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Abstract� This paper presents a methodology for the veri�cation of
speed	independent asynchronous circuits against a Petri net speci�ca	
tion
 The technique is based on symbolic reachability analysis� modeling
both the speci�cation and the gate	level network behavior by means
of boolean functions
 These functions are e�ciently handled by using
Binary Decision Diagrams
 Algorithms for verifying the correctness of
designs� as well as several circuit properties are proposed
 Finally� the
applicability of our veri�cation method has been proven by checking the
correctness of di�erent benchmarks


� Introduction

During these last few years� asynchronous circuits have gained interest due to
their promising advantages� such as local synchronization� elimination of the
clock skew problem� faster and less power�consuming circuits� and high degree of
modularity�However� the concurrent nature of asynchronous circuits makes them
di�cult to design because all transitions must be taken into account and hazards
�voltage glitches� avoided� To solve this problem� several automatic synthesis
techniques based on process�algebra models such as CSP �	
�� on event�based
models such as Petri nets ��� 	��� or techniques based on state graphs �	� have
been proposed�

The inherent concurrence of asynchronous circuits makes them also di�cult
to verify� When the circuit components are switching concurrently� the number
of execution paths can be very large because of the variation of the component
delays� Thus� a proper circuit behavior must be assured for all the possible
execution paths� Since the number of possible executions may be exponential in
the number of components� it is desirable to automate the veri�cation process�
otherwise designers would probably be unable to face the problem�

The veri�cation of asynchronous circuits has been studied by several authors
with di�erent approaches� When using theorem proving ��� the asynchronous
system and the speci�cation are modeled in an appropriate logic and a proof
is built as the circuit implies the speci�cation� Although this is a �exible and
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powerful approach� the procedure is di�cult to automate and might need to
demonstrate a great number of theorems� which makes this methodology ine��
cient in practice� even for designers with good mathematical skills� The following
approaches are included in what has been called model checking� i�e� a descrip�
tion of the circuit �often complex� is checked to satisfy or not the speci�cation
of the circuit �usually expressed with some simple formalism�� Model checking
was originally introduced in ��� ���� The original method consisted in building
the state graph and verifying properties of the system by using temporal logic�
A common problem when using the state graph is the state explosion problem�
i�e� the number of states grows exponentially with the size of the system� Burch
et al� ��� proposed using Binary Decision Diagrams �BDDs� ��� to represent the
state graph� introducing symbolic model checking� much more e�cient than the
previous approach� Other authors modeled circuit and speci�cation as separated
automata that interact with each other� In �	��� language containment techniques
are proposed to verify that the language generated by the circuit is included in
the language of the speci�cation� Later� the same author proposed homomorphic

reductions to simplify the problem �	���Trace theory ��
� �� has been used to keep
the history of the system� Then� properties of the system can be veri�ed on the
state graph by using temporal logic� More recently� ���� has modeled both circuit
and speci�cation as Petri nets ����� mitigating the state explosion problem by
means of Petri net unfolding� Similarly� �	�� also represents circuit and speci�
�cation as Petri nets� but the states are represented with BDDs and temporal
logic is used to check some properties� Finally� other authors �		� proposed using
Change Diagrams� a formalism that can easily express or�causality� and verify
the semi�modularity of the circuits�
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Fig� �� A circuit and its Petri net speci�cation

In our approach� we model the speci�cation of the circuit as an interpreted
Petri net� This Petri net implicitly expresses both the expected behavior of the



circuit and the way the environment reacts to the events generated by the circuit�
Commonly� the Petri net will be a Signal Transition Graph �STG� ���� ��� since
transitions are usually interpreted as signal switches� However� the speci�cation
can also have internal transitions with di�erent and more abstract meanings�
The isomorphism between sets of markings and boolean algebras presented in
���� is used to represent the Petri net by using boolean functions� The circuit
is described as a gate�level network� where each component implements a logic
function� The model assumed for the circuit is the unbounded gate delay model�
i�e� the delay of the gates is unbounded but �nite� The circuits that properly
work under this model are called speed�independent circuits� An example of a
closed environment�circuit system is depicted in Fig� 	 �note that 	�input 	�
output places are not explicitly drawn� and their tokens are placed on the arcs��
Since the whole system can be described by using boolean functions� we can use
powerful BDD techniques to e�ciently represent the circuit� the environment
and the set of reachable states of the system�

The veri�cation methodology is based on the reachability analysis of the
closed system formed by a circuit and its environment� We propose an algorithm
for symbolic traversal� that can detect whether or not the circuit conforms to
the speci�cation ���� We also provide means to give a sequence of events from
the initial state up to the failure one� This trace can help designers to debug
their circuits and �nd out those situations that produce an undesired behavior�
In addition we propose algorithms to verify properties of the system� such as
circuit deadlock or semi�modularity�

The paper is organized as follows� In Sect� � the isomorphismbetween boolean
functions and sets of markings of a Petri net is presented� Section � explains how
the gates of a circuit are represented by means of boolean excitation functions�
Section � presents the composition of the environment with the circuit� and the
conditions to detect errors in the circuit implementation� Section � describes the
algorithms for symbolic reachability analysis and error diagnosis� Section � il�
lustrates how properties of the environment and the circuit can be veri�ed� As
application examples� several speed�independent circuits are veri�ed in Sect� ��
Finally some conclusions are presented in Sect� 
�

� Modeling Safe Petri Nets with Boolean Algebras

Let N � hP� T� F�m�i be a safe Petri net� where P is the set of places� T is the
set of transitions� F � �P �T ���T �P � is the �ow relation� and m� is the initial
marking� The fact that marking m� is reached from m� after �ring transition
t is denoted by m��tim�� The set of all reachable markings of N is denoted by
�m�i� A complete introduction to Petri nets can be found elsewhere �����

Henceforth� we will also use the de�nitions of literal� cube and cofactor� A
literal is either a variable or its complement� e�g� a or a�� A cube c is a set of
literals� such that if a � c then a� �� c and vice versa� A cube is interpreted as
the boolean product of its elements� The cubes with n literals are in one�to�one



correspondence with the vertices of Bn� The functions

f �xi� f�x�� � � � � xi��� 	� xi��� � � � � xn� and

f �x�
i
� f�x�� � � � � xi��� �� xi��� � � � � xn�

are called the cofactor of f with respect to xi and x�i respectively� The de�nition
of cofactor can also be extended to cubes� If c � x�c�� x� being a literal and c�
another cube� then�

f �c� �f �x�� �c� �

If MP is the set of all markings of a safe Petri�net with n places �n �
jP j� jMP j � �n�� the system ��MP ����� 	�MP� is the boolean algebra of sets of
markings� This system is isomorphic to the boolean algebra of n�variable logic
functions� therefore there is a one�to�one correspondence between markings of
MP and vertices of Bn �	�� ���� with B � f�� 	g� For simplicity we have only
considered safe Petri nets� although k�bounded Petri nets �i�e� places can have
up to k tokens� can be modeled similarly by representing unsafe places by several
boolean variables�

We use pi both to denote a place in P and the variable in the boolean
algebra of n�variable logic functions� A marking of N can be represented by a
subset m � P � where pi � m denotes pi is marked� A marking m � MP is
represented by means of an encoding function E �MP 
 Bn� where the image
of m is encoded into a vertex �p�� � � � � pn� � Bn� such that�

pi �

�
	 if pi � m

� if pi �� m �

As an example� the marking m � fp�� p�g in Fig� � is represented both by the
vertex �	� �� 	� �� �� � B� and the minterm p�p

�
�p�p

�
�p
�
��

Each set of markings M � �MP has a characteristic function �EM � Bn 

B� that evaluates 	 for those vertices that correspond to markings in M � For
example� given the Petri net depicted in Fig� �� the characteristic function of the
set of markings

M � ffp�� p�g� fp�� p�� p�g� fp�� p�� p�g� fp�� p�� p�� p�g� fp�� p�� p�� p�� p�gg

is calculated as the disjunction of each boolean code E�m��m �M � The resulting
function

�M � p�p�p�p� � p�p
�
�p� �

represents the set of markings in which p�� p�� p�� and p� are marked or p� and
p� are marked and p� is not marked� For simplicity� we will indistinctively use
M and �M to denote the characteristic function of the set of markings M �

Because of the isomorphism between sets of markings and boolean algebras�
operations with sets of markings can be computed as operations with their char�
acteristic functions� For example� given two sets of markings M��M��

�M��M�
� �M�

� �M�
� �M��M�

� �M�
� �M�

� �
M�

� ��M�
� �MP

�
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Fig� �� Petri net

The representation and manipulation of boolean functions are e�ciently handled
by Binary Decision Diagrams ����

The structure of a Petri net de�nes a set of �ring rules that determine the
behavior of the net� We de�ne the transition function of a transition as a function

�N � �MP � T 
 �MP �

that transforms� for each transition� a set of markings M� into a new set of
markings M� as follows�

�N �M�� t� � M� � fm� �MP � �m� �M�� m��tim�g �

This concept is equivalent to the one�step reachability in Petri nets� also called
image computation when using functions�

Image computation for transitions can be e�ciently implemented by using
the topological information of the Petri net� First of all� we will present the
characteristic function of some important sets related to a transition t � T �

Et �
Y
pi��t

pi �t enabled�� ASMt �
Y
pi�t�

pi �all successors marked��

NPMt �
Y
pi��t

p�i �no predecessor marked�� NSMt �
Y
pi�t�

p�i �no successor marked�


Given the above characteristic functions� the image computation for transi�
tions is reduced to calculating�

�N �M� t� � �M �Et
�NPMt� �NSMt

�ASMt �

Thus� given a set of markings M � �N �M� t� calculates all the markings that
can be reached from M by �ring only transition t�

As an example� we will show how the transition t� in Fig� � can be �red from
the set of markings

M � p�p
�
�p�p

�
�p
�
� � p��p�p�p

�
�p
�
� � p�p

�
�p
�
�p
�
�p� �



First� M �Et�
�cofactor of M with respect to Et� � p�� selects those markings in

which t� is enabled and removes the predecessor places from the characteristic
function�

M �Et�
� p��p�p

�
�p
�
� � p��p

�
�p
�
�p� �

Then the product with NPMt� � p�� eliminates the tokens from the predecessor
places�

M �Et�
�NPMt� � p��p

�
�p�p

�
�p
�
� � p��p

�
�p
�
�p
�
�p� �

Next� the cofactor with respect to NSMt� � p�� removes all the successor places�
obtaining�

�M �Et�
�NPMt�� �NSMt�

� p��p�p
�
�p
�
� � p��p

�
�p
�
�p� �

Finally� the product with ASMt� � p� adds a token in all the successor places
of t��

M� � p��p�p�p
�
�p
�
� � p��p�p

�
�p
�
�p� �

� Modeling Speed�Independent Circuits

In clocked digital systems� the state is determined by the value of the so called
state variables� The order of the transitions along the combinational logic is not
relevant� and the only restriction is that those transitions must occur within
the clock period� In contrast� all the transitions in an asynchronous circuit have
a meaning� and therefore� hazards� i�e� undesired or spurious signal transitions�
must be avoided� Since all possible execution paths have to be explored to detect
possible hazards� the state of an asynchronous circuit will depend on all the
signals�

We model a particular class of asynchronous circuits� speed�independent cir�
cuits� which correctly operate regardless of the delays of their components� In
this type of circuits� the next state depends only on the present state� since once
a gate is excited� that gate will eventually switch in the future� Henceforth we
will denote by S the set of signals of a circuit� This set is divided into three
subsets� SI � SO and SH � which respectively denote input� output and internal
�or hidden� signals�

The states of a speed�independent circuit can be represented by boolean
functions� with one boolean variable for each signal� We use si to indistinctively
denote the circuit signal and the variable that represents that signal� The set of
all possible states of a circuit with the set of signals S is denoted as CS � The
state of a circuit with v signals �v � jSj� jCSj � �v� is determined by the value of
its signals and that state can be represented by a minterm of a v�variable logic
function� That minterm is the characteristic function of a state of the circuit�
Sets of states can be represented as the disjunction of the minterms representing
those states�

Gate switching is also simulated with boolean functions� Let us assume a gate
that implements the function fsk and has s�� � � � � sj as inputs and sk as output�



For combinational gates fsk depends only on the inputs� but for memory elements
��ip��ops� Muller�s C elements�� the function depends on both input and output
signals� A gate is said to be excited when sk �� fsk�s�� � � � � sj� sk�� We represent
the set of states in which a gate is excited and the output will eventually become
	 by the positive excitation function� f��

f�sk�s�� � � � � sj � sk� � s�k � fsk�s�� � � � � sj� sk� �

Similarly� we can de�ne the negative excitation function� f�� as follows�

f�sk�s�� � � � � sj � sk� � sk � f
�
sk
�s�� � � � � sj� sk� �

These de�nitions are analogous to the �ow tables presented in �
�� Other au�
thors have proposed to model gates with Petri nets ���� 	��� However� each gate
may result in a net with several places and transitions that would cause a more
complex model for veri�cation� The model proposed in this paper� two exci�
tation functions per gate� is more e�cient� Next we show� as examples� those
characteristic functions for an AND gate and a Muller�s C element�

sk � fsk�si� sj� � si � sj

�
f�sk�si� sj � sk� � s�k � si � sj
f�sk�si� sj � sk� � sk � �s�i � s�j� �

sk � fsk�si� sj � sk� � si � sj � sk � �si � sj�

�
f�sk�si� sj � sk� � s�k � si � sj
f�sk�si� sj � sk� � sk � s�i � s

�
j �

The transition function is a function that� given a set of states C and a non�
input signal sk� returns those states that can be reached by switching sk in the
states in C in which sk is excited�

�C � �CS � �SO � SH � 
 �CS �

The function �C can be computed by using excitation functions as follows�

�C�C� sk� � �C � f�sk � �s�k �sk � �C � f�sk � �sk �s
�
k �

To illustrate this� we calculate the new set of states C� after switching signal
s� using the transition function �C�C� s��� Let us assume that

C � s�s
�
�s�s

�
�s� � s��s�s�s�s

�
� � s��s

�
�s
�
�s
�
�s� �

and that s� is the output of an AND gate with inputs s� and s�� The product
of C by the excitation functions of the gate �f�s� � f

�
s�
��

C � f�s� � C � s��s�s� � s�s
�
�s�s

�
�s� �

C � f�s� � C � s��s�� � s��� � s��s�s�s�s
�
� �

gives the states in which the gate is excited� The following operations simulate�
respectively� the rising and falling of signal s��

�C � f�s�� �s�� �s� � s�s
�
�s�s

�
�s� �s�� �s� � s�s

�
�s�s�s� �

�C � f�s�� �s� �s
�
� � s��s�s�s�s

�
� �s� �s

�
� � s��s�s�s

�
�s
�
� �

Finally� the set of states C� is computed as the union of the states where signal
s� has already risen or fallen�

C� � �C � f�s�� �s�� �s� � �C � f�s� � �s� �s
�
� � s�s

�
�s�s�s� � s��s�s�s

�
�s
�
� �
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� Environment and Circuit Composition

Petri nets are a powerful formalism for specifying asynchronous circuits and�
in addition� there are several methodologies that use Petri nets for automatic
synthesis of circuits� Thus� it is very attractive to use the same formalism for
describing a circuit to be synthesized and afterwards for verifying that circuit
against its speci�cation� As shown in Fig� �� we consider a closed system com�
posed by a circuit and a Petri net modeling the behavior of the environment
of that circuit� Examples of a circuit and its speci�cation �environment� can be
found in Figs� 	 and 		�

Given a Petri net that interacts with a circuit� there is a relationship between
the interface signals and some Petri net transitions� We denote by Ts� �Ts�� the
set of transitions in the Petri net that specify a rising �falling� transition of signal
s� We use Ts� to denote either Ts� or Ts� �

The set of states of a environment�circuit system is a subset of the Cartesian
product of the sets of states of each subsystem� MP � CS � Therefore� the state
of such a system is de�ned by the ordered pair �m� c�� where m is a marking of
the Petri and c represents a state of the circuit�

The previously de�ned image computation formulae� �N and �C � can be ex�
tended for the environment�circuit system as�

�N � �MP�CS � T 
 �MP�CS � �C � �MP�CS � S 
 �MP�CS �

However� new transition functions have to be de�ned for interface signals� in
order to simulate the synchronization between Petri net and circuit� Figure �
depicts a synchronized change in both subsystems� For the input and output
signals of the circuit the transition functions are� respectively�

�I � �
MP�CS � SI 
 �MP�CS � �O � �MP�CS � SO 
 �MP�CS �

The Petri net �decides� when an input signal of the circuit has to switch�
Thus� when a transition in Ts� is �red� signal s must switch accordingly� The
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transition function for signals in SI is computed as follows�

Q� � �I �Q�� sk� �

� �
t�T

s
�

k

�N �Q�� t� �s�
k
�sk

� � � �
t�T

s
�

k

�N �Q�� t� �sk �s
�
k

�
�

In the case of output signals� the circuit takes the initiative of the change� The
function �O performs image computation for output signals�

Q� � �O�Q�� sk� �
�

t�T
s
�

k

�T
s
�

k

�C �Q�� sk� � �N �Q�� t� �

Note that if more than one transition t � Ts� is enabled in a given state� it
may indicate non�determinism or a bad environment speci�cation� This can be
reported as a warning�

��� Failure States

Those states in which there is a signal s � SO positively �negatively� excited
while no transition t � Ts� �Ts� � is enabled are called failure states� These
states model situations in which the circuit generates a signal transition not
expected by the environment� An error in a set of states Q� is detected when
any of the following equations is satis�ed�

�
t�T

s�

Q� � f
�
s �E�

t �� 	 �
�

t�T
s�

Q� � f
�
s �E�

t �� 	 �

Since function �O�Q� s� is correctly de�ned only if no failure states are contained
in Q� malfunction detection must be done before �O is computed�

In fact� the veri�cation procedure checks that the events generated by the
circuit are accepted by the environment� whereas the circuit accepts any event
from the environment� In addition� a malfunction in the circuit behavior can



appear when hazards are produced� A hazard is a short undesired transition
� 
 	 
 � or 	 
 � 
 	 that can cause a gate to enter in a metastable
state or simply an unexpected circuit behavior� Hazards can be produced when
an excited internal or external gate becomes stable without switching the gate
output� This property is called non semi�modularity ����� and it can be checked
at each image computation step�

� System Traversal

The problem of symbolic model checking is solved by computing all the reachable
states of the environment�circuit system� and by proving that no failure states
can occur� Then we can say that the circuit is a speed�independent implemen�
tation of its speci�cation� or that the circuit conforms to the environment�

The set of reachable states can be calculated by using a Breadth First Search

�BFS� algorithm� similar to those used for traversing FSMs ���� The basic algo�
rithm works as follows� As a �rst step� the initial set of states� Q� �often� having
more than one initial state makes the algorithm converge faster�� is assigned to
the sets of states Reached and From� Then� at each iteration� all the states reach�
able from From by �ring one transition or by switching a gate are computed by
using � transition functions� The new states are assigned to From and added to
Reached� This procedure continues until a �xed point is reached� i�e� all the new
states generated are already in Reached�

Although this algorithm for symbolic traversal is e�cient� we propose two
di�erent improvements to reduce BDD size and CPU time�

� Eliminating the input variables of the circuit� This technique reduces the size
of the BDDs representing the set of reachable states by reducing the number
of variables of the characteristic function� For the benchmarks we have tested�
the larger BDD size can be reduced between a � and a �� per cent� depending
on the example� This is achieved by doing a previous traversal of the Petri
net representing the environment� After that� the values of the input signals
at each marking are known� Then� each appearance of an input variable in
a excitation function formula is substituted by the characteristic function of
the set of markings in which the signal value equals to 	� and similarly for
�� Thus� the variables representing input signals are no longer needed�
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Fig� �� a�Traversal without chaining� b� With chaining



� Chaining� This technique drastically reduces the number of traversal itera�
tions� For medium sized examples� the CPU time can be reduced up to two
orders of magnitude� and this di�erence might be even more important for
larger examples� although we have not checked it for obvious reasons� Let us
assume that s� is an input signal of the gate that drives signal s�� A simple
BFS algorithm would switch s� from the set of states Q� and calculate a
new set of states Q�� Until the next iteration� this change will not propagate
through the gate driving s�� However� if Q� is calculated and added to Q��
then s� is switched from Q��Q�� and the change is propagated in the same
iteration� By switching all the gates in the circuit in an appropriate order�
the time consumed by the traversal algorithm can be reduced considerably�
Figure � illustrates the di�erence between chaining or not�

traverse Circuit � Petri net �S � fs�� � � � � svg�N � hP�T�F�m�i� f
eliminate input variables�S�N��
Reached � From � initial state�
repeat f

�� Let � be �I � �C or �O depending on s ��
�s � S f

exit if failure states�From� s�
From � ��From� s� � From�

g
From � From � Reached�
Reached � Reached � From �

g until �From � ���
return Reached �

g

Fig� �� Modi�ed traversal algorithm

Figure � shows a modi�ed BFS algorithm that includes the above modi�ca�
tions� First the traversal of the environment is performed� and thus transition
functions that use input signals are modi�ed� Then at each iteration� given a set
of states �From�� the algorithm calculates the new states reached by switching all
the internal circuit gates and by synchronically �ring input and output signals
and their enabled associated transitions� Before �ring the associated transitions
of output signals� the error condition is checked� Finally� the algorithm halts
when no new states are generated�

��� Error Diagnosis

When the circuit does not conform to the environment� it is interesting to provide
some means to help designers to �nd errors� The algorithm in Fig� 
 gives a
sequence of events that can produce a failure state�



From a failure state� it is performed a backward traversal� restricted to the
states that had been visited during the forward traversal� and a trace from the
initial state until the failure state is given� To perform this backward traversal� we
need to de�ne backward transition functions� The backward transition function
for transitions is computed as follows�

�bN �M� t� �
�
M �ASMt

�NSMt

�
�NPMt

�Et �

that intuitively is equivalent to changing the direction of the arcs of the Petri
net� A gate will switch backwards by changing the output value when it is stable
and� therefore� becoming excited� Figure � illustrates how a stable gate switches
backwards to an excited state� The backward transition function of a signal is
computed as�

�bC�C� sk� �
�
C � f�sk

�
�sk �s

�
k

� �
C � f�sk

�
�s�

k
�sk �

where f�sk and f�sk respectively represent the states in which sk is stable at �

or 	� i�e� sk � f�s�� � � � � si� sk�� Function �bC changes sk into s�k in those states
in which the gate driving sk is stable at 	� an vice versa for the states with sk
stable at �� Given �bN and �bC � the de�nition of backward transition functions for
input and output signals ��bI and �bO� is straightforward�

a
b

c
1

1

1

a+ b+

c+

a+ b+

c+
a
b

c
1

1

0

Fig� 	� Stable AND gate becoming excited by backward switching

In the diagnosis algorithmon Fig� 
� we assure that the given trace will not be
an impossible trace by restricting �b to the reached set of states� By eliminating
the visited states we ensure the algorithm to converge�

� Veri�cation of Properties

Usually there are two questions that must be answered when verifying a system�
First� we must check that the circuit satis�es its speci�cation� Second� there is a
need to prove that a design has properties like safeness� persistence or di�erent
levels of liveness� In this section we present� as examples� algorithms for proving



obtain erroneous trace �S � fs�� � � � � svg� N � hP�T� F�m�i� From� Reached� f
�� Let �b be �bI � �

b

C or �bO depending on s ��
�s � S f

Pre � �b�From� s� �Reached�
if �Pre �� �� f

if �Pre � q� �� �� then r �� TRUE� �� trace found ��
else r �� obtain erroneous trace�S�N�Pre�Reached� Pre��
if �r� then f

print transition�From�s��
return r�

g
g

g
return FALSE�

g

Fig� 
� Diagnosis algorithm

safeness of the speci�cation� as well as deadlock freeness and the home state

property ���� of the whole system� Veri�cation of other properties of the Petri
net speci�cation� using boolean reasoning� can be found in ���� 	���

Given a set of states Q� safeness of the speci�cation can be assured by check�
ing that the following formula does not hold for any transition t � N �

Q �Et �
X

�p�t�	��p���t	

p �

In other words� that no successor place of an enabled transition is marked� unless
that place is a self�loop� This formula can be easily extended to k�bounded nets�

system deadlock �S � fs�� � � � � svg�N � hP�T� F�m�i� f
�� Let TI be the set of transitions associated to circuit inputs ��

Deadlock � Reached�
�t � TI

Deadlock � Deadlock � E�

t�
�s � SH � SO

Deadlock � Deadlock � f�
�

s � f�
�

s �
return Deadlock�

g

Fig� �� Algorithm for checking deadlock freeness

Figure  shows how deadlock freeness can be easily tested� A deadlock state
is a state from which the system cannot make any progress� In a deadlock state



neither any transition is enabled nor a gate is excited� States in which a transition
t is not enabled are found by the formulaQ�E�t� Similarly� the product Q�f�

�

s �f�
�

s

gives the subset of states in Q in which signal s cannot switch� The characteristic
function of the states that produce a deadlock is given by the product of the two
previous formulae calculated for each transition and each gate�

home state �S � fs�� � � � � svg�N � hP�T� F�m�i� f
Removable� Reached�
From � initial state�
repeat f

New � ��
�� Let �b be �bI� �

b

C or �bO depending on s ��
�s � S f

To � �b�From� s� �Removable�
New � New � To�

g
From � New�Removable�
Removable� Removable� From�

g until �From � ���
return Removable�

g

Fig� ��� Algorithm for checking the home state property

The algorithm in Fig� 	� checks if the initial state q� is a home state� i�e�
q� is reachable from any state ����� In addition� if a system has the home state
property and each transition can be �red in some state� the system is L��live��
Otherwise� L��liveness can be veri�ed by other techniques with higher complexity
�����

The state q� will be a home state if performing a backward traversal we reach
the same states that going forward� Nevertheless� we restrict the states found
backwards to the forward reached set� because of the inherent non�determinism
when going backward� The algorithm is similar to a normal Breadth First Search�
but at each step the new states are removed from the reachable set of states�
The backward traversal completes when no more states can be removed� Only if
Removable becomes the empty set� q� will be a home state�

	 Application Examples

This section illustrates the power of our approach verifying circuits of moderate
size against their speci�cation� We have chosen scalable examples in order to

� L��liveness and home state are concepts used for Petri nets that we naturally extend
to circuits




verify circuits with few hundreds of gates and millions of states� but we have not
intentionally exploited this regularity�
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Fig� ��� �a� DME cell� �b� Two user DME ring� �c� Petri net speci�cation

We have veri�ed the following circuits�

� Distributed Mutual Exclusion �DME� arbiter� Ring of N DME cells� origi�
nally due to Martin �	��� It has also been studied by several authors �
� ��
��� �� with di�erent approaches� Figure 		 depicts this example�

� Tree arbiter� Tree of arbiter cells proposed by Seitz ���� and modi�ed by Dill
���� Figure 	 depicts one of these cells and its speci�cation�

� Martin�s FIFO� This circuit was proposed by Martin �	�� We have checked 	�
bit FIFOs with di�erent depths� The main drawback seen on this benchmark
is the required CPU time� since BDD size keeps moderate� In this case�
giving more than one initial state� i�e� considering that all cells initially
can be empty or full� will reduce drastically the number of iterations and�
consequently� the execution time�

� Muller�s pipeline� Non�dense asynchronous pipeline proposed by Muller ��	��
The results indicate similar behavior as in the previous example� The solution
can be the same�



� Two port register� Multi�port register used in the data path of TITAC quasi�
delay�insensitive microprocessor �����

Table �� Experimental results

example signals states BDD size iter
 CPU
peak �nal �sec
�

� DME ��� ���	 ��� ���� ���� �� ��
�� DME ��� ���	 ���� ����� ����� �� ����
�� DME ��� ���	 ���� ����� ���� �� ����
�� DME ���� ���	 ���� ����� ����� �� �����
� Tree arb
 �� ���	 ��� ���� ��� �� ��
� Tree arb
 �� ���	 ��	 ��� ���� �� ���
�� Tree arb
 �� ��	 ��� ���� ����� � ����
�� Tree arb
 � ���	 ���� ���� ���� � ����

�� FIFO �� ���	 ��� ��� ��� �� ���
�� FIFO �� ���	 ���� ���� ���� �� ���
�� FIFO � ���	 ���� ���� ���� �� ����
�� PIPE �� ���	 ��� �� ��� �� �
�� PIPE �� ���	 ��	 ��� ��� �� ���
�� PIPE �� ��	 ���� ����� ���� �� ���
�� PIPE �� ���	 ���� ����� ����� �� �����

�	bit Reg
 �� ���	 ��
 ���� ���� �� �
�	bit Reg
 �� ���	 ��	 ����� ����� �� ���
�	bit Reg
 ��� ���	 ���� ��� ����� �� ���
�	bit Reg
 ��� ���	 ���
 ����� ���� �� ����

Table 	 present the results obtained in terms of number of states and number
of signals of each system� peak size of the BDD Reached� the number of iterations
needed in the traversal algorithm� and the CPU time spent by the algorithms�
Safeness of the speci�cation and absence of deadlock of the whole system have
been veri�ed as well� All CPU time values have been obtained by executing the
algorithms on a Sun SPARCstation 	�� with ��Mb of memory�We have used the
Carnegie Mellon University BDD package �	��� which allows dynamic reordering
of variables�

Some examples have polynomial BDD size in the number of variables� while
in others this size grows exponentially� We have considered undesirable a BDD
size greater than the square of the number of variables �including signals and
places�� Thus� in the tree and register examples dynamic reordering is done when
the Reached BDD size grows in excess� Dynamic reordering takes a signi�cant
time� therefore it must be used only if it is strictly necessary� In the rest of
examples the given variable order is good enough not to need changing it�

Interestingly� it can be observed that for some examples� larger circuits result
in smaller BDDs� This is probably the e�ect of the greedy strategy used by the
reordering algorithm� which does not behave monotonically�




 Conclusions

The paper has presented an approach to verify speed�independent circuits based
on symbolic checking of Petri nets� Petri nets are e�ciently represented by using
boolean functions� The same formalism �Petri nets� used for several automatic
synthesis tools� is also used for veri�cation� thus allowing to check the correctness
of synthesis techniques�

Veri�cation is performed by checking the circuit conforms to the environ�
ment� Moreover� liveness and safeness properties can be veri�ed at both levels�
environment and circuit� In order to help to �nd design errors� diagnosis of er�
roneous circuits is also provided� in terms of a possible trace leading to an error
from the initial state� Finally� the validity of our approach has been tested with
several benchmarks�
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