
Verifying Safety Propert ies of a Class of
Inf inite-State Dis tr ibuted Algor i thms *

Bengt Jonsson and Lars Kempe

Uppsala University, Dept. of Computer Systems, P.O. Box 325, S-751 05 Uppsala,
Sweden

Abs t rac t . We consider the problem of verifying correctness properties
of a class of programs with states that are sets of ground atoms. Such
programs can model specifications of telephone services, in which we are
particularly interested. For this class of systems, we consider the problem
of checking reachability properties. A large class of safety properties can
also be reduced to the problem of checking reachability in a transformed
system. The emphasis of our approach is on automated verification of
such properties. Although the reachability problem is in general unde-
cidable, we present a method for analyzing reachability properties, and
show that it can be successfully applied to practical examples. The main
idea of our method is the following. In order to check whether a certain
set of "error" states can be reached from an initial state of the system,
we first compute the set of "unsafe states" (i.e., states from which it
is possible to reach an error state) as a fixpoint, and finally we prove
that the initial state is not "unsafe". We present the application of our
method to an example of a simple telephone service.

1 I n t r o d u c t i o n

Most established approaches to automated verification of distributed systems
are based on finite-state methods. In these approaches systems are modeled as
finite state programs by giving an explicit representation of the state space.
Various tools for the analysis of state spaces exist. A major problem in these
approaches is the state explosion problem, which is most prominent in systems
tha t consist of many parallel processes. Another l imitation of these approaches is
the fact that only finite-state programs can be checked for correctness. Systems
with infinitely many states, e.g. systems that operate on da ta from unbounded
domains, fall beyond the capabilities of these methods. In general, verification of
infinite-state systems requires a substantial manual effort, since most interesting
verification problems are undecidable. However, algorithmic verification methods
have recently been developed for some classes of infinite-state systems. Examples
include certain types of real-time systems that operate on clocks [3, 18], data-
independent systems [15, 19], systems with many identical processes [11, 13, 17],

* Supported in part by the Swedish Board for Industrial and Technical Development
(NUTEK) as part of ESPRIT BRA project No. 6021 (REACT), and as part of grant
No. 5321-93-3061 (on Feature Interaction).

43

context-free processes [8, 10, 9], Petri nets [14], and systems communicating over
unbounded lossy channels [1, 2].

In this paper, we consider the problem of verifying systems that can be ab-
stractly viewed as programs whose state is a set of relations over a possibly
unbounded universe. A state change consists of changing how relations hold
between objects in the universe. Such programs can model many distributed al-
gorithms. We are particularly interested in the specification of telephone services,
and the subscriber's view of a telephone system can conveniently be modeled as
a dynamically changing set of relations, where the relations can be connections
between users of the system. We are presently initiating this approach for appli-
cation to specifications of telephone services in parallel with an effort to model
telephone services [6]. Of particular interest is the so-called feature interaction
problem [7], manifesting itself in that two services (features) of a telephone sys-
tem may be in conflict with each other.

For this class of programs, we concentrate on verifying safety properties, and
in particular, the reachability of sets of states. The problem of verifying safety
properties can be transformed into a reachability problem.

For the class of programs that we consider in this paper, the reachability
problem is undecidable in general (it is not difficult to show that they can simu-
late Turing machines). We present a method for proving teachability properties,
and give some first results on proving some properties of basic telephone ser-
vices. In order to check whether a certain set of "error" states can be reached
from an initial state of the system, we first compute the set of "unsafe states"
(i.e., states from which it is possible to reach an error state) as a fixpoint, and
finally we prove that the initial state is not "unsafe". In the cases where the fix-
point computation terminates the method determines whether the set of "error"
states is reachable. This approach to verification is, in principle, similar to the
one used for lossy channel systems in [1], where the fixpoint computation always
terminates, and for hybrid system in [4] where the fixpoint computation may
not always terminate.

Sets of states (e.g., the "unsafe states") are represented by formulas restricted
to a certain form. Some of the restrictions are motivated by simplicity reasons,
whereas other restrictions are required by the analysis method given in Section 3.
In spite of the restrictions, many useful properties can be checked. Intuitively,
a formula describes a finite configuration by sets of atoms that should exists
in a state. The formula is restricted to an existentially quantified conjunction
of atoms, where an atom is a (possibly negated) relation symbol applied to
variables. With this representation of sets of states, we can perform the basic
operations in the verification method.

Alternative approaches for automated verification of telephone systems usu-
ally use finite-state techniques (for example [16]). These approaches are in most
cases adequate for detecting interactions, but to prove the absence of interac-
tions .for an arbitrary number of subscribers these approaches need additional
reasoning such as induction techniques and data-independence analysis that in
many cases can not be automated.

44

The paper is structured as follows. In the next section, we present the basic
syntax for the kind of programs we consider, together with the semantic model for
our programs. In Section 3 we present the verification method, and in Section 4
we apply the method to show some properties of a basic telephone service.

2 T r a n s i t i o n S y s t e m s

2.1 Syntax

In this section, we present the class of transition systems that we want to use. We
assume some infinite set D of objects, ranged over by d, dl, d2, We assume
a finite set of unary relations ranged over by a, al,a2,. . . , and a finite set of
binary relations ranged over by b, bl, b2, Assume a (countably infinite) set of
variables, typically ranged over by x, y, z,

A ground atom is a formula of the form a(d) or b(dl, d~) where d, dl, d2 are
objects in D. a(d) is called a unary ground atom, and b(dl, d2) is called a binary
ground atom. A state s is a set of ground atoms. A state is finite if it contains a
finite set of ground atoms. One can regard a state s as giving an interpretation
to the unary and binary relations, so that a unary relation a is interpreted as the
set of objects { d E D : a(d) E s }, and a binary relation b is interpreted as the
set of pairs { (dl, d2) E D x D : b(dl, d2) E s }. For simplicity reasons we restrict
the relations to be unary or binary. The framework can easily be extended for
n-ary relations.

E x a m p l e 2.1 Configurations of a telephone system can be modeled by one
unary and three binary relations:

active(d) indicates tha t subscriber d has his phone off the hook.
trying(all, d2) indicates that subscriber dl tries to call subscriber d2 who has

not answered but is not busy.
busy(all, d2) indicates that subscriber dl tries to call subscriber d~ who is busy.
conn(dl, d2) indicates that there is a connection between subscribers dl and d2.

The connection is ordered, so dl is the caller and d2 is the callee. [3

We generalize ground atoms to positive simple literals, which are formulas of
the form a(u) or b(u, v), where u, v ranges over objects or variables. A negative
simple literal on the other hand is of the form -~a(u) or -~b(u, v) where u, v are
objects or variables. A negative simple literal represents negative information,
e.g., -~aetive(d) means that the the relation active does not hold for object d. A
simple literal is a positive or negative simple literal.

A positive existential literalis a formula of the form 3z : b(z, u) or 3z : b(u, z),
denoted respectively b (u) or *b (u) where u is an object or a variable. A positive
existential literal says that an object is related to some other object by a certain
relation, but we do not care to which object. We define negative existential
literals and existential literals analogously. A literal is either a simple literal or
an existential literal.

45

We can now define a formula over these literals as a (possibly existentially
quantified) boolean combination of literals. Let ~, r p range over formulas. A
formula la is object free if it contains no objects in the literals. As a notational
convention we let tb E ~ denote that ~b is one of the conjuncts (disjuncts) if ~ is
a conjunction (disjunction) of formulas.

E x a m p l e 2.2 The formula 3x, y : active(x) A trying(x, y) says that there is an
object dl in the relation active such that dl is related to some object d2 by the
relation trying. []

We define free and bound variables of formulas in the usual way. Let FV(~)
denote the set of free variables of the formula ~. We sometimes write a formula
as ~(X) to denote that that FV(~) C_ X. Formulas with at least one free variable
are said to be open. Formulas without free variables are said to be closed.

Define a replacement as a mapping from strings of symbols to strings of sym-
bols. Let a substitution be a mapping from variables to variables or objects. Let
0, a range over substitutions and replacements. A ground substitution is a sub-
sti tution from variables to objects. Let I, J, K range over ground substitutions.
The application of a substitution 0 to some argument a is denoted 0(a) or a0.
When using postfix notation, the composition 02 o 01 is denoted 0102.

D e f i n i t i o n 2.1 A Transition System TS is a pair (I, F) where

I is a finite state intended to represent the initial state of the system.
F is a finite set of transitions. Each transition v E F is a pair of formulas,

r : (~, r where ~ is an object free conjunction of literals, and r is an
object free conjunction of simple literals and negative existential literals.
The formula ~ is called the precondition and the formula r is called the
postcondition of r . []

The postcondition r can be regarded as an assignment that adds (or deletes)
objects and object pairs to the relations in the system.

The restrictions on the forms of the preconditions and postconditions are mo-
tivated by simplicity reasons and by pragmatic reasons originating in our special
interest in telephone system specifications. In Section 4 we give an example of a
system that models a basic telephone service.

2.2 S e m a n t i c s o f T r a n s i t i o n S y s t e m s

In this section, we define the semantics for this special Class of transition systems.
Some definitions needed in this section are standard from first-order logic, and
are therefore omit ted unless needed for clarity (see [5] or some other introduction
to first-order logic).

We define a satisfiability relation s ~ ~ between states s and formulas ~ as
follows:

- s ~ ~a iff ~ E s, when ~ is a ground atom (~a = a(d) or ~ = b(dl, d2))

46

- s ~ ~ is defined in the standard way when ~ is a non-atomic closed formula.
E.g., 3x : ~(z) means that ~(d) is true for some d E D.

A closed formula ~ is satisfiable if there exists a state s such that s ~ ~. A
closed formula ~ is said to be valid, denoted ~ ~o, if s ~ ~ for all states s.

D e f i n i t i o n 2.2 Let T S be a graph system (I, F) and let r : (9, r E F. We
define a transition relation r> on graphs by (s,s') E ~> (denoted s ~ >s') iff
there exists a ground substitution K such that

1. s ~ K
2. e K is satisfiable
3. # = s U sl \ s2 where

sl = { l I1 e e K and 1 is a positive simple literal }, and
s2 = { l [--I E e K and -~l is a negative simple literal)

4 -

U { l [l = b(dl,d~) and -~b (dl) E e K }

U { I l l = b(dl,42) and --b (d2) E e K } []

Condition 1 ensures tha t the precondition is satisfied. Condition 2 ensures that
the postcondition imposes a consistent assignment to the relations. Condition 3
performs the assignment. The new state s ~ is obtained through a "minimal"
change to the old state s such that r holds in #.

A transition r is said to be enabled on s if there is some # such that s r ~ # .
Otherwise the transition is said to be disabled on s.

We define > as (-Jrer r >. Let * > be the reflexive, transitive closure of

~. A graph # is said to be reachable from a graph s if s * > # and is said to
be reachable if # is reachable from the initial graph I .

3 Reachability Analysis

In this section we look at the teachability problem for the transition systems we
are using:

Given a transition system T S and a class C of states, is any state in C
reachable in TS?

We will specifically look at the case where the set C is defined by a certain type
of formulas, called patterns, which we will define next. For a set Y of variables,
let disjoint(Y) be the formula which states that all variables in Y are different.
For instance, disjoint({ z, y, z }) is the formula x r y A x ~s z A y r z. A pattern
is a closed object free formula of the form 3 Y : disjoint(Y) A T(Y) where ~(Y)
is a conjunction of literals. In the following, we will write a formula of form
3Y : disjoint(Y) A ~(Y) as BdisjY : ~o(Y). We use p, q to range over patterns.
Note : In this paper, we restrict patterns to existentially quantified conjunctions
of literals, but our results can be generalized to reaehability analysis for sets
C defined by arbi t rary formulas by transforming ~ into Disjunctive Normal

47

Form and check for reachability separately for each disjunct in the formula. The
disjointness requirement can be removed in a similar way.

The Halting Problem can easily be encoded as a teachability problem for
transition systems, and this shows that the teachability problem is undecidable
in general. In spite of this, we present a method for analyzing reachability prop-
erties, which we believe to be useful in many telephone applications. To check
whether a certain pat tern p is reachable, we apply a classical method: compute
the set of patterns from which p is reachable, and see whether the initial state is
in this set. The set of states from which p is reachable is computed as a fixpoint.
In this computation, we use disjunctions of patterns to represent sets of states.
The fixpoint computation need not always terminate, but if it does our method
will give an answer to the question whether p is reachable. This approach to ver-
ification is, in principle, similar to e.g., the one used for lossy channel systems
in [1], where however the fixpoint computation always terminates.

The sets of states that we want to check for reachability are, in the setting of
telephone systems, usually finite erroneous configurations. These configurations
are local phenomena, and the choice of a backward computation therefore seems
reasonable. A forward search would start from a global state and would more or
less build the entire state space.

In the following subsections, we will first in Section 3.1 present the general
structure of our verification method. This method is built from three nontrivial
operations, discussed in Sections 3.2 and 3.3.

3.1 O u t l i n e o f t h e R e a c h a b i l i t y Ana ly s i s P r o c e d u r e

As already stated, the idea of our reachability analysis is to compute the set of
states from which a certain pattern p can be reached. This can be reformulated
as computing the set of states that can be reached by performing transitions
"backwards" from some state in p. Before presenting the analysis procedure, we
introduce some notation for representing such sets of states.

D e f i n i t i o n 3.1 For a transition r, pattern p and state s, define a "possibility"
predicate (7")p on states as

s~(l")p iff 3s':s r) s 'As '~p []

The notation is inspired by the modal possibility operator in Dynamic Logic (see
e.g., [12]).

For a set F of transitions define (F)p as V r e r (r)p and define (F)ip for
i > 0 as (r) ~ = p and (O ; + l p = (r } ((r } ' p) for i > 0. Finally, define (F}*p as
V~>0 (f'}~p. We see that p is reachable in a transition system (I,/~) if and only
i f / - ~ (r)*p.

In Section 3.2 we will show how to compute (r}p. Before that , and assuming
that we can compute (v}p, .we present our procedure to analyze whether I
(/ ')*p holds for an initial state I and a pattern p.

48

P r o c e d u r e
Input : A transition system TS = (I, F) and a pattern p.
Ou tpu t : does I ~ (F)* p hold in TS?
vat A, W : sets of patterns

A:=O
w = I v }
while W ~- 0 do

choose q E W
if (I ~ q) then return true and exit
w : = w \ {q}
A : = A \ {q' E A : q ' ~ q } U {q}
W :=W U {q~ E(F)q:("~3q" E(A O W) : q ' ~ q ') }

end while
return false

Fig. ! . Procedure for analyzing reachability

The idea of our method is to calculate (F)*p, represented as the disjunction of
a set of patterns, by backward reachability analysis. At each iteration the proce-
dure checks whether I satisfies some pattern in the current set. The method uses
as data structures two sets of patterns, A and W, such that A U W represents
the set of states that have so far been found to be "backward reachable" from
the pattern p. The set A contains the patterns from which backward transitions
have already been generated, and W contains the pattern from which backward
transitions must still be generated and analyzed. If, during the computation,
we have computed a pattern Pl and can find a pattern P2 E (A U W) that is
entailed by Pl (denoted Pl _ P~), then pl is "redundant", and can safely be dis-
carded. Entailment here is required to be a relation as strong as or stronger than
implication: ~ Pl ==~ P2. A pseudocode description of the analysis method is
given in Figure 1.

The procedure relies on the ability to perform three nontrivial operations on
patterns p and q: cMculating (F)p, deciding Pl _ P~, and deciding whether I ~ q
for a state I.

3.2 C o m p u t i n g B a c k w a r d T r a n s i t i o n s

In this section, we describe how to compute (F)p. Let r be a conjunction
of simple literals and negative existential literals. We can easily see that the
formula 3X : r is satisfiable if and only if

1. no positive literal occurs as a negative literal, and

2. if b(x, y) E r then no literal of the form -- b (y) or of the form -- b (x) occurs
in r

49

D e f i n i t i o n 3.2 For a conjunction r of simple literals and negative existen-
tial literals such that 3X : r is satisfiable, define the textual replacement 0r
on patterns by defining its effect on a pattern p as follows.

1. if a(x) (or b(x, y)) is a positive literal in r then replace all occurrences of
a(x) (of b(x, y)) in p by true,

2. if -~a(x) (or -~b(x, y)) is a negative literal in r then replace all occurrences
of a(x) (of b(x, y)) by false,

3. if -~ b (x) (or -~ b (x)) is a negative existential literal in r then for all vari-

ables y, replace all occurrences of b(y, x) and ~ (x) (of b(x, y) and ~ (x)) by
false,

4. if b(x, y) is a positive literal in r then replace all occurrences of b(x, y),
- +

b (y) and ~ (x) by true. []

We compute (F)p as the formula V , e r (v)p. The following theorem states how
to compute (r)p for each transition r E Y.

T h e o r e m 3.1 For any state s, transition r : (T(X), r and pattern p =
3disjZ : p(Z), where X and Z are assumed disjoint, we have that s ~ (r)p if
and only if there is a substitution a which maps the variables in X to variables
in Z U X such that

1. r is satisfiable, and
2. s ~ 3~i,~ (Z U X~) : ~ A pOr o

Since we only have a finite number of possible ~, we can then calculate the
pattern (v)p as Vo 3di,j(Z U Xg) : ~g A p(Z)0r for all substitutions
restricted as before.

3.3 Checking Entailment and Model Checking of States

The computational complexity of deciding whether ~ Pl ==~ P2 turns out to be
NP-complete, and to speed up the computation one can use a stronger entailment
relation Pl ~ P2. However, the risk of nontermination then becomes greater.

In the current implementation we use implication as the entailment relation,
where implication is computed as follows: ~ Pl ==~ P2 holds for patterns Pl =
3disjX : p l (X) and P2 = 3disjY : P2(Y) iff Pl is satisfiable and there exists an
injective ground substitution K2 with domain X such that

p2IC2 C p, K1 U { ~ (d l) ,~ (d2): b(dl,d2) e plK1 }

where K1 is some injective ground substitution with domain Y.
In the procedure we need to compute s ~ p for a finite state s and a pattern

p = 3d~,jX : p(X). This is done as follows: I ~ p iff there exists an injective
ground substitution K from variables in X to objects in I such that all positive
literals in pK are in I t and no negative literal in pK occurs in positive form in

I ' , where I ' = I U { ~ (dl),-b (d2): b(dl, d2) e I }.

50

4 A p p l i c a t i o n : A B a s i c T e l e p h o n e S e r v i c e

In this section we describe a basic telephone service (sometimes called Plain Old
Telephone Service, POTS) as a transition system, and give some examples of
properties that have been automatically verified for this system.

Each subscriber is modeled by an object. Internal state information for each
subscriber is modeled by the unary relation active and call information is mod-
eled by the binary relations trying(d1, d2), busy(d1, d2), and conn(d~, d2). These
relations were described earlier in Example 2.1.

4.1 T h e t r a n s i t i o n s fo r P O T S

The following transitions model basic calling between subscribers. Each transi-
tion models the system response to an action from a subscriber. For convenience,
we define the macro

idle(x) ~ e- +- _+ ,_ -: -,trying (x) A -,busy (x) A -~conn (x) A -~conn (x) .

The transitions are:

= r r

-~active(x)
OnUook(x) active(x) A idle(x)

trying(x, y) conn(x, y)
!Answer(x, y) A -~active(y) A -~trying(x, y)

A active(y)
-,active(x)

OffHook (x) -~ active (x)
A -~trying (x)

Dialling(x, y)

DialBusyl(x, y)

DialBusy~ (x, y)

active(x)
A ~active(y)
A idle(x)

- 4

A ~trying (y)
active(x)

A ~active(y)
A idle(x)

A trying (y)
active(x)

A active(y)
A idle(x)

trying(x, y)

busy(x,y)

busy(x,y)

The transition OnHook(x) reflects that subscriber x puts down the receiver. Any
connections to / f rom x are released and x is no longer trying to call someone.
The transition Answer(x, y) reflects that subscriber x is calling y, and y answers
the call by lifting his receiver. Subscriber y must have is phone on the hook
for this to happen. The transition OffHook(x) reflects that subscriber x lifts his
receiver, and there is no one trying to call him. The transition Dialling(x, y)

51

reflects tha t subscriber x dials the number to y, and no one else is calling y.
The transitions DiaIBusyl (x, y) and DialBusy2 (x, y) both reflect tha t subscriber
x dials the number to y and that y is busy, either because someone is trying to
call y or because y has the phone off the hook.

4.2 V e r i f y i n g P r o p e r t i e s o f t h e T e l e p h o n e S e r v i c e

In this section, we give examples of properties that have been verified by an
implementat ion of the reachability procedure written in Prolog. At present, the
implementa t ion exists in an early stage only doing very simple optimizations.
We show some properties for the model of POTS given earlier.

Initially we shall look at the transition system T S = (~, P O T S) , with an
empty initial s tate and the transitions are the transitions stated for POTS in
section 4.1.

We want to check the property that there can be at most one connection to
a subscriber. This requires three patterns, and one of them is

p = 3disjx, y, z : court(x, y) A conn(z, y)

which says that there are subscribers x and z such that both subscribers are
connected to the subscriber y. The property holds iff 0 ~ (POTS)*p.

From the computat ion of (POTS)*p we obtain the pat tern q = Sdisi x, y, z :
Pl V P2 V P3 V P4 V P5, where

pl = conn(x, y) A conn(z, y)
P2 = trying(x, y) A -~active(y) A court(z, y)

.-+

P3 = active(x) A idle(x) A -~trying (y) A conn(z, y) A -,active(y)

P4 = active(x) A -,trying (x) A -~active(y) A conn(z, y) A -~trying (y)
- + --4

P5 = -~active(x) A -~trying (x) A -~active(y) A conn(z, y) A -~trying (y)

Now, 0 ~ q so we are done. This computat ion was run on a SPARC ELC
work station, and took approximately 1 minute to compute running the Prolog
program in interpreted mode. In total, 102 intermediate patterns were generated,
but pl , �9 �9 p5 were the only pat terns not discarded because of entailment.

Other properties that have been successfully checked are:

Pat tern
1 conn(x, y) A conn(z, y)
2 conn(x, y) ^ conn(y, z)
3 corm(y, x) ^ conn(y, z)
4 conn(x, x)
5 busy(x, y) A -~active(y)

Result
Not reachable
Not reachable
Not reachable
Not reachable
Reachable

Time
1 rain
2 1/2 min
1 1/2 min
5 sec
45 sec

interm, pat terns
102
278
157
10
81

Pat tern 1-3 say that a subscriber can have two (or more) connections. None
of these should be reachable. Pat tern 4 says that subscriber x can connect to
himself, which should not be reachable. Pat tern 5 says that subscriber x can be
calling subscriber y which has not picked up the receiver and still hear a busy
tone in the phone. This state should be reachable.

52

4.3 E x a m p l e : M u t u a l E x c l u s i o n in a G r a p h

The following is a mutual exclusion algorithm for processes communicat ing
through an arbi trary connection graph. Each object d represents a process. The
a tom cs(d) represent tha t process d executes a critical section, and the absence
of the a tom cs(d) represents the execution of a non-critical section. Mutual ex-
clusion is preserved by passing around a unique token. A ground a tom token(d)
indicates that process d has the token. The transitions are:

r
e,ter(x) token(x) cs(x)
teaw(x) cs(x)

The property 3d~,jx, y : cs(x) A cs(y) was found not to be reachable in 6 seconds,
with a total of 16 intermediate patterns computed.

5 Conc lus ion

We have considered the problem of verifying reachability properties of a class
of infinite-state distributed algorithms that is well suited for the specification
of telephone services. We have presented a method for analyzing reachability
properties, and show that it can be successfully applied to practical examples.

Future work in general includes trying to characterize classes of systems
for which the method would terminate, studying how the choice of entailment
relation changes terminat ion speed, and applying the method to larger examples
to see how well it scales up.

For telephone systems specifications, larger case studies of detecting interac-
tions should be made to find out how useful the procedure is for our purposes.

References

1. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In
Proc. 8 th IEEE Int. Syrup. on Logic in Computer Science, 1993. Accepted for
Publication in Information and Computation.

2. P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs
with unreliable channels. In Abiteboul and Shamir, editors, Proc. ICALP '94,
volume 820 of Lecture Notes in Computer Science, pages 316-327. Springer Verlag,
1994.

3. R. Alnr, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In
Proc. 5 th IEEE Int. Syrup. on Logic in Computer Science, pages 414-425, Philadel-
phia, 1990.

4. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded
systems. In Proc. 14 th IEEE Real-Time Systems Symposium, pages 2-11, 1993.

5. M. Ben-Ari. Mathematical Logic for Computer Science. Prentice Hall, 1993.

53

6. J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular specification
of telephone services. In Feature Interactions in Telecommunications Systems,
Amsterdam, Holland, May 1994.

7. T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J. Lin. The
feature interaction problem in telecommunications system. SETS, 1989.

8. O. Burkart and B. Steffen. Model checking for context-free processes. In Cleave-
land, editor, Proc. CONCUR '92, Theories of Concurrency: Unification and Exten-
sion, number 630 in Lecture Notes in Computer Science, pages 123-137. Springer
Verlag, 1992.

9. S. Christensen, Y. Hirslffeld, and F. Moiler. Bisimulation equivalence is decidable
for basic parallel processes. In Proc. CONCUR '93, Theories of Concurrency:
Unification and Extension, pages 143-157, 1993.

10. S. Christensen, H. Hiittel, and C. Stirling. Bisimulation equivalence is decidable
for all context-free processes. In W. R. Cleaveland, editor, Proc. CONCUR '92,
Theories of Concurrency: Unification and Extension, pages 138-147, 1992.

11. E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in tempo-
ral logic model checking algorithms. In Proc. 6 th ACM Syrup. on Principles of
Distributed Computing, Vancouver, Canada, pages 294-303, 1987.

12. M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. Jour-
nal of Computer and Systems Sciences, 18:194-211, 1979.

13. S. M. German and A. P. Sistla. Reasoning about systems with many processes.
Journal of the ACM, 39(3):675-735, 1992.

14. P. Jan~ar. Decidability of a temporal logic problem for petri nets. Theoretical
Computer Science, 74:71-93, 1990.

15. B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-
finite-state programs. Information and Computation, 107(2):272-302, Dec. 1993.

i6. F. J. Lin and Y.-J. Lin. A building block approach to detecting and resolving
feature interactions. In L. Bouma and H. Velthuijsen, editors, Feature Interactions
in Telecommuniactions Systems, pages 86-119. IOS Press, 1994.

17. Z. Shtadler and O. Grumberg. Network grammars, communication behaviours and
automatic verification. In Sifakis, editor, Proc. Workshop on Computer Aided
Verification, volume 407 of Lecture Notes in Computer Science, pages 151-165.
Springer Verlag, 1990.

18. K. Cerans. Decidability of bisimulation equivalence for parallel timer processes.
In Proc. Workshop on Computer Aided Verification, volume 663 of Lecture Notes
in Computer Science, pages 302-315, 1992.

19. P. Wolper. Expressing interesting properties of programs in propositional temporal
logic (extended abstract). In Proc. 13 th A CM Syrup. on Principles of Programming
Languages, pages 184-193, Jan. 1986.

