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Abs t rac t .  We consider the problem of verifying correctness properties 
of a class of programs with states that are sets of ground atoms. Such 
programs can model specifications of telephone services, in which we are 
particularly interested. For this class of systems, we consider the problem 
of checking reachability properties. A large class of safety properties can 
also be reduced to the problem of checking reachability in a transformed 
system. The emphasis of our approach is on automated verification of 
such properties. Although the reachability problem is in general unde- 
cidable, we present a method for analyzing reachability properties, and 
show that it can be successfully applied to practical examples. The main 
idea of our method is the following. In order to check whether a certain 
set of "error" states can be reached from an initial state of the system, 
we first compute the set of "unsafe states" (i.e., states from which it 
is possible to reach an error state) as a fixpoint, and finally we prove 
that the initial state is not "unsafe". We present the application of our 
method to an example of a simple telephone service. 

1 I n t r o d u c t i o n  

Most established approaches to automated  verification of distributed systems 
are based on finite-state methods.  In these approaches systems are modeled as 
finite state programs by giving an explicit representation of the state space. 
Various tools for the analysis of state spaces exist. A major  problem in these 
approaches is the state explosion problem, which is most  prominent  in systems 
tha t  consist of many  parallel processes. Another l imitation of these approaches is 
the fact that  only finite-state programs can be checked for correctness. Systems 
with infinitely many  states, e.g. systems that  operate on da ta  from unbounded 
domains,  fall beyond the capabilities of these methods.  In general, verification of 
infinite-state systems requires a substantial  manual  effort, since most  interesting 
verification problems are undecidable. However, algorithmic verification methods  
have recently been developed for some classes of infinite-state systems. Examples  
include certain types of real-time systems that  operate on clocks [3, 18], data-  
independent systems [15, 19], systems with many  identical processes [11, 13, 17], 
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context-free processes [8, 10, 9], Petri nets [14], and systems communicating over 
unbounded lossy channels [1, 2]. 

In this paper, we consider the problem of verifying systems that  can be ab- 
stractly viewed as programs whose state is a set of relations over a possibly 
unbounded universe. A state change consists of changing how relations hold 
between objects in the universe. Such programs can model many distributed al- 
gorithms. We are particularly interested in the specification of telephone services, 
and the subscriber's view of a telephone system can conveniently be modeled as 
a dynamically changing set of relations, where the relations can be connections 
between users of the system. We are presently initiating this approach for appli- 
cation to specifications of telephone services in parallel with an effort to model 
telephone services [6]. Of particular interest is the so-called feature interaction 
problem [7], manifesting itself in that  two services (features) of a telephone sys- 
tem may be in conflict with each other. 

For this class of programs, we concentrate on verifying safety properties, and 
in particular, the reachability of sets of states. The problem of verifying safety 
properties can be transformed into a reachability problem. 

For the class of programs that  we consider in this paper, the reachability 
problem is undecidable in general (it is not difficult to show that  they can simu- 
late Turing machines). We present a method for proving teachability properties, 
and give some first results on proving some properties of basic telephone ser- 
vices. In order to check whether a certain set of "error" states can be reached 
from an initial state of the system, we first compute the set of "unsafe states" 
(i.e., states from which it is possible to reach an error state) as a fixpoint, and 
finally we prove that the initial state is not "unsafe". In the cases where the fix- 
point computation terminates the method determines whether the set of "error" 
states is reachable. This approach to verification is, in principle, similar to the 
one used for lossy channel systems in [1], where the fixpoint computation always 
terminates, and for hybrid system in [4] where the fixpoint computation may 
not always terminate. 

Sets of states (e.g., the "unsafe states") are represented by formulas restricted 
to a certain form. Some of the restrictions are motivated by simplicity reasons, 
whereas other restrictions are required by the analysis method given in Section 3. 
In spite of the restrictions, many useful properties can be checked. Intuitively, 
a formula describes a finite configuration by sets of atoms that  should exists 
in a state. The formula is restricted to an existentially quantified conjunction 
of atoms, where an atom is a (possibly negated) relation symbol applied to 
variables. With this representation of sets of states, we can perform the basic 
operations in the verification method. 

Alternative approaches for automated verification of telephone systems usu- 
ally use finite-state techniques (for example [16]). These approaches are in most 
cases adequate for detecting interactions, but to prove the absence of interac- 
tions .for an arbitrary number of subscribers these approaches need additional 
reasoning such as induction techniques and data-independence analysis that  in 
many cases can not be automated. 
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The paper is structured as follows. In the next section, we present the basic 
syntax for the kind of programs we consider, together with the semantic model for 
our programs. In Section 3 we present the verification method,  and in Section 4 
we apply the method to show some properties of a basic telephone service. 

2 T r a n s i t i o n  S y s t e m s  

2.1 Syntax 

In this section, we present the class of transition systems that  we want to use. We 
assume some infinite set D of objects, ranged over by d, dl, d2, . . . .  We assume 
a finite set of unary relations ranged over by a, al,a2,. . . ,  and a finite set of 
binary relations ranged over by b, bl, b2, . . . .  Assume a (countably infinite) set of 
variables, typically ranged over by x, y, z, . . . .  

A ground atom is a formula of the form a(d) or b(dl, d~) where d, dl, d2 are 
objects in D. a(d) is called a unary ground atom, and b(dl, d2) is called a binary 
ground atom. A state s is a set of ground atoms. A state is finite if it contains a 
finite set of ground atoms. One can regard a state s as giving an interpretation 
to the unary and binary relations, so that  a unary relation a is interpreted as the 
set of objects { d E D : a(d) E s }, and a binary relation b is interpreted as the 
set of pairs { (dl, d2) E D x D : b(dl, d2) E s }. For simplicity reasons we restrict 
the relations to be unary or binary. The framework can easily be extended for 
n-ary relations. 

E x a m p l e  2.1 Configurations of a telephone system can be modeled by one 
unary and three binary relations: 

active(d) indicates tha t  subscriber d has his phone off the hook. 
trying(all, d2) indicates that subscriber dl tries to call subscriber d2 who has 

not answered but  is not busy. 
busy(all, d2) indicates that  subscriber dl tries to call subscriber d~ who is busy. 
conn(dl, d2) indicates that  there is a connection between subscribers dl and d2. 

The connection is ordered, so dl is the caller and d2 is the callee. [3 

We generalize ground atoms to positive simple literals, which are formulas of 
the form a(u) or b(u, v), where u, v ranges over objects or variables. A negative 
simple literal on the other hand is of the form -~a(u) or -~b(u, v) where u, v are 
objects or variables. A negative simple literal represents negative information, 
e.g., -~aetive(d) means that  the the relation active does not hold for object d. A 
simple literal is a positive or negative simple literal. 

A positive existential literalis a formula of the form 3z : b(z, u) or 3z : b(u, z), 
denoted respectively b (u) or *b (u) where u is an object or a variable. A positive 
existential literal says that  an object is related to some other object by a certain 
relation, but  we do not care to which object. We define negative existential 
literals and existential literals analogously. A literal is either a simple literal or 
an existential literal. 
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We can now define a formula over these literals as a (possibly existentially 
quantified) boolean combination of literals. Let ~, r p range over formulas. A 
formula la is object free if it contains no objects in the literals. As a notational 
convention we let tb E ~ denote that  ~b is one of the conjuncts (disjuncts) if ~ is 
a conjunction (disjunction) of formulas. 

E x a m p l e  2.2 The formula 3x, y : active(x) A trying(x, y) says that  there is an 
object dl in the relation active such that  dl is related to some object d2 by the 
relation trying. [] 

We define free and bound variables of formulas in the usual way. Let FV(~) 
denote the set of free variables of the formula ~. We sometimes write a formula 
as ~(X)  to denote that  that  FV(~) C_ X. Formulas with at least one free variable 
are said to be open. Formulas without free variables are said to be closed. 

Define a replacement as a mapping from strings of symbols to strings of sym- 
bols. Let a substitution be a mapping from variables to variables or objects. Let 
0, a range over substitutions and replacements. A ground substitution is a sub- 
sti tution from variables to objects. Let I, J, K range over ground substitutions. 
The application of a substitution 0 to some argument a is denoted 0(a) or a0. 
When using postfix notation, the composition 02 o 01 is denoted 0102. 

D e f i n i t i o n  2.1 A Transition System TS is a pair (I, F)  where 

I is a finite state intended to represent the initial state of the system. 
F is a finite set of transitions. Each transition v E F is a pair of formulas, 

r : (~, r  where ~ is an object free conjunction of literals, and r is an 
object free conjunction of simple literals and negative existential literals. 
The  formula ~ is called the precondition and the formula r is called the 
postcondition of r .  [] 

The postcondition r can be regarded as an assignment that adds (or deletes) 
objects and object pairs to the relations in the system. 

The restrictions on the forms of the preconditions and postconditions are mo- 
tivated by simplicity reasons and by pragmatic reasons originating in our special 
interest in telephone system specifications. In Section 4 we give an example of a 
system that  models a basic telephone service. 

2.2 S e m a n t i c s  o f  T r a n s i t i o n  S y s t e m s  

In this section, we define the semantics for this special Class of transition systems. 
Some definitions needed in this section are standard from first-order logic, and 
are therefore omit ted unless needed for clarity (see [5] or some other introduction 
to first-order logic). 

We define a satisfiability relation s ~ ~ between states s and formulas ~ as 
follows: 

- s ~ ~a iff ~ E s, when ~ is a ground atom (~a = a(d) or ~ = b(dl, d2)) 
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- s ~ ~ is defined in the standard way when ~ is a non-atomic closed formula. 
E.g., 3x : ~(z)  means that  ~(d) is true for some d E D. 

A closed formula ~ is satisfiable if there exists a state s such that  s ~ ~. A 
closed formula ~ is said to be valid, denoted ~ ~o, if s ~ ~ for all states s. 

D e f i n i t i o n  2.2 Let T S  be a graph system (I,  F)  and let r : (9, r E F.  We 
define a transition relation r> on graphs by (s,s') E ~> (denoted s ~ >s') iff 
there exists a ground substitution K such that  

1. s ~ K  
2. e K  is satisfiable 
3. # =  s U sl \ s2 where 

sl = { l I1 e e K  and 1 is a positive simple literal }, and 
s2 = { l [ --I E e K  and -~l is a negative simple literal ) 

4 -  

U { l [ l  = b(dl,d~) and -~b (dl) E e K  } 

U { I l l  = b(dl,42) and --b (d2) E e K  } [] 

Condition 1 ensures tha t  the precondition is satisfied. Condition 2 ensures that  
the postcondition imposes a consistent assignment to the relations. Condition 3 
performs the assignment. The new state s ~ is obtained through a "minimal" 
change to the old state s such that  r holds in #.  

A transition r is said to be enabled on s if there is some # such that  s r ~ # .  
Otherwise the transition is said to be disabled on s. 

We define > as (-Jrer r >. Let * > be the reflexive, transitive closure of 

~. A graph # is said to be reachable from a graph s if s * > # and is said to 
be reachable if # is reachable from the initial graph I .  

3 Reachability Analysis 

In this section we look at the teachability problem for the transition systems we 
are using: 

Given a transition system T S  and a class C of states, is any state in C 
reachable in TS? 

We will specifically look at the case where the set C is defined by a certain type 
of formulas, called patterns, which we will define next. For a set Y of variables, 
let disjoint(Y) be the formula which states that  all variables in Y are different. 
For instance, disjoint({ z, y, z }) is the formula x r y A x ~s z A y r z. A pattern 
is a closed object free formula of the form 3 Y :  disjoint(Y) A T(Y) where ~(Y) 
is a conjunction of literals. In the following, we will write a formula of  form 
3Y  : disjoint(Y) A ~(Y) as BdisjY : ~o(Y). We use p, q to range over patterns.  
Note : In this paper,  we restrict patterns to existentially quantified conjunctions 
of literals, but  our results can be generalized to reaehability analysis for sets 
C defined by arbi t rary formulas by transforming ~ into Disjunctive Normal  
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Form and check for reachability separately for each disjunct in the formula. The 
disjointness requirement can be removed in a similar way. 

The Halting Problem can easily be encoded as a teachability problem for 
transition systems, and this shows that  the teachability problem is undecidable 
in general. In spite of this, we present a method for analyzing reachability prop- 
erties, which we believe to be useful in many telephone applications. To check 
whether a certain pat tern p is reachable, we apply a classical method: compute 
the set of patterns from which p is reachable, and see whether the initial state is 
in this set. The set of states from which p is reachable is computed as a fixpoint. 
In this computation,  we use disjunctions of patterns to represent sets of states. 
The fixpoint computation need not always terminate, but if it does our method 
will give an answer to the question whether p is reachable. This approach to ver- 
ification is, in principle, similar to e.g., the one used for lossy channel systems 
in [1], where however the fixpoint computation always terminates. 

The sets of states that  we want to check for reachability are, in the setting of 
telephone systems, usually finite erroneous configurations. These configurations 
are local phenomena, and the choice of a backward computation therefore seems 
reasonable. A forward search would start  from a global state and would more or 
less build the entire state space. 

In the following subsections, we will first in Section 3.1 present the general 
structure of our verification method. This method is built from three nontrivial 
operations, discussed in Sections 3.2 and 3.3. 

3.1 O u t l i n e  o f  t h e  R e a c h a b i l i t y  Ana ly s i s  P r o c e d u r e  

As already stated, the idea of our reachability analysis is to compute the set of 
states from which a certain pattern p can be reached. This can be reformulated 
as computing the set of states that  can be reached by performing transitions 
"backwards" from some state in p. Before presenting the analysis procedure, we 
introduce some notation for representing such sets of states. 

D e f i n i t i o n  3.1 For a transition r,  pattern p and state s, define a "possibility" 
predicate (7")p on states as 

s~(l")p iff 3s':s r ) s 'As '~p  [] 

The notation is inspired by the modal possibility operator in Dynamic Logic (see 
e.g., [12]). 

For a set F of transitions define (F)p as V r e r  (r)p and define (F)ip for 
i > 0 as ( r ) ~  = p and ( O ; + l p  = ( r } ( ( r } ' p )  for i > 0. Finally, define (F}*p as 
V~>0 (f'}~p. We see that  p is reachable in a transition system (I,/~) if and only 
i f / - ~  ( r )*p.  

In Section 3.2 we will show how to compute (r}p. Before that ,  and assuming 
that  we can compute (v}p, .we present our procedure to analyze whether I 
( / ' )*p holds for an initial state I and a pattern p. 
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P r o c e d u r e  
Input :  A transition system TS = (I, F) and a pattern p. 
Ou tpu t :  does I ~ (F)* p hold in TS? 
vat A, W : sets of patterns 

A:=O 
w = I v }  
while W ~- 0 do 

choose q E W 
if (I ~ q) then return true and exit 
w : = w  \ {q}  
A : = A  \ {q' E A : q ' ~ q }  U {q}  
W :=W U {q~ E(F)q:("~3q" E(A O W ) : q ' ~ q ' )  } 

end while 
return false 

Fig. ! .  Procedure for analyzing reachability 

The idea of our method is to calculate (F)*p, represented as the disjunction of 
a set of patterns, by backward reachability analysis. At each iteration the proce- 
dure checks whether I satisfies some pattern in the current set. The method uses 
as data  structures two sets of patterns, A and W, such that  A U W represents 
the set of states that  have so far been found to be "backward reachable" from 
the pattern p. The set A contains the patterns from which backward transitions 
have already been generated, and W contains the pattern from which backward 
transitions must still be generated and analyzed. If, during the computation,  
we have computed a pattern Pl and can find a pattern P2 E (A U W) that  is 
entailed by Pl (denoted Pl _ P~), then pl is "redundant",  and can safely be dis- 
carded. Entailment here is required to be a relation as strong as or stronger than 
implication: ~ Pl ==~ P2. A pseudocode description of the analysis method is 
given in Figure 1. 

The procedure relies on the ability to perform three nontrivial operations on 
patterns p and q: cMculating (F)p, deciding Pl _ P~, and deciding whether I ~ q 
for a state I. 

3.2 C o m p u t i n g  B a c k w a r d  T r a n s i t i o n s  

In this section, we describe how to compute (F)p. Let r  be a conjunction 
of simple literals and negative existential literals. We can easily see that  the 
formula 3X : r  is satisfiable if and only if 

1. no positive literal occurs as a negative literal, and 

2. if b(x, y) E r then no literal of the form -- b (y) or of the form -- b (x) occurs 
in r 
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D e f i n i t i o n  3.2 For a conjunction r  of simple literals and negative existen- 
tial literals such that  3X : r  is satisfiable, define the textual replacement 0r 
on patterns by defining its effect on a pattern p as follows. 

1. if a(x) (or b(x, y)) is a positive literal in r then replace all occurrences of 
a(x) (of b(x, y)) in p by true, 

2. if -~a(x) (or -~b(x, y)) is a negative literal in r then replace all occurrences 
of a(x) (of b(x, y)) by false, 

3. if -~ b (x) (or -~ b (x)) is a negative existential literal in r then for all vari- 

ables y, replace all occurrences of b(y, x) and ~ (x) (of b(x, y) and ~ (x)) by 
false, 

4. if b(x, y) is a positive literal in r then replace all occurrences of b(x, y), 
- +  

b (y) and ~ (x) by true. [] 

We compute (F)p as the formula V , e r  (v)p. The following theorem states how 
to compute (r)p for each transition r E Y. 

T h e o r e m  3.1 For any state s, transition r : (T(X), r  and pattern p = 
3disjZ : p(Z), where X and Z are assumed disjoint, we have that  s ~ (r)p if 
and only if there is a substitution a which maps the variables in X to variables 
in Z U X such that  

1. r is satisfiable, and 
2. s ~ 3~i,~ (Z U X~) : ~ A pOr o 

Since we only have a finite number of possible ~, we can then calculate the 
pattern (v)p as Vo 3di,j(Z U Xg) : ~g A p(Z)0r for all substitutions 
restricted as before. 

3.3 Checking Entailment and Model  Checking of  States 

The computational complexity of deciding whether ~ Pl ==~ P2 turns out to be 
NP-complete, and to speed up the computation one can use a stronger entailment 
relation Pl ~ P2. However, the risk of nontermination then becomes greater. 

In the current implementation we use implication as the entailment relation, 
where implication is computed as follows: ~ Pl ==~ P2 holds for patterns Pl = 
3disjX : p l ( X )  and P2 = 3disjY : P2(Y) iff Pl is satisfiable and there exists an 
injective ground substitution K2 with domain X such that  

p2IC2 C p, K1 U { ~ (d l ) ,~  (d2): b(dl,d2) e plK1 } 

where K1 is some injective ground substitution with domain Y. 
In the procedure we need to compute s ~ p for a finite state s and a pattern 

p = 3d~,jX : p(X). This is done as follows: I ~ p iff there exists an injective 
ground substitution K from variables in X to objects in I such that  all positive 
literals in pK are in I t and no negative literal in pK occurs in positive form in 

I ' ,  where I '  = I U { ~ (dl),-b (d2): b(dl, d2) e I }. 
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4 A p p l i c a t i o n :  A B a s i c  T e l e p h o n e  S e r v i c e  

In this section we describe a basic telephone service (sometimes called Plain Old 
Telephone Service, POTS) as a transition system, and give some examples of 
properties that  have been automatically verified for this system. 

Each subscriber is modeled by an object. Internal state information for each 
subscriber is modeled by the unary relation active and call information is mod- 
eled by the binary relations trying(d1, d2), busy(d1, d2), and conn(d~, d2). These 
relations were described earlier in Example 2.1. 

4.1 T h e  t r a n s i t i o n s  fo r  P O T S  

The following transitions model basic calling between subscribers. Each transi- 
tion models the system response to an action from a subscriber. For convenience, 
we define the macro 

idle(x) ~ e- +- _+ ,_ -: -,trying (x) A -,busy (x) A -~conn (x) A -~conn (x) . 

The transitions are: 

= r r 

-~active(x) 
OnUook(x) active(x) A idle(x) 

trying(x, y) conn(x, y) 
!Answer(x, y) A -~active(y) A -~trying(x, y) 

A active(y) 
-,active(x) 

OffHook ( x ) -~ active ( x ) 
A -~trying (x) 

Dialling(x, y) 

DialBusyl(x,  y) 

DialBusy~ (x, y) 

active(x) 
A ~active(y) 
A idle(x) 

- 4  

A ~trying (y) 
active(x) 

A ~active(y) 
A idle(x) 

A trying (y) 
active(x) 

A active(y) 
A idle(x) 

trying(x, y) 

busy(x,y) 

busy(x,y) 

The transition OnHook(x) reflects that  subscriber x puts down the receiver. Any 
connections to / f rom x are released and x is no longer trying to call someone. 
The transition Answer(x, y) reflects that subscriber x is calling y, and y answers 
the call by lifting his receiver. Subscriber y must have is phone on the hook 
for this to happen. The transition OffHook(x) reflects that  subscriber x lifts his 
receiver, and there is no one trying to call him. The transition Dialling(x, y) 
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reflects tha t  subscriber x dials the number  to y, and no one else is calling y. 
The transitions DiaIBusyl (x, y) and DialBusy2 (x, y) both reflect tha t  subscriber 
x dials the number  to y and that  y is busy, either because someone is trying to 
call y or because y has the phone off the hook. 

4.2 V e r i f y i n g  P r o p e r t i e s  o f  t h e  T e l e p h o n e  S e r v i c e  

In this section, we give examples of properties that  have been verified by an 
implementat ion of the reachability procedure written in Prolog. At present, the 
implementa t ion exists in an early stage only doing very simple optimizations.  
We show some properties for the model of POTS given earlier. 

Initially we shall look at the transition system T S  = (~, P O T S ) ,  with an 
empty  initial s tate and the transitions are the transitions stated for POTS in 
section 4.1. 

We want to check the property that  there can be at most one connection to 
a subscriber. This requires three patterns,  and one of them is 

p = 3disjx, y, z :  court(x, y) A conn(z, y) 

which says that  there are subscribers x and z such that  both subscribers are 
connected to the subscriber y. The property holds iff 0 ~ (POTS)*p.  

From the computat ion of (POTS)*p  we obtain the pat tern q = Sdisi x, y, z : 
Pl V P2 V P3 V P4 V P5, where 

pl = conn(x, y) A conn(z, y) 
P2 = trying(x,  y) A -~active(y) A court(z, y) 

.-+ 

P3 = active(x) A idle(x) A -~trying (y) A conn(z, y) A -,active(y) 

P4 = active(x) A -,trying (x) A -~active(y) A conn(z, y) A -~trying (y) 
- +  --4 

P5 = -~active(x) A -~trying (x) A -~active(y) A conn(z, y) A -~trying (y) 

Now, 0 ~ q so we are done. This computat ion was run on a SPARC ELC 
work station, and took approximately 1 minute to compute running the Prolog 
program in interpreted mode. In total, 102 intermediate patterns were generated, 
but pl ,  �9 �9 p5 were the only pat terns not discarded because of entailment.  

Other properties that  have been successfully checked are: 

Pat tern  
1 conn(x, y) A conn(z, y) 
2 conn(x, y) ^ conn(y, z) 
3 corm(y, x) ^ conn(y, z) 
4 conn(x, x) 
5 busy(x, y) A -~active(y) 

Result 
Not reachable 
Not reachable 
Not reachable 
Not reachable 
Reachable 

Time 
1 rain 
2 1/2 min 
1 1/2 min 
5 sec 
45 sec 

# interm, pat terns  
102 
278 
157 
10 
81 

Pat tern  1-3 say that  a subscriber can have two (or more) connections. None 
of these should be reachable. Pat tern 4 says that  subscriber x can connect to 
himself, which should not be reachable. Pat tern  5 says that  subscriber x can be 
calling subscriber y which has not picked up the receiver and still hear a busy 
tone in the phone. This state should be reachable. 
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4.3 E x a m p l e :  M u t u a l  E x c l u s i o n  in  a G r a p h  

The following is a mutual  exclusion algorithm for processes communicat ing 
through an arbi trary connection graph. Each object d represents a process. The 
a tom cs(d) represent tha t  process d executes a critical section, and the absence 
of the a tom cs(d) represents the execution of a non-critical section. Mutual ex- 
clusion is preserved by passing around a unique token. A ground a tom token(d) 
indicates that  process d has the token. The transitions are: 

r 
e,ter(x) token(x) cs(x) 
teaw(x) cs(x) 

The property 3d~,jx, y : cs(x) A cs(y) was found not to be reachable in 6 seconds, 
with a total  of 16 intermediate patterns computed. 

5 Conc lus ion  

We have considered the problem of verifying reachability properties of a class 
of infinite-state distributed algorithms that  is well suited for the specification 
of telephone services. We have presented a method for analyzing reachability 
properties, and show that  it can be successfully applied to practical examples. 

Future work in general includes trying to characterize classes of systems 
for which the method would terminate,  studying how the choice of entailment 
relation changes terminat ion speed, and applying the method to larger examples 
to see how well it scales up. 

For telephone systems specifications, larger case studies of detecting interac- 
tions should be made to find out how useful the procedure is for our purposes. 
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