
C A V E A T : t echn ique and too l for C o m p u t e r
A ided VEri f icat ion A n d Trans format ion

E. Pascal Gribomont and Didier Rossetto

Institut Montefiore, Universit~ de Lihge, Sart-Tilman B28,
B-4000 Liege (Belgium)

gribomon,rossetto@montefiore.ulg.ac.be

A b s t r a c t . We describe CAVEAT, a technique and a tool (under develop-
ment) for the stepwise design and verification of nearly finite-state con-
current systems (NFCS). A concurrent system is nearly finite-state when
most of its variables have a finite range (Booleans, bounded integers).
The heart of CAVEAT is a tool for verifying invariants, i.e., inductive safety
properties. The underlying method is classical : formula I is an invariant
for system ,S if and only if some formula ~r =def { I}S{I} is valid. If ,S
is an NFCS, the formula ~5i contains only a small set of non-boolean vari-
ables. CAVEAT uses the connection method to extract from ~I a (small)
set ~ of paths (some kind of assertions) about the non-boolean variables;
~5i is valid if and only if all paths contain connections, i.e., are inconsis-
tent. For typical NFCS given with a correct invariant, the formula ~I is
rather large (more than 100 lines) but k~ is quite small (a dozen one-line
formulas). The second part of CAVEAT (not implemented yet) supports
an incremental development method that is fairly systematic, but has
proved to be flexible enough in practice.

1 Introduction

From the theoretical point of view, formal methods are a rather satisfactory
answer to the problem of unreliable software. However, from the practical point
of view, these methods are nearly useless without appropriate tools.

It is well-known that fully automatic tools for general program design and /o r
verification can not exist, so we have to be satisfied with semi-automatic tools
and /o r restricted classes of programs.

The most classical approach to non-automatic program verification is the
invariant method. Its principle is to reduce the correctness problem ("Is this
program correct w.r.t, this specification?") to the validity problem ("Is this
formula a valid formula of classical first order logic ?"). Even when automation
is not considered, the invariant method has two drawbacks: it is restricted to
safety properties, and it is "creative" in the sense that the validation of a safety
property implies the (non-trivial) design of an adequate invariant, that is, a
stronger safety property which can be proved by induction. The first problem
has been satisfactorily solved by the introduction of temporal logic; the second
problem is dealt with in more or less satisfactory ways, and for more or less
general classes of programs. The pragmatic view (and CAVEAT is /wi l l be a
pragmatic tool) is that formal methods become interesting when, first, testing

71

methods really prove disappointing, second, reliability is really required, and
third, programs are subtle and tricky even when they are not long. This is
often the case for concurrent, distributed, reactive systems, and the problem of
invariant construction seems especially important for such systems. CAVEAT is
an attempt to automate an invariant-based stepwise design/verification method
introduced in [13, 14, 16].

Most earlier approaches to (semi-)automatic program verification have been
based on (semi-)automatic theorem proving, for classical logic and sometimes for
temporal logic. A pragmatic drawback of theorem provers is that they are mostly
interactive. Even if the prover really performs the biggest part of the verification
task, the user has to oversee the whole verification process, and from time to
time needs to interact with it. The problem lies with the rather poor ability of
proving systems to extract from a large set of mostly elementary verification
steps the small subset which is outside the scope of purely automatic tools. The
success of the semi-automatic theorem proving approach depends on the skill of
the user [11].

A more recent approach is restricted to finite-state systems. The principle
is that both the finite-state system and the specification can be modelled by
a formula of propositional temporal logic, or by some kind of automaton. As
a result, system verification is decidable, for instance by model checking algo-
rithms [8, 29]. Recent improvements in the performances of computer systems,
and also in the search algorithms, have led to rather powerful tools. This induced
attempts to extend these techniques to some classes of infinite-state systems,
but only moderately successful results have been obtained until now [20, 30].
On the contrary, some severe theoretical restrictions to this approach have been
obtained [1]. Besides, when a tested finite-state program is incorrect, the veri-
fication system gives little high-level insight about how the program should be
corrected; similarly, the validation of a correct program gives little insight about
how the program works and why it is correct.

Another promising track comes from recent improvements in tautology check-
ing, especially the connection method (see [5, 31]) and the concept of (ordered)
binary decision diagram (see [6, 26]). It is rather natural to wonder whether these
techniques remain practically usable outside pure propositional logic. CAVEAT

has evolved from some successful experiments in this area.
Section 2 introduces CAVEAT with a very elementary example and discusses

the main choices we have made in the strategy of invariant verification. Section 3
accounts for a more significant experiment and demonstrates the usefulness of
the approach in a restricted but important class of applications. It also presents
an introduction to incremental design and verification. Section 4 is a brief com-
parison with related works.

2 T h e h e a r t o f CAVEAT.* t a u t o l o g i c a l r e d u c t i o n

2.1 Posi t ion of the problem

A formula I is an invariant of a concurrent system S if, in all computations,
successors of states satisfying I also satisfy I. Hoare's axiom, or the liberal ver-
sion of Dijkstra's weakest precondition calculus, reduces the problem of invariant

72

verification to the purely logical problem of validity checking. With familiar no-
tation (illustrated below), the formula to validate is ~I =de/ (I ~ wlp[S; I]).
The construction of ~I, when S and I are given, is (usually) straightforward.
The validation, however, is not, since ~r is typically a rather large formula.

A formula J expresses a safety property of ,S with initial condition A if every
state of every computation satisfies J. This holds if and only if an invariant I
of S exists such that (A ==~ I) and (I ~ J). The standard verification problem is
to determine whether some system ,S with initial condition A satisfies the safety
property (expressed by) J.

If S is a non-parametric finite-state system, the formulas A, J, I and Cx
are propositional and full automation is possible. However, the construction of
the invariant I is not a trivial task. Model checking is usually more effective
here, since an explicit form of the invariant I is not needed; the model checker
simply verifies that all accessible states satisfy J. (The set of accessible states
determines the strongest invariant implied by A, often denoted sin[A; S].)

Pure model-checking does not apply if S is an infinite-state system. In this
case, A, J, I and ~I are formulas of some first-order language (for instance, the
language of number theory) and the verification problem becomes theoretically
unsolvable even for a rather restricted class of programs. The invariant method
still works, but is not easily turned into a reasonably efficient semi-automatic
method.

There is, however, a large and interesting class of "borderline" cases, for
which 45i is a large formula with only few occurrences of non-boolean variables.
The method illustrated in the sequel seems very promising for this class. For
the sake of simplicity, it is first introduced with the help of a purely finite-state
example, even though it does not show its full potential in this case.

2.2 T h e c o n n e c t i o n m e t h o d

The connection method can be viewed as an efficient implementation of the clas-
sical tableau method, used to determine whether a formula or a set of formulas
has a model. The principle of the method is to reduce the initial formula into
sets of literals, in such a way that the initial formula has no model if and only
if each of the sets of literals contains a connection, i.e., a tuple of contradictory
elements. In a purely propositional framework, only pairs like (p, --p} are consid-
ered. In our framework, a connection is a bit more general; typical instances are
{x > y, x = y, x < y} and {at to, at ~1}, where t0 and ~I are distinct locations
of the same process.

The connection method can be a powerful technique [31]; it is illustrated in
the sequel of this section, first with a simplistic example.

The example is a two-process naive mutual exclusion algorithm, that has to
be checked for mutual exclusion. The set of processes is {P, Q}. Each process
contains three locations, identified by subscripts 0 (idle state), w (waiting state)
and c (critical state), so P = {po,p~,pc} and Q = {qo,q~,qc}. There are two

73

Boolean variables i n P and inQ. The set of transitions is

T = {(Po, i n P := true, p~) , (qo, inQ := true, q~),
(p~, ~inQ ~ skip , pc) (q~, "~inP ~ skip, qc),
(Pc, i n P := false, Po), (qc, inQ := false, qo) } .

Comment. The formal notation used here and in CAVEAT to write programs has
been introduced in [14]. It is similar in spirit to many other notations based on
states and transitions, e.g. the language of Action Systems introduced in [3].

There are two Boolean variables and each process has three control locations,
leading to a state space of 36 possible states. The main safety property of interest
is mutual exclusion, formalized as

J =d~f -~(at Pc A at q~).
An acceptable initial condition is :

A =d~f (atpo A atqo A - ~ i n P A - ~ i n Q) .
An appropriate invariant I is

(at p~ ~ (-~inQ v at q~)) A (at qc ~ (~ inP V at p~)) A
(at po =-- ~ inP) A (at qo =-- ~ inQ) .

One sees easily that both A ~ I and I ~ J holds, 1 and CAVEAT is used to check
that I is really an invariant. It is sufficient to show that formula (I =~ wlp[~-; I])
holds for each transition % and we consider here T = (p~, -~inQ ~ skip, pc).
The corresponding verification formula, say 4~, is obtained by w/p-calculus :

(~-~inP A (at qo =~ -~inQ) A (-~inQ ::~ at qo)) =~
(-~inQ ~ [(-~inQ v at q~) A (at qc ~ -~inP) A - ,~ inP A

(at qo =~ "~inQ) A (- i n Q ~ at q0)])-

With standard elementary techniques, q5 is reduced into two formulas, i.e.,

((at qo =v -,inQ) A (-~inQ :~ at qo)) =~ (-,inQ ~ (-,inQ v at q~)) (1)

and
(-,-~inP A (at qo ~ -~inQ) A (- i n Q ~ at qo)) ~ (- i n Q ~ (at qc ~ -~inP)).

Comment. The first one should have been

(-~- inP A (at qo =v ~inQ) h (-~inQ =~ at qo)) =v (~inQ =v (~inQ v at q~))
but i n P occurred only once, and has therefore been replaced by its polarity T,
leading to formula (1). This transformation and some similar ones are automated
in CAVEAT. 2

The subformula tableau for formula (1) is given in Figure 1.
Each line of the subformula tableau corresponds to a node of the syntactic

tree of the formula (the tree is traversed depthfirst). Let us consider formula (1).
The polarity of the formula itself (root line al) is F, meaning that our "goal"
(hopefully unreachable) is to falsify the (hopefully valid) formula al . This for-
mula is an implication; it will be false if and only if its antecedent a2 is true and

1 Recall that each process is at exactly one location at a time; this location rule is
"wired in" CAVEAT.

2 These simplifications are classical in resolution-based theorem provers; see e.g. [23].

74

Polarity Formula P-type S-type

((at qo ::~ -~inQ) A (~ inQ =:~ at qo))
a l F ~ ~ -

(-~inQ ~ (~ i n Q y at q~))

a2 T (at qo ~ -~inQ) A (-~inQ ~ at qo) ~

aa T at qo =t. -~inQ ~ o~

a4 F at qo - fl

a5 T -~inQ ~ fl

a6 F inQ -

a7 T -~inQ ~ at qo fl

a8 F -~inQ a

a9 T inQ - a

al0 T at qo -

a l l F -~inQ ~ (-~inQ Y at q~,) a o~

a12 T -~inQ a a

a13 F inQ - (~

a14 F (-~inQ v at q~) a

a15 F -~inQ a o~

a16 T i nQ -

a17 F at q~ - (~

Fig. 1. Subformula tableau for formula (1)

its consequent a l l is false. As a result, the polarities of a2 and a l l respectively
are T and F. Besides, the P- type (p r i m a r y type) of al is a , meaning that al is
a conjunctive line. 3 The S-type (secondary type) of a line if the P- type of its
father, so the root line has no S-type and the atomic lines (corresponding to
atomic subformulas) have no P-type.

The subformula tableau is used to construct the veri f icat ion acycl ic graph,
or VAG. The VAG corresponding to formula (1) is given in Figure 2 (left).

Each node in a VAG is a sequence of subformula indices; we distinguish
a t o m i c and n o n - a t o m i c indices, corresponding respectively to atomic and non-
atomic subformulas. The index i of an atomic subformula ai is printed in bold-
face. The VAG is constructed from root to leaves according to the following rule.
A node has successor(s) if it contains at least one non-atomic index i. If ai has
P- type a , there is only one successor, obtained by replacing i by j , k, where aj
and a~ are the immediate subcomponents of a~ (if ai is a negation, there is only
one subcomponent aj) . If al has P- type ~, there are two successors, obtained

3 Conjunctive lines are denied implications, denied disjunctions, asserted conjunctions;
disjunctive lines (P-type is fl) are asserted implications, asserted disjunctions and
denied conjunctions. P-type is not really relevant for unary connectives, but we
attribute P-type a to negations.

?5

2, 11

3, 7, 11

3,7,12,14

3, 7, 13, 14

3, 7, 15, 17

3, 7, 16

4,_7 5, 7

_ - 6 , 7

9 1 0

14,9,13,16,17 9, 131
2 4, 10, 13, 16, 17 4, 0
3 6, 9, 13, 16, 17]6, 1
4 6,1o, ,3,1 ,1716,16 t

Fig. 2. Verification acyclic graph and path list for formula (1)

by replacing i by j and k, respectively. To save place, atomic indices of a node
are not inherited by its successor(s). Leaves contain atomic indices only. The
construction is non-deterministic, since a node can contain several non-atomic
indices (in Figure 2, selected indices are underlined). The strategy of considering
indices of P- type c~ first leads to a smaller VAG and is therefore adopted.

An example about formula (1). Three non-atomic indices 3, 7, 15 occur in node
(3, 7, 15, 17); only index 15 is of P- type (~, so it is selected. There is only one
successor, obtained by replacing 15 by 16; besides, atomic index 17 is omitted.

It is now clear why the elementary claims introduced in paragraph 2.2 are
called paths : each claim corresponds to a (maximal) path in the VAG. The last
step of the connection method is to explore the VAGs and to list their paths.
Each path connects the root of the VAG to a leaf and is identified in the list
by the atomic indices occurring in the labels of its nodes. For instance, the first
path of the VAG corresponding to formula (1) is

1 ~ 2,11 ~ ... --* 3, 7,13,14 --~ 3, 7, 15,17 ~ 3, 7,16 --+ 4, 7 --, 8 ---+ 9,
so this path will be identified as 4, 9, 13, 16, 17.

A formula is valid if each path of the corresponding path list contains a
connection. The path list for formula (1) is given in Figure 2 (right), with a
connection for each path. As a consequence, formula (1) is valid.

2.3 C o n c u r r e n t c o n s t r u c t i o n a n d e x p l o r a t i o n of t h e V A G

An elementary but useful optimization consists in closing a path as soon as a
connection is detected in it. This gives rise to shortened VAGs and path lists;
t h o s e for formula (1) are given in Figure 3.

76

_2, 11

3,7,11

3, 7, 12, 14

3,7, 13, 14

3, 7, 15, 17

3, 7, 16

Fig. 3. Optimized VAG and shortened path list for formula (1)

2.4 T h e n o n - p r o p o s i t i o n a l case

The connection method reduces the problem of checking the validity of formula
q~ =d~I (a A b A c) ::a -~(b::a ~a)

to the problem of finding a connection within each element of the path list
=deI ((T : a ; W:b; T : c ; F : b } , { T : a ; T : b ; T : c ; F : a }) .

The second problem is trivial, but the reduction process itself is not. Now, let
us consider a rather similar case. The formula

�9 ' --~f (x > y A bA c) =V ~ (b ~ x < y)
is valid if each path of the list
~ ' --de/ ({T:x > y ; T : b ; T :c ; F :b} , (T : x > y ; T : b ; T :c ; T : x < y })

is connected. The first path contains a trivial, propositional connection (atom b
appears with both polarities) but the connection contained in the second path
is (T : x > y ; T : x < y}, which is non-propositional. 4

The interesting point is that half the verification work (in this example)
remains within the propositional framework and hence fully automatic. Our
working hypothesis is that, for many "nearly finite-state systems", most of the
invariant verification work will reduce to tautology checking and nearly all paths
(say 99.9 %) will be closed (a connection will be found) in an automatic way. The
main advantage we seek from our approach with respect to the more classical
theorem-proving approaches, is the inherent ability of the connection method
to "extract" the tiny fraction of the verification work which falls outside the
propositional framework. This fraction is then isolated from the rest, and dealt

4 More precisely, analysis of the "atoms" x > y and x < y is needed to detect that
they are contradictory.

77

with in a classical way; either we use a knowledge base and a theorem prover
that would tell us that x > y and x < y are not simultaneously satisfiable,
or we simply report to the user the sublist of unconnected paths. The example
presented in the next section illustrates what can be achieved even without ATP
(automatic theorem proving).

3 R i c a r t a n d A g r a w a l a ' s a l g o r i t h m

It is now usual to verify some fine-grained version of a concurrent system by
first considering some coarser-grained version(s). This approach was already used
in [9] and [21] and is turned into a systematic method in [14] and [16]. We extract
from the latter [16, p. 43] an intermediate, medium-grained version of Ricart and
Agrawala's N-process mutual exclusion algorithm, introduced in [27].

3.1 T h e a l g o r i t h m a n d i t s inva r i an t

The basic idea, as introduced in [27], is as follows. A node attempting to invoke
mutual exclusion sends a request to all other nodes. On receipt of the request,
the other nodes send an immediate reply or defer it. When all replies have been
received, the access to the critical section is granted. A deferred reply is delayed
until the replying node has completed its own access to the critical section.

Some notation is introduced, mostly in accordance with [27].

rcsp : p needs access to the resource;
[] ": internal activity, able to alter rcs only;
R C S , : p requests access to the resource (Request Critical Section);
OR q : p waits for a reply from q (Outstanding Reply);
RD~ : p defers a reply to q (Reply Deferred);
SNp : p has requested access at that time (Sequence Number)

(time-stamp, implementing Lamport 's "Bakery algorithm");
SN, < SNq: p takes precedence over q;
t ime : monotonically increasing integer, models real time;
7) : the set of nodes; 7) = {p, q, r , . . .} ;
N : the number of nodes; 17)1 = N;
7)p : short for 7)\{p}; [7)p[-- g - 1;
X , : variable ranging over subsets of 7)p.

The transitions of S are given in Figure 4 (for all distinct stations p and q).
In order to switch, say, from control location p2 to P3, node p has to send a

request to each member of 7)p. In system S, the N - 1 corresponding messages are
already modelled by N - 1 distinct transitions, but each of them remains rather
abstract and the communication itself is modelled by switching the Boolean
variable OR~ from false (i.e. 0) to true (i.e. 1), just as if communications always
were reliable and timeless; system S is not very coaxse-grained, but not really
fine-grained either. Also note that the N - 1 communications are performed in
arbitrary order; q ~ XB means, "node q has been issued the request from p".
Intuitively, the predicate atq P3 means : "from the point of view of station q, the

78

(po, -resp ' [], po),
(po, resv --~ (RCSp, SNp, time) := (1, time, time § 1), p2),

(p~, q ~ p ~ \ x , - -~ (O R L X ~) := 0 ,x~u(q}) , p~),

(;3, q ~ p ~ \ x ~ ^ RCSq ^ SN~ < SN~ (RD~,X~) := (1, X~u(q}), p3),
(Pa, q e Pp\Xp A [-~ncsq V SNv < SNq] ' (OR~,X,) := (O, XvU{q}), P3),
(p3, x~ = p~ ~ x . := 0, p~) ,

(p~, q e p~\x~ ^ -~On~ ~ X~ := x~u{q} , p4),
(p4, x ~ = p ~ ~ x . : = ~ , ;~),
(p~, ~s~ ~ [], p~),
(ps, -~rcsv , RCSv := 0, p6),

(P6, q e Pp\Xp ^ RD~ ----+ (RO~, OR~, Xp) := (0, 0, XpU{q}), p~),

(p,, q e P p \ X v ^ -~RD~ , X v := XpU{q} , p~),
(p6, x~ = p . --~ x . := 0, po).

Fig. 4. Abstract code of an intermediate version of R-A algorithm

place predicate at P3 is true". Below is the formal definition of the latter and
other similar predicates.

atqpo =gel ((at Io6 ^ q e Zp) V atpo) ,
atqp2 =des (at p2 A q �9 P p \ X p) ,
atqP3 =44 ((atp2 ^ q � 9 Xp) V (atp3 ^ q � 9
atqv4 = ~ f ((~tp~ ^ q � 9 v (atp4 ^ q e p , \ x p)) ,
at qp5 =d4 ((atp4 A q � 9 V a tps) ,
atqP6 =deI (atp6 A q �9 P v \ X v) .

The invariant I is the conjunction, for all distinct p and q, of the assertions

lp: [xp c p~ ^ (at p05 ~ x~ = 0)],
2p : [at P06 ---- -~RCSp] ,
3vq:[SNp•SN q A sgp<t ime A ((atqp5 A RCSq) :=~ SNv<SNq)], (2)
4~q: [(RD~ ~ OR~) ^ (~atqv3 - (OR~ ~ RD~))],
5pq: [(atqp6 A atPq4) V (RD~ =_ (atPq4 A RCSp ^ SNp<SNq))].

Acceptable initial conditions are, for all distinct stations p and q,

_, v SNp # SNq at po A X v = O A -~RCSp A - , O R q A-~OR~ A-~RD q A RDq A

3 .2 W h a t c a n b e o b t a i n e d in a n a u t o m a t i c w a y ?

Our task is to use CAVEAT in order to determine whether I really is an invariant
of system S. This system is typically "nearly propositional". Most of the vari-
ables are Boolean; SNp and Xp are not, but SN v < SNq and q E Xp are. Another
worrying point is the parameter N (number of nodes in the network) . Clearly
enough, there exists a formula I(p, q) - - in fact, the conjunction of formulas (2)
- - such that the invariant really is

I =d~f V p V q # p I (p , q) .

79

Due to symmetry, we can now fix two specific distinct stations p and q and
decide that only the transitions explicitly writ ten in Figure 4 ought to be checked
against invariant I . Now, we have 14 transitions to consider instead of O(N2),
but the size of the invariant is still O(N2). We cannot similarly reduce the triple
{I}T{I} to the triple {I(p,q)}r{I(p,q)}. However, we can reduce the triple
{I}T{I} to the family of N �9 (N - 1) triples {I}T{I(p',q')}. We can further
observe that , what mat ters about pt,qr are whether they belong to {p, q} or
not. Let us now assume that p, q, r, s are four distinct stations (and therefore,
tha t N > 4). We can reduce the aforementioned family of triples to only seven
triples, 5 listed below:

1. {I} T {I(p , q)},
2. {I} T { I (q , p) } ,
3. {I} T {I(p, S)},
4. {Z} r {X(r, q)},
5. {Z} r {•
6. {I} T {I(q, r)},
7. (z} ~ {~(r, s)} .

Triple 3, for instance, serves as a pat tern for N - 2 triples of the family since s
stands for any node distinct from p and q.6

A similar reduction can be operated on the precondition. For instance, triple 1
can be replaced by

{I(p,q) A I(q,p) A I(p,s) A I(r,q) A I(s,p) A I(q,r) A I(r,s)} 7- {I(p,q)}

Such a triple, when fully developed, is a finite piece of text. The corresponding
formula r is truly propositional, provided that predicates like SNp < SNq and
q E Xp are considered as atoms (we call pseudo-atoms these predicates; true
a toms are location predicates and Boolean variables). The connection method
will work, but only connections involving atoms will be detected with cer-
tainty (they contain the same atom with both polarities). Connections involving
pseudo-atoms can remain undetected. For instance,

{T : SNp < SNq, F : SNp < SNq}
will be detected, but

{T : SNp < SNq, T : SNp : SNq}
will not. The simple default s t ra tegy followed by CAVEAT is to suppose tha t
when a path can not be closed using a toms only, pseudo-atoms form a connec-
tion. Such paths are collected, and the suspected connections are put into a table
to be validated by the user. Even if, say, 1000 paths contain connections involv-
ing pseudo-atoms, it is possible that only a dozen distinct connections exist. So
CAVEAT should sort the paths according to suspected connections, in order to
minimize the work performed by the user.

5 Only four triples are needed if N = 3, and two triples if N -- 2.
s Taking symmetry into account may allow to reduce the number of assertions and

the number of transitions. The favourable case (as for this version of Ricart and
Agrawala's algorithm) occurs when these numbers become true constants (indepen-
dent from the size N of the network, or from any other parameter). An example of
the unfavourable case is reported in [14].

80

3.3 W h a t is o b t a i n e d us ing CAVEAT ?

The main data file for CAVEAT contains the program to be verified. The decla-
rations are rather standard and omitted here. The languages for transitions and
assertions are slightly adapted from those used in Figure 4 and Formula (2).

Two differences exist between the real code and the abstract code in Figure 4.
First, [] becomes skip, since it does not interfere with the invariant. Second, the
set Xp is implemented as a Boolean array XP, with XP [q] meaning q E Xp (we
suppose that XP [p] is true, although that does not really matter). The constant
XPempty is such that XPempty [q] holds only if q=p; the variable XPCard records
the number of true elements in the array XP. The transformation induced in the
real code is straightforward.

The main data file also contains the invariant to be verified.
CAVEAT generates and explores the VAG for each of the 14 transitions; if the

invariant to be checked is I(p, q)A I(q, p), this takes ten minutes (SUN Sparc 10)
since, in spite of the simplifications introduced above, the path list remains long. 7
However, most of the paths are closed by the system, and the set of "suspected
connections" submitted to the user is short: 11 small sets, all of which being
inconsistent. Here they are, in abstract notation:

1. {F : SNq = SNp, F : SNq < SNp, F : SNp < SNq} ,
2. {T : SNp < SNq, T : SNq < SNp} ,
3.{F:qeXp, T : [Xv] = N } ,
4. { T : q e {p}},
5. {T : SNq < time, T : time = S N q) ,

6. {T : [Xq[= 1, T : p e X q } ,
7. {F : time < time + 1},
s. {T: IXpl = 1, T : q e X D ,
9. {T : SNq < time, T : time < SNq} ,

10. {T : SNq < time, T : SNq = t ime},
11. {T : SNq < time, F : SNq < time + 1}.

In this favourable case, CAVEAT succeeds in isolating exactly the (tiny) non-
propositional part of the verification work; in order to understand the program,
the user has to know that all the eleven small lists of formulas given above are
inconsistent.S

3.4 L i m i t a t i o n s o f CAVEAT

Within the restricted, but important subclass of programs CAVEAT is intended
to validate, two worrying limitations have been found. First, the gap of running
time between the short version of the invariant, i.e.

X(p, q) ^ I(q,p)

and the full version, i.e.

7 Nearly twenty hours are needed for the full version of the invariant, i.e.
I(p,q) ^ I(q,p) ^ I (; , s) ^ I(~,q) ^ I (s ,p) ^ I(q,~) ^ I(~,~) .

s Observe that, although the invariant is symmetric w.r.t, p and q, the code is not,
and neither is the connection set.

81

I(p,q) A I(q,p) A I(p,s) A I(r,q) A I(s ,p) A I(q,r) A I (r , s) ,
is clearly not acceptable (ratio is worse than 1 to 100), especially since the
last five assertion groups of the full version are mostly trivial. This limitation
prevents us for now to consider larger, more realistic systems. Techniques for
decomposing invariants are currently investigated.

Second, CAVEAT is not efficient for parametric systems whose parameter is not
the number of processes. An example is Stenning's "sliding window" protocol,
where the parameter is the size of the window. The problem is that quantifica-
tion elimination is more difficult in this case, and leads to longer propositional
formulas.

3.5 A n e c e s s a r y e x t e n s i o n

CAVEAT is inspired by the classical idea that the best way to validate (the safety
part of) the specifications of a concurrent system is to provide an appropriate
invariant. However, as many designers are already reluctant to write specifica-
tions in a formal way, they are even less likely to be willing to also provide
the invariant. Indeed, although the invariant is usually not more complex than
the program code, it is more complex than the specification and not obvious to
derive. The conclusion is that the construction of the invariant itself should be
automated as much as possible.

The point of view adopted in [14, 16] is to view the system under study,
say S~, and its invariant I,~, as the last pair of a sequence ((Sk,Ik) : k < n) of
"specified systems". Small transformation steps lead quite systematically from
one version to the next, and the initial system So is very abstract, so the con-
struction of its invariant I0 is usually easy. As can be seen in [16], the de-
sign/verification process is quite lengthy but much more time was devoted in
veri/ying the "candidate-invariants" (by hand) than in their actual construction;
this construction will be integrated in the next version of CAVEAT. Note however
that the construction process is not always amenable to automation. The exer-
cise considered in [14] is probably a worst case in this respect. The extension to
liveness and other temporal properties may be possible, using e.g. the technique
reported in [15].

4 R e l a t e d w o r k

Several successful experiments have been made in combining model checking and
theorem proving. In [19], an 8.2m-bit multiplier is verified in this way. The prin-
ciple is to verify the basic component of the multiplier, i.e., the 8-bit multiplier,
by model-checking. Theorem proving (in temporal logic) is used to validate the
recursive way in which four N-bit multipliers are combined to form a 2N-bit mul-
tiplier. This approach takes full benefits of the now powerful implementations
of model-checking algorithms, but applies to a more restricted class of programs
than ours. The reason is that many parametric systems (including Ricart and
Agrawala's algorithm) cannot be decomposed into non-parametric ones.

82

In this paper, we avoid this decomposition problem and consider the sys-
tem to be verified as a whole. Simplification is performed on the verification
conditions. As a result, we do not use model-checking, but tautology-checking.

Our approach is more similar to the approach reported in [25]. The system
STEP uses model-checking whenever possible, and reverts to (temporal) theo-
rem proving when model-checking fails. STEP does not rely on our incremental
approach for obtaining invariants, but at tempts to synthesize invariants directly
from the program code. It also integrates various simplification methods, includ-
ing two decision procedures for Presburger arithmetic (the first one is efficient,
the second one is complete). STEP does not appear to achieve a full separa-
tion between the automatic part and the ATP-supported part, which is one of
our main objectives. Indeed, in our opinion, this separation allows to reduce
the ATP-part to short and elementary formulas, for which complicated ATP
techniques are not really needed.

The incremental approach that is currently integrated in CAVEAT is not the
only way to transform concurrent systems, from higher-level to lower-level ver-
sions. Other approaches might be amenable to partial automation, for instance
those refining atomicity with a reduction principle [2, 22], those using refinements
and hierarchical design [24, 18] or phase decomposition [10, 28], and those based
on property preserving abstractions [4, 12].

Symbolic model-checking and tautology-checking can be improved by using
(ordered) binary decision diagrams [6]. This approach is followed in [7], and
successfully applied to the verification of a simple synchronous pipeline. Besides,
using Boolean automata can be more effective than using Boolean formulas, and
this kind of approach is not restricted to investigating concurrent systems [17].
First experiments with (O)BDD in CAVEAT have not been encouraging, however,
since we lack an effective procedure for ordering atoms and pseudo-atoms. No
experiment has been made yet in the area of digital circuits.

References

1. K.R. Apt and D.C. Kozen, Limits for Automatic Program Verification, Inform.
Process. Letters 22 (1986) 307-309.

2. R.J. Back, A Method for Refining Atomicity in Parallel Algorithms, PARLE'89,
Lect. Notes in Comput. Sci. 366 (1989) 199-216.

3. R.J. Back and R. Kurki-Suonio, Distributed co-operation with action systems,
ACM Trans. Programming Languages Syst. 10 (1988) 513-554.

4. S. Bensalem et al., Property Preserving Abstractions for the Verification of Con-
current Systems, to appear in Formal Methods in System Design (1994).

5. W. Bibel, Deduction - Automated Logic, Academic Press, 1993.
6. R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE

Trans. on Computers C-35 (1986) 677-691.
7. J.R. Butch et al., Symbolic Model Checking: 10 ~~ States and Beyond, Proc. 5th.

Symp. on Logic in Computer Science (1990) 428-439.
8. E. Clarke, E. Emerson and A. Sistla, Automatic Verification of Finite-State Con-

current Systems Using Temporal Logic Specifications, ACM Trans. Programmin 9
Languages Syst. 8 (1986) 244-263.

83

9. E.W. Dijkstra and al., On-the-Fly Garbage Collection: An Exercise in Cooperation,
Comm. ACM 21 (1978)966-975.

10. T. Elrad and N. Francez, Decomposition of Distributed Programs into
Communication-closed Layers, Sci. Comput. Programming 2 (1982) 155-173.

11. D.M. Goldschlag, Mechanically Verifying Concurrent Programs with the Boyer-
Moore Prover, IEEE Trans. on Software Eng. 16 (1990) 1005-1023.

12. S. Graf, Verification of a distributed Cache memory by using abstractions, Lect.
Notes in Comput. Sci. 818 (1994) 207-219.

13. E.P. Gribomont, Synthesis of parallel programs invariants, TAPSOFT'85, Lect.
Notes in Comput. Sci. 186 (1985) 325-338.

14. E.P. Gribomont, Stepwise refinement and concurrency: the finite-state case, Sci.
Comput. Programming 14 (1990) 185-228.

15. E.P. Gribomont, Design, verification and documentation of concurrent systems, in
Proc. ~th. Refinement workshop, J.M. Morris and R.C. Shaw (Eds), pp. 360-377,
Springer-Verlag, 1991.

16. E.P. Gribomont, Concurrency without toil: a systematic method for parallel pro-
gram design". Sci. Comput. Programming 21 (1993) 1-56.

17. N. Halbwachs and F. Maraninchi, On the symbolic analysis of combinational loops
in circuits and synchronous programs, REACT Report, 1994.

18. B. Jonsson, Compositional Specification and Verification of Distributed System,
ACM Trans. Programming Languages Syst. 16 (1994) 259-303.

19. R.P. Kurshan and L. Lamport, Verification of a Multiplier: 64 Bits and Beyond,
CAV'93, Lect. Notes in Comput. Sci. 697 (1993) 166-179.

20. R.P. Kurshan and M. McMillan, A structural induction theorem for processes,
Proc. 8th ACM Symp. on Principles of Distributed Computing, Edmonton (1989).

21. L. Lamport, An Assertional Correctness Proof of a Distributed Algorithm, Sci.
Comput. Programming 2 (1983) 175-206.

22. L. Lamport and F.B. Schneider, Pretending Atomicity, DEC SRC Rep. 44, May
1989.

23. R. Letz, J. Schumann, S. Bayerl and W. Bibel, SETHEO: A High-Performance
Theorem Prover, Jl. of Automated Reasoning 8 (1992) 183-212.

24. N.A. Lynch and M.R. Turtle, Hierarchical Correctness Proofs for Distributed Algo-
rithms, Proc. 6th ACM Syrup. on Principles of Distributed Computing, New-York
(1987) 137-151.

25. Z. Manna et al., STEP : the Stanford Temporal Prover (Draft), June 1994.
26. J.S. Moore, Introduction to the OBDD algorithm for the ATP Community, Jl. of

Automated Reasoning 12 (1994) 33-45.
27. G. Ricart and A.K. Agrawala, An optimal algorithm for mutual exclusion, Comm.

ACM 24 (1981) 9-17 (corrigendum: Comm. ACM 24 (1981) 578).
28. F. Stomp and W.P. de Roever, A principle for sequential phased reasoning about

distributed systems, Formal Aspects of Computing 6 (1994) 716-737.
29. M.Y. Vardi, P. Wolper, An Automata-Theoretic Approach To Automatic Program

Verification, Proc. Syrup. on Logic in Comput. Sci., Cambridge (1986) 322-331.
30. P. Wolper and V. Lovinfosse, Verifying Properties of large Sets of Processes with

Network Invariants, CAV'89, Lect. Notes in Comput. Sci. 407 (1990) 68-80.
31. L. Wallen, Automated Deduction in Nonclassical Logics, MIT Press, 1990.

