and a production scenario showing tools cooperation
for mechanical parts design concludes this section. The final section presents
some lessons learned from our experiment and from the use of PCTE, initially
designed for software engineering requirements, in a manufacturing environment.

2 I n t e g r a t i o n A r c h i t e c t u r e a n d M e t h o d o l o g y

The DMMS environment, actually developed jointly by the computer science
Research center of Nancy (CRIN) and the Automation Research center of Nancy
(CRAN) [7, 8, 9] (figure 1), aims to establish a semantic link between different
concurrent manufacturing functions.

DMMS intends to couple mechanical and automation working fields for design-
ing and managing a product. It is composed of four working stations achieving
(i) the design function, provided by automation and the mechanical working
stations, which cooperate to design a product, (ii) the manufacturing function,
provided by the flexible cell, which aims to execute the manufacturing of designed
product, (iii) the maintenance function, provided by the maintenance working
station, which insure the maintenance of a product during all its life cycle and
(iv) the management of exchanged data between different working stations by
the management working station. Each working station is composed of a set of
tools integrated on top of a local repository. The different set of tools cooperate
through a common PeTE repository.

The federated approach to tool integration is based on the reference archi-
tecture defined in [6] for database interoperability and consists in defining a set
of schema levels which ensure, on the one hand, a tool autonomous access to
its data and, on the other hand, a federated access to other tool's data via a
canonical data model.

The data managed by tool and the relationships between them are defined
by a reverse engineering process [10]. An abstract data representation is built
using a conceptual data model which is, in our case, the ERA model [11].

271

~Management orking Station f~--~l PCTE] ~'

(~ n a ~ a l Rep~ 1 I ~ ~ (f- IFlexibleCell L~ Rep~176 1

Maintenance Working Station j k,. Flexible Ceil Working Station J

Fig. 1. DMMS ARCHITECTURE

Local accesses are done through local schemas expressed in the tool integra-
tion repository data model. This allows tools to access their own data locally
and in an autonomous way without managing other data. We can then choose
the most suitable local data model which best fit tools data modeling constraints
and requirements.

Local schemas are then translated into a common data model which provides
a coherent view of many distinct tools data. Different views, defined on these
translated schemas, are integrated into a global federated schema representing
all information which may be shared between tools. Finally, a view on these
schemas allow tools interaction and cooperation. This view definition is visible
to all federated tools in addition to their own local schemas.

To summerize, we give hereafter different steps of our methodology achieving
tool integration in a heterogeneous and distributed environment.

- s t e p 1: Define different tool federations by grouping tools according to a
given criteria (eg: their application field).

- s t e p 2: Define conceptual schemas by a reverse engineering process from
tools managed data. The objective of this step is to define an abstract rep-
resentation of tool data without considering any physical repository.

- s t e p 3: Translate each conceptual schema to tool integration repository
data model. The obtained schemas, expressed in the native data model of
the database, are called local schemas.

- s t e p 4: Translate each local schema to the canonical data model which
unifies data representations through tool federation. The obtained schemas
are called translated schemas.

- s t e p 5: Build exported schemas by defining views on translated schemas.
Exported schemas are requested because not all translated data have to be
viewed by the federation. These views are defined for specific class of users
and applications.

- s t e p 6: Exported schemas are then integrated into federated schemas. The
schema integration [12] provides data consistency between different exported
schemas since common entities are merged into one unique entity after re-

272

solving name and structure conflicts.
At this level, auxiliary schemas may also be integrated to the federated
schema. These schemas may contain information not directly related to tools
but, for example, to the current project.

- step 7: To a given application or group of users, not all information belong-
ing to the federated schema have to be viewed by tools. Therefore, we have
to define a specific view on federated schemas called external schemas.

The number of these steps is not fixed. For example, if local and canonical
data models are identical, a translated level is not required. The exported level
is also not necessary if we want to integrate into the federated schema all trans-
lated schemas. In fact, the number of federation levels depends mainly on the
federation components.

3 E x p e r i m e n t i n g t h e T o o l I n t e g r a t i o n M e t h o d o l o g y

We focus here on the design function which is mainly achieved by the mechanical
and the automation working stations. This function deals with the relationship
between the mechanical and automation skills which cooperate to design a prod-
uct. It is a relatively long step since both two skills have to frequently reconsider
their previous design. This is due to the set of physical requirements and con-
straints which must be considered during the manufacturing step.

The tool integration experiment involves the integration of PROPEL and sPEX
CAD tools. These tools, respectively representative of mechanical and automation
skills, have to cooperate widely to achieve mechanical and automation part de-
s i g n . MATISSE 4 database models mechanical local data while PCTE models those
of the automation working station.

3.1 Reverse Engineer ing of the Tools

As we integrate only two tools belonging each to a different skill, each tool
federation is reduced to only one tool. As a consequence, the first step of our
methodology in not required. The second step consists in building conceptual
schemas of the tools by reverse engineering from their data.

P R O P E L Mechanica l Design Tool
PI~OPEL [13] is an expert system generating process plans from part and work-

shop descriptions. The part is described by geometrical features (faces, slots,..)
and relationships between them (coaxiality, parallelism...). The workshop is de-
scribed by a set of machines (lathes, milling machines ...), manufacturing tools
present in the workshop (drills, face-cutters...) and the relationships between
them. Part and manufacturing process plan descriptions are textual files which
are either created by a tool or a user. In the following we present PROPEL and
SPEX tools and the modeling of their data.

4 MATISSE is an object oriented database produced by Intellitic InternationM SNC.

273

Part and Manufacturing Process Plan Description and Modeling
The second step of the integration methodology consists in extracting data

contained in the part and the process plan descriptions, by reverse engineering,
in order to model data handled by PROPEL. The description of a part in P R O P E L

(figure 2.a) contains basic features composing it and the physical and geomet-
rical characteristics of each feature. P R O P E L being closed, we have considered
only input and output data corresponding respectively to the part and the man-
ufacturing process plan descriptions. The part schema (figure 2.b) includes all

(part totom
(quality 10)
(ra 6.3)
(s-x 60)
(s-y 60)

~feature up (type
cluttered-face)

(normal x-)
(s-y 42)
(s-z 42)

)
(feature down (type

circular-face)
(normal z-)
(s-x 60)
(s-y 60)

)

(a)

�9 eyl I l ~ ~ ,,,]1.1

~tap_hole_

Hole l

10 PHASE LATHE
SUB-PHASE UP
OPERATION FACING-TOOL
FINISHING DOWN

20 PHASE MC-TRAD
SUB-PHASE DOWN
OPERATION FACE-CUTrI~

FINISHING SLOT

(c) (d)

Fig. 2. Part and Process Plan Description and Modeling (step 2)

the features and parameters composing and describing a part. We have followed
a top-down approach to break down a part into a set of features managed by
P R O P E L . Therefore, the schema describing a part contains all features which may
occur in its description.

The manufacturing process plan generated by PROPEL (figure 2.e) represents
operations to be processed in order to achieve a part manufacturing. These oper-
ations are structured in phases corresponding to machines involved in part man-
ufacturing. From the process plan description generated by PROPEL, we build, by
reverse engineering, the process plan schema depicted by figure 2.d. Each part
(represented by the entity part) has one associated process plan (process-plan

27z.

entity) linked to a phase entity. Each phase is linked to a set of sub-phases which
are, in their turn, linked to operations. Each operation is composed of toolings
processed on features. We associate, for each phase, a machine and, for each
sub-phase, a feature.

SPEX Automation Design Tool
sPEX [14] is an environment allowing to specify, to design and to prototype au-

tomation systems. The objectives of SPEX are to allow designers to build reusable
behaviors and to validate a functional organization during the analysis phase.
sPEx manages two kind of automation components which are the functional box
(FB) and the functional diagram (FD).

A functional box is a "behavioral" unity producing one or many output values
from a set of input values and parameters and may be a graphcet, a ladder, a
logical schema or a C program. Several behavioral boxes may be instantiated
from a "generic" functional box. Each FS has its own identifier, a behavior and
a set of variables (input, output and parameters). A functional diagram is a
collection of FBs and/or FDs interconnected via their input/output interfaces
and representing a composite behavior.

Building a SPEX Automation Design Application
We use a top down approach to define a SPEX application . That means that

all FDS are initially empty and are completed by the automation engineer while
needed information are received from the mechanicM engineer. SPEX automation
design application considers four basic activities occuring in a product design.
These activities are the TRANSPORT activity which handles transport of prod-
ucts between machines during the manufacturing step, the TRANSFORM activity
which considers the effective manufacturing of a product, the STORE/UNSTORE

activities which ensure product storage and unstorage before its use and finally,
the CONTROL activity which controls data flow between the above activities.

The information given by the mechanical engineer are considered in the trans-
forming activity while the controling, transporting and storing/unstoring activ-
ities are defined by the automation engineer, the robotics engineer and the pro-
duction manager. These activities are represented by CONTROL, TRANSPOI~T,

STORE/UNSTORE and TRANSFORM FDs . The FD corresponding to TKANSFOKM

activity is built from information given by the process plan generation step.
Each sub-phase of the process plan corresponds to a generic empty FD and to
each of these FDS is associated a set of manufacturing tools used in this sub-
phase. To each tool, is associated an empty FD which input/output variables
and parameters are set by the automation engineer.

Automation Design Application Schema
The automation design application schema is deduced from the sPEX automa-

tion design application and is completed later by the automation engineer which
has to define each FB behavior and connect different FBs and FDs making up
the application. The schema built from this application comprises Tool, Station,

275

Control, Transform, Transport and Siore/Unstore object types (figure 3). These
object types are all linked t o / _ Var, O_ Var and Behavior object types corre-
sponding respectively to their input variables, output variables and behaviors.

. n 1 . n

Fig. 3. The Automation Design Application Schema (step 2)

3.2 Tool Federa t ion on top of P C T E

P C T E has been initially designed for software engineering needs. It is used in
our architecture as a canonical data model in order to be experimented and
evaluated for manufacturing requirements. It defines a repository in which data
are stored and shared between tools. The choice of a standardized repository as
a canonical data model is a key element of our architecture since it provides an
open framework which homogenize different tool data representations making
their integration and interoperation easier. Tools interoperability is achieved
following the steps 3 to 7 of our integration methodology and is applied to the
integration of SPEX and PROPEL tools by defining the five schema levels.

The Local Level
Data managed by SPEX and PROPEL were modeled, by a reverse engineering

process, using an extended ERA data model independently from the tool inte-
gration repositories. We translate hereafter the conceptual schemas representing
the data managed by the tools into their integration repository.

PROPEL integration repository is MATISSE. It is an object oriented database
using an ERA like data model. Part and process plan conceptual schemas depicted
respectively by figures 2.b and 2.d are translated to MATISSE data model. Each
entity type is translated into an object class, each relationship into a link class
and each attribute type into an attribute class. Cardinalities are kept unchanged.
The resulting schemas are depicted by figures 4.a and 4.b.

276

~ ~ 1 . 1 1.1 I.l 1.a .l

1.1 11

l.l i 1.1 [.

-F ce " Counterbore- Blind-Tapping- I Regular a [C'rcular'Face [I Tapping-Hole Hol~ [

(a) (b)

),

iVi~w~-+~'-~ ~ (c) ~ "~

Fig. 4. PROPEL and SPEX local level (step 3)

SPEX automation design schema is translated into PCTE data model (fig-
ure 4.@ Each entity type is translated into an object type and each relationship
type into a link type. The link category and attribute keys are defined by the
designer. A formal definition of the mapping rules between the ERA and both
MATISS• and PCTE data models is given in [8].

The Translated Level

We focus here on translating local schemas into the canonical data model
corresponding to the fourth step of our integration approach. This translation
is applied only to PROPEL schemas since the local schema (MATISSE) and the
canonical data model (PETE) are different. The correspondent translation rules
transform each object class, link class and attribute class in MATISSE data model
respectively into an object type, a link type and an attribute type in PCTE data
model. Translated schemas of the part and the process plan are represented
respectively by figures 5.a and 5.b. The cardinality of PeTE links doesn't traduce
exactly the same semantics as MATISSE relationship cardinality since a cardinality
one in PCTE represents a (0,1) or (1,1) relationship in MATISSE and a cardinality
many in PeTE represents (0,n) or (1,n) in MATISSE. For a formal definition of
the mapping rules between MATISSE and PeTE refer to [8].

277

(a) (b)

Fig. 5. Part and Process Plan Schemas in PCTE (step 4)

The Exported Level
The definition of the exported level from the translated level is carried out

by defining a view on the translated schemas because not all translated schemas
have to be seen and used by the federation. PCTE provides view definition thanks
to the working schema (ws) mechanism. This mechanism stands for a filter since
it allows to make visible only instances of object types it includes. The instances
of object types which are not contained in the ws are not accessible and therefore
invisible to the federated tools. Therefore, the exported schema should contain
all tool schemas which have to be used by other tools of the federation. The
inclusion of schemas and their order in the ws is managed by the user.

In our experiment, only the process plan and the automation design appli-
cation schemas are included into the ws while the part schema remains local to
PROPEL. The federation can therefore view instances of object types composing
the process-plan and automation-design-application schemas.

The Federated Level
The sixth step consists in defining the federated level by integrating exported

schemas into a federated schema. The integration process, as defined in [12], con-
sists in solving, first, name and structure conflicts before defining common object
type through which tools can cooperate. Finally, schema integration is processed
by importing common object types and other related information which may be
used by tools.

In PCTE, schema integration is achieved using importing mechanism pro-
vided by PCTE. From object and link types of exported schemas, we import
object types common to schemas which have to be integrated. Importing these
object types into the federated schemas allows tools to see, at the federated

278

~--~f---~ ..

jm|n,mlnm,|Hi|,,n,%

X 7 ,j~m, **v, ~ t l , j m

~_ machine #_ ~ tool

i _ ~O~o~ie0~ ~ , ~ ~.,o~ ~ o~o0t ~ , , o . . ~ !
' - - , SPEX and pROPEL common object and link types

Fig. 6. The Federated Schema (step 6)

level, object instances created at the local level by other tools. In our case (fig-
ure 6), we integrate exported part and automation design application schemas.
Object types Processplan, phase, sub_phase and operation and their links are
imported from the process plan schema. Object type Application is imported
from automation design application schema. Therefore, the integrated schemas
share object types machine (called Eta*ion in automation design application
schema), tool and sub_ phase.

The External Level
The external schema, representing the seventh step, is obtained by defining a

view on the federated schema. This view may correspond to a given application
or a class of users which do not need to view all the information represented
by the federated schema. The external schema allows data exchange between
SPEX and PROPEL tools through their common object and link types (Figure 8).
We have integrated into the federated schema, in addition to the information of

i file

indicators

auto

t Peci Tot T
I island-machine I I person ~ ilotin I

I " '
I i~:and-procoss) I L ~ . - ~ :
I -plan J logical-phase ~ l~ base I

Fig. 7. The Auxiliary Management Schema

279

the process plan and automation design application schema, some management
information related to the current project grouped in an auxiliary management
schema (figure7). This schema represents the part, the manufacturing require-
ments (object type reguirements containing a graphical representation of the
currently manufactured part) and persons allowed to work on the project (ob-
ject type person). We have also added to this schema a logical representation
of the project which provides a link between logical and physical aspects of a
project (object type part_ station), logical phase (object type logical_ phase) and
sub-phase (object type logical_sub_phase). Object types part (called project in
the management schema), process-plan (called island-process-plan in the man-
agement schema) and application (called piloting in the management schema)
are common object types allowing the integration of the process plan, the au-
tomation design application and the management schemas.

External schema allows, thanks to the PCTE types importation mechanism to
view object instances created at the local level. It is therefore possible, for any
tool, to manipulate an object type instance of the external schema. Tools can
access shared object type instances through which they can interoperate in an
autonomous way by creating locally their instances and without any knowledge
and management of other tool objects. The only information which should be
known is the external schema. This one must always be included into tools ws to
allow a local access to their objects and a federated access to other tool objects.

| file FJ~r162 ' ~ r 1 6 2 ~ ... :*

~ J ~ specificatmns ~ - par t l ~?

~ -~ . ~ V ~ Application

I I l l island-machinoilDart-station I I p~i,o~ I ":~',"
eca]~ s | l e l a l | �9 eaeleeel 1 ~ ~a , X A , , ~ . ' ~

,-, auto ~ i ex / c,~ ,~ machine ~ ,o?:~ ~-1117~.1

ii logical-phasell ,ogie -sub hase I '#':*

, : T] . _ L
- - PROPEL object and link types __ Auxilary Management Schema object and link types
.... SPEX object and link types "-~ PROPEL and Auxilary Management Schema common object types

"-" SPEX and PROPEL common object types ~ -SPEX and Auxilary Management Schema common object types
i SPEX, PROPEL and Auxilary Management Schema common objects

Fig. 8. The External Schema (step 7)

280

3.3 The I m p l e m e n t e d P r o d u c t i o n Scenario

The objective of the production scenario depicted by figure 9 is to achieve parts
design. The production scenario consists of two main steps which are the me-
chanical and the automation design steps managed by the management working
station. This one allows the mechanical working station to begin its processing
(1). From the information given by the part description file (2) (features and
their physical and geometrical characteristics), we instantiate the MATISSE and
PCTE part schemas (3) respectively at the local and the translated levels. PaO-
PEL generates then, from the part description file and workshop machine and
tool descriptions, the manufacturing process plan file (4). We process this file
to extract information allowing the instantiation of MATISSE and PCTE process
plan schemas (5) belonging respectively to the local and the translated levels.
The end of the mechanical design step is notified to the management station
through the external schema (6). This notification is considered by the manage-
ment working station (7) which can now allow the automation station to start
the automation design step (8).

Mechanical Working Station

~ PROPEL ~
Part Description \ Process Plan

File \ Description File

Part Description
,Objects / Objects ~ O b j e e t s ~

(~)/7)
Mechanical I Automation
Design Step Design Step

Management Working Station

MATISSE

Autom~ t, on Design P C T E
Applica ,ion Objects

F] " ~ Interface I!
Automation Design

SPEX Application
Automation Working Station

Fig. 9. The Production Scenario

Automation design step takes results from mechanical design step (9) to
build, on the one hand, a sPEx automation design application (10) and, on the
other hand, a P C T E automation design application schema at the local level. We
have extended sPEX in such a way that it can create, access and manipulate
PCTE object type instances. This extension, which we have named SPEX-PCTE
interface, generates a SPEX automation design application by counting sub-phase
object type instances belonging to the P C T E process-plan schema at the exter-
nal level instantiated during the mechanical design step. Considering that each
process plan sub-phase corresponds physically to a transformation site, SPEX-
PCTE module creates as much FDs as sub-phases. Created FDs are linked to each
other using their input/output variables. Finally, a schema representing a P C T E

281

automation design application is generated at the local tevel. This schema is com-
piled to be instantiated (11). The end of this step is notified to the management
working station (12). All notifications are done using meca and auto notification
attributes belonging to indicators object type in the external schema. Thanks
to the importation and the ws mechanisms of PCTE, object instances created at
the translated level are visible at the external level since both the process plan
and the application design application schemas are included into the ws.

4 L e s s o n s L e a r n e d a n d F u t u r e W o r k

This paper presents a federated approach to integrate tools in an heterogeneous
environment. We have experimented this approach by integrating two different,
but complementary tools whose integration was never anticipated.

The federated approach presents some lacks mainly related to the incompat-
ibility between the different data models. We have to choose, on the one hand,
a local data model which models the best tool data and, on the other hand,
a canonical data model which has to be semantically rich enough to support
different product modeling. These choices must limit the semantic losts when
translating schemas from local to canonical data model. For our experiment, we
got a favorable situation since both PCTE and MATISSE data models are ERA like
models and therefore relatively homogeneous. This has made easier the trans-
lation between the two models and has limited semantic losts. From this point
of view, a first conclusion is that the PCTE data model, close to the ERA is an
acceptable canonic model, even if little semantic constraint types are handled
by PCTE (we proposed in [15] an extension of the PCTE, inspired from the NIAM
data model to enhance semantic constraint management).

Our second conclusion is that PCTE, due to its schema integration mecha-
nism, provides an active support to federated schema building and mutually to
federated database access. It is generally accepted that tool interaction depends
on the object type granularity considered in the exchange schema. A coarse
granularity limits the number of managed object types but can penalize tools
interactions due to a non enough detailed view of managed objects. On the other
side, fine granularity allows an efficient interaction between tools by enhancing
schema semantics but increases the set of object types we have to deal with.
PeTE is better adapted to manage coarse grain objects. However, it was suffi-
cient in the context of our experimentation. In fact, it seems us that it is more
important to decrease the granularity of the services extracted from tools. The
redesign of tools, in order to extract internal services, even if it is an expansive
task, can take benefits of services provided by PCTE to allow a better visibility
of tool intermediate results and as a consequence to increase interactions and
positive synergetic effects.

As perspectives, we plan to extend PCT]~ data model, initially designed for
software engineering requirements, to cover other ClM requirements such as fine
granularity object management and type instance management while evolving
schemas. In addition, PCTE manages concurrent accesses using locking mecha-

282

nisms and transactions. These mechanisms are efficient for short t ime transac-
tions but are particularly unsuitable for long te rm design processes which can
take several hours and even several days. We plan to integrate to DMMS archi-
tecture long te rm transactions such as those implemented in c o o [16].

References

1. D. Notkin. The GANDALF Project. Journal of Systems and Software, 5(2):91-
106, May 1985.

2. T. Raps and T. Taitelbaum. The Synthesizer Generator. In P. Henderson, editor,
Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 42-48, May 1984.

3. S.P Reiss. PECAN: Program Development System that Support Multiple Views.
IEEE Transactions on Software Engineering, SE-11(2):276-285, Mar. 1985.

4. C.W. Chung. DATAPLEX: an access to heterogeneous distributed databases.
Communications of the ACM, 33(1), Jan. 1990.

5. V. Krishnamurthy, S.Y.W. Su, H. Lam, M. Mitchell, and E. Barkmeyer. A dis-
tributed database architecture for an integrated manufacturing facility. In Com-
puter Society of IEEE, editor, Proceedings of the International Conference on Data
and Knowledge Systems for Manufacturing and Engineering, pages 4-13, 1987.

6. A.P. Sheth and J.A. Larson. Federated Database Systems for Managing Dis-
tributed, Heterogeneous and Autonomous Databases. ACM CS, 22(3), Sap. 1990.

7. G. Morel and P. Lhoste. Prototyping a Concurrent Engineering Architecture, vol-
ume 1 of TSI Press Series, pages 163-167, 1994.

8. M. Bounab. Tool Integration in Heterogeneous Environments: Experimentation
in a Manufacturing Framework. Phd Thesis, National Polytechnicai Institute of
Lorraine, Oct. 1994. (in french).

9. M. Lombard-Gregori. Contribution to discrete part manufacturing engineering :
prototyping a concurrent engineering architecture for manufacturing integrated
systems. Phd Thesis, University of Nancy I, Feb. 1994. (in french).

10. E.J. Chikofsky and J.H. Cross II. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, pages 13-17, Janvier 1990.

11. P.P. Chen. The Entity-Relationship model: Toward an Unified View of Data. ACM
Transactions on Database Systems, 1(1):9-36, Mar. 1976.

12. C. Batini, M. Lenzerini, and S.B Navathe. A Comparative Analysis of Method-
ologies for Databases Schema Integration. ACM Computer Survey, 18(4), 1986.

13. J.P. Tsang. Planification par combinaison de plans: application tLla g~n~ration
de gammas. PhD Thesis, National Polytechnical Institute of Grenoble, 1987. (in
french).

14. H. Panetto, P. Lhoste, G. Morel, and M. Roesch. SPEX : Du Gdnie Logiciel pour
le G~nie Automatique. In ~th Int. Workshop: Software Engineering fJ its Applica-
tions, pages 211-221, Toulouse (France), Dec. 1991.

15. M. Bounab, J. C. Derniame, C. Godart, and G. Morel. DMMS: A PCTE Based
Manufacturing Environment. In Proc. PCTE'93 Int. Conference, pages 431-449,
Nov. 1993.

16. C. Godart. COO: A Transaction Model to Support COOperating Software De-
velopers COOrdination. In I. Sommerville and M. Paul, editors, Proceedings .~th
European Software Engineering Conference, pages 361-379, Garmisch (Austria),
Sept. 1993. Springer Verlag. Lecture Notes in Computer Science, N~ 717.

