
Natural Naming in Software Development: Feedback
from Practitioners

Kari Laitinen

VTI" Electronics ! Embedded Software
P.O. Box 1100, 90571 Oulu, Finland

Abstract. During a five-year period several groups of software developers have
been educated on using natural naming in software development. Generally,
natural naming means avoiding abbreviations. In programming it means that
program elements such as variables, tables, constants, and functions should be
named using whole natural words and grammatical rules of a natural language.
To assess the usefulness of natural naming and the importance of naming in
general, we have requested the opinions of 52 software developers who have
participated in naming courses or to whom a naming handbook has been
introduced. The subjects had to judge the relevancy of 25 statements related to
naming. The results of the inquiry indicate that most software developers, and
especially the experienced ones, consider that natural naming facilitates their
work.

1 Introduction

People need to write, read, and understand different kinds of documents in software
development work. Documents are equally important in the development of
information systems as well as in the development of less-traditional software
systems, such as telecommunications systems and embedded computer systems.
Software development can, in fact, be regarded as a documentation process during
which more and more elaborate documents emerge as the work proceeds [11].
Typically, some sorts of requirements descriptions are produced first. They are
followed by design documents and implementation documents from which an
executable software system can be generated. Some software documents may be
written according to some development methods (e.g. [1, 20]). Implementation
documents can be source programs or other descriptions which can be processed with
computer tools (e.g. compilers or application generators).

Software development is partly a learning and communication process [3].
Documents are important in communication and thereby the understandability of
software documents affects the efficiency of software development work. Usually, the
least understandable software documents are the implementation documents which
need to describe all the details of the system being developed and which are, in most
cases, source programs.

376

The use of different kinds of abbreviations (e.g. acronyms and shortened words) is
common in software documentation and in the world of computers in general. The
use of abbreviations has been, and still is, especially popular in source programs as
names for different program elements such as variables, constants, and procedures.
One reason for this is that, unlike modern tools, early software development tools
allowed only short names. Our concern is, however, that the overuse of abbreviations
makes source programs and other documents difficult to understand, which is harmful
in software development and maintenance.

As source programs are the most contaminated with abbreviations and they are
developed and maintained in many software development organizations, we will
study the problems related to abbreviations in the context of source programs. To
avoid abbreviations, a principle called natural naming has been proposed [8, 9, 10].
Natural naming means that all names in source programs should be constructed using,
preferably several, natural words of a natural language while respecting the
grammatical rules of the natural language. The natural names should also describe the
functionality of the program. By using natural names it is possible to bring source
programs symbolically closer to other types of software documents which contain
written words of a natural language. Because natural naming can be applied to many
types of software documents, the idea is an important issue in software
documentation.

Intuitively, a natural name like "customer_number" is more understandable than an
abbreviated name like "cnumbr" or "cn". Also, naturally named programs seem to be
much more understandable than the same programs written with abbreviated names
(see Fig. 1). It has not, however, been fully proven that natural naming is always an
appropriate principle in software documentation. We need more experience and
evidence about natural naming. In this paper we will present and analyze
practitioners' opinions about natural naming. During the last five years we have given
several courses on natural naming and also delivered naming handbooks in software
development organizations. The practitioners' opinions have been collected by asking
them to answer a questionnaire about natural naming.

We believe that asking software developers' opinions on the use of natural naming
is a relevant research method. We will justify this belief in the second section in
which we discuss related work which deals with naming. In the third section we will
explain what we have taught to software developers and how they were questioned. In
the fourth section we analyze the feedback received from the people involved.

2 Related Work

Empirical understandability tests have been carried out to find out how people under-
stand source programs. Tests related to naming are reported in [2, 15, 16, 17, 18]. The
effect of naming has usually been tested by presenting a badly named source program
to a group of students and the same program with more informative names to another
group of students. The performance of the student groups has been measured by
asking questions about the programs or by asking the students to modify the
programs. The reported understandability tests have not, however, always produced

377

#define C0001 13
#define C0002 0
#define C0003 1

/* ... */

f0001 (char s0001 [],
int *i0001)

I* - *I
(

int i0002, i0003 ;

*i0001 = C0002 ;

i0003 = strlen (s0001) ;

if (i0003 > C0001)
[

*i0001 = C0003 ;
)
else
(

for (i0002=0; i0002<i0003; i0002++)
{

if((s0001[i0002] < '0') [I
(s0001[i0002] > '9'))

{
*i0001 = C0003 ;

)
)

}
)

Version (a): Numencal names

#define CNUMMAX 13
#define VALID 0
#define NVALID 1

/* */

isvalid (char cnumbr [],
int *rcode)

I* *I
(

int i, len ;

*rcode = VALID ;

len = strlen (cnumbr) ;

if (fen > CNUMMAX)'
{

*rcode = NVALID ;

else
{

for (i=0 ; i<len ; i++)
(

if ((cnumbr[i] < '0')]I
(cnumbr[i] > '9'))

{
*rcode = NVALID ;

)
)

)
)

Version (b): Abbreviated names

#define MAXIMUM_CUSTOMER_NUMBER_LENGTH 13
#define CUSTOMER_NUMBER IS VALID 0
#define CUSTOMER_NUMBER_IS_NOT_VALID 1

/ ... */

check_customer_number_validity (char possibly_valid_customer_number [],

int *success_code)

~ */

int customer_number_index, customer_number_length ;

*success_code = CUSTOMER_NUMBER IS VALID ;

customer_number_length = strlen (possibly_valid_customer_number) ;

if (customer_number_length > MAXIMUM_CUSTOMER_NUMBER_LENGTH)
{

*success_code = CUSTOMER_NUMBER IS NOT_VALID ;
}
else
{

for (customer_number_index = 0 ;
customer_number_index < customer_number_length ;
customer_number_index ++)

{
if((possibly_valid_customer_number[customer_number_index] < '0'

(possibly_valid_customer_number[customer_number_index] > '9'
{

*success_code = CUSTOMER_NUMBER_IS_NOT_VALID ;
}

}
}

II)

Version (c): Natural Names

Fig . 1. Dif ferent ly written versions o f the same source program

378

statistically significant results, although the performance of the subjects has usually
been better with source programs containing clearer names.

It is hard to test how names affect understandability, because it is difficult to judge
how much meaning there is in a name. Different people may interpret the same names
in a different manner [13]. In the context of the mentioned understandability tests the
term "mnemonic name" is used, whereas we speak about natural names. Weissman
[18] has used one to three words long natural names in his tests, but Curtis et al. [2],
for instance, have used mnemonic names in Fortran programs. Because Fortran has
traditionally had the six-character restriction in name lengths, Curtis et al. could not
use very long natural names. That may be one reason why they did not find any
differences in performance when different kinds of names were used. We would also
like to point out that the term "mnemonic" is not very accurate. It has been used to
denote instructions of assembler languages (e.g. [6]). In these cases, "mnemonic"
means abbreviations such as MOV, STA, and LDA. To make a distinction between
mnemonic names and natural names, let us study the following names which could all
represent the same variable:

(1 n
(2 nbytes
(3 bytes
(4 byte_count
(5 numbe r_o f_bytes
(6 number_of_bytes in buffer

Since we recommend that a natural name should contain more than one word, only
names (4), (5), and (6) above can be considered natural, whereas all of them
excluding name (1), could be considered mnemonic. By studying the examples above,
we can also notice that natural names can usually be constructed in many ways.

Because understandability tests have not produced statistically significant data, we
can say that the effect of naming is difficult to measure. We can find support to this
statement in other scientific fields. Natural naming is using a natural language to
describe how programs work. Therefore, studying naming in software documentation
is related to linguistics. Linguists admit that natural languages are complex and they
are not yet fully understood [4]. The complexity of natural languages can thus be one
reason why the effects of natural naming are so hard to measure in the context of
software documentation. Because natural languages change all the time, even the
concept "natural word" is vague. Thereby the definition for natural naming is vague.
New words emerge in natural languages and even some abbreviations can be
considered belonging to natural languages. Philosophers have also studied meanings
of natural words and other symbols. Famous philosophical studies related to
languages have been done by Wittgenstein. He was, however, dissatisfied with his
work, possibly because he did not find any clear and conclusive theories to explain
languages and how they relate to the real world [19].

379

Despite the fact that naming seems to be a hard research subject the following facts
appear to support the use of natural naming in software documentation:

�9 The use of abbreviations has been criticized in other contexts of technical
documentation [5, 12].

�9 Natural names are generally used in graphic-textual descriptions of software
development methods (e.g. [1, 20]). We can assume that natural naming is one
reason why graphic-textual descriptions are considered useful in software devel-
opment.

�9 Some software development methods (e.g. [14, 20]) recommend the use of so-
called pseudo coding which means describing programs with a language that is
somewhere in between a natural language and a programming language. The
use of natural naming brings source programs closer to natural language.

To summarize the discussion above, we can say that we already have evidence
about the usefulness of natural naming, but more evidence is needed. For this reason,
we have surveyed the opinions of people who are engaged in practical software
development work. Our research approach can be justified by taking into account the
fact that practical software development differs a great deal from studying short
examples of programs in a classroom. The source programs of practical software
systems may, for example, contain about one thousand different names, whereas the
number of names in the program examples used in understandability tests can be
counted in a few tens. Supposing that the mentioned understandability tests had
produced statistically significant data in support of natural naming, we could still not
be completely sure that natural naming would be useful in practical software
development work, because the experiments were done during a short period of time
and with students. Supposing also that experiments in a classroom would never
produce any significant data, it could still be possible that natural naming would be
useful in practical work [17]. Because it is hard to do controlled experiments in which
we could compare two different groups building the same real software system using
different naming styles, we have to rely on the opinions and intuitions of people.

3 Practical Arrangements

3.1 Introduction of a Handbook for Natural Naming

All software developers who participated in this study had been given a naming hand-
book. The main ideas of the naming handbook are published in [9]. The first version
of the naming handbook was introduced about five years ago, and new versions have
emerged afterwards. All versions of the handbook include the following:

�9 a definition for the principle of natural naming;
�9 a high-level classification of names needed in programs: function names,

constant names, and data names;
�9 rules for constructing different types of names (e.g. function names should have

at least two words, and an imperative verb should be used at the beginning of a
function name);

380

�9 instructions to use so-called name refining words to separate related names;

�9 name tables that provide low-level classifications of different types of names,
suggest certain words to be used, and give some examples of appropriate names;
and

�9 examples of naturally named programs.

3.2 Preparation of Courses on Natural Naming

A typical course on natural naming is a half day session, combined with other instruc-
tions on programming style. The courses given to the respondents of our survey
involved the introduction of the ideas presented in the naming handbook, The
following additional issues were highlighted on every course:

. The use of natural naming was justified by explaining its potential benefits and

disadvantages.
o The use of abbreviations was strongly discouraged. Programs were compared

with other types of writings in which abbreviations are less common (see Fig.
2).

�9 Natural naming was considered the easiest way to establish standard naming
practices, since, compared to maintaining a list of acceptable abbreviations,
nothing needs to be maintained when a pure form of natural naming is applied.

A typical naming course also involved public discussion on specific naming problems
in the organization where the participants worked.

In newspapers we use whole English words and very few abbreviations. If
newspapers were written like programs they would look like the text below.

In n_paper we use whl Engl wrd and very few abbr. If n_paper were writ like
progr they wld lk like this txt.

Fig. 2. A slide used on a naming course

3.3 Naming Questionnaires

The naming-related inquiries were arranged so that all the responding subjects had at
least one year to get accustomed to using the natural naming approach. All subjects
were familiar with a naming handbook, and some of them had attended a naming
course. It should be noted that we did not arrange the courses or develop the naming
handbook in order to be able to arrange the inquiries afterwards.

The primary hypothesis for the naming inquiries can be formulated as "Natural
naming facilitates the work of software developers". The inquiry form contained 25
statements which were either for or against this primary hypothesis. Each individual
statement on the form can be considered an elementary hypothesis for this study (see
Table 1). The subjects had to judge the relevancy of each statement by answering

381

"completely disagree", "partially disagree", "no opinion", "partially agree", or
"completely agree".

Fifty two software developers filled in and returned the inquiry form. Twelve
persons to whom the inquiry form had been sent did not return it. One subject
reported being too busy, and perhaps some of the non-reacting respondents did not
consider the subject important. The missing responses have not been noted in the
statistical calculations in the appendices, although it could have been possible to
count them as having "no opinion" on all the statements.

3.4 The Responding Groups

Nearly all of the subjects who responded to the inquiries were using the C
programming language in their work, and all had tools that allowed the use of long
natural names in programs. All respondents spoke Finnish, but most of them used
English to document their programs. At least half of the respondents had a master's
level degree from a university. 27 of the respondents work in two telecommunications
companies, and the remaining 25 respondents work in a research institute. The
experience of the subjects ranges from 2 to 20 years. The subjects represent several
application domains: telecommunications systems, real-time embedded systems,
various PC and workstation-based software engineering and testing tools, and systems
involving artificial intelligence.

4 Analysis of the Responses

Table 1 lists the statements and summarizes the responses. The statements are in the
same order as they were presented to the subjects. The third column shows the
distribution of the answers in percentages We have used the numeric scale of one to
five in order to make a statistical analysis of the responses. According to the scale, 1
means "completely disagree", 2 means "partially disagree", 3 means "no opinion", 4
means "partially agree", and 5 means "completely agree". Some of the statements of
the questionnaire are against the use of natural naming. These are marked with a
minus (-) sign in Table 1. Correspondingly, plus (+) signs denote those statements
which support natural naming.

The rightmost column of Table 1 contains statistical data which has been calculated
using the numeric scale. The t-test was used to find out whether the responses can be
considered statistically significant. The t-values have been calculated by comparing
the responses given to each statement with the responses of an equally large
imaginary group which was normally distributed. The respondents of the imaginary
comparison group had no opinion on any statement. In this invented comparison
group, the distribution over the alternatives from 1 to 5 was 10%, 20%, 40%, 20%,
and 10%, respectively. The t-values which are marked with an asterisk (*) indicate
statistical significance. When the t-value is more than 2, the likelihood that the mean
response does not correspond with reality is less than 5%.

382

T a b l e 1. S u m m a r y o f the r e sponses g iven to the n a m i n g ques t ionna i re

Mean response,
STATEMENT RESPONSES (%) +/- standard deviation,

1 2 3 r 5 and t-value.

1 The time required to write long names slows 38 40 3 17 0 - 2 .0 1 .1 4 . 6 5 ,
down software development.

2 More and more often, I find myself thinking 9 9 25 42 13 + 3 .4 1 .1 1 .81
about appropriate wording for a name needed
in a program.

3 In practice, there emerge difficulties when 17 21 17 37 5 - 2 .9 1.2 o. 33
natural names are used.

4 The use of naming guidelines limits the 42 40 3 9 3 - 1 .9 1 .1 4 . 9 3 ,
freedom of software development work.

5 I D~scuss,on related to choosing suitable n a m e s 17 2 ! 30 23 7 + 2 . 8 1 . 2 0 . 7 6

has increased among my colleagues.

6 Natural naming does not contribute to how 29 35 13 Zl 9 - 2 .4 1.3 2 . 6 1 ,
easily we can locate the place in a program
that we are searching for.

7 i The understandability of the programs written 12 16 52 14 4 2 . s x .o o . s 9
by my colleagues has not improved after the
introduction of the naming guidelines.

8 One needs several months to get accustomed 26 32 17 15 7 - 2 .4 1 .3 2 . 3 7 -
to using natural naming in programming.

9 Because there is such a hurry in projects there 34 40 5 15 3 2 .1 1 .2 3 . s 3 ,
is no time to think the understandability of
names.

10 It is difficult to change a naming style one has 28 32 9 23 5 2 . 4 1 . 3 2 . 3 4 *

once adopted.

11 Commonly used abbreviations, suchas i , j, 2 15 13 44 25 3 .8 1 .1 3 .49*
ptr, tbl, and msg should be accepted without
exception.

12 Generally, too little attention is paid on 0 11 11 47 29 + 3.9 0 .9 4 . 6 0 ,
naming .

13 The natural naming course / the naming
handbook really changed my attitudes

7 13 30 42 5 + 3.3 1.0 1.18
i towards naming.

14 Other programming style factors, such as
indentation, uniform use of braces, and

0 41 33 25 0 2.8 0.8 0.85
uniform order of function arguments,
contribute more to the understandability of
programs than naming.

15 Nowadays, l always try to use natural naming. 2 13 11 49 23 + 3 .8 1 .0 3 . 6 9 -

16 Clearly, during the past couple of years, the 4 4 60 14 16 + 3 .4 1 .0 1 .69
names in my colleagues' programs have
become longer.

17 Compared to the use of abbreviations or 5 2 9 55 26 + 4 . 0 1 . 0 4 . 6 3 *

single letters, the use of natural names makes
the thinking process of software developers
easier.

383

Table 1 (continued). Summary of the responses given to the naming questionnaire

STATEMENT
Mean response,

RESPONSES (%) +/- standard deviation,
1 2 3 4 5 and t-value.

18 Trying to invent suitable names is a means
for analysing the problem at hand.

19 It is useful if one can remember the names in
programs.

2 23 15 32 26 + 3.6 1.2 2.63*

0 4 16 37 41 + 4.2 0.9 5.81"

20 Abbreviated names are easier to remember
than natural names.

37 35 16 6 4 - 2.0 i.I 4.32*

21 I am satisfied with my work when I am able to
invent descriptive names when writing a
program.

6 6 31 45 I0 + 3.5 1.0 2.26*

22 It is necessary to pronounce the names in
practical work. Natural naming has facilitated
the oral communication.

2 9 41 41 5 + 3.4 0.8 2.02*

23 It would be easier to learn information
i technology and programming, if the program
examples used in teaching and literature were

naturally named.
24 With how many fingers do you use the

keyboard of your terminal (I = 2 fingers, 2 =
4 fingers, 3 = 6 fingers, 4 = 8 fingers, and 5 =
10 fingers).

25 Being able to type with 10 fingers speeds up
software development.

3 7 25 36 26 + 3.8 i.i 3.49*

0 25 21 28 25 o 3.5 i.i

7 Ii 21 28 30 o 3.6 i.3 2.71"

4.1 General Observations

All the statistically significant responses, excluding statement 11, indicate some kind
of posit ive attitude towards the use of natural naming. Considering all the responses

given, we could not find any indication that the use of natural naming was somehow
harmful, which would have subsequently made us wary about recommending this
naming approach.

Because of the fact that many public names (e.g. l ibrary functions and operating

system calls) in large software systems are abbreviated, it is unlikely that someone
working in a software development group could always use purely natural names.

Therefore, instead of asking whether the subjects u s e natural naming, we asked

whether they try to use natural naming. Al l the respondents who reported their

agreement with the natural naming approach also gave the most posit ive responses to
all the statements.

Clearly, the majori ty of the respondents agree that too little attention is paid to
naming (S12) 1. This supports the notion that literature provides too little advice on
naming. Textbooks on programming and software engineering usually state that
descriptive names should be used. However, no instructions are given on how the
names can be made descriptive and informative [10].

IThese markings refer to the statements in Table 1.

38,~.

Although the respondents seem to favor the natural naming approach, they also
want to use the traditional and most common abbreviations (Sll) . Using purely
natural names and accepting the commonly used abbreviated variable names, such as
i, j, tbl, ptr, and msg, is contradictory. Natural names seem to be favored as global and
public names.

4.2 Observations Related to Understanding, Communication, and Thinking

The distribution over the five alternatives is the highest in responses to the statements
related to the understandability of programs ($7, S 14, and S 16) and to communication
among software developers ($5 and $22). This shows that the respondents had no
clear opinion on these matters. It may also indicate that they do not pay attention on
how they communicate with their colleagues or whether programs are understandable.
We had anticipated that natural naming would facilitate oral communication.
However, there is only minimal evidence that favors this anticipation ($22).

The responses do not clearly indicate whether naming, indentation, or some other
programming style factor contributes the most to the understandability of programs
(S14). This may mean that it is difficult to make a clear distinction between program-
ming style factors, or that programs are always considered rather hard to understand
and, therefore, improvements in understandability are difficult to perceive. Only a
minority of the respondents had found that the names in their colleagues' programs
have clearly become longer, whereas most of the respondents had no opinion (S 16).

Although the communicability of programs was found difficult to judge, most of
the respondents agreed that if program examples used in teaching and textbooks were
naturally named, learning information technology and programming would be easier
($23). Indeed, programs must be complex reading to those who see them for the first
time. If we lessen the complexity by using commonly known words instead of
abbreviations, it is obvious that a person unfamiliar with programs is able to perceive
something familiar when he or she tries to find out what a program does.

Laitinen and Mukari [10] show that judging the relevancy of names is a means for
analyzing the problems of an application domain. It is thus relevant to presume that
software developers, at least unconsciously, use naming as a thinking tool. The
responses support this presumption (si8). Considering the thinking process during
programming, the respondents gave answers that support the use of natural naming
(S17, S18, S19, and $20). Generally, abbreviated names were considered more
difficult to remember than natural names ($20).

4.3 Observations on Practical Matters

The majority of the respondents see no difficulty in using naming guidelines in their
work ($4). In practice, however, the use of natural naming can cause some
difficulties. For example, long natural names do not fit so easily on a screen or on a
piece of paper, and some software development tools are not able to interpret long
names. The respondents had to judge whether the benefits of natural naming exceed

385

the practical inconveniences. Unfortunately, we did not find any significant data
about this matter.

Software developers often need to find a certain piece of code in a program module
or related pieces of code in several program modules. These kinds of search activities
are often carried out during software maintenance. The majority of the respondents
consider that the use of natural naming makes the search activities easier ($6). It is
rather obvious that searching for natural words is easier than searching for something
that symbolically represents a concept of the real world. For example, if a
maintenance task is to change the definition and processing of a customer number in a
system, it is easier to start searching the names which contain the natural words
"customer" or "number," rather than trying to guess what name might represent the
customer number.

A complaint sometimes expressed by a participant on a naming course is that
natural names are long and too much time is therefore wasted in writing them.
However, these are the opinions of a minority, since most of the respondents
disagreed with this kind of a statement (S1). The respondents thus seem to consider
that the physical writing process is not the activity that takes most of the time needed
in implementing a computer program, or they think that the time that is required to
write longer names is paid back as the resulting programs can be understood more
readily. Although the speed of the physical writing process would not directly affect
how quickly programs can be created, software developers do spend a considerable
amount of their time operating their computers. Therefore, we also asked how well
the respondents are able to type. Although there is great variation in opinions, most of
the respondents agree that being able to type with ten fingers indeed speeds up
software development ($25).

4.4 Comparing Different Groups of Respondents

As the respondents consisted of different types of people, we made some
comparisons between different respondent groups. In the case of individual
statements, we did not find very many statistically significant differences between
different groups, However, when we compared all the responses of the groups we
found some important differences. To compare the general attitude towards natural
naming, we first reversed the numeric scale of those statements in Table 1 which are
against natural naming, and then compared all the responses of one group to all the
responses of another group. Statements 24 and 25 were excluded in these
comparisons.

We found out that people with more than 3 years of experience are more
enthusiastic about natural naming than less experienced software developers in the
same company. In this comparison, the mean response for the less experienced people
was 3.4 while the mean for the more experienced people was 3.7. These figures are
significantly different with t-value 2.56. When we compared people working in a
research institute to those working in commercial companies we found out that people
working in companies (mean response 3.6) have a more positive attitude towards

386

natural naming than people working in a re, search institute (mean response 3.4). The
mean responses were significantly different with t-value 3.36.

The fact that the experienced people in companies have especially positive attitudes
towards natural naming is an indication of the usefulness of this approach. The
respondents represent typical people in the software industry. They work in large
projects, need to co-operate intensively, and also carry out software maintenance. The
comparison group, software developers in a research institute, do not usually work in
large development groups. Some of them develop software only for scientific
purposes or occasionally. Maintenance does not usually belong to their duties.

We also made artificial respondent groups by comparing people who completely
agreed or disagreed with some statement to the other people who had a different
attitude. Generally, people who agree with statements like 15 tend to be more
enthusiastic about natural naming than others. We had presumed that skillful typists,
the people who responded with 5 to statement 24, would have a more positive attitude
towards natural naming than others, but we did not get statistically significant data
that would support this presumption.

5 Concluding Discussion

We summarize the most important findings of this study as follows:
* The natural naming approach can be considered useful in software development.

We could not find anything that would prevent us from recommending the use
of natural naming in practical work.

�9 Compared to using abbreviations, the respondents believe that using natural
names facilitates their thinking process. Trying to invent descriptive names is
obviously an important means for problem analysis in software development.

�9 Experienced software developers in industrial organizations were more
enthusiastic about the natural naming approach than less experienced developers
or the software developers in a research institute.

�9 The understandability of programs is hard to assess since the respondents did
not give clear opinions whether natural naming facilitates communication or
had improved the understandability of source programs.

On the basis of these findings we can say that software development organizations
in particular, but also the research community, should focus more attention on naming
and on the use of natural languages in software documentation. Although more or less
official naming rules exist in many industrial software development organizations,
naming is still often a matter of a programmer's personal taste and style.
Organizations should, however, strive to establish naming rules, as accurate as
possible, in order to standardize their programming practices. We recommend that
natural naming principles be favored in the creation of these rules. Naming rules,
among other kinds of programming rules, can be conveniently adopted as part of a
quality system for software development [7]. When naming rules belong to a quality
system, they can be adjusted according to the standard practices of the quality system.

Software development usually involves writing other types of software documents
than source programs. All software documents that describe the same system should

387

be understandable and they should not be contradictory. Therefore, it is important that
the names used in programs correspond with the textual expressions in other types of
software documents. Considering their software documentation practices, software
development organizations should try to ensure that they use the same terminology in
requirements descriptions, design documents, and source programs. One solution is to
maintain standard vocabularies for the application domains' in which the organization
is involved.

Those engaged in research should, in our opinion, pay more attention to naming as
well. Practically every software development method and tool involves the use of a
natural language in some form or another. It is possible that naming is a difficult
research subject because natural languages are hard subjects. However, we feel that
naming and the use of natural languages should be taken into account in research
related to information systems and other software systems. It is well known that
software development is a difficult process to manage. One reason for this may be
that natural languages are used too carelessly in the development process.

Acknowledgments

This work has been funded by the Technical Research Centre of Finland (VTI'). The
author wishes to thank the people who responded to the naming questionnaires and
who helped in delivering and collecting the forms. The anonymous referees of the
two versions of this paper have also helped with their comments. Special thanks are
due to Mr. Douglas Foxvog, Prof. P~entti Kerola, Ms. Minna Mfikfirfiinen, Dr. Veikko
Sepp~inen, Ms. Eija Tervonen, and Dr. Matti Weckstr6m.

References

1. P. Coad, E. Yourdon: Object-oriented analysis. Englewood Cliffs, New Jersey:
Prentice-Hall 1990

2. B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, T. Love: Measuring the
psychological complexity of software maintenance tasks with the Halstead and
McCabe metrics. IEEE Transactions on Software Engineering 5, 96-104 (1979)

3. B. Curtis, H. Krasner, N. Iscoe: A field study of software design process for
large systems. Communications of the ACM 31, 1268-1287 (1988)

4. V. Fromkin, R. Rodman: An introduction to language, fourth edition. New
York: Holt, Rinehart, and Winston 1988

5. A.M. Ibrahim: Acronyms observed. IEEE Transactions on Professional Com-
munication 32, 27-28 (1989)

6. Intel: MCS-80/85 family user's manual. Santa Clara, California: Intel 1979

388

7. ISO 9000-3: Quality management and quality assurance standards - part 3:
Guidelines for the application of ISO 9001 to the development, supply, and
maintenance of software. Geneva, Switzerland: International Organization for
Standardization 1991

8. D.A. Keller: A guide to natural naming. ACM SIGPLAN Notices 25, 5, 95-102
(1990)

9. K. Laitinen, V. Sepp~inen: Principles for naming program elements, a practical
approach to raise informativity of programming. In: Proceedings of
InfoJapan'90 international conference, part I. Tokyo: Information Processing
Society of Japan 1990, pp. 79-86

10. K. Laitinen, T. Mukari: DNN-Disciplined natural naming, a method for
systematic name creation in software development. In: Proceedings of 25th
Hawaii international conference on system sciences, Vol. II. Los Alamitos,
California: IEEE Computer Society Press 1992, pp. 91-100

11. K. Laitinen: Document classification for software quality systems. ACM
SIGSOFT Software Engineering Notes 17, 4, 32-39 (1992)

12. D. Logsdon, T. Logsdon: The curse of the acronym. In: Proceedings of the
international professional communications conference. New York: IEEE 1986,
pp. 145-152

13. P.R. Newsted: Flowchart-free approach to documentation. Journal of Systems
Management 30, 4, 18-21 (1979)

14. M. Page-Jones: The practical guide to structured systems design, second edition.
Englewood Cliffs, New Jersey: Prentice Hall 1988

15. S.B. Sheppard, B. Curtis, P. Milliman, T. Love: Modern coding practices and
programmer performance. Computer 12, 12, 41-49 (1979)

16. B. Shneiderman: Software psychology, human factors in computer and
information systems. Cambridge, Massachusetts: Winthrop Publishers 1980

17. B.E. Teasley: The effects of naming style and expertise on program comprehen-
sion. International Journal of Human-Computer Studies 40, 757-770 (1994)

18. L.M. Weissman: A methodology for studying the psychological complexity of
computer programs. Ph.D. Thesis. Toronto, Canada: Department of Computer
Science, University of Toronto 1974

19. L. Wittgenstein: Philosophical investigations. Oxford, England: Basil Blackwell
1953

20. E. Yourdon: Modern structured analysis. Englewood Cliffs, New Jersey:
Prentice-Hall 1989

