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A b s t r a c t .  We describe CAVEAT, a technique and a tool (under develop- 
ment) for the stepwise design and verification of nearly finite-state con- 
current systems (NFCS). A concurrent system is nearly finite-state when 
most of its variables have a finite range (Booleans, bounded integers). 
The heart of CAVEAT is a tool for verifying invariants, i.e., inductive safety 
properties. The underlying method is classical : formula I is an invariant 
for system ,S if and only if some formula ~r =def { I}S{I}  is valid. If ,S 
is an NFCS, the formula ~5i contains only a small set of non-boolean vari- 
ables. CAVEAT uses the connection method to extract from ~I a (small) 
set ~ of paths (some kind of assertions) about the non-boolean variables; 
~5i is valid if and only if all paths contain connections, i.e., are inconsis- 
tent. For typical NFCS given with a correct invariant, the formula ~I is 
rather large (more than 100 lines) but k~ is quite small (a dozen one-line 
formulas). The second part of CAVEAT (not implemented yet) supports 
an incremental development method that is fairly systematic, but has 
proved to be flexible enough in practice. 

1 Introduction 

From the theoretical point of view, formal methods are a rather satisfactory 
answer to the problem of unreliable software. However, from the practical point 
of view, these methods are nearly useless without appropriate tools. 

It is well-known that  fully automatic tools for general program design and /o r  
verification can not exist, so we have to be satisfied with semi-automatic tools 
and /o r  restricted classes of programs. 

The most classical approach to non-automatic program verification is the 
invariant method. Its principle is to reduce the correctness problem ("Is this 
program correct w.r.t, this specification?") to the validity problem ("Is this 
formula a valid formula of classical first order logic ?"). Even when automation 
is not considered, the invariant method has two drawbacks: it is restricted to 
safety properties, and it is "creative" in the sense that the validation of a safety 
property implies the (non-trivial) design of an adequate invariant, that is, a 
stronger safety property which can be proved by induction. The first problem 
has been satisfactorily solved by the introduction of temporal  logic; the second 
problem is dealt with in more or less satisfactory ways, and for more or less 
general classes of programs. The pragmatic view (and CAVEAT is /wi l l  be a 
pragmatic tool) is that  formal methods become interesting when, first, testing 
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methods really prove disappointing, second, reliability is really required, and 
third, programs are subtle and tricky even when they are not long. This is 
often the case for concurrent, distributed, reactive systems, and the problem of 
invariant construction seems especially important for such systems. CAVEAT is 
an attempt to automate an invariant-based stepwise design/verification method 
introduced in [13, 14, 16]. 

Most earlier approaches to (semi-)automatic program verification have been 
based on (semi-)automatic theorem proving, for classical logic and sometimes for 
temporal logic. A pragmatic drawback of theorem provers is that they are mostly 
interactive. Even if the prover really performs the biggest part of the verification 
task, the user has to oversee the whole verification process, and from time to 
time needs to interact with it. The problem lies with the rather poor ability of 
proving systems to extract from a large set of mostly elementary verification 
steps the small subset which is outside the scope of purely automatic tools. The 
success of the semi-automatic theorem proving approach depends on the skill of 
the user [11]. 

A more recent approach is restricted to finite-state systems. The principle 
is that both the finite-state system and the specification can be modelled by 
a formula of propositional temporal logic, or by some kind of automaton. As 
a result, system verification is decidable, for instance by model checking algo- 
rithms [8, 29]. Recent improvements in the performances of computer systems, 
and also in the search algorithms, have led to rather powerful tools. This induced 
attempts to extend these techniques to some classes of infinite-state systems, 
but only moderately successful results have been obtained until now [20, 30]. 
On the contrary, some severe theoretical restrictions to this approach have been 
obtained [1]. Besides, when a tested finite-state program is incorrect, the veri- 
fication system gives little high-level insight about how the program should be 
corrected; similarly, the validation of a correct program gives little insight about 
how the program works and why it is correct. 

Another promising track comes from recent improvements in tautology check- 
ing, especially the connection method (see [5, 31]) and the concept of (ordered) 
binary decision diagram (see [6, 26]). It is rather natural to wonder whether these 
techniques remain practically usable outside pure propositional logic. CAVEAT 

has evolved from some successful experiments in this area. 
Section 2 introduces CAVEAT with a very elementary example and discusses 

the main choices we have made in the strategy of invariant verification. Section 3 
accounts for a more significant experiment and demonstrates the usefulness of 
the approach in a restricted but important class of applications. It also presents 
an introduction to incremental design and verification. Section 4 is a brief com- 
parison with related works. 

2 T h e  h e a r t  o f  CAVEAT.* t a u t o l o g i c a l  r e d u c t i o n  

2.1 Posi t ion of the  problem 

A formula I is an invariant of a concurrent system S if, in all computations, 
successors of states satisfying I also satisfy I. Hoare's axiom, or the liberal ver- 
sion of Dijkstra's weakest precondition calculus, reduces the problem of invariant 
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verification to the purely logical problem of validity checking. With familiar no- 
tation (illustrated below), the formula to validate is ~I =de/ (I ~ wlp[S; I]). 
The construction of ~I,  when S and I are given, is (usually) straightforward. 
The validation, however, is not, since ~r is typically a rather large formula. 

A formula J expresses a safety property of ,S with initial condition A if every 
state of every computation satisfies J. This holds if and only if an invariant I 
of S exists such that  (A ==~ I) and (I  ~ J). The standard verification problem is 
to determine whether some system ,S with initial condition A satisfies the safety 
property (expressed by) J.  

If S is a non-parametric finite-state system, the formulas A, J,  I and Cx 
are propositional and full automation is possible. However, the construction of 
the invariant I is not a trivial task. Model checking is usually more effective 
here, since an explicit form of the invariant I is not needed; the model checker 
simply verifies that  all accessible states satisfy J. (The set of accessible states 
determines the strongest invariant implied by A, often denoted sin[A; S].) 

Pure model-checking does not apply if S is an infinite-state system. In this 
case, A, J,  I and ~I  are formulas of some first-order language (for instance, the 
language of number theory) and the verification problem becomes theoretically 
unsolvable even for a rather restricted class of programs. The invariant method 
still works, but is not easily turned into a reasonably efficient semi-automatic 
method. 

There is, however, a large and interesting class of "borderline" cases, for 
which 45i is a large formula with only few occurrences of non-boolean variables. 
The method illustrated in the sequel seems very promising for this class. For 
the sake of simplicity, it is first introduced with the help of a purely finite-state 
example, even though it does not show its full potential in this case. 

2.2 T h e  c o n n e c t i o n  m e t h o d  

The connection method can be viewed as an efficient implementation of the clas- 
sical tableau method, used to determine whether a formula or a set of formulas 
has a model. The principle of the method is to reduce the initial formula into 
sets of literals, in such a way that  the initial formula has no model if and only 
if each of the sets of literals contains a connection, i.e., a tuple of contradictory 
elements. In a purely propositional framework, only pairs like (p, --p} are consid- 
ered. In our framework, a connection is a bit more general; typical instances are 
{x > y, x = y, x < y} and {at to, at ~1}, where t0 and ~I are distinct locations 
of the same process. 

The connection method can be a powerful technique [31]; it is illustrated in 
the sequel of this section, first with a simplistic example. 

The example is a two-process naive mutual exclusion algorithm, that  has to 
be checked for mutual exclusion. The set of processes is {P, Q}. Each process 
contains three locations, identified by subscripts 0 (idle state), w (waiting state) 
and c (critical state), so P = {po,p~,pc} and Q = {qo,q~,qc}. There are two 
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Boolean variables i n P  and inQ. The set of transitions is 

T = {(Po, i n P  := true, p~) ,  (qo, inQ := true, q~),  
(p~, ~inQ ~ skip ,  pc) (q~, "~inP ~ skip,  qc), 
(Pc, i n P  := false, Po), (qc, inQ := false, qo) } .  

Comment. The formal notation used here and in CAVEAT to write programs has 
been introduced in [14]. It is similar in spirit to many other notations based on 
states and transitions, e.g. the language of Action Systems introduced in [3]. 

There are two Boolean variables and each process has three control locations, 
leading to a state space of 36 possible states. The main safety property of interest 
is mutual exclusion, formalized as 

J =d~f -~(at Pc A at q~). 
An acceptable initial condition is : 

A =d~f (atpo A atqo A - ~ i n P A - ~ i n Q ) .  
An appropriate invariant I is 

(at p~ ~ (-~inQ v at q~)) A (at qc ~ (~ inP  V at p~)) A 
(at po =-- ~ inP)  A (at qo =-- ~ inQ) .  

One sees easily that  both A ~ I and I ~ J holds, 1 and CAVEAT is used to check 
that  I is really an invariant. It is sufficient to show that formula (I  =~ wlp[~-; I]) 
holds for each transition % and we consider here T = (p~, -~inQ ~ skip, pc). 
The corresponding verification formula, say 4~, is obtained by w/p-calculus : 

(~-~inP A (at qo =~ -~inQ) A (-~inQ ::~ at qo)) =~ 
(-~inQ ~ [(-~inQ v at q~) A (at qc ~ -~inP) A - ,~ inP A 

(at qo =~ "~inQ) A ( - i n Q  ~ at q0)])- 

With standard elementary techniques, q5 is reduced into two formulas, i.e., 

((at qo =v -,inQ) A (-~inQ :~ at qo)) =~ (-,inQ ~ (-,inQ v at q~)) (1) 

and 
(-,-~inP A (at qo ~ -~inQ) A ( - i n Q  ~ at qo)) ~ ( - i n Q  ~ (at qc ~ -~inP)). 

Comment. The first one should have been 

( -~- inP A (at qo =v ~inQ) h (-~inQ =~ at qo)) =v (~inQ =v (~inQ v at q~)) 
but i n P  occurred only once, and has therefore been replaced by its polarity T,  
leading to formula (1). This transformation and some similar ones are automated 
in CAVEAT. 2 

The subformula tableau for formula (1) is given in Figure 1. 
Each line of the subformula tableau corresponds to a node of the syntactic 

tree of the formula (the tree is traversed depthfirst). Let us consider formula (1). 
The polarity of the formula itself (root line al)  is F, meaning that  our "goal" 
(hopefully unreachable) is to falsify the (hopefully valid) formula al .  This for- 
mula is an implication; it will be false if and only if its antecedent a2 is true and 

1 Recall that each process is at exactly one location at a time; this location rule is 
"wired in" CAVEAT. 

2 These simplifications are classical in resolution-based theorem provers; see e.g. [23]. 
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Polarity Formula P-type  S-type 

((at qo ::~ -~inQ) A (~ inQ =:~ at qo)) 
a l  F ~ ~ - 

(-~inQ ~ ( ~ i n Q  y at q~ ) ) 

a2 T (at qo ~ -~inQ) A (-~inQ ~ at qo) ~ 

aa T at qo =t. -~inQ ~ o~ 

a4 F at qo - fl 

a5 T -~inQ ~ fl 

a6 F inQ - 

a7 T -~inQ ~ at qo fl 

a8 F -~inQ a 

a9 T inQ - a 

al0 T at qo - 

a l l  F -~inQ ~ (-~inQ Y at q~,) a o~ 

a12 T -~inQ a a 

a13 F inQ - (~ 

a14 F (-~inQ v at q~) a 

a15 F -~inQ a o~ 

a16 T i nQ  - 

a17 F at q~ - (~ 

Fig. 1. Subformula tableau for formula (1) 

its consequent a l l  is false. As a result, the polarities of a2 and a l l  respectively 
are T and F. Besides, the P- type  ( p r i m a r y  type) of al is a ,  meaning that  al  is 
a conjunctive line. 3 The  S-type ( secondary  type) of a line if the P- type  of its 
father, so the root line has no S-type and the atomic lines (corresponding to 
atomic subformulas) have no P-type.  

The subformula tableau is used to construct the veri f icat ion acycl ic  graph, 
or VAG.  The VAG corresponding to formula (1) is given in Figure 2 (left). 

Each node in a VAG is a sequence of subformula indices; we distinguish 
a t o m i c  and n o n - a t o m i c  indices, corresponding respectively to atomic and non- 
atomic subformulas. The  index i of an atomic subformula ai is printed in bold- 
face. The  VAG is constructed from root to leaves according to the following rule. 
A node has successor(s) if it contains at least one non-atomic index i. If  ai has 
P- type  a ,  there is only one successor, obtained by replacing i by j ,  k, where aj 
and a~ are the immediate  subcomponents of a~ (if ai is a negation, there is only 
one subcomponent  aj) .  If  al has P- type  ~, there are two successors, obtained 

3 Conjunctive lines are denied implications, denied disjunctions, asserted conjunctions; 
disjunctive lines (P-type is fl) are asserted implications, asserted disjunctions and 
denied conjunctions. P-type is not really relevant for unary connectives, but we 
attribute P-type a to negations. 
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2, 11 

3, 7, 11 

3,7,12,14 

3, 7, 13, 14 

3, 7, 15, 17 

3, 7, 16 

4,_7 5, 7 

_ - 6 , 7  

9 1 0  

14,9,13,16,17 9, 131 
2 4, 10, 13, 16, 17 4, 0 
3 6, 9, 13, 16, 17 ]6, 1 
4 6,1o, ,3,1 ,1716,16 t 

Fig. 2. Verification acyclic graph and path list for formula (1) 

by replacing i by j and k, respectively. To save place, atomic indices of a node 
are not inherited by its successor(s). Leaves contain atomic indices only. The 
construction is non-deterministic, since a node can contain several non-atomic 
indices (in Figure 2, selected indices are underlined). The strategy of considering 
indices of P- type  c~ first leads to a smaller VAG and is therefore adopted. 

An example about formula (1). Three non-atomic indices 3, 7, 15 occur in node 
(3, 7, 15, 17); only index 15 is of P- type (~, so it is selected. There is only one 
successor, obtained by replacing 15 by 16; besides, atomic index 17 is omitted. 

It is now clear why the elementary claims introduced in paragraph 2.2 are 
called paths : each claim corresponds to a (maximal) path in the VAG. The last 
step of the connection method is to explore the VAGs and to list their paths. 
Each path connects the root of the VAG to a leaf and is identified in the list 
by the atomic indices occurring in the labels of its nodes. For instance, the first 
path of the VAG corresponding to formula (1) is 

1 ~ 2,11 ~ ... --* 3, 7,13,14 --~ 3, 7, 15,17 ~ 3, 7,16 --+ 4, 7 --, 8 ---+ 9, 
so this path will be identified as 4, 9, 13, 16, 17. 

A formula is valid if each path of the corresponding path list contains a 
connection. The path list for formula (1) is given in Figure 2 (right), with a 
connection for each path. As a consequence, formula (1) is valid. 

2.3 C o n c u r r e n t  c o n s t r u c t i o n  a n d  e x p l o r a t i o n  of  t h e  V A G  

An elementary but  useful optimization consists in closing a path as soon as a 
connection is detected in it. This gives rise to shortened VAGs and path lists; 
t h o s e  for formula (1) are given in Figure 3. 
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_2, 11 

3,7,11 

3, 7, 12, 14 

3,7, 13, 14 

3, 7, 15, 17 

3, 7, 16 

Fig. 3. Optimized VAG and shortened path list for formula (1) 

2.4 T h e  n o n - p r o p o s i t i o n a l  case  

The connection method reduces the problem of checking the validity of formula 
q~ =d~I (a A b A c) ::a -~(b::a ~a) 

to the problem of finding a connection within each element of the path list 
=deI ( ( T : a ;  W:b; T : c ;  F : b } ,  { T : a ;  T : b ;  T : c ;  F : a } ) .  

The second problem is trivial, but the reduction process itself is not. Now, let 
us consider a rather similar case. The formula 

�9 ' --~f ( x > y  A bA c) =V ~ ( b ~ x < y )  
is valid if each path of the list 
~ '  --de/ ({T:x  > y ;  T : b ;  T :c ;  F :b} ,  ( T : x > y ;  T : b ;  T :c ;  T : x < y } )  

is connected. The first path contains a trivial, propositional connection (atom b 
appears with both polarities) but the connection contained in the second path 
is (T : x > y ; T : x < y}, which is non-propositional. 4 

The interesting point is that half the verification work (in this example) 
remains within the propositional framework and hence fully automatic. Our 
working hypothesis is that, for many "nearly finite-state systems", most of the 
invariant verification work will reduce to tautology checking and nearly all paths 
(say 99.9 %) will be closed (a connection will be found) in an automatic way. The 
main advantage we seek from our approach with respect to the more classical 
theorem-proving approaches, is the inherent ability of the connection method 
to "extract" the tiny fraction of the verification work which falls outside the 
propositional framework. This fraction is then isolated from the rest, and dealt 

4 More precisely, analysis of the "atoms" x > y and x < y is needed to detect that 
they are contradictory. 
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with in a classical way; either we use a knowledge base and a theorem prover 
that  would tell us that x > y and x < y are not simultaneously satisfiable, 
or we simply report to the user the sublist of unconnected paths. The example 
presented in the next section illustrates what can be achieved even without ATP 
(automatic theorem proving). 

3 R i c a r t  a n d  A g r a w a l a ' s  a l g o r i t h m  

It is now usual to verify some fine-grained version of a concurrent system by 
first considering some coarser-grained version(s). This approach was already used 
in [9] and [21] and is turned into a systematic method in [14] and [16]. We extract 
from the latter [16, p. 43] an intermediate, medium-grained version of Ricart and 
Agrawala's N-process mutual exclusion algorithm, introduced in [27]. 

3.1 T h e  a l g o r i t h m  a n d  i t s  inva r i an t  

The basic idea, as introduced in [27], is as follows. A node attempting to invoke 
mutual exclusion sends a request to all other nodes. On receipt of the request, 
the other nodes send an immediate reply or defer it. When all replies have been 
received, the access to the critical section is granted. A deferred reply is delayed 
until the replying node has completed its own access to the critical section. 

Some notation is introduced, mostly in accordance with [27]. 

rcsp : p needs access to the resource; 
[] ": internal activity, able to alter rcs only; 
R C S ,  : p requests access to the resource (Request Critical Section); 
OR q : p waits for a reply from q (Outstanding Reply); 
RD~ : p defers a reply to q (Reply Deferred); 
SNp : p has requested access at that  time (Sequence Number) 

(time-stamp, implementing Lamport 's "Bakery algorithm"); 
SN,  < SNq: p takes precedence over q; 
t ime : monotonically increasing integer, models real time; 
7 ) : the set of nodes; 7 ) = {p, q, r , . . .} ;  
N : the number of nodes; 17)1 = N; 
7)p : short for 7)\{p}; [7)p[ -- g - 1; 
X ,  : variable ranging over subsets of 7)p. 

The transitions of S are given in Figure 4 (for all distinct stations p and q). 
In order to switch, say, from control location p2 to P3, node p has to send a 

request to each member of 7)p. In system S, the N - 1  corresponding messages are 
already modelled by N - 1 distinct transitions, but each of them remains rather 
abstract and the communication itself is modelled by switching the Boolean 
variable OR~ from false (i.e. 0) to true (i.e. 1), just as if communications always 
were reliable and timeless; system S is not very coaxse-grained, but not really 
fine-grained either. Also note that  the N - 1 communications are performed in 
arbitrary order; q ~ XB means, "node q has been issued the request from p". 
Intuitively, the predicate atq P3 means : "from the point of view of station q, the 



78 

(po, -resp ' [], po), 
(po, resv --~ (RCSp, SNp, time) := (1, time, time § 1), p2), 

(p~, q ~ p ~ \ x ,  - -~  ( O R L X ~ )  := 0 ,x~u(q}) ,  p~), 

(;3, q ~ p ~ \ x ~  ^ RCSq ^ SN~ < SN~ .... (RD~,X~)  := (1, X~u(q}), p3), 
(Pa, q e Pp\Xp A [-~ncsq V SNv < SNq] ' ( OR~,X,) := (O, XvU{q}), P3), 
(p3, x~ = p~ ~ x .  := 0, p~) , 

(p~, q e p~\x~ ^ -~On~ ~ X~ := x~u{q}  , p4), 
(p4, x ~ = p ~  ~ x . : = ~ ,  ;~), 
(p~, ~s~ ~ [], p~), 
(ps, -~rcsv , RCSv := 0, p6), 

(P6, q e Pp\Xp ^ RD~ ----+ (RO~, OR~, Xp) := (0, 0, XpU{q}), p~), 

(p,, q e P p \ X  v ^ -~RD~ , X v := XpU{q} , p~), 
(p6, x~ = p .  --~ x .  := 0, po ). 

Fig. 4. Abstract code of an intermediate version of R-A algorithm 

place predicate at P3 is true". Below is the formal definition of the latter and 
other similar predicates. 

atqpo =gel ((at Io6 ^ q e  Zp) V atpo) ,  
atqp2 =des (at p2 A q �9 P p \ X p ) ,  
atqP3 =44 ((atp2 ^ q � 9  Xp) V (atp3 ^ q � 9  
atqv4 = ~ f  ((~tp~ ^ q � 9  v (atp4 ^ q e p , \ x p ) ) ,  
at qp5 =d4 ((atp4 A q � 9  V a tps ) ,  
atqP6 =deI (atp6 A q �9 P v \ X v ) .  

The invariant I is the conjunction, for all distinct p and q, of the assertions 

lp: [xp c p~ ^ (at p05 ~ x~  = 0)], 
2p : [at P06 ---- -~RCSp] , 
3vq:[SNp•SN q A sgp<t ime  A ((atqp5 A RCSq) :=~ SNv<SNq) ], (2) 
4~q: [(RD~ ~ OR~) ^ (~atqv3 - (OR~ ~ RD~))], 
5pq: [(atqp6 A atPq4) V (RD~ =_ (atPq4 A RCSp ^ SNp<SNq))]. 

Acceptable initial conditions are, for all distinct stations p and q, 

_, v SNp # SNq at po A X v = O  A -~RCSp A - , O R  q A-~OR~ A-~RD q A RDq A 

3 .2  W h a t  c a n  b e  o b t a i n e d  in  a n  a u t o m a t i c  w a y  ? 

Our task is to use CAVEAT in order to determine whether I really is an invariant 
of system S. This system is typically "nearly propositional". Most of the vari- 
ables are Boolean; SNp and Xp are not, but SN v < SNq and q E Xp are. Another 
worrying point is the parameter N (number of nodes in the network) .  Clearly 
enough, there exists a formula I(p, q) - -  in fact, the conjunction of formulas (2) 
- -  such that  the invariant really is 

I =d~f V p V q # p I ( p , q ) .  
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Due to symmetry,  we can now fix two specific distinct stations p and q and 
decide that  only the transitions explicitly writ ten in Figure 4 ought to be checked 
against  invariant I .  Now, we have 14 transitions to consider instead of O(N2),  
but  the size of the invariant is still O(N2). We cannot similarly reduce the triple 
{I}T{I} to the triple {I(p,q)}r{I(p,q)}. However, we can reduce the triple 
{I}T{I} to the family of N �9 (N - 1) triples {I}T{I(p',q')}. We can further  
observe that ,  what  mat ters  about  pt,qr are whether they belong to {p, q} or 
not. Let us now assume that  p, q, r, s are four distinct stations (and therefore, 
tha t  N > 4). We can reduce the aforementioned family of triples to only seven 
triples, 5 listed below: 

1. {I} T {I(p ,  q)}, 
2. {I} T { I ( q , p ) } ,  
3. {I} T {I(p,  S)}, 
4. {Z} r {X(r, q)}, 
5. {Z} r {•  
6. {I} T {I(q, r)},  
7. (z}  ~ {~(r, s)} .  

Triple 3, for instance, serves as a pat tern  for N - 2 triples of the family since s 
stands for any node distinct from p and q.6 

A similar reduction can be operated on the precondition. For instance, triple 1 
can be replaced by 

{I(p,q) A I(q,p) A I(p,s) A I(r,q) A I(s,p) A I(q,r) A I(r,s)} 7- {I(p,q)} 

Such a triple, when fully developed, is a finite piece of text. The corresponding 
formula r is truly propositional, provided that  predicates like SNp < SNq and 
q E Xp are considered as atoms (we call pseudo-atoms these predicates; true 
a toms are location predicates and Boolean variables). The connection method 
will work, but only connections involving atoms will be detected with cer- 
tainty (they contain the same atom with both polarities). Connections involving 
pseudo-atoms can remain undetected. For instance, 

{T : SNp < SNq, F : SNp < SNq} 
will be detected, but 

{T : SNp < SNq, T : SNp : SNq} 
will not. The simple default s t ra tegy followed by CAVEAT is to suppose tha t  
when a path  can not be closed using a toms only, pseudo-atoms form a connec- 
tion. Such paths are collected, and the suspected connections are put into a table 
to be validated by the user. Even if, say, 1000 paths contain connections involv- 
ing pseudo-atoms, it is possible that  only a dozen distinct connections exist. So 
CAVEAT should sort the paths according to suspected connections, in order to 
minimize the work performed by the user. 

5 Only four triples are needed if N = 3, and two triples if N -- 2. 
s Taking symmetry into account may allow to reduce the number of assertions and 

the number of transitions. The favourable case (as for this version of Ricart and 
Agrawala's algorithm) occurs when these numbers become true constants (indepen- 
dent from the size N of the network, or from any other parameter). An example of 
the unfavourable case is reported in [14]. 
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3.3 W h a t  is o b t a i n e d  us ing  CAVEAT ? 

The main data  file for CAVEAT contains the program to be verified. The decla- 
rations are rather standard and omitted here. The languages for transitions and 
assertions are slightly adapted from those used in Figure 4 and Formula (2). 

Two differences exist between the real code and the abstract code in Figure 4. 
First, [ ] becomes skip,  since it does not interfere with the invariant. Second, the 
set Xp is implemented as a Boolean array XP, with XP [q] meaning q E Xp (we 
suppose that XP [p] is true, although that does not really matter). The constant 
XPempty is such that XPempty [q] holds only if q=p; the variable XPCard records 
the number of true elements in the array XP. The transformation induced in the 
real code is straightforward. 

The main data  file also contains the invariant to be verified. 
CAVEAT generates and explores the VAG for each of the 14 transitions; if the 

invariant to be checked is I(p, q)A I(q, p), this takes ten minutes (SUN Sparc 10) 
since, in spite of the simplifications introduced above, the path list remains long. 7 
However, most of the paths are closed by the system, and the set of "suspected 
connections" submitted to the user is short: 11 small sets, all of which being 
inconsistent. Here they are, in abstract notation: 

1. {F : SNq = SNp, F : SNq < SNp, F : SNp < SNq} , 
2. {T : SNp < SNq, T : SNq < SNp} , 
3.{F:qeXp, T : [Xv] = N } ,  
4. { T :  q e {p}}, 
5. {T : SNq < time, T : time = S N q )  , 

6. {T : [Xq[ = 1, T : p e X q } ,  
7. {F : time < time + 1}, 
s. {T: IXpl  = 1, T : q e X D ,  
9. {T : SNq < time, T : time < SNq} , 

10. {T : SNq < time, T : SNq = t ime},  
11. {T : SNq < time, F : SNq < time + 1}. 

In this favourable case, CAVEAT succeeds in isolating exactly the (tiny) non- 
propositional part of the verification work; in order to understand the program, 
the user has to know that  all the eleven small lists of formulas given above are 
inconsistent.S 

3.4 L i m i t a t i o n s  o f  CAVEAT 

Within the restricted, but important subclass of programs CAVEAT is intended 
to validate, two worrying limitations have been found. First, the gap of running 
time between the short version of the invariant, i.e. 

X(p, q) ^ I(q,p) 

and the full version, i.e. 

7 Nearly twenty hours are needed for the full version of the invariant, i.e. 
I(p,q) ^ I(q,p) ^ I ( ; , s )  ^ I(~,q) ^ I (s ,p)  ^ I(q,~) ^ I(~,~) .  

s Observe that, although the invariant is symmetric w.r.t, p and q, the code is not, 
and neither is the connection set. 
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I(p,q) A I(q,p) A I(p,s)  A I(r,q) A I(s ,p)  A I(q,r)  A I ( r , s ) ,  
is clearly not acceptable (ratio is worse than 1 to 100), especially since the 
last five assertion groups of the full version are mostly trivial. This limitation 
prevents us for now to consider larger, more realistic systems. Techniques for 
decomposing invariants are currently investigated. 

Second, CAVEAT is not efficient for parametric systems whose parameter is not 
the number of processes. An example is Stenning's "sliding window" protocol, 
where the parameter is the size of the window. The problem is that  quantifica- 
tion elimination is more difficult in this case, and leads to longer propositional 
formulas. 

3.5 A n e c e s s a r y  e x t e n s i o n  

CAVEAT is inspired by the classical idea that the best way to validate (the safety 
part of) the specifications of a concurrent system is to provide an appropriate 
invariant. However, as many designers are already reluctant to write specifica- 
tions in a formal way, they are even less likely to be willing to also provide 
the invariant. Indeed, although the invariant is usually not more complex than 
the program code, it is more complex than the specification and not obvious to 
derive. The conclusion is that the construction of the invariant itself should be 
automated as much as possible. 

The point of view adopted in [14, 16] is to view the system under study, 
say S~, and its invariant I,~, as the last pair of a sequence ((Sk,Ik) : k < n) of 
"specified systems". Small transformation steps lead quite systematically from 
one version to the next, and the initial system So is very abstract, so the con- 
struction of its invariant I0 is usually easy. As can be seen in [16], the de- 
sign/verification process is quite lengthy but much more time was devoted in 
veri/ying the "candidate-invariants" (by hand) than in their actual construction; 
this construction will be integrated in the next version of CAVEAT. Note however 
that  the construction process is not always amenable to automation. The exer- 
cise considered in [14] is probably a worst case in this respect. The extension to 
liveness and other temporal properties may be possible, using e.g. the technique 
reported in [15]. 

4 R e l a t e d  w o r k  

Several successful experiments have been made in combining model checking and 
theorem proving. In [19], an 8.2m-bit multiplier is verified in this way. The prin- 
ciple is to verify the basic component of the multiplier, i.e., the 8-bit multiplier, 
by model-checking. Theorem proving (in temporal logic) is used to validate the 
recursive way in which four N-bit multipliers are combined to form a 2N-bit mul- 
tiplier. This approach takes full benefits of the now powerful implementations 
of model-checking algorithms, but applies to a more restricted class of programs 
than ours. The reason is that many parametric systems (including Ricart and 
Agrawala's algorithm) cannot be decomposed into non-parametric ones. 
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In this paper, we avoid this decomposition problem and consider the sys- 
tem to be verified as a whole. Simplification is performed on the verification 
conditions. As a result, we do not use model-checking, but tautology-checking. 

Our approach is more similar to the approach reported in [25]. The system 
STEP uses model-checking whenever possible, and reverts to (temporal) theo- 
rem proving when model-checking fails. STEP does not rely on our incremental 
approach for obtaining invariants, but at tempts to synthesize invariants directly 
from the program code. It also integrates various simplification methods, includ- 
ing two decision procedures for Presburger arithmetic (the first one is efficient, 
the second one is complete). STEP does not appear to achieve a full separa- 
tion between the automatic part and the ATP-supported part, which is one of 
our main objectives. Indeed, in our opinion, this separation allows to reduce 
the ATP-part to short and elementary formulas, for which complicated ATP 
techniques are not really needed. 

The incremental approach that is currently integrated in CAVEAT is not the 
only way to transform concurrent systems, from higher-level to lower-level ver- 
sions. Other approaches might be amenable to partial automation, for instance 
those refining atomicity with a reduction principle [2, 22], those using refinements 
and hierarchical design [24, 18] or phase decomposition [10, 28], and those based 
on property preserving abstractions [4, 12]. 

Symbolic model-checking and tautology-checking can be improved by using 
(ordered) binary decision diagrams [6]. This approach is followed in [7], and 
successfully applied to the verification of a simple synchronous pipeline. Besides, 
using Boolean automata can be more effective than using Boolean formulas, and 
this kind of approach is not restricted to investigating concurrent systems [17]. 
First experiments with (O)BDD in CAVEAT have not been encouraging, however, 
since we lack an effective procedure for ordering atoms and pseudo-atoms. No 
experiment has been made yet in the area of digital circuits. 
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