
G e n e r a t i n g B D D models for process a lgebra
t e rms

Ashvin Dsouza and Bard Bloom*

Department of Computer Science,
Cornell University,

Ithaca, NY 14853, USA

Abstract . The Simple systems form a class of process algebras whose
operational semantics can be specified using finite state labelled tran-
sition systems. In this work, we describe how to efficiently derive the
ordered Binary Decision Diagrams (BDDs) corresponding to the oper-
ational semantics of the terms of an arbitrary Simple system. Model
checking using such BDDs can often significantly speedup the testing of
properties such as bisimilarity over direct algorithms. We also introduce
a useful extension of Simple providing explicit recursion. For the CCS
operators, we show that the corresponding BDD operators we generate
automatically are comparable to those coded by hand.

1 I n t r o d u c t i o n

Process algebras are coming into increasing use as specification tools for con-
current systems. Specifications are given as terms; the appropriate use of the
algebra's operations lends useful structure to the specifications. As process alge-
braic specifications resemble programs, they appeal to programmers ' intuitions.

This study is part of an ongoing project to develop tools for the support of
process algebraic methods for specification and verification of programs. There
is a variety of such tools available for specific process algebras. However, many
of these tools are customized for particular process algebras; e.g., the tools of
LOTOSphere [LOT] are intended for use with LOTOS.

Building custom tools is certainly appropriate. However, in many cases, it
is possible to build general tools without loss of efficiency and with a distinct
gain in expressive power. In this study, we give a procedure for model-checking
processes over a wide class of process algebras. Preliminary results indicate that
our method gives comparable results to custom model-checkers.

The problem of model-checking in general is, given a finite-state program p
and a formula ~ describing a desired property of p, to determine automatically
whether p has property ~o, by a complete consideration of all the possible states of
p. For a program of any significant size, it is prohibitively expensive to generate
all the states of p directly.

* bard@cs.cornell.edu. Supported by NSF grants CCR-9003441, CCR-9003440, CCR-
9014363, and CCR-9223183.

17

So, modern model checking methods are largely based on compact, efficient
representations of state spaces. The most successful method[BCM+90] is to take
advantage of any innate structure in a state space to obtain a compact rep-
resentation of it using an ordered Binary Decision Diagram (BDD)[Bry86]. In
[BCM+90], a model checker is obtained by encoding temporal logic specifications
as #-calculus formulas, which are then interpreted as BDD's and evaluated. Sys-
tems with as many as 1012~ states have been efficiently verified this way[BCL91],
and larger systems have been verified with appropriate abstraction functions.

For specificity, we consider the problem of deciding bisimulation: [Par81,
Mi189] that is, of deciding whether two processes are identical in a very strong
sense. A/z-calculus formula encoding the bisimulation relation between two pro-
cesses is also presented in [BCM+90].

However, that formulation assumed that the processes were already repre-
sented as BDD's. No methods were provided in [BCM+90] for the construction
of BDD's from programs. This problem is addressed in [EFT93] for CCS, by pro-
viding operators on BDD's representing transition systems to mimic the effect of
certain CCS operators: parallel composition, channel-hiding, and renaming. The
simple scheduler described in [MilS9] was verified by BDD methods, and a sig-
nificant improvement in performance over direct methods [dSV89, Fer89, GV90]
was obtained. That is, BDD techniques indeed help model-checking for CCS.

Other researchers have used BDD techniques on CCS and related process al-
gebras. For finite automata running in parallel, [BdS92] uses BDD's to improve
the conventional fast bisimulation algorithm based on partition refinement. Par-
titioning for a variety of equivalences is carried out efficiently using BDD's in
[FKM93], also using automata running in parallel. In [MM93], BDD's are used
to speed up bisimilarity checking for the Circal calculus.

However, these techniques either focus on one particular process algebra and
derive by hand a BDD operator for each operator of the process algebra, or
assume the setting to be finite automata running in parallel.

In this paper, we present a general method to generate BDD models for the
terms of a useful class of process algebras. Our class of calculi includes most
finitary process-algebraic operations that have appeared in practice, including
large fragments of CCS, CSP, ACP, Meije, and LOTOS and many less-well-
publicized ones, and thus our techniques should be widely useful.

1.1 Structural Operational Semantics

The basic semantic model of processes we use is the familiar labelled transition
system (LTS), in which a process state p is an entity capable of taking actions a
and thereafter acting like some other process state q. Such a transition is written
p---~q.

Most process algebras are given behavior by means of a Structural Opera-
tional Semantics (SOS), in which the behavior of a composite process f(p, q) is
determined by rules which can examine the behavior of p and q. For example,
the CCS nondeterministic choice of p and q, written p+ q, can perform an action
of p (or one of q). This is given by the rules:

]8

ct
p- -~r q - ~ r

p + q -2, r p + q --* r

where a ranges over a set of actions. Most processes algebras with LTS semantics
use terms for states, and give the transition relation inductively by SOS rules.
Since SOS rules are fairly regular in form, it has proven worthwhile to study the
metatheory of SOS: that is, the properties of process algebras defined by specific
formats of SOS rule systems [dS85, Blo90, ABV94]. For example, any language
in GSOS format [Blo90] has bisimulation as a congruence; and one may auto-
matically extract a set of equational axioms from the rules which (together with
an induction principle) are complete for proving equations between programs.

We selected the class of Simple systems [Ace93], which is a subclass of GSOS
guaranteeing finite state behavior for terms. We extended it with recursion,
subject to restrictions that keep recursive processes finite-state. Indeed, most
process algebras (including CCS, CSP, Meije, core LOTOS, and ACP) are Simple
languages with an infinite-state recursion operation added. Obviously, ordinary
BDD-based model checking only works on finite state processes, so this seems a
reasonable class to consider.

This paper is structured as follows: In the next section, we describe Simple
systems and BDD's. In Section 3, we show how to derive the BDD representation
of the transition system semantics of a Simple term. In Section 4, we propose
an extension of Simple systems with explicit recursion and describe how it can
be handled by our BDD construction. We then describe our implementation
in Section 5, and end with a discussion of future work in Section 6. A formal
construction, with proofs of correctness and a bound on the BDD size, can be
found in the full version of the paper[DB95].

2 P r e l i m i n a r i e s

2.1 Simple S y s t e m s

Simple systems 2 [Ace93] are GSOS systems [Blo90] tha t guarantee finite state
operational semantics for process terms. The main constraint added to GSOS is
tha t no nesting of operators is allowed on the right hand side of the consequent
of a rule.

D e f i n i t i o n 1. Let ,U be a finite signature, and Act a finite set of actions. A
Simple rule p is of the form:

b l , j

U ~ a i ~ t ; J y i , j l l < j < m l } u U x i ~ J l < j < n i
{ = I " - - i = l - - (I)

~

- + t

2 We refer to the simple GSOS rules and systems introduced in lAce93] as Simple rules
and systems in this paper.

19

where all the variables x and y are distinct, 0 _< ml, 0 < nl, g is an operation
symbol from Z of arity l, and the aid, bid and a are actions from Act. The term

t is either a variable in ~, Y, or of the form h(z ') where h is an operation symbol

from S and each zi is a variable in x or Y.

D e f i n i t i o n 2 . A Simple system over a finite set of actions Act is a pair G =
(Sa ,7~o) , where EG is a finite signature and 7~c is a finite set of Simple rules
over L'o.

Note tha t Simple rules allow arbi t rary copying of arguments, as well as neg-
ative antecedents. It follows from GSOS theory [Blo90] that any Simple system
G has a well defined operational semantics, which maps each G-term to a tran-
sition system over Act. Denoting the labelled transition system of a term t by
TS(t), the following theorem stating the finiteness property of Simple systems is
proved in [Ace93]:

T h e o r e m 3 . Let G = (SG,74G) be a Simple system. Then, .for all t E T(L~G),
where T (S o) /s the set of terms over S,c, TS(t) is finite.

Example 1. The checkpointing operator p was q is intended to capture the ab-
stract behavior of the checkpointed version of the running process p, with a prior
state q backed up on stable storage. The rules for was are :

f

- r c (2)
xa was x~ --* x~ was x~ x l was x~ --~ x2 was x~ x l was x2 --* x l was x l

where a ranges over a set of actions A not including f, r or c. The first rule a says
that the running process p can compute freely on the actions in A, representing
proper computation; p's ordinary computat ion does not modify the stored pro-
cess q. The second rule says that , if p fails - - signalled by the action f - then a
new running process is started from the saved state q. The third rule says that ,
at any time, the system may do a checkpoint, copying p onto stable storage. The
actions r and c signal tha t a restart or checkpoint happened. All three rules are
Simple.

Example 2. Even a slight relaxation of the Simple constraints can violate the
finiteness property. Consider the GSOS system (~, 74) over Act= {zero, inc, dec, a}
where ~ = {count, a., 0} and T4 is as follows:

a a

a dec (3) a.z --* x count(z) zero --, count(=) count(=) --* count(~)

count(=) i ~ count(a =)

a This is really a rule schema parameterized by A.

(4)

20

The operator 0 has no rules, and thus is a stopped process. The rules (3) are
valid Simple rules, but (4) has one level of nesting in its target. A graphical
representation of TS(count(0)) is as follows:

inc i nc inc
if-count(O) ~ count(a.O) ~ count(a.a.O) -Z ---> . . -
~ero ~ dec dec dec

This is an infinite state transition system, an unbounded counter, violating the
finiteness property.

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDD's)[Bry86] are graphs representing Boolean func-
tions, in which the variables of the function are ordered. For a given variable
ordering, the reduced BDD representation of a Boolean function is canonical,
making satisfiability testing and equivalence testing trivial. Also, many common
functions have compact BDD representations, which we exploit in implementing
transition systems.

A BDD has a distinguished root node, internal nodes containing Boolean
variables, and terminal nodes containing either the value 1 or the value 0. Nodes
containing variables later in the order are reachable from those with variables
earlier in the order but not vice versa. Non-terminal nodes have exactly two
outgoing edges, labelled 0 and 1.

To evaluate the Boolean function for a given variable assignment using its
BDD representation, start at the root, and take the edge labelled with 1 or 0,
depending on the value of the variable at the current node. The value of the
function is the value contained in the terminal node that is reached using this
process.

In diagrams for BDD's, we mostly omit edge labels, using the convention
that edges going left are labelled 0, while edges going right are labelled 1. Each
internal node is labelled with its variable. The terminal node with value 0 and
its associated edges are omitted.

The size of the BDD for given Boolean function is very sensitive to the
ordering of the variables. While finding the optimal variable ordering is co-NP
complete, many real world problems admit a heuristic ordering that performs
well.

Example 3. Consider the Boolean function ~o in disjunctive normal form (CNF)

[A A V ^ ^ V ^ A V ^ A

The BDD representation of ~0 using the variable orderings vl < v4 < v2 < vs <
v3 < vo and vl < v2 < va < v4 < v5 < v6 respectively are shown in Figure 1.
The smaller BDD is about as large as the conjunctive normal form of ~:

~# ---- (Vl V V4) A (V:~ V VS) A (V3 V V~)

Vl< v4< v2< Vs< v3< v s

21

Vl< v2< v3< v4(v5< v 6

Fig. 1. BDDs for ~ using good and bad variable orderings

To represent a LTS as a BDD, we must first encode the states and labels using
bit variables, and then construct a BDD in these variables tha t will recognize
encodings of valid transitions.

3 B D D Construct ion

The standard construction of the transition relation p _a q is mathematically
elegant, but does not immediately lead to a BDD construction tha t avoids
explicitly enumerating the transitions. The difficulty is that the relation be-
tween the s tructure of p and q may be ra ther arbitrary. For example, consider

p -~ .f(a.b) + c d g(b) = q via the transition f (a .b) d g(b). The structure of q
bears little resemblance to that ofp. In this section, we represent terms and tran-
sitions in a way that preserves more of the structure, and is thus more suitable
for BDD's.

3.1 Rules Without Copying Or Elimination

We illustrate the concepts with the Simple system Go, which is designed so that
the structure of terms stays visible and constant. Go is very stylized, in ways
that illustrate our methods well; but our methods require nothing but the Simple
rule format.

Go has j - a ry identity functions idl/j, with rules such that id i / j (x l , . . . , x j)
behaves like xi. Go also has slightly unusual variants of prefixing a 0 and choice
§ In CCS, as a(x) evolves, it forgets the fact that it used to have the shape
a(x): the rule is a(x) -~ x. 4 G0's prefixing keeps some record that of where it

4 For most purposes, the CCS-style evolution is simpler and superior. However, Go's
method is ideally suited for this example.

22

started: its rule is the computationally equivalent one,

a(x) .~ idl/l(X)

Similarly, the binary form x + y evolves into idz/2(x', y) or id2/2(x, y').

x l --* yl

xl + x~ -% id~12(yl,x~)

Xl -% yl

idl/2(xl,z2) -% idl/2(yl,x2)

where a ranges over all actions.

X2 ~ y2 (6)
Z l -I- Z2 -~]d2/2(zl ,Y2)

Q
x2 --*~ Y2 (7)

id:~12(xl,x2) id2/2(xl,y2)

In Go, the parse tree of a term never changes shape, though the operators at
the nodes change. For example, the Go version of the CCS computation a.b.O -t-

c.O ~ b.O _~b 0 is a.b.O + c.O --% idl/2(idl/1(b.O), c.O) b idl/2(idl/1 (idl/1(O)), c.O).
We can compare these evaluations using parse trees:

CCS:

+

a c b
I I a b . I , 0
b 0 O
I
0

+ " idl /2

al c[a * i~ ~ b *- iOl]l

b 0 b 0 idl/1 0
I { |
0 0 0

G0 :

Since the Go parse tree never changes shape, we can code the term and its
descendants easily, by simply telling which operations are at which nodes of the
tree. In this case, the head operator is either +, idl/2, or id2/2; let us code these
as the bit pat terns 11, 10, and 01. Similarly, the first argument starts with either
a-prefixing or idl/1; we code these as 1 and 0 respectively. The nullary operator
0 never evolves, so it doesn' t need a code. a.b.O § c.O is coded as 11111:

+ a b 0 0
181821831841 Ic , 8s , (8)

oper. left subterm right subterm

The transitions above are represented:

l i l l '1 " 10 0 1 I1 [b i ' l O 0 0

For the BDD construction, we must encode the transition relation p & q. We
do this in the obvious way. We have the five-bit coding of p and q given in the
diagrams above, so we will have five bit variables s z , . . . , s5 for p, and a distinct

23

set s : , . . . , s~ for q. We will have a third set of variables for the action: two bits,
b:, b2, suffice for the action set {a ,b , c } . Then the transition relation p -% q can

be expressed as a logical formula in terms of ~ , ~ ~, and b; as this is a finite
logical formula, it induces a BDD in the standard way.

Suppose s represents some descendant q of p. The transition formula must
first check the leading operator of q, as coded by sis2. If the leading operator is
idl/~, then q takes a transition iff the left subterm (given by s3s4) can take the

, , and bl b~ which same transition. So, suppose tha t ~l is a formula over sas4, sas 4,
gives the transit ion system for the left subterm. We use the formula ~ol to make
the transition in the subterm, and a clause about s i s ~ ' ' to explain tha t the main
operator id:/2 does not change state. Then the idl/2 case is covered by:

s is2 = 10 ::t> (~l ~ A s:s~ = I0)

The entire transition relation is:

= s' s' = 10) /* idl/2*/ s:s2 10 =~ (~o~ A : 2

^ 8:8~ = o i =~ (~,, ^ 8:8: = o i) /* :d~/2*/
^ =

A sl s2 ~ 00 unused bit pattern

(l o)

where ~ is the formula for the transition system of the right subterm, using
variables ss, s~ and bib2.

T h e c o n s t r u c t i o n in g e n e r a l We can construct such an encoding of states
and transition formulas in general for Go terms. For concreteness, we consider
terms of the form p = f (t : , t2). All descendants of p can be represented as triples

where g is an operator which] may evolve into, and sl and s2 are representations
of descendants of t: and $2- We apply this scheme recursively, representing si
by its operation symbols in nested tuples. As above, the operation symbols may
change as the term evolves; but the nesting structure does not.

So, if we can discover the possible descendants of each operator f , then we
have a good representation for each Go term. We could simply take the set of
operators of the right arity - - e.g., + can only evolve into binary operators - -
but, for a less trivial language than Go, most of these will not actually be possible
descendants.

We summarize the descendants for each operator by computing a reacha-
bility graph, which will serve in this case as the control structure we call the
Operator Occurrence Graph (OOG). The OOG is more complicated when we
handle general Simple systems, but for now it just has operators for nodes, and
edges labelled by rules linking the corresponding operators. For example, the
OOG for the Go-operator + is as follows:

24

+

rul~ (6h///// ~ e (0)~

id112 id212

rule (7)1 rule (7)2

Thus, no mat ter how many binary operations Go had, we would only need
two bits to represent the three possible states corresponding to a + operation.
The OOG mechanism is excessive for Go, but is helpful in general.

3.2 Handling Copying And Elimination

The rules for Go were very stylized, in a way that made representing t e r m s
convenient. General Simple languages are not so stylized, but the same intuitions
apply with suitable changes.

For example, Simple rules may have conclusions of the form x + y ~ x'.
We may transform the language slightly, adding an identity operator id to the
language, and using it in all such conclusions: x + y -% id(x'). We henceforth
assume this transformation.

Go is also unrealistically simple in tha t it has neither copying, permutation,
nor elimination: that is, each descendant of f (x , y) has the form g(x ' , y ~) where
x ~ and y' are descendants or copies of x and y respectively. We must handle
more complex operations, like �9 was �9 of (2), which have a more complex pat tern
of propagation of arguments.

Since Simple rules do not allow nesting of operators in the targets of rules,
i.e. they have consequents of the form f (x) -% g(~) , we examine how the rules
relay their arguments to handle copying and elimination. For example, consider
checkpointing: p = (q was r). The opera tor was is static, like } and restriction
and relabelling in CCS; that is, the descendants of q was r all have leading was
operators. So, we don' t need to waste bits saying that a descendant of p starts
with was. However, we can' t simply represent a state of p with a state of q and
one of r, because we have transitions tha t copy one and eliminate the other, such
a s

p = (q was r) s (q was q) = p'. (12)

Clearly, p"s representation should include two states of q and none of r. Con-
versely, after the f transition of the third rule for was, the state should include
two states of T and none of q.

So, the representation of p should have three fields:

where ww is two bits long, and b 1 and b'2 are each long enough to hold either
a state o f q or a state o f r . We use, say, w w = 00 for terms of the form q was r,

where b l is a state of q and b 2 a s tate of r; w w = 10 when both are states of
q, and ww = 01 when both are states of r.

25

In general, then, we must record for each rule how the indices of the target
variables are related to the indices of the source variables : this is the index
mapping of the rule. The index mapping of a rule with conclusion] (x) ~ g (~)
is a vector (i l , i 2 . . . in)whose first element tells which source variable xil the
target variable zl is associated with, and so on. Index mappings can be composed,
which enables us to trace arguments along execution paths.

For example, the first checkpointing rule of (2) does not modify the structure
of its arguments, and thus has the identity (1, 2) as its index mapping. However,
the second rule has conclusion xl was x2 --* x2 was x2, replacing both arguments
by members of x2's state space; this is represented by index map (2, 2). Similarly,
the third rule has index mapping (1, 1).

We calculate the index mappings in the OOG, along with the operators. OOG
nodes are now pairs g~.I, where g is an operator and I is an index mapping. To
construct an OOG, we start with the initial head operator and the identity
index map. From node g~>I, there is an edge for each each rule p for 9 to a node
h~s where h is the target operator of p and J is the composition of the index
mapping for p and I. For example, the checkpointing operator �9 was �9 described
in Section 2.1 has the following OOG:

was~(1, 2)

was~(1, I) was~(2, 2)

rule (2)i rule (2)i
rule (2)2 rule (2)2
rule (2)3 rule (2)3

In general, the term f(P1,.. �9 ,pn) wil l evolve into another term g(q1,-.. ,qt);
the qj's are descendents of the pi's, with the relation between i and j given by
some index mapping I. Accordingly, g ~ appears in the OOG for f .

So, when we represent g (q t , . . . ,qz) we need a bit-field of sufficient size to
identify a node of the OOG - - tha t is, lg IVoov l bits, where V o o a is the OOG's
vertex set. The OOG node determines g and an index mapping I. We also need
k bit-fields to represent the arguments of g, where k is the maximum arity of any
operator in the OOG. We have each argument bit-field long enough to represent
a state of any piS; the index map I tells which p~ each of the bit-fields should be
interpreted as a state of.

In practice, the size of the OOG is often small: for example, the largest OOG
for CCS is for summation and has just 3 nodes. However, in the worst case, a
Simple system with n operators and maximum arity m may have as many as
n �9 m m nodes.

The transition relation is coded in just the manner suggested by (10). By
induction, we have formulas ~Pi which describe the transition relation for the

A more refined analysis could save a few bits here, as it may not be the case that
every process can get to every argument position.

26

i ' th subterm p~. We code the transition relation for p = f (P) by, first, a case
analysis on the bits representing the main operator g and index mapping I .
Within each case, we have one clause for each rule for g, using the formulas ~oij
to find transitions of the j ' t h subterm.

All in all, we have one clause for each rule that could ever be used to calculate
the behavior of a descendant of p - - which, obviously, is just the information we
need. This logical formula may be calculated as a BDD in canonical form in the
usual way, giving a BDD representation of the transition system.

T h e o r e m 4. The construction sketched in this section yields a transition system
isomorphic to the ordinary SOS-calculated transition system.

3.3 Optimizations

The construction we have outlined is correct, but sometimes uses too many state
bits. There are a number of common special-case optimizations which apply, in
many cases dramatically reducing the size of the BDD's. Some of these have been
pointed out in the construction, but the most important optimization deals with
BDD's for nested terms.

The problem with generating the BDD for a CCS term such as a.b.c.0, is
tha t the construction will first generate the BDD for 0, then pass this as an
argument to c.x which adds a bit of state, and passes the result as an argument
to b.x, which adds another bit of state and so on. The result has three bits of
state encoding only three states. For larger terms, this problem gets worse. Our
solution is to extend the OOG construction to ruloids[Blo90]; ruloids are similar
to rules, but describe when terms can fire, rather than defining how operators
behave. Hence, for a.b.c.0 we would first construct the ruloids for the open term
a.b.c.x and its derivatives:

et

x - * y , a E A c t

a.b.c.x a b.c.z b.c.z b c.z c.~ c z ~ 2* y

and then generate the three-state OOG for a.b.c.x (treating it like an operator
with argument x), and finally apply it to the BDD for 0 to generate a BDD with
just two state bits instead of three.

The ruloid construction just described in effect explores the whole state space
of the term, which could be prohibitively expensive in the case of a larger term,
such as a.b.c.(P1 I .-- I P,~), with the Pi's large. However, there is no need to
determine the ruloids for the whole term; in this case, we would generate the
ruloid OOG for a.b.c.x, and pass the BDD generated in the standard way from
(P1] . . . I P~) as the argument to this OOG. At the moment, the extent to which
the ruloid construction is applied is specified by the user.

4 Handling Explicit R e c u r s i o n

In [Ace93], it is described how a Simple system (~UG, RG) may be extended with
a finite set of names, Af, and a mapping, A, from Af to terms over ~ a U N .

27

A(X) must be of the form g(Y), where Y are names, and all the rules for every
operator reachable from g must have no antecedents. The system is also extended
with the rule:

A(X) ~
X - * t

Unfortunately, this extension excludes many useful recursive terms, such as the
following CCS definition:

X = a.X + b.X

since both rules for the CCS operator § have an antecedent. We therefore
present an alternative extension of a Simple system with explicit recursion that
overcomes this problem and is amenable to our method for constructing BDD
models of terms.

Defini t ion 5. Given a Simple system (~Uo, RG), an operator f E ~G is projective
if every rule p for f in RG is of one of the following forms:

f(-z) -~ x f(-~) ~ g f(-~) ~ z

Defini t ion 6. An argument position i is guarded for a projective operator f if
there is no rule for f of the form

r xi ---* y
b - - , y

A non-guarded position is one that is not guarded.

In CCS, the parallel composition, renaming and restriction operators are
not projective, the summation operator is projective but not guarded in any
position, while the prefixing operators are both projective and guarded in their
only argument position. In general, static operators are not projective.

Defini t ion 7. A term t is projective-recursive with respect to a Simple system
(X'c, RG) and a finite set of variables 2d if

1. It is generated using the grammar:

. . -4

t : : = x.t I / (t) I x

where f E ZG is a projective operator, and X E 2r
2. Every occurrence of a variable X E X in t appears in a guarded position of

an operator, and
3. t has no free variables.

We also add the standard rule for recursion:

t [x := #x . t] t'
X . t ~ t'

28

Theorem 8. Let G be a Simple rule system, and t a closed projective-recursive
term over G. Then the transition system of t is finite state.

Proof. (Sketch) Consider any execution sequence t = to ~ tl -~ t2 We show
that the size of the terms in this sequence is bounded: The only time there is
an increase in size after a transition ti ~ ti+x is when a subterm of ti of the
form #X. t ~ fires. Now, a guarded subterm of a projective-recursive term remains
guarded unless the term evolves into that subterm. Since all occurrences of X
in t ~ must be guarded, the next time # X . t ~ fires will be when the execution
sequence evolves into the term I~X.t ~. Since the number of subterms of the form
#X.t ' that can fire in the execution sequence is determined by the number of
such subterms in t, there are only finitely many terms t~ that are strictly larger
than all t i for j < i.

We have extended our BDD construction to handle these terms as well, by
redirecting transitions that would lead to occurrences of recursive variables back
to the states representing points where they are bound.

Theorem 9. The BDD construction extended for projective recursion yields BDD's
corresponding to the transition system semantics.

5 I m p l e m e n t a t i o n

We have implemented our algorithm using C++ and a BDD library[Lon93].
Given the SOS rules of a Simple system G, our program will generate a BDD
model for any G-term. We also implemented the BDD interpreter for the #-
calculus described in [BCM+90], so that we could use the #-calculus encoding
of the bisimulation relation to check bisimilarity.

In Figure 5, we compare the performance of our system with that of lEFT93],
where CCS terms representing the specification and implementation of a simple
distributed scheduler [Mil89] are checked for bisimilarity. In lEFT93], the static
CCS operators are built into the system as operators on BDD's for transition
systems, and the dynamic operators are not available as operators. In contrast,
our system took as inputs (1) an SOS specification of CCS, (2) the system to
verify, written in CCS and (3) an indication of which subterms of the system to
apply the ruloid construction to; it can handle any program in any Simple process
algebra. In both cases, the tool requires a modest amount of hand-tuning of the
inputs. We used input (3) to optimize the dynamic components, while [EFT93]
explicitly provided the transition system BDD's of the dynamic components as
part of the input.

Using the optimizations described in Section 3.3, we actually generate slightly
smaller BDD's than in lEFT93]. We also have better run times, though this
should not be taken seriously as we are running on slightly different hardware
and using different BDD libraries. However, this does suggest that our method
is probably competitive with hand-coded algorithms tuned to the most common
special case.

29

~N

10,

1,i,
ld;~ 1 200 000
,18 ~ 4 800 000

States
577 2 017

3 073 13 825
15 361 ! 84 481
73 729 479 233

300 000 '2 '000 000
8 000 000

32000 bOO

Size Time 6
Transitions [EFT93]lSimple [EFW93]lSimple ,

427 419 2 l 5
651 633 40 13
907 882 87 30
200 1 167 145 55

1 528 1 488 233 95
1 897 1'861 348 196

297 2 254 569 522

Fig. 2. Comparative BDD sizes/verification times (seconds) for the scheduler.

Buffer BDD Time
Capacity States size Simple CWB (v6.1)

l x 2 12@ 314 4 4
2x 2 75(} 479 18 200
3x 2 385@ 639 88 12050
4x 2 18278 799 465 > 1 week

Fig. 3. Verification times (seconds) for the alternating bit protocol.

We are verifying other protocols to see how well our methods scale to larger
problems; e.g., the al ternating-bit protocol with various buffer capacities[Mi189],
for which a comparison with version 6.1 of the Concurrency Workbench[CWB92]
is shown in Figure 3.

6 F u r t h e r W o r k

There are several ways in which we can extend this work. First, we could carry
out this program for other classes of finitary process algebras. We used Simple
because it has a very clean syntactic characterization, which makes it easier to
deal with than classes of algebras determined by t e rm rewriting techniques. We
hope to eventually handle higher order process algebras, such as the n-calculus,
for which a model checking procedure has appeared[Dam93]. In a different direc-
tion, we could look for optimizations and heuristics to tune the model checking
process for bisimulation, for example, by abstract ing systems. As par t of a larger
project , we are integrating this tool into a general process algebra toolkit t ha t
will use a variety of techniques, including equational theorem proving, for bisim-
ilarity checking.

6 For Simple, the time includes computing the T-closure and bisimulation relation on a
SUN 670, using the model checking algorithm and p-calculus formula for bisimulation
in [BCM+90]. For lEFT93], the times are for the same operations, but on a Sun
Sparcstation 2.

30

References

[ABV94] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turning SOS rules into
equations. In]ormation and Computation, 111(1):1-52, May 1994. (Special
Issue for LICS '92).

[Ace93] Luca Aceto. GSOS and finite labelled transition systems. Technical Report
6/93, University of Sussex at Brighton, March 1993.

[BCLgl] J. Butch, E. Clarke, and D. Long. Symbolic model checking with partitioned
transition relations. In VLSI 91, Edinburgh, Scotland, 1991.

[BCM+90] J. Butch, E. Clarke, K. McMillan, D. Dill, and L. Itwang. Symbolic model
checking: 1020 states and beyond. In Logic in Computer Science, 1990.

[BdS92] A. Bouali and R. de Simone. Symbolic bisimulation minimization. In Com-
puter Aided Verification, volume 663 of LNCS, 1992.
Bard Bloom. Ready Simulation, Bisimulation and the semantics of CCS-like
languages. PhD thesis, MIT, Cambridge, Massachusetts, october 1990.
R. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8):677-691, 8 1986.
The Edinburgh Concurrency Workbench, version 6.1, 1992. Available by ftp

from ftp.dcs.ed.ac.uk, directory export/cwb/CWB6.1.
Mads Dam. Model checking mobile processes. CONCUR 93, 1993.
A. Dsouza and B. Bloom. Applying symbolic model checking to process al-
gebras, 1995. http://www.cs.cornell.edu/Info/People/dsouza/pa2bdd.ps.
R. de Simone. Higher-level synchronizing devices in MEIJE-SCCS. Theoret-
ical Computer Science, 37(3):245-267, 1985.
R. de Simone and D. Vergamini. Aboard Auto. Technical Report Rapports
Techniques 111, INRIA, Sophia Antipolis, 1989.
R. Enders, T. Filkhorn, and D. Taubner. Generating BDDs for symbolic
model checking in CCS. Distributed Computing, 6:155-164, 1993.
J-C. Fernandez. An implementation of an efficient algorithm for bisimulation
equivalence. Science of Computer Programming, 13:219-236, 1989.
J-C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic equivalence checking.
In Computer Aided Verification, 1993.
J.F. Groote and F. Vandraager. An efficient algorithm for branching bisimu-
lation and stuttering equivalence. In ICALP '90, Lecture Notes in Computer
Science. Springer Verlag, 1990.
David Long. bdd: A Binary Decision Diagram (BDD) package, 1993. Avail-
able by FTP from emc.cs.cmu.edu (pub/bdd/bddlib.tar.Z).
LOTOSphere is available by FTP from ftp.cs.utwente.nl.
Robin Milner. Communication and Concurrency. Prentice Hall International
Series in Computer Science. Prentice Hall, New York, 1989.
G. Milne and G. McCaskill. Sequential circuit analysis with a BDD based
process algebra system. Technical Report HDV-25-93, University of Strath-
clyde, 1993.

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Theoretical Computer Science, Lect. Notes in Computer Sci., page
261. Springer-Verlag, 1981.

[Blo90]

trays6]

[CWB92]

[Dam931
[DB95]

[as85]

[dSV89]

lEFT93]

[Fern9]

[FKM93]

[OV90]

[Lon93]

[LOT]
[Mi189]

[MM93]

