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Abst rac t .  Due to enormous pressures from national and international 
marketplaces, computer Integrated Manufacturing (CIM) has become a 
tremendously important area for both research and development. How- 
ever, the current state of the art is still characterized by islands of au- 
tomation. In order to connect these islands, appropriate frameworks have 
to be developed to integrate heterogeneous computer Aided Design (CAD) 
tools. We present in this paper a federated approach to tool integration 
in distributed and heterogeneous environments making tools evolve in 
an autonomous way. We have experimented this approach by integrat- 
ing PROPEL 1 and  SPEX 2 CAD tools in the DMMS (Design Management and 
Manufacturing system) environment backed by a c o m m o n  PCTE a repos- 
itory. 

1 Introduction 

CIM environments have known, these recent years, a tremendous expansion due 
to enormous pressures from national and international marketplaces. The pur- 
pose of CIM environments is to integrate all processes carried out within an 
enterprise. However, these environments are still characterized by heterogeneous 
islands of automation composed of monolithic CAD tools. Therefore, integrating 
tools becomes a key issue to offer homogeneous environments allowing (i) an 
uniform underlying communication system for events notification and messages 
interchanging between tools (control integration) (ii) an uniform repository in 
which all data  are stored and shared (data integration) (iii) an uniform "look 
and fell" which enable users to swith between different tools easily (presentation 
integration) and (iv) an uniform and coordinated processing of activities with 
other tools  (process integration). 

We focus in this paper on the data integration dimension. A standard ap- 
proach consists in integrating all data into a large centralized database (like in 
GANDALF [1], CPS [2] and PECAN [3]). Though, tools involved in CIM environ- 
ments are generally spread over different locations. On the other hand, a com- 
mon representation doesn't always matches tools data modeling requirements 

PROPEL is a p roduc t  of ITMI 
SPEX is a p r o d u c t  of TNI, CRAN and  SPIE-TRINDEL 
P C T E  iS an  ISO s t a n d a r d  providing an  open  repos i tory  for sof tware  deve lopment .  
We use in our  expe r imen t  an  i m p l e m e n t a t i o n  of PCTE 1.5 n a m e d  E m e r a u d e  V12.5, 
p r o d u c t  of GIE EMERAUDE 
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and it is often necessary to use different data models. Heterogeneous distributed 
databases (HDDB) seem to fulfill both previous requirements since they allow 
tools, scattered on different locations, to use data models which best fit their 
data modeling (eg: DATAPLEX [4] and IMDAS [5]). However, tools have to access a 
global schema, representing all data managed by HDDB, even for their own data, 
implying a loss of autonomy and performance. 

This paper addresses the problem of tool integration in distributed and het- 
erogeneous CIM environments where tool autonomy is an important require- 
ment. We propose a federated approach built on the architecture of a federated 
database [6] preserving tools autonomy regarding the distribution and the hetero- 
geneity of data. We present in section 2 the integration architecture and method- 
ology followed to build tool federations. This methodology is experimented in the 
DMMS (Design Management and Manufacturing system) environment backed by a 
common PCTE repository. We focus in this paper particularly on data integration 
during the design step. Different integration steps leading to tool interoperability 
are described in section 3 and a production scenario showing tools cooperation 
for mechanical parts design concludes this section. The final section presents 
some lessons learned from our experiment and from the use of PCTE, initially 
designed for software engineering requirements, in a manufacturing environment. 

2 I n t e g r a t i o n  A r c h i t e c t u r e  a n d  M e t h o d o l o g y  

The DMMS environment, actually developed jointly by the computer science 
Research center of Nancy (CRIN) and the Automation Research center of Nancy 
(CRAN) [7, 8, 9] (figure 1), aims to establish a semantic link between different 
concurrent manufacturing functions. 

DMMS intends to couple mechanical and automation working fields for design- 
ing and managing a product. It is composed of four working stations achieving 
(i) the design function, provided by automation and the mechanical working 
stations, which cooperate to design a product, (ii) the manufacturing function, 
provided by the flexible cell, which aims to execute the manufacturing of designed 
product, (iii) the maintenance function, provided by the maintenance working 
station, which insure the maintenance of a product during all its life cycle and 
(iv) the management of exchanged data between different working stations by 
the management working station. Each working station is composed of a set of 
tools integrated on top of a local repository. The different set of tools cooperate 
through a common PeTE repository. 

The federated approach to tool integration is based on the reference archi- 
tecture defined in [6] for database interoperability and consists in defining a set 
of schema levels which ensure, on the one hand, a tool autonomous access to 
its data and, on the other hand, a federated access to other tool's data via a 
canonical data model. 

The data managed by tool and the relationships between them are defined 
by a reverse engineering process [10]. An abstract data representation is built 
using a conceptual data model which is, in our case, the ERA model [11]. 
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Fig.  1. DMMS ARCHITECTURE 

Local accesses are done through local schemas expressed in the tool integra- 
tion repository data model. This allows tools to access their own data locally 
and in an autonomous way without managing other data. We can then choose 
the most suitable local data model which best fit tools data modeling constraints 
and requirements. 

Local schemas are then translated into a common data model which provides 
a coherent view of many distinct tools data. Different views, defined on these 
translated schemas, are integrated into a global federated schema representing 
all information which may be shared between tools. Finally, a view on these 
schemas allow tools interaction and cooperation. This view definition is visible 
to all federated tools in addition to their own local schemas. 

To summerize, we give hereafter different steps of our methodology achieving 
tool integration in a heterogeneous and distributed environment. 

- s t e p  1: Define different tool federations by grouping tools according to a 
given criteria (eg: their application field). 

- s t e p  2: Define conceptual schemas by a reverse engineering process from 
tools managed data. The objective of this step is to define an abstract rep- 
resentation of tool data  without considering any physical repository. 

- s t e p  3: Translate each conceptual schema to tool integration repository 
data model. The obtained schemas, expressed in the native data  model of 
the database, are called local schemas. 

- s t e p  4: Translate each local schema to the canonical data model which 
unifies data  representations through tool federation. The obtained schemas 
are called translated schemas. 

- s t e p  5: Build exported schemas by defining views on translated schemas. 
Exported schemas are requested because not all translated data have to be 
viewed by the federation. These views are defined for specific class of users 
and applications. 

- s t e p  6: Exported schemas are then integrated into federated schemas. The 
schema integration [12] provides data consistency between different exported 
schemas since common entities are merged into one unique entity after re- 
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solving name and structure conflicts. 
At this level, auxiliary schemas may also be integrated to the federated 
schema. These schemas may contain information not directly related to tools 
but, for example, to the current project. 

- step 7: To a given application or group of users, not all information belong- 
ing to the federated schema have to be viewed by tools. Therefore, we have 
to define a specific view on federated schemas called external schemas. 

The number of these steps is not fixed. For example, if local and canonical 
data models are identical, a translated level is not required. The exported level 
is also not necessary if we want to integrate into the federated schema all trans- 
lated schemas. In fact, the number of federation levels depends mainly on the 
federation components. 

3 E x p e r i m e n t i n g  t h e  T o o l  I n t e g r a t i o n  M e t h o d o l o g y  

We focus here on the design function which is mainly achieved by the mechanical 
and the automation working stations. This function deals with the relationship 
between the mechanical and automation skills which cooperate to design a prod- 
uct. It is a relatively long step since both two skills have to frequently reconsider 
their previous design. This is due to the set of physical requirements and con- 
straints which must be considered during the manufacturing step. 

The tool integration experiment involves the integration of PROPEL and sPEX 
CAD tools. These tools, respectively representative of mechanical and automation 
skills, have to cooperate widely to achieve mechanical and automation part de- 
s i g n .  MATISSE 4 database models mechanical local data while PCTE models those 
of the automation working station. 

3.1 Reverse  Engineer ing  of the  Tools 

As we integrate only two tools belonging each to a different skill, each tool 
federation is reduced to only one tool. As a consequence, the first step of our 
methodology in not required. The second step consists in building conceptual 
schemas of the tools by reverse engineering from their data. 

P R O P E L  Mechanica l  Design Tool 
PI~OPEL [13] is an expert system generating process plans from part and work- 

shop descriptions. The part is described by geometrical features (faces, slots,..) 
and relationships between them (coaxiality, parallelism...). The workshop is de- 
scribed by a set of machines (lathes, milling machines ...), manufacturing tools 
present in the workshop (drills, face-cutters...) and the relationships between 
them. Part and manufacturing process plan descriptions are textual files which 
are either created by a tool or a user. In the following we present PROPEL and 
SPEX tools and the modeling of their data. 

4 MATISSE is an object oriented database produced by Intellitic InternationM SNC. 
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Part and Manufacturing Process Plan Description and Modeling 
The second step of the integration methodology consists in extracting data 

contained in the part and the process plan descriptions, by reverse engineering, 
in order to model data handled by PROPEL.  The description of a part in P R O P E L  

(figure 2.a) contains basic features composing it and the physical and geomet- 
rical characteristics of each feature. P R O P E L  being closed, we have considered 
only input and output data corresponding respectively to the part and the man- 
ufacturing process plan descriptions. The part schema (figure 2.b) includes all 

(part totom 
(quality 10) 
(ra 6.3) 
(s-x 60) 
(s-y 60) 

~feature up (type 
cluttered-face) 

(normal x-) 
(s-y 42) 
(s-z 42) 

) 
(feature down (type 

circular-face) 
(normal z-) 
(s-x 60) 
(s-y 60) 

) 

(a) 

�9 eyl I l ~ ~ ,,,]1.1 

~tap_hole_ 

Hole l 

10 PHASE LATHE 
SUB-PHASE UP 
OPERATION FACING-TOOL 
FINISHING DOWN 

20 PHASE MC-TRAD 
SUB-PHASE DOWN 
OPERATION FACE-CUTrI~ 

FINISHING SLOT 

(c) (d) 

Fig. 2. Part and Process Plan Description and Modeling (step 2) 

the features and parameters composing and describing a part. We have followed 
a top-down approach to break down a part into a set of features managed by 
P R O P E L .  Therefore, the schema describing a part contains all features which may 
occur in its description. 

The manufacturing process plan generated by PROPEL (figure 2.e) represents 
operations to be processed in order to achieve a part manufacturing. These oper- 
ations are structured in phases corresponding to machines involved in part man- 
ufacturing. From the process plan description generated by PROPEL, we build, by 
reverse engineering, the process plan schema depicted by figure 2.d. Each part 
(represented by the entity part) has one associated process plan (process-plan 
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entity) linked to a phase entity. Each phase is linked to a set of sub-phases which 
are, in their turn, linked to operations. Each operation is composed of toolings 
processed on features. We associate, for each phase, a machine and, for each 
sub-phase, a feature. 

SPEX Automation Design Tool 
sPEX [14] is an environment allowing to specify, to design and to prototype au- 

tomation systems. The objectives of SPEX are to allow designers to build reusable 
behaviors and to validate a functional organization during the analysis phase. 
sPEx manages two kind of automation components which are the functional box 
(FB) and the functional diagram (FD). 

A functional box is a "behavioral" unity producing one or many output values 
from a set of input values and parameters and may be a graphcet, a ladder, a 
logical schema or a C program. Several behavioral boxes may be instantiated 
from a "generic" functional box. Each FS has its own identifier, a behavior and 
a set of variables (input, output and parameters). A functional diagram is a 
collection of FBs and/or FDs interconnected via their input/output interfaces 
and representing a composite behavior. 

Building a SPEX Automation Design Application 
We use a top down approach to define a SPEX application . That means that 

all FDS are initially empty and are completed by the automation engineer while 
needed information are received from the mechanicM engineer. SPEX automation 
design application considers four basic activities occuring in a product design. 
These activities are the TRANSPORT activity which handles transport of prod- 
ucts between machines during the manufacturing step, the TRANSFORM activity 
which considers the effective manufacturing of a product, the STORE/UNSTORE 

activities which ensure product storage and unstorage before its use and finally, 
the CONTROL activity which controls data flow between the above activities. 

The information given by the mechanical engineer are considered in the trans- 
forming activity while the controling, transporting and storing/unstoring activ- 
ities are defined by the automation engineer, the robotics engineer and the pro- 
duction manager. These activities are represented by CONTROL, TRANSPOI~T, 

STORE/UNSTORE and TRANSFORM FDs . The FD corresponding to TKANSFOKM 

activity is built from information given by the process plan generation step. 
Each sub-phase of the process plan corresponds to a generic empty FD and to 
each of these FDS is associated a set of manufacturing tools used in this sub- 
phase. To each tool, is associated an empty FD which input/output variables 
and parameters are set by the automation engineer. 

Automation Design Application Schema 
The automation design application schema is deduced from the sPEX automa- 

tion design application and is completed later by the automation engineer which 
has to define each FB behavior and connect different FBs and FDs making up 
the application. The schema built from this application comprises Tool, Station, 
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Control, Transform, Transport and Siore/Unstore object types (figure 3). These 
object types are all linked t o / _  Var, O_ Var and Behavior object types corre- 
sponding respectively to their input variables, output variables and behaviors. 

. n  1 . n  

Fig. 3. The Automation Design Application Schema (step 2) 

3.2 Tool Federa t ion  on top of  P C T E  

P C T E  has been initially designed for software engineering needs. It is used in 
our architecture as a canonical data model in order to be experimented and 
evaluated for manufacturing requirements. It defines a repository in which data 
are stored and shared between tools. The choice of a standardized repository as 
a canonical data model is a key element of our architecture since it provides an 
open framework which homogenize different tool data representations making 
their integration and interoperation easier. Tools interoperability is achieved 
following the steps 3 to 7 of our integration methodology and is applied to the 
integration of SPEX and PROPEL tools by defining the five schema levels. 

The Local Level 
Data managed by SPEX and PROPEL were modeled, by a reverse engineering 

process, using an extended ERA data model independently from the tool inte- 
gration repositories. We translate hereafter the conceptual schemas representing 
the data managed by the tools into their integration repository. 

PROPEL integration repository is MATISSE. It is an object oriented database 
using an ERA like data model. Part and process plan conceptual schemas depicted 
respectively by figures 2.b and 2.d are translated to MATISSE data model. Each 
entity type is translated into an object class, each relationship into a link class 
and each attribute type into an attribute class. Cardinalities are kept unchanged. 
The resulting schemas are depicted by figures 4.a and 4.b. 



276 

~ ~ 1 . 1  1.1 I.l 1.a .l 

1.1 11 

l.l i 1.1 [. 

-F ce " Counterbore- Blind-Tapping- I Regular a [ C'rcular'Face [ I Tapping-Hole Hol~ [ 

(a) (b) 

), 

iVi~w~-+~'-~ ~ ( c ) ~  "~ 

Fig.  4. PROPEL and SPEX local level (step 3) 

SPEX automation design schema is translated into PCTE data model (fig- 
ure 4.@ Each entity type is translated into an object type and each relationship 
type into a link type. The link category and attribute keys are defined by the 
designer. A formal definition of the mapping rules between the ERA and both 
MATISS• and PCTE data models is given in [8]. 

The Translated Level 

We focus here on translating local schemas into the canonical data model 
corresponding to the fourth step of our integration approach. This translation 
is applied only to PROPEL schemas since the local schema (MATISSE) and the 
canonical data model (PETE) are different. The correspondent translation rules 
transform each object class, link class and attribute class in MATISSE data model 
respectively into an object type, a link type and an attribute type in PCTE data 
model. Translated schemas of the part and the process plan are represented 
respectively by figures 5.a and 5.b. The cardinality of PeTE links doesn't traduce 
exactly the same semantics as MATISSE relationship cardinality since a cardinality 
one in PCTE represents a (0,1) or (1,1) relationship in MATISSE and a cardinality 
many in PeTE represents (0,n) or (1,n) in MATISSE. For a formal definition of 
the mapping rules between MATISSE and PeTE refer to [8]. 
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(a) (b) 

Fig. 5. Part and Process Plan Schemas in PCTE (step 4) 

The Exported Level 
The definition of the exported level from the translated level is carried out 

by defining a view on the translated schemas because not all translated schemas 
have to be seen and used by the federation. PCTE provides view definition thanks 
to the working schema (ws) mechanism. This mechanism stands for a filter since 
it allows to make visible only instances of object types it includes. The instances 
of object types which are not contained in the ws are not accessible and therefore 
invisible to the federated tools. Therefore, the exported schema should contain 
all tool schemas which have to be used by other tools of the federation. The 
inclusion of schemas and their order in the ws is managed by the user. 

In our experiment, only the process plan and the automation design appli- 
cation schemas are included into the ws while the part schema remains local to 
PROPEL.  The federation can therefore view instances of object types composing 
the process-plan and automation-design-application schemas. 

The Federated Level 
The sixth step consists in defining the federated level by integrating exported 

schemas into a federated schema. The integration process, as defined in [12], con- 
sists in solving, first, name and structure conflicts before defining common object 
type through which tools can cooperate. Finally, schema integration is processed 
by importing common object types and other related information which may be 
used by tools. 

In PCTE, schema integration is achieved using importing mechanism pro- 
vided by PCTE.  From object and link types of exported schemas, we import 
object types common to schemas which have to be integrated. Importing these 
object types into the federated schemas allows tools to see, at the federated 
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Fig. 6. The Federated Schema (step 6) 

level, object instances created at the local level by other tools. In our case (fig- 
ure 6), we integrate exported part and automation design application schemas. 
Object types Processplan, phase, sub_phase and operation and their links are 
imported from the process plan schema. Object type Application is imported 
from automation design application schema. Therefore, the integrated schemas 
share object types machine ( called Eta*ion in automation design application 
schema), tool and sub_ phase. 

The External Level 
The external schema, representing the seventh step, is obtained by defining a 

view on the federated schema. This view may correspond to a given application 
or a class of users which do not need to view all the information represented 
by the federated schema. The external schema allows data exchange between 
SPEX and PROPEL tools through their common object and link types (Figure 8). 
We have integrated into the federated schema, in addition to the information of 
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the process plan and automation design application schema, some management 
information related to the current project grouped in an auxiliary management 
schema (figure7). This schema represents the part, the manufacturing require- 
ments (object type reguirements containing a graphical representation of the 
currently manufactured part) and persons allowed to work on the project (ob- 
ject type person). We have also added to this schema a logical representation 
of the project which provides a link between logical and physical aspects of a 
project (object type part_ station), logical phase (object type logical_ phase) and 
sub-phase (object type logical_sub_phase). Object types part (called project in 
the management schema), process-plan (called island-process-plan in the man- 
agement schema) and application (called piloting in the management schema) 
are common object types allowing the integration of the process plan, the au- 
tomation design application and the management schemas. 

External schema allows, thanks to the PCTE types importation mechanism to 
view object instances created at the local level. It is therefore possible, for any 
tool, to manipulate an object type instance of the external schema. Tools can 
access shared object type instances through which they can interoperate in an 
autonomous way by creating locally their instances and without any knowledge 
and management of other tool objects. The only information which should be 
known is the external schema. This one must always be included into tools ws to 
allow a local access to their objects and a federated access to other tool objects. 
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Fig. 8. The External Schema (step 7) 
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3.3 The  I m p l e m e n t e d  P r o d u c t i o n  Scenario 

The objective of the production scenario depicted by figure 9 is to achieve parts 
design. The production scenario consists of two main steps which are the me- 
chanical and the automation design steps managed by the management working 
station. This one allows the mechanical working station to begin its processing 
(1). From the information given by the part description file (2) (features and 
their physical and geometrical characteristics), we instantiate the MATISSE and 
PCTE part schemas (3) respectively at the local and the translated levels. PaO- 
PEL generates then, from the part description file and workshop machine and 
tool descriptions, the manufacturing process plan file (4). We process this file 
to extract information allowing the instantiation of MATISSE and PCTE process 
plan schemas (5) belonging respectively to the local and the translated levels. 
The end of the mechanical design step is notified to the management station 
through the external schema (6). This notification is considered by the manage- 
ment working station (7) which can now allow the automation station to start 
the automation design step (8). 

Mechanical Working Station 

~ PROPEL ~ 
Part Description \ Process Plan 

File \ Description File 

Part Description 
,Objects / Objects ~ O b j e e t s  ~ 

(~)/7) 
Mechanical I Automation 
Design Step Design Step 

Management Working Station 

MATISSE 

Autom~ t, on Design P C T E  
Applica ,ion Objects 

F ] " ~ Interface I! 
Automation Design 

SPEX Application 
Automation Working Station 

Fig. 9. The Production Scenario 

Automation design step takes results from mechanical design step (9) to 
build, on the one hand, a sPEx automation design application (10) and, on the 
other hand, a P C T E  automation design application schema at the local level. We 
have extended sPEX in such a way that it can create, access and manipulate 
PCTE object type instances. This extension, which we have named SPEX-PCTE 
interface, generates a SPEX automation design application by counting sub-phase 
object type instances belonging to the P C T E  process-plan schema at the exter- 
nal level instantiated during the mechanical design step. Considering that each 
process plan sub-phase corresponds physically to a transformation site, SPEX- 
PCTE module creates as much FDs as sub-phases. Created FDs  are linked to each 
other using their input/output variables. Finally, a schema representing a P C T E  
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automation design application is generated at the local tevel. This schema is com- 
piled to be instantiated (11). The end of this step is notified to the management 
working station (12). All notifications are done using meca and auto notification 
attributes belonging to indicators  object type in the external schema. Thanks 
to the importation and the ws mechanisms of PCTE, object instances created at 
the translated level are visible at the external level since both the process plan 
and the application design application schemas are included into the ws. 

4 L e s s o n s  L e a r n e d  a n d  F u t u r e  W o r k  

This paper presents a federated approach to integrate tools in an heterogeneous 
environment. We have experimented this approach by integrating two different, 
but complementary tools whose integration was never anticipated. 

The federated approach presents some lacks mainly related to the incompat- 
ibility between the different data models. We have to choose, on the one hand, 
a local data model which models the best tool data and, on the other hand, 
a canonical data model which has to be semantically rich enough to support 
different product modeling. These choices must limit the semantic losts when 
translating schemas from local to canonical data model. For our experiment, we 
got a favorable situation since both PCTE and MATISSE data models are ERA like 
models and therefore relatively homogeneous. This has made easier the trans- 
lation between the two models and has limited semantic losts. From this point 
of view, a first conclusion is that the PCTE data model, close to the ERA is an 
acceptable canonic model, even if little semantic constraint types are handled 
by PCTE (we proposed in [15] an extension of the PCTE, inspired from the NIAM 
data model to enhance semantic constraint management). 

Our second conclusion is that PCTE, due to its schema integration mecha- 
nism, provides an active support to federated schema building and mutually to 
federated database access. It is generally accepted that tool interaction depends 
on the object type granularity considered in the exchange schema. A coarse 
granularity limits the number of managed object types but can penalize tools 
interactions due to a non enough detailed view of managed objects. On the other 
side, fine granularity allows an efficient interaction between tools by enhancing 
schema semantics but increases the set of object types we have to deal with. 
PeTE is better adapted to manage coarse grain objects. However, it was suffi- 
cient in the context of our experimentation. In fact, it seems us that it is more 
important to decrease the granularity of the services extracted from tools. The 
redesign of tools, in order to extract internal services, even if it is an expansive 
task, can take benefits of services provided by PCTE to allow a better visibility 
of tool intermediate results and as a consequence to increase interactions and 
positive synergetic effects. 

As perspectives, we plan to extend PCT]~ data model, initially designed for 
software engineering requirements, to cover other ClM requirements such as fine 
granularity object management and type instance management while evolving 
schemas. In addition, PCTE manages concurrent accesses using locking mecha- 
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nisms and transactions. These mechanisms are efficient for short t ime transac- 
tions but are particularly unsuitable for long te rm design processes which can 
take several hours and even several days. We plan to integrate to DMMS archi- 
tecture long te rm transactions such as those implemented in c o o  [16]. 
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