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A b s t r a c t .  Although automated proof checking tools for general- 
purpose logics have been successfully employed in the verification of 
digital systems, there are inherent limits to the efficient automation of 
expressive logics. If the expressiveness is constrained, there are useful 
logic fragments for which efficient decision procedures can be found. The 
model checking paradigm yields an important class of decision proce- 
dures for establishing temporal properties of finite-state systems. Model 
checking is remarkably effective for automatically verifying finite au- 
tomata with relatively small state spaces, but is inadequate when the 
state spaces are either too large or unbounded. For this reason, it is use- 
ful to integrate the complementary technologies of model checking and 
proof checking. Such an integration has to be carried out in a delicate 
manner in order to be more than just the sum of the techniques. We 
describe an approach for such an integration where a BDD-based model 
checker for the propositional mu-calculus has been used as a decision pro- 
cedure within the framework of the PVS proof checker. We argue that 
our approach fits in nicely with the design philosophy of PVS of pro- 
viding highly effective mechanical reasoning capability by using efficient 
decision procedures as the workhorses of an interactive proof checker. 

1 I n t r o d u c t i o n  

In the theorem proving approach to verification, a sys tem and its propert ies  are 
described by means  of  logical formulae and the sys tem is shown by means  of  a 
logical proof  to entail  the desired properties. This  approach when supplemented  
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with the use of automated theorem proving tools has been employed success- 
fully in the verification of digital hardware and software systems. Though this 
approach is very general and applies to a large variety of systems and properties, 
there are inherent limits to the efficiency with which expressive general-purpose 
logics can be fully mechanized. There are two approaches for dealing with this 
limitation. The first approach is to use interactive proof checkers so that correct- 
ness proofs can be developed using a combination of user guidance and limited 
forms of automated deduction. The second approach has been to find useful 
fragments of logic that can be mechanized very effectively. Model checking is an 
important instance of the latter approach for the verification of temporal prop- 
erties of finite-state systems. The finite-state system is represented as a Kripke 
model and the system property is represented as a formula in propositional tem- 
poral logic. For certain temporal logics such as CTL [5], the model-checking 
problem is linear even when the decidability of the logic itself is EXPTIME- 
complete [9]. 

Model checking thus provides a fully automatic technique for deciding an im- 
portant class of verification problems. The importance of such automation cannot 
be overemphasized. The effort required to construct logical proofs of correctness 
for these problems can be large since it requires the discovery of suitably strong 
invariant. The primary disadvantage of model checking is that it only works well 
for small state spaces. This limitation can be partially overcome through the 
use of binary decision diagrams (BDD) and symbolic model checking [3]. Here 
the state space and the automaton transition relation are represented by means 
of binary decision diagrams which provide a representation for entire classes of 
states rather than individual states. Even so, the state explosion problem limits 
the applicability of model checking in practice. BDDs also require a lot of careful 
attention to variable ordering which often requires significant manual effort. A 
lot of careful reasoning is required to abstract the real problem into one with a 
finite state. 

Since proof checking and model checking are complementary technologies, it 
seems reasonable to somehow combine them. Even so, there has been very little 
progress in achieving such a combination in an effective manner. The HOL/Voss 
system [15] is an early attempt in this direction. In this combination, the HOL 
proof checker [12] is given input that contains constants that are uninterpreted 
for HOL but given an interpretation in Voss which is a symbolic model checker. 
Voss is used to establish properties of these constants and the resulting assertions 
are fed back to the HOL proof as lemmas. In the HOL/Voss implementation 
the connection between the two systems is not close enough for the properties 
established by Voss to be proved directly in the unextended HOL system. 

Kurshan and Lamport [17] present a similar connection between the TLP 
proof checker for TLA, the temporal logic of actions, and COSPAN [18] which 
is a language containment verifier based on BDDs. They present a proof of a 
multiplier where the 8-bit multiplier can be verified by COSPAN and N-bit 
multiplier composed from 8-bit multipliers can be verified in TLP [11]. In [17], 
the two systems used to verify the multiplier were used independently and not 
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actually integrated. Hungar describes a similar effort where a model checker is 
used to verify properties of processes and a syntactic formalization of MCTL is 
used to verify the composition of the individual processes. 

There is other relevant work where model checking has been extended in sig- 
nificant ways to deal with problems involving large and unbounded state spaces. 
Wolper and Lovinfosse [25] and Kurshan and McMillan [19] present techniques 
where model checking can be used for the inductive step by using an invariant 
to capture the induction hypothesis. This approach can be used for example to 
verify an N-bit buffer and the N-dining philosopher problem. 

The goal of the present work is to present a smooth and tight integra- 
tion of model checking with theorem proving in the context of the PVS proof 
checker [23]. The propositional mu-calculus serves as a basis of our approach. 
An extension of the mu-calculus is defined using the higher-order logic of PVS. 
The temporal operators are then given their customary fixpoint definitions using 
the mu-calculus. These temporal operators apply to arbitrary state spaces. In 
the instance when the state type is constructed in a hereditarily finite manner, 
we translate mu-calculus expressions to input acceptable by a mu-calculus model 
checker. This model checker can then be used as a decision procedure within a 
proof to prove certain subgoals. This yields a tight integration between PVS and 
the mu-calculus model checker since the latter is used as a decision procedure 
for a well-defined fragment of PVS. 

Typical uses for the capability provided by our integrated system include the 
verification of temporal properties of finite-state abstractions of systems, and 
the use of model checking in the induction step of iterated finite-state systems. 
Examples verified by the combined system include Paterson's 2-process mutual 
exclusion algorithm, the alternating-bit protocol, a simple counter, and an ar- 
biter for a CPU running concurrently with a lookahead-fetch unit. Our basic 
approach can be generalized to also integrate temporal logic model checkers such 
as SMV [20] and language containment systems such as COSPAN [18]. 

Our approach is quite similar to that of Dingel and Filkorn [8] in that they 
use a combination of a model checker for LTL and a theorem prover for first- 
order logic, but with a looser integration than the one we present. Miiller and 
Nipkow [22] also describe a combination of model checking and theorem proving 
using I/O automata where they verify the main safety property of the alternating 
bit protocol using a property-preserving abstraction that yields a finite-state 
system. Such property-preserving abstractions in the context of model checking 
have also been studied by Graf [13], Clarke, Grumberg, and Long [5], and Dams, 
Grumberg, and Gerth [7]. 

The rest of the paper is organized as follows: The propositional mu-calculus is 
introduced in Section 2.1 The definition of CTL and fairCTL operators in terms 
of mu-calculus and their embedding in PVS are discussed in Section 2.2. The 
translation of a finite-state fragment of the mu-cMculus into input acceptable by 
a model checker for propositional mu-calculus is shown in Section 2.3. The use of 
abstraction for reducing the verification of arbitrary transition system to finite- 
state ones is described in Section 3. Section 4 presents the basic methodology 
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for using the model checker as a decision procedure within a proof, and then 
describe a significant example that  exploits the model checker. This example 
was motivated by a problem that  we encountered during the verification of a 
commercial processor, AAMP5 [21], using PVS. The verification of AAMP5, 
which contains almost half a million transistors, is too large to be verified entirely 
by a model checker. Conclusions are summarized in Section 5. 

2 Model Checking within Theorem Proving 

Our primary design choice in integrating model checking with PVS is to view 
model checking as a decision procedure for a well-defined fragment of PVS. 
Transition systems can be described in terms of a next-state relation over a 
specific state type. The temporal operators then permit assertions over the states 
and computation paths in such a transition system. The mu-calculus can be used 
to define such temporal operators. The higher-order logic of PVS is used to define 
a mu-calculus theory that  is parametric in its state type. The CTL operators 
can be defined using the mu-calculus. These operators are parametric both in 
the state type and a given next-state relation over this state type. Formulas in 
the mu-calculus over finite state types can be translated into the propositional 
mu-calculus where the state type is just a tuple consisting of booleans. We 
first present the mu-calculus and the propositional mu-calculus. We then briefly 
describe the definition of the CTL and fairCTL operators. Finally, we discuss 
the translation between the mu-calculus over finite types and the propositional 
mu-calculus so that a decision procedure for the propositional case can be used 
for the finite case. 

2.1 P r o p o s i t i o n a l  m u - c a l c u l u s  a n d  T e m p o r a l  Logic: Overview 

Propositional mu-calculus is an extension of propositional calculus that  includes 
universal and existential quantification on propositional variables (i.e., quantified 
Boolean formulas), and predicates defined by means of the least and greatest 
fixpoint operators, # and v, respectively. It is strictly more expressive than CTL*, 
and provides a framework to express fairness and extended temporal modalities 
[10]. 

There have been several variations of mu-calculus proposed in the past [3, 6, 
10, 16, 24]. We closely follow the formal definition of the syntax of propositional 
mu-calculus from Burch, et al [3], that forms the basis of the model checker 
[14] used in this work. Let 27 be a finite signature, in which every symbol is 
a propositional variable or a predicate variable with a positive arity. The two 
syntactic categories formulas and relational terms are defined in the following 
manner. A formula is either: 
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- a propositional variable z in 27 

- the conjunction, negation, disjunction, implication, or equivalence of formu- 
las: f Ag, ~ f ,  f V g ,  f Dg, or f = g  

- an n-ary relational term p applied to a list of n formulas f l , . . . ,  f,~: 
p(s 

- the result of apply existential or universal quantification of a variable over a 
formula: qz. f or Vz. f 

A n-ary relational term is one of the following: 

- Z, an n-ary predicate variable in S 
- Azx, z 2 , . . . ,  z,~. f ,  where f is a formula and zl, z2 , . . . ,  z ,  are propositional 

variables in S.  
- pZ. P[Z], denoting the least fixpoint of P. Here, Z is an n-ary predicate 

variable in S and P[Z] is a relational term formally monotonic in Z (i.e., Z 
occurs under an even number of negations in P[Z]). Similarly, vZ. P is the 
greatest fixpoint of P ,  and is equivalent to the negation of the least fixpoint 
of "-,P[~Z]. 

The satisfiability and model-checking problems for propositional mu-calculus 
expressions are decidable since fixpoints exist and can be computed. We can gen- 
eralize the propositional mu-calculus to obtain a mu-calculus for an arbitary type 
by allowing relational terms to be predicates over this state type. Quantification 
must also be generalized to range over the state type. Stirling and Bradfield [1] 
describe a tableau proof system for a similar mu-calculus. 

Temporal  logics such as CTL with extensions of fairness (fairCTL) and other 
temporal  modalities can be succinctly expressed using the mu-calculus [3, 10] 
defined above. Additionally, it has been shown that LTL model checking can be 
reduced to fairCTL model checking [4]. CTL is a branching-time temporal logic 
that  can quantify over paths in a computation tree. It can thus capture temporal  
possibility but not, in general, inevitability. The latter notion requires a linear- 
t ime temporal  logic. The definitions of selected CTL operators are shown below. 
Let N be a binary next-state relation over the state type cr and let p and q be 
relational terms over cr. The predicate (EXp) holds at a state x i fp  holds at some 
successor state. The predicate E G p  holds at z if p holds on every state along 
some infinite path of successive states leading out of x. The predicate E(pUq) 
holds at state x if there is a state y where predicate q holds that  is reachable 
along a path of successive states leading out of x where p holds until q does. 

(EXp)(x)  = 3z. p(z) A g ( z ,  z) 

(EGp)(x)  = (vZ. ()~z. p(z) A (EXZ))) (x)  

(E(pUq))(x) = (#Z.Az. q(z) V (p(z) A (EXZ)(z) ) ) (x)  

2.2 M u - C a l c u l u s  a n d  C T L  in P V S  

PVS employs a specification language based on a simply typed higher-order logic 
so that  it is permissible to quantify over predicate variables and variables that  
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are functions, or functions of functions, and so on. The type of functions from 
type S to T is represented as [S -> T]. The type of predicates over type T is then 
represented as [T -> bool ]  (abbreviated as PRED IT]), where b o o l  is the type of 
booleans consisting of TRUE and FALSE. The everywhere-true predicates T and 
the everywhere-false predicate .l_ can be represented as LANBDA ( x : T ) :  TRUE 
and LANBDA (x :T)  : FALSE, respectively. We can define a pointwise ordering <= 
of predicates, say p l  and p2, of type PRED[T] as (p l  <= p2) = (FORALL (x :T)  : 
p l ( x )  INPLIES p 2 ( x ) ) .  When p l  <= p2 we say that  p1 is stronger than p2 or 
conversely that  p2 is weaker than p1. 

We can lift the logical operations like conjunction, negation, and disjunc- 
tion to predicates by overloading the symbols used for the corresponding 
boolean operations. For example, p l  AND p2 can be defined as (FORALL (x :T)  : 
p l ( x )  AND p 2 ( x ) ) .  A predicate transformer for predicates over T has the type 
[PRED [T] -> PRED [T] ] .  A predicate transformer is monotonic if it preserves the 
<= ordering on predicates. Given a monotonic predicate transformer pp, the pred- 
icate rau(pp) is defined to be the least fixpoint of pp, and nu(pp)  is defined to 
be its greatest fixpoint. The Tarski-Knaster argument for the unique existence 
of these fixpoints is easily verified in PVS. 

Given mu and nu, we can define the CTL operators so that they are parametric 
in the next-state relation N of type I'T, T -> boo l ] ,  where f ,  g, and h range 
over predicates of the state type. 

EX(N,f)(u):bool = (EXISTS v: (f(v) AND N(u,  v))) 

EG(N,f):PRED[T] = nu(LAHBDA O: ( f  AND EX(N,Q)))  

EU(N,f ,g):PRED[T] = mu(LAHBDA q: (g OR ( f  AND E X ( S , Q ) ) ) )  

It is useful to be able to assert that a temporal property holds along some 
fair path or along all fair paths. There are many different notions of fairness. A 
simple and useful notion of fairness is given by characterizing the fair paths as 
those along which a fairness predicate holds infinitely often. This form of fairness 
cannot be expressed in CTL but can easily be defined in the mu-calculus. Let 
fa i rEG(N,  f ) ( h ) ( u )  assert the existence of a fair path from u along which f 
holds on each state and h holds infinitely often. This has the following definition 
in the PVS formalization of the mu-calculus. 

fa irEG(N,  f ) ( h )  = nu(LANBDA p. EU(N, f ,  f AND h AND EX(N, p ) ) )  

The other fairCTL operators, fa i rAF,  fairAG, f a i rEF ,  etc., are defined by 
using the f a i r E 6  operator in the same manner as Burch et al [2, 20]. The ad- 
vantage of having an explicit formalization of fairness in a verification system is 
that  it allows one to check if there exists at least one fair path in a given model. 
Without  such an explicit formalization, there is a danger of imposing fairness 
constraints that  are never satisfied by the transition system so that  many prop- 
erties might hold trivially. 
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2.3 T r a n s l a t i o n  f r o m  P V S  to  m u - c a l c u l u s  

Since the low-level BDD-based mu-calculus model checker accepts only the lan- 
guage of propositional mu-calculus as discussed in Section 2.1, an automatic 
translation is provided from the mu-cMculus fragment of the PVS language to 
propositional mu-calculus. 

The fragment of the PVS language that  is translated into mu-calculus con- 
sists of expressions involving types that are finite, i.e., constructed inductively 
from the booleans or scalar types using type constructors that  are either tu- 
pies, records, or arrays over a specific finite subrange of the integers. The type 
of booleans is written in PVS as boo1. A scalar type consisting of c l , . . . ,  c ,  is 
written as { c l , . . . ,  cn}. A subrange type from specific integers lo to hi is written 
as subrange [lo, hi] .  A record consisting of n labels li of type ~ is written as 
[# 11 : T 1 , . . . , l ,  : T ,  #].  A tuple consisting of n types T 1 , . . . ,  T,  is written as 
IT1 , . . . ,  Tn]. An array of element type T over a specific subrange of the integers 
is written as [ subrange[ lo ,  hi] -> 73 .  

The details of the translation from PVS to the propositional mu-calculus are 
easily described by means of an example. Consider a state type s t a t e  given by 
the following PVS declarations: 

ACK : TYPE = { ready ,  wait} 
DATA : TYPE = [subrange[O,l] -> bool] 
state : TYPE = [# request: bool, ack: ACK, data : DATA #] 

s, sl, s2 : VAR state 

P, Q : VAR PRED[state] 

i, j : VAR subrange[O, I] 

If we take the PVS formula 

ack(s) = ready IMPLIES EU(N, (LAMBDA sl: ack(s) = ready), 

(LAMBDA sl: NOT request(sl)))(s) 

and expand the definition of EU, we obtain 

ack ( s )  = r e a dy  IMPLIES 
mu(LAMBDA 0: 

(LAMBDA s l :  
NOT r e q u e s t ( s l )  

OR ( a c k ( s l )  = ready  
AND 
(EXISTS s2:  
Q(s2) AND 

((s2 = sl WITH [request := NOT request(sl)]) 

OR (request(sl) AND s2 = sl WITH [ack := ready]) 

OR (NOT request(sl) AND s2 = sl WITH [ack := .air])) 

) ) ) ) ( s )  
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The translation of the state s into the propositional mu-calculus is given by 
a tuple consisting of a boolean variable xl for r eques t ( s ) ,  a boolean variable 
x2 which is false if ack(s) is ready, and t rue  if it is not, and two boolean 
variables x3 and x4 corresponding to da ta ( s )  (0) and da ta ( s )  (1), respectively. 
The state variables s l  and s2 can similarly be encoded in terms of variables 
y l , . . . ,  ya and z l , . . . ,  z4, respectively. Since the scalar type hCI( is represented 
by a single boolean variable indicating ready when false, and wait  when t rue ,  
the PVS formula ack(s) = ready is simply translated as -~x2. The entire PVS 
formula above is therefore translated as 

~ x  2 

�9 � 9  u 4 .  

~Yl 
V "W2 

A : : l z l , . . . , z4 .  

A 
Q(zl , . . . , zn)  
( (zl ^z2 ^za= a^z4=y4)) 
V (Yl A (Zl " -Yl  ^ ~ z 2  ^z3--  Y3^Z4 = Y4)) 
v ^ (zl ^z= ^ z 3 =  y 3 ^ z 4 =  y4))) 

The above translation has been automated in PVS. There is a single atomic 
proof step in PVS that can take a goal given by a PVS formula containing mu 
and nu operators, translate this to the propositional mu-calculus as shown above, 
and apply BDD-based model checking to this formula. The application of the 
model checker either proves the goal, returns a list of one or more subgoals cor- 
responding to collection of initial states where the property fails to model check, 
or it merely applies boolean simplification to the goal. We have defined a PVS 
proof strategy that carries out a sequence of inference steps that simplify goal 
formulas written in the CTL fragment of PVS by expanding out the definitions 
of the CTL operators in terms of the mu and nu operators, and applies the model 
checking proof step to the result. 

The fragment of the PVS language given above is rich enough to express 
specifications and properties of state-machine models in a structured manner. In 
comparison to language front-ends for other model checkers such as SMV [20], 
the PVS sublanguage used for model checking is more expressive, and has the 
significant advantage of a proof system for the language. 

3 U s i n g  M o d e l  C h e c k i n g  d u r i n g  P r o o f  C h e c k i n g  

Using the model checker to verify CTL or any other mu-calculus property of 
a finite-state system is of course straightforward. The state of the system is 
presented as a finite type in PVS. The system is then described in terms of 
an initialization predicate and a next-state relation. System properties can be 
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expressed in the CTL fragment or in terms of any other operators definable 
using the mu-calculus. Such properties can be proved by a single proof command 
called model-check.  This usage of the model-checking capability in PVS is not 
much of an improvement over a conventional model checker. The real increase 
in convenience comes from the ability to combine model checking with the use 
of abstraction, induction, and compositionality. All of these techniques have 
been well studied in the model checking literature but the bulk of the reasoning 
is carried out informally. We illustrate how our combined technology can be 
applied to these problems. 

The use of abstraction is fundamental to exploiting the combination of theo- 
rem proving and model checking. Many simple system properties are expressible 
in VCTL whose formulas in negation normal form, i.e., with only atomic nega- 
tions, contain only the universal A path quantifier and not the existential E path 
quantifer. As shown by Clarke, Grumberg, and Long [5], there is a simple way 
to construct abstractions in this case. Given a concrete state type C and an ab- 
stract state type A, we need a surjective mapping h from C to A that  "preserves" 
the initialisation predicate, the next-state relation, and the property of interest. 
Let the concrete transition system Mc be described in terms of an initiMisation 
predicate Iv and a next-state relation Nc, and similarly the abstract transition 
system MA is given in terms of IA and NA. In order to show My ~ Pc for a 
concrete state formula Pc written in VCTL or in the more expressive VCTL*, it 
is sufficient to prove 2 

-- V(c: C ) :  Ic(c) D IA(h(c)) 
- V ( a l , a 2  : A) : (3(cl,c2 : C ) :  cl = 

NA(al,a2) 
- PA 

0 

0 

0 

o 

- -MA 

h(al) A c2 = h(al) A Nc(cl,c2)) D 

Dh PC holds, where PA Dh PC is defined for the case of VCTL as: 
AGpA Dh AGpc  iffpA Dh PC 
AFpA 3h AFpc  iff PA Dh PC 
A(pAUqA) Dh A(pcUqc)  iff pA Dh PC and qA Dh qc 
(V(c : C) : pa(h(c)) D pc(c)),  when PA and Pc contain no temporal  
operators. 

PA 

A stronger version of the above conditions on abstraction is used in Section 4 
to verify a liveness property of a simple pipelined microprocessor. These condi- 
tions on the abstraction can be extended in several ways to preserve properties in 
all of CTL or CTL* [5, 7]. Dams, Grumberg, and Gerth [7] present a notion of 
mixed abstraction that  preserves all CTL* properties but involves multiple next- 
state relations. The mu-calculus can in fact capture temporal formulas involving 
multiple next-state relations. 

2 These conditions are somewhat different from those given by Clarke, Grumberg, and 
Long [5]. 
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4 A b s t r a c t i o n  t o  F i n i t e  S t a t e  

In this section, we demonstrate an application for our integrated facility where 
the model checker is used as a primitive step, i.e., a decision procedure, in a 
PVS proof. The application also illustrates the use of abstraction as a means 
of decomposing a potentially tedious manual proof into two automatic proofs, 
one involving theorem proving and the other model checking. The problem is 
a simplified version of a real verification problem that arose in the context of 
verifying a commercial microprocessor [21]. 

We verify a property of a small microprocessor CPU design that is an ex- 
tension of the CPU example used by Butch, et al, [3] to illustrate the power of 
symbolic model checking. The example is a register-transfer level design of the 
datapath and controller of a microprocessor that executes instructions of the 
form (opcode s r c l  src2 dstn)  to perform both register-register and register- 
memory operations. The CPU consists of a three stage read-execute-write 
pipeline with suitable control logic to handle external asynchronous (hand-shake) 
memory interaction and look-ahead instruction fetch. The only assumption made 
about the memory is that every read/write request by the design is eventually 
acknowledged (ack) and that the memory operation is correctly completed when 
an acknowledgement is received. The signal ack is required to become false one 
cycle after it becomes true and is implicitly assumed to be true infinitely often 
by virtue of the fact that we prove the correctness theorem under the fairness 
assumption of ack being true. 

The CPU is held or frozen (indicated by dhld) till a data read/write to mem- 
ory is acknowledged, and stalled (by introducing a stream of noop instructions) 
as long as the next instruction is not ready (i.e., ins t rn .xdy  does not hold). 
We want to prove a property next_instrn_entry (shown below) that along all 
fair paths (where ack occurs infinitely often), if the next instruction (at the cur- 
rent pc) is not yet fetched, its opcode in the updated memory will eventually 
be loaded into the appropriate pipeline register, namely, opcoded. This loading 
could be delayed either because the machine is stalled or frozen. Hence a proof 
of this property relies on two lemmas characterizing the behavior of the CPU 
when it is either held or stalled. The fetch_completes lemma shows that the 
machine will eventually unstMl (given the fairness condition) without changing 
the value of the pc. The second lemma shows that machine will eventually be 
unfrozen again without changing the value of the pc. The main theorem can be 
deduced from these lemmas using PVS. 
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next_instrn_entry: THEOREM 
NOT instrn_rdy(sO) 

=> fairAF(N, A (sl): instrn_rdy(sl) & 
AX(N, A (s2): 

opcoded(s2) = 
opcodeof(memory(sl)(pc(sO))))(sl))(ack)(sO) 

fetch_completes: LEMMA 
NOT instrn_rdy(sO) IMPLIES 

fairAP(N, A (sl): instrn_rdy(sl) & pc(sO) = pc(sl))(ack)(sO) 

write_completes: LEMMA 
dhld(sO) IMPLIES 

fairAF(N, A (st): NOT cthld(sl) & pc(sl) = pc(sO))(ack)(sO) 

The above lemmas are not easy prove directly in PVS since they involve 
induction on the length of time for the memory to respond with an acknowl- 
edgment. Complicating the induction proof is the fact that the stalling loop 
and the data-holding loop are interdependent. Our approach is to abstract away 
the irrelevant parts of the processor state so that we are left with a finite-state 
processor-memory system that preserves the properties of interest. The rele- 
vant components in this case are: ack, the signals wri te ,  next_wri te ,  which 
determine instrn_rdy and dhld, opcoded, and pc. The state of the memory is 
completely abstracted except for its control signals. 

Since we are only interested in analyzing whether the value of pc has changed 
from the initial state for the property, it is only necessary to retain a 1-bit 
information about the pc that indicates if the concrete program counter will be 
updated in the current state. The updating of pc in the abstract model captures 
the conditions under which the program counter is not changed in the concrete 
model. The abstraction function (shown below) takes an additional parameter 
ini t_pc_val  that denotes the value with respect to which the concrete pc is 
compared to get the abstract pc value. 

abs(init_pc_val: word)(cs): staterec = 
(# write := write(cs), 

next_write := next_write(cs), 
ack := ack(cs), 
pc := (pc(cs) = init_pc_val) #) 

homo_morphic: LEMMA 
(abs_pipe.N(sl, s2)) IFF EXISTS (csl, cs2): 

abs(pc(csl))(csl) = sl & abs(pc(csl))(cs2)= s2 & 
concrete_pipe.N(csl, cs2) 

congruent: LEMMA FORALL (wd: word): LET abs = abs(wd) IN 
instrn_rdy(abs(cs)) IFF instrn_rdy(cs) & 

(write(abs(cs)) IFF write(cs)) & (ack(ahs(cs)) IFF ack(cs)) & 
(next_write(abs(cs)) IFF next_write(cs)) & 

pc(abs(cs)) IFF (pc(cs) = wd) 
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We have also used PVS to establish that this abstraction mapping satisfies 
the conditions on the abstraction mapping that are actually stronger than those 
discussed in Section 3. These are shown above for this example. The lemma 
homo_morphic shows that abstraction abs preserves the nexs-state relation and 
congruent shows that the atomic predicates used in the property proved are 
congruent with respect to the equivalence classes introduced by the abstraction 
on the concrete machine states. There is still a gap in the proof since we have 
not proved that these abstraction conditions do guarantee property preservation. 
This fact can also be proved using PVS for abstraction mappings. 

5 Conclusions  and Future Work 

Model checking and theorem proving are complementary verification technolo- 
gies. Model checking is effective for control-dominated systems with small state 
spaces, where neither the invariant nor the proof is easily constructed. Theorem 
proving on the other hand is suitable for data-dominated verification where the 
state spaces can be large or unbounded. 

The combination of these technologies can be exploited in a number of ways. 
We have illustrated one application where model checking is applied to a fi- 
nite state abstraction of a system where the abstraction is justified by means of 
theorem proving. We have studied the example of the asynchronous interaction 
between a pipelined processor and memory. The main safety property of this 
system is rather more easily proved by the PVS theorem prover than by model 
checking. PVS is used to construct a finite state abstraction of the processor- 
memory system. Model checking applied to this abstraction easily yields that 
each subsequent opcode is eventually loaded. This example is usually done in- 
formally. 

The combination of theorem proving and model checking has several other 
uses we are currently exploring. For example, theorem proving can be used to 
prove general temporal properties that can be combined with temporal proper- 
ties of specific next-state relations proved using model checking. Theorem prov- 
ing can be used to prove global system properties by composing local system 
properties (with smaller state spaces) that have been proved using model check- 
ing. Model checking can also be used in the induction step for showing that 
a property holds of an N-process system. Consider for example, an N-process 
mutual-exclusion algorithm obtained by recursively selecting a "winner" from 
N - 1 processes and using Peterson's algorithm to arbitrate between this winner 
and the Nth process. By the induction hypothesis, there is at most one winner 
from the first N -  1 processes. Ths Nth process does not interfere with this 
selection. The correctness of the algorithm then follows from the correctness of 
the 2-process Peterson algorithm which has been verified by model checking. 

We argue that the mu-calculus serves as a good basis for combining model 
checking with theorem proving. The mu-calculus can be used to conveniently de- 
fine past, future LTL operators, and CTL with fairness constraints. It can also 
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be cleanly defined in PVS so that  model checking can be used as a decision pro- 
cedure for a well-defined fragment of PVS. The mu-calculus has one drawback: 
the complexity of model checking is exponential in the number of alternations 
of fixpoint operators,  but this is rarely a problem in practice. 

Our framework can also be used to integrate PVS with a CTL model checker 
such as SMV by defining CTL operators in PVS and using SMV as a decision 
procedure for the CTL fragment.  For our present purpose, we have chosen the 
mu-calculus for its greater expressiveness and for ease of translation. Note that ,  
the model checkable fragment of PVS already provides a richer language than  
SMV. One disadvantage with respect to SMV is that  we are unable, at present, 
to generate counterexample traces when a property does not hold in a model. 
This is an impor tan t  topic for future work. We also plan to investigate the use of 
the combined technology to explore LTL model checking and verification based 
on language-containment 
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