
An Integration of Model Checking with
Automated Proof Checking*

S. Rajan, N. Shankar, and M.K. Srivas

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
{sree, shankar, srivas}~csl.sri.com

Phone: +1 (415) 859-5272 Fax: +1 (415) 859-2844

A b s t r a c t . Although automated proof checking tools for general-
purpose logics have been successfully employed in the verification of
digital systems, there are inherent limits to the efficient automation of
expressive logics. If the expressiveness is constrained, there are useful
logic fragments for which efficient decision procedures can be found. The
model checking paradigm yields an important class of decision proce-
dures for establishing temporal properties of finite-state systems. Model
checking is remarkably effective for automatically verifying finite au-
tomata with relatively small state spaces, but is inadequate when the
state spaces are either too large or unbounded. For this reason, it is use-
ful to integrate the complementary technologies of model checking and
proof checking. Such an integration has to be carried out in a delicate
manner in order to be more than just the sum of the techniques. We
describe an approach for such an integration where a BDD-based model
checker for the propositional mu-calculus has been used as a decision pro-
cedure within the framework of the PVS proof checker. We argue that
our approach fits in nicely with the design philosophy of PVS of pro-
viding highly effective mechanical reasoning capability by using efficient
decision procedures as the workhorses of an interactive proof checker.

1 I n t r o d u c t i o n

In the theorem proving approach to verification, a sys tem and its propert ies are
described by means of logical formulae and the sys tem is shown by means of a
logical proof to entail the desired properties. This approach when supplemented

* Supported by ARPA under contract PR8556, by NSF Grant CCR-930044, and by
NASA under contract NAS1-20334. We thank John Rushby (SRI) for encouraging
us to write this paper and providing comments on earlier drafts of the paper. We
are grateful to Geert Janssen (Eindhoven University of Technology) for supplying us
the BDD-based mu-calculus model checker used in this work and going well beyond
the call of duty in responding to our queries.

85

with the use of automated theorem proving tools has been employed success-
fully in the verification of digital hardware and software systems. Though this
approach is very general and applies to a large variety of systems and properties,
there are inherent limits to the efficiency with which expressive general-purpose
logics can be fully mechanized. There are two approaches for dealing with this
limitation. The first approach is to use interactive proof checkers so that correct-
ness proofs can be developed using a combination of user guidance and limited
forms of automated deduction. The second approach has been to find useful
fragments of logic that can be mechanized very effectively. Model checking is an
important instance of the latter approach for the verification of temporal prop-
erties of finite-state systems. The finite-state system is represented as a Kripke
model and the system property is represented as a formula in propositional tem-
poral logic. For certain temporal logics such as CTL [5], the model-checking
problem is linear even when the decidability of the logic itself is EXPTIME-
complete [9].

Model checking thus provides a fully automatic technique for deciding an im-
portant class of verification problems. The importance of such automation cannot
be overemphasized. The effort required to construct logical proofs of correctness
for these problems can be large since it requires the discovery of suitably strong
invariant. The primary disadvantage of model checking is that it only works well
for small state spaces. This limitation can be partially overcome through the
use of binary decision diagrams (BDD) and symbolic model checking [3]. Here
the state space and the automaton transition relation are represented by means
of binary decision diagrams which provide a representation for entire classes of
states rather than individual states. Even so, the state explosion problem limits
the applicability of model checking in practice. BDDs also require a lot of careful
attention to variable ordering which often requires significant manual effort. A
lot of careful reasoning is required to abstract the real problem into one with a
finite state.

Since proof checking and model checking are complementary technologies, it
seems reasonable to somehow combine them. Even so, there has been very little
progress in achieving such a combination in an effective manner. The HOL/Voss
system [15] is an early attempt in this direction. In this combination, the HOL
proof checker [12] is given input that contains constants that are uninterpreted
for HOL but given an interpretation in Voss which is a symbolic model checker.
Voss is used to establish properties of these constants and the resulting assertions
are fed back to the HOL proof as lemmas. In the HOL/Voss implementation
the connection between the two systems is not close enough for the properties
established by Voss to be proved directly in the unextended HOL system.

Kurshan and Lamport [17] present a similar connection between the TLP
proof checker for TLA, the temporal logic of actions, and COSPAN [18] which
is a language containment verifier based on BDDs. They present a proof of a
multiplier where the 8-bit multiplier can be verified by COSPAN and N-bit
multiplier composed from 8-bit multipliers can be verified in TLP [11]. In [17],
the two systems used to verify the multiplier were used independently and not

86

actually integrated. Hungar describes a similar effort where a model checker is
used to verify properties of processes and a syntactic formalization of MCTL is
used to verify the composition of the individual processes.

There is other relevant work where model checking has been extended in sig-
nificant ways to deal with problems involving large and unbounded state spaces.
Wolper and Lovinfosse [25] and Kurshan and McMillan [19] present techniques
where model checking can be used for the inductive step by using an invariant
to capture the induction hypothesis. This approach can be used for example to
verify an N-bit buffer and the N-dining philosopher problem.

The goal of the present work is to present a smooth and tight integra-
tion of model checking with theorem proving in the context of the PVS proof
checker [23]. The propositional mu-calculus serves as a basis of our approach.
An extension of the mu-calculus is defined using the higher-order logic of PVS.
The temporal operators are then given their customary fixpoint definitions using
the mu-calculus. These temporal operators apply to arbitrary state spaces. In
the instance when the state type is constructed in a hereditarily finite manner,
we translate mu-calculus expressions to input acceptable by a mu-calculus model
checker. This model checker can then be used as a decision procedure within a
proof to prove certain subgoals. This yields a tight integration between PVS and
the mu-calculus model checker since the latter is used as a decision procedure
for a well-defined fragment of PVS.

Typical uses for the capability provided by our integrated system include the
verification of temporal properties of finite-state abstractions of systems, and
the use of model checking in the induction step of iterated finite-state systems.
Examples verified by the combined system include Paterson's 2-process mutual
exclusion algorithm, the alternating-bit protocol, a simple counter, and an ar-
biter for a CPU running concurrently with a lookahead-fetch unit. Our basic
approach can be generalized to also integrate temporal logic model checkers such
as SMV [20] and language containment systems such as COSPAN [18].

Our approach is quite similar to that of Dingel and Filkorn [8] in that they
use a combination of a model checker for LTL and a theorem prover for first-
order logic, but with a looser integration than the one we present. Miiller and
Nipkow [22] also describe a combination of model checking and theorem proving
using I/O automata where they verify the main safety property of the alternating
bit protocol using a property-preserving abstraction that yields a finite-state
system. Such property-preserving abstractions in the context of model checking
have also been studied by Graf [13], Clarke, Grumberg, and Long [5], and Dams,
Grumberg, and Gerth [7].

The rest of the paper is organized as follows: The propositional mu-calculus is
introduced in Section 2.1 The definition of CTL and fairCTL operators in terms
of mu-calculus and their embedding in PVS are discussed in Section 2.2. The
translation of a finite-state fragment of the mu-cMculus into input acceptable by
a model checker for propositional mu-calculus is shown in Section 2.3. The use of
abstraction for reducing the verification of arbitrary transition system to finite-
state ones is described in Section 3. Section 4 presents the basic methodology

87

for using the model checker as a decision procedure within a proof, and then
describe a significant example that exploits the model checker. This example
was motivated by a problem that we encountered during the verification of a
commercial processor, AAMP5 [21], using PVS. The verification of AAMP5,
which contains almost half a million transistors, is too large to be verified entirely
by a model checker. Conclusions are summarized in Section 5.

2 Model Checking within Theorem Proving

Our primary design choice in integrating model checking with PVS is to view
model checking as a decision procedure for a well-defined fragment of PVS.
Transition systems can be described in terms of a next-state relation over a
specific state type. The temporal operators then permit assertions over the states
and computation paths in such a transition system. The mu-calculus can be used
to define such temporal operators. The higher-order logic of PVS is used to define
a mu-calculus theory that is parametric in its state type. The CTL operators
can be defined using the mu-calculus. These operators are parametric both in
the state type and a given next-state relation over this state type. Formulas in
the mu-calculus over finite state types can be translated into the propositional
mu-calculus where the state type is just a tuple consisting of booleans. We
first present the mu-calculus and the propositional mu-calculus. We then briefly
describe the definition of the CTL and fairCTL operators. Finally, we discuss
the translation between the mu-calculus over finite types and the propositional
mu-calculus so that a decision procedure for the propositional case can be used
for the finite case.

2.1 P r o p o s i t i o n a l m u - c a l c u l u s a n d T e m p o r a l Logic: Overview

Propositional mu-calculus is an extension of propositional calculus that includes
universal and existential quantification on propositional variables (i.e., quantified
Boolean formulas), and predicates defined by means of the least and greatest
fixpoint operators, # and v, respectively. It is strictly more expressive than CTL*,
and provides a framework to express fairness and extended temporal modalities
[10].

There have been several variations of mu-calculus proposed in the past [3, 6,
10, 16, 24]. We closely follow the formal definition of the syntax of propositional
mu-calculus from Burch, et al [3], that forms the basis of the model checker
[14] used in this work. Let 27 be a finite signature, in which every symbol is
a propositional variable or a predicate variable with a positive arity. The two
syntactic categories formulas and relational terms are defined in the following
manner. A formula is either:

88

- a propositional variable z in 27

- the conjunction, negation, disjunction, implication, or equivalence of formu-
las: f Ag, ~ f , f V g , f Dg, or f = g

- an n-ary relational term p applied to a list of n formulas f l , . . . , f,~:
p(s

- the result of apply existential or universal quantification of a variable over a
formula: qz. f or Vz. f

A n-ary relational term is one of the following:

- Z, an n-ary predicate variable in S
- Azx, z 2 , . . . , z,~. f , where f is a formula and zl, z2 , . . . , z , are propositional

variables in S.
- pZ. P[Z], denoting the least fixpoint of P. Here, Z is an n-ary predicate

variable in S and P[Z] is a relational term formally monotonic in Z (i.e., Z
occurs under an even number of negations in P[Z]). Similarly, vZ. P is the
greatest fixpoint of P , and is equivalent to the negation of the least fixpoint
of "-,P[~Z].

The satisfiability and model-checking problems for propositional mu-calculus
expressions are decidable since fixpoints exist and can be computed. We can gen-
eralize the propositional mu-calculus to obtain a mu-calculus for an arbitary type
by allowing relational terms to be predicates over this state type. Quantification
must also be generalized to range over the state type. Stirling and Bradfield [1]
describe a tableau proof system for a similar mu-calculus.

Temporal logics such as CTL with extensions of fairness (fairCTL) and other
temporal modalities can be succinctly expressed using the mu-calculus [3, 10]
defined above. Additionally, it has been shown that LTL model checking can be
reduced to fairCTL model checking [4]. CTL is a branching-time temporal logic
that can quantify over paths in a computation tree. It can thus capture temporal
possibility but not, in general, inevitability. The latter notion requires a linear-
t ime temporal logic. The definitions of selected CTL operators are shown below.
Let N be a binary next-state relation over the state type cr and let p and q be
relational terms over cr. The predicate (EXp) holds at a state x i fp holds at some
successor state. The predicate E G p holds at z if p holds on every state along
some infinite path of successive states leading out of x. The predicate E(pUq)
holds at state x if there is a state y where predicate q holds that is reachable
along a path of successive states leading out of x where p holds until q does.

(EXp)(x) = 3z. p(z) A g (z , z)

(EGp)(x) = (vZ. ()~z. p(z) A (EXZ))) (x)

(E(pUq))(x) = (#Z.Az. q(z) V (p(z) A (EXZ)(z))) (x)

2.2 M u - C a l c u l u s a n d C T L in P V S

PVS employs a specification language based on a simply typed higher-order logic
so that it is permissible to quantify over predicate variables and variables that

89

are functions, or functions of functions, and so on. The type of functions from
type S to T is represented as [S -> T]. The type of predicates over type T is then
represented as [T -> bool] (abbreviated as PRED IT]), where b o o l is the type of
booleans consisting of TRUE and FALSE. The everywhere-true predicates T and
the everywhere-false predicate .l_ can be represented as LANBDA (x : T) : TRUE
and LANBDA (x :T) : FALSE, respectively. We can define a pointwise ordering <=
of predicates, say p l and p2, of type PRED[T] as (p l <= p2) = (FORALL (x :T) :
p l (x) INPLIES p 2 (x)) . When p l <= p2 we say that p1 is stronger than p2 or
conversely that p2 is weaker than p1.

We can lift the logical operations like conjunction, negation, and disjunc-
tion to predicates by overloading the symbols used for the corresponding
boolean operations. For example, p l AND p2 can be defined as (FORALL (x :T) :
p l (x) AND p 2 (x)) . A predicate transformer for predicates over T has the type
[PRED [T] -> PRED [T]] . A predicate transformer is monotonic if it preserves the
<= ordering on predicates. Given a monotonic predicate transformer pp, the pred-
icate rau(pp) is defined to be the least fixpoint of pp, and nu(pp) is defined to
be its greatest fixpoint. The Tarski-Knaster argument for the unique existence
of these fixpoints is easily verified in PVS.

Given mu and nu, we can define the CTL operators so that they are parametric
in the next-state relation N of type I'T, T -> boo l] , where f , g, and h range
over predicates of the state type.

EX(N,f)(u):bool = (EXISTS v: (f(v) AND N(u, v)))

EG(N,f):PRED[T] = nu(LAHBDA O: (f AND EX(N,Q)))

EU(N,f ,g):PRED[T] = mu(LAHBDA q: (g OR (f AND E X (S , Q))))

It is useful to be able to assert that a temporal property holds along some
fair path or along all fair paths. There are many different notions of fairness. A
simple and useful notion of fairness is given by characterizing the fair paths as
those along which a fairness predicate holds infinitely often. This form of fairness
cannot be expressed in CTL but can easily be defined in the mu-calculus. Let
fa i rEG(N, f) (h) (u) assert the existence of a fair path from u along which f
holds on each state and h holds infinitely often. This has the following definition
in the PVS formalization of the mu-calculus.

fa irEG(N, f) (h) = nu(LANBDA p. EU(N, f , f AND h AND EX(N, p)))

The other fairCTL operators, fa i rAF, fairAG, f a i rEF , etc., are defined by
using the f a i r E 6 operator in the same manner as Burch et al [2, 20]. The ad-
vantage of having an explicit formalization of fairness in a verification system is
that it allows one to check if there exists at least one fair path in a given model.
Without such an explicit formalization, there is a danger of imposing fairness
constraints that are never satisfied by the transition system so that many prop-
erties might hold trivially.

90

2.3 T r a n s l a t i o n f r o m P V S to m u - c a l c u l u s

Since the low-level BDD-based mu-calculus model checker accepts only the lan-
guage of propositional mu-calculus as discussed in Section 2.1, an automatic
translation is provided from the mu-cMculus fragment of the PVS language to
propositional mu-calculus.

The fragment of the PVS language that is translated into mu-calculus con-
sists of expressions involving types that are finite, i.e., constructed inductively
from the booleans or scalar types using type constructors that are either tu-
pies, records, or arrays over a specific finite subrange of the integers. The type
of booleans is written in PVS as boo1. A scalar type consisting of c l , . . . , c , is
written as { c l , . . . , cn}. A subrange type from specific integers lo to hi is written
as subrange [lo, hi] . A record consisting of n labels li of type ~ is written as
[# 11 : T 1 , . . . , l , : T , #]. A tuple consisting of n types T 1 , . . . , T, is written as
IT1 , . . . , Tn]. An array of element type T over a specific subrange of the integers
is written as [subrange[lo , hi] -> 73 .

The details of the translation from PVS to the propositional mu-calculus are
easily described by means of an example. Consider a state type s t a t e given by
the following PVS declarations:

ACK : TYPE = { ready , wait}
DATA : TYPE = [subrange[O,l] -> bool]
state : TYPE = [# request: bool, ack: ACK, data : DATA #]

s, sl, s2 : VAR state

P, Q : VAR PRED[state]

i, j : VAR subrange[O, I]

If we take the PVS formula

ack(s) = ready IMPLIES EU(N, (LAMBDA sl: ack(s) = ready),

(LAMBDA sl: NOT request(sl)))(s)

and expand the definition of EU, we obtain

ack (s) = r e a dy IMPLIES
mu(LAMBDA 0:

(LAMBDA s l :
NOT r e q u e s t (s l)

OR (a c k (s l) = ready
AND
(EXISTS s2:
Q(s2) AND

((s2 = sl WITH [request := NOT request(sl)])

OR (request(sl) AND s2 = sl WITH [ack := ready])

OR (NOT request(sl) AND s2 = sl WITH [ack := .air]))

)))) (s)

91

The translation of the state s into the propositional mu-calculus is given by
a tuple consisting of a boolean variable xl for r eques t (s) , a boolean variable
x2 which is false if ack(s) is ready, and t rue if it is not, and two boolean
variables x3 and x4 corresponding to da ta (s) (0) and da ta (s) (1), respectively.
The state variables s l and s2 can similarly be encoded in terms of variables
y l , . . . , ya and z l , . . . , z4, respectively. Since the scalar type hCI(is represented
by a single boolean variable indicating ready when false, and wait when t rue ,
the PVS formula ack(s) = ready is simply translated as -~x2. The entire PVS
formula above is therefore translated as

~ x 2

�9 � 9 u 4 .

~Yl
V "W2

A : : l z l , . . . , z4 .

A
Q(zl , . . . , zn)
((zl ^z2 ^za= a^z4=y4))
V (Yl A (Zl " -Yl ^ ~ z 2 ^z3-- Y3^Z4 = Y4))
v ^ (zl ^z= ^ z 3 = y 3 ^ z 4 = y4)))

The above translation has been automated in PVS. There is a single atomic
proof step in PVS that can take a goal given by a PVS formula containing mu
and nu operators, translate this to the propositional mu-calculus as shown above,
and apply BDD-based model checking to this formula. The application of the
model checker either proves the goal, returns a list of one or more subgoals cor-
responding to collection of initial states where the property fails to model check,
or it merely applies boolean simplification to the goal. We have defined a PVS
proof strategy that carries out a sequence of inference steps that simplify goal
formulas written in the CTL fragment of PVS by expanding out the definitions
of the CTL operators in terms of the mu and nu operators, and applies the model
checking proof step to the result.

The fragment of the PVS language given above is rich enough to express
specifications and properties of state-machine models in a structured manner. In
comparison to language front-ends for other model checkers such as SMV [20],
the PVS sublanguage used for model checking is more expressive, and has the
significant advantage of a proof system for the language.

3 U s i n g M o d e l C h e c k i n g d u r i n g P r o o f C h e c k i n g

Using the model checker to verify CTL or any other mu-calculus property of
a finite-state system is of course straightforward. The state of the system is
presented as a finite type in PVS. The system is then described in terms of
an initialization predicate and a next-state relation. System properties can be

92

expressed in the CTL fragment or in terms of any other operators definable
using the mu-calculus. Such properties can be proved by a single proof command
called model-check. This usage of the model-checking capability in PVS is not
much of an improvement over a conventional model checker. The real increase
in convenience comes from the ability to combine model checking with the use
of abstraction, induction, and compositionality. All of these techniques have
been well studied in the model checking literature but the bulk of the reasoning
is carried out informally. We illustrate how our combined technology can be
applied to these problems.

The use of abstraction is fundamental to exploiting the combination of theo-
rem proving and model checking. Many simple system properties are expressible
in VCTL whose formulas in negation normal form, i.e., with only atomic nega-
tions, contain only the universal A path quantifier and not the existential E path
quantifer. As shown by Clarke, Grumberg, and Long [5], there is a simple way
to construct abstractions in this case. Given a concrete state type C and an ab-
stract state type A, we need a surjective mapping h from C to A that "preserves"
the initialisation predicate, the next-state relation, and the property of interest.
Let the concrete transition system Mc be described in terms of an initiMisation
predicate Iv and a next-state relation Nc, and similarly the abstract transition
system MA is given in terms of IA and NA. In order to show My ~ Pc for a
concrete state formula Pc written in VCTL or in the more expressive VCTL*, it
is sufficient to prove 2

-- V(c: C) : Ic(c) D IA(h(c))
- V (a l , a 2 : A) : (3(cl,c2 : C) : cl =

NA(al,a2)
- PA

0

0

0

o

- -MA

h(al) A c2 = h(al) A Nc(cl,c2)) D

Dh PC holds, where PA Dh PC is defined for the case of VCTL as:
AGpA Dh AGpc iffpA Dh PC
AFpA 3h AFpc iff PA Dh PC
A(pAUqA) Dh A(pcUqc) iff pA Dh PC and qA Dh qc
(V(c : C) : pa(h(c)) D pc(c)), when PA and Pc contain no temporal
operators.

PA

A stronger version of the above conditions on abstraction is used in Section 4
to verify a liveness property of a simple pipelined microprocessor. These condi-
tions on the abstraction can be extended in several ways to preserve properties in
all of CTL or CTL* [5, 7]. Dams, Grumberg, and Gerth [7] present a notion of
mixed abstraction that preserves all CTL* properties but involves multiple next-
state relations. The mu-calculus can in fact capture temporal formulas involving
multiple next-state relations.

2 These conditions are somewhat different from those given by Clarke, Grumberg, and
Long [5].

93

4 A b s t r a c t i o n t o F i n i t e S t a t e

In this section, we demonstrate an application for our integrated facility where
the model checker is used as a primitive step, i.e., a decision procedure, in a
PVS proof. The application also illustrates the use of abstraction as a means
of decomposing a potentially tedious manual proof into two automatic proofs,
one involving theorem proving and the other model checking. The problem is
a simplified version of a real verification problem that arose in the context of
verifying a commercial microprocessor [21].

We verify a property of a small microprocessor CPU design that is an ex-
tension of the CPU example used by Butch, et al, [3] to illustrate the power of
symbolic model checking. The example is a register-transfer level design of the
datapath and controller of a microprocessor that executes instructions of the
form (opcode s r c l src2 dstn) to perform both register-register and register-
memory operations. The CPU consists of a three stage read-execute-write
pipeline with suitable control logic to handle external asynchronous (hand-shake)
memory interaction and look-ahead instruction fetch. The only assumption made
about the memory is that every read/write request by the design is eventually
acknowledged (ack) and that the memory operation is correctly completed when
an acknowledgement is received. The signal ack is required to become false one
cycle after it becomes true and is implicitly assumed to be true infinitely often
by virtue of the fact that we prove the correctness theorem under the fairness
assumption of ack being true.

The CPU is held or frozen (indicated by dhld) till a data read/write to mem-
ory is acknowledged, and stalled (by introducing a stream of noop instructions)
as long as the next instruction is not ready (i.e., ins t rn .xdy does not hold).
We want to prove a property next_instrn_entry (shown below) that along all
fair paths (where ack occurs infinitely often), if the next instruction (at the cur-
rent pc) is not yet fetched, its opcode in the updated memory will eventually
be loaded into the appropriate pipeline register, namely, opcoded. This loading
could be delayed either because the machine is stalled or frozen. Hence a proof
of this property relies on two lemmas characterizing the behavior of the CPU
when it is either held or stalled. The fetch_completes lemma shows that the
machine will eventually unstMl (given the fairness condition) without changing
the value of the pc. The second lemma shows that machine will eventually be
unfrozen again without changing the value of the pc. The main theorem can be
deduced from these lemmas using PVS.

94

next_instrn_entry: THEOREM
NOT instrn_rdy(sO)

=> fairAF(N, A (sl): instrn_rdy(sl) &
AX(N, A (s2):

opcoded(s2) =
opcodeof(memory(sl)(pc(sO))))(sl))(ack)(sO)

fetch_completes: LEMMA
NOT instrn_rdy(sO) IMPLIES

fairAP(N, A (sl): instrn_rdy(sl) & pc(sO) = pc(sl))(ack)(sO)

write_completes: LEMMA
dhld(sO) IMPLIES

fairAF(N, A (st): NOT cthld(sl) & pc(sl) = pc(sO))(ack)(sO)

The above lemmas are not easy prove directly in PVS since they involve
induction on the length of time for the memory to respond with an acknowl-
edgment. Complicating the induction proof is the fact that the stalling loop
and the data-holding loop are interdependent. Our approach is to abstract away
the irrelevant parts of the processor state so that we are left with a finite-state
processor-memory system that preserves the properties of interest. The rele-
vant components in this case are: ack, the signals wri te , next_wri te , which
determine instrn_rdy and dhld, opcoded, and pc. The state of the memory is
completely abstracted except for its control signals.

Since we are only interested in analyzing whether the value of pc has changed
from the initial state for the property, it is only necessary to retain a 1-bit
information about the pc that indicates if the concrete program counter will be
updated in the current state. The updating of pc in the abstract model captures
the conditions under which the program counter is not changed in the concrete
model. The abstraction function (shown below) takes an additional parameter
ini t_pc_val that denotes the value with respect to which the concrete pc is
compared to get the abstract pc value.

abs(init_pc_val: word)(cs): staterec =
(# write := write(cs),

next_write := next_write(cs),
ack := ack(cs),
pc := (pc(cs) = init_pc_val) #)

homo_morphic: LEMMA
(abs_pipe.N(sl, s2)) IFF EXISTS (csl, cs2):

abs(pc(csl))(csl) = sl & abs(pc(csl))(cs2)= s2 &
concrete_pipe.N(csl, cs2)

congruent: LEMMA FORALL (wd: word): LET abs = abs(wd) IN
instrn_rdy(abs(cs)) IFF instrn_rdy(cs) &

(write(abs(cs)) IFF write(cs)) & (ack(ahs(cs)) IFF ack(cs)) &
(next_write(abs(cs)) IFF next_write(cs)) &

pc(abs(cs)) IFF (pc(cs) = wd)

95

We have also used PVS to establish that this abstraction mapping satisfies
the conditions on the abstraction mapping that are actually stronger than those
discussed in Section 3. These are shown above for this example. The lemma
homo_morphic shows that abstraction abs preserves the nexs-state relation and
congruent shows that the atomic predicates used in the property proved are
congruent with respect to the equivalence classes introduced by the abstraction
on the concrete machine states. There is still a gap in the proof since we have
not proved that these abstraction conditions do guarantee property preservation.
This fact can also be proved using PVS for abstraction mappings.

5 Conclusions and Future Work

Model checking and theorem proving are complementary verification technolo-
gies. Model checking is effective for control-dominated systems with small state
spaces, where neither the invariant nor the proof is easily constructed. Theorem
proving on the other hand is suitable for data-dominated verification where the
state spaces can be large or unbounded.

The combination of these technologies can be exploited in a number of ways.
We have illustrated one application where model checking is applied to a fi-
nite state abstraction of a system where the abstraction is justified by means of
theorem proving. We have studied the example of the asynchronous interaction
between a pipelined processor and memory. The main safety property of this
system is rather more easily proved by the PVS theorem prover than by model
checking. PVS is used to construct a finite state abstraction of the processor-
memory system. Model checking applied to this abstraction easily yields that
each subsequent opcode is eventually loaded. This example is usually done in-
formally.

The combination of theorem proving and model checking has several other
uses we are currently exploring. For example, theorem proving can be used to
prove general temporal properties that can be combined with temporal proper-
ties of specific next-state relations proved using model checking. Theorem prov-
ing can be used to prove global system properties by composing local system
properties (with smaller state spaces) that have been proved using model check-
ing. Model checking can also be used in the induction step for showing that
a property holds of an N-process system. Consider for example, an N-process
mutual-exclusion algorithm obtained by recursively selecting a "winner" from
N - 1 processes and using Peterson's algorithm to arbitrate between this winner
and the Nth process. By the induction hypothesis, there is at most one winner
from the first N - 1 processes. Ths Nth process does not interfere with this
selection. The correctness of the algorithm then follows from the correctness of
the 2-process Peterson algorithm which has been verified by model checking.

We argue that the mu-calculus serves as a good basis for combining model
checking with theorem proving. The mu-calculus can be used to conveniently de-
fine past, future LTL operators, and CTL with fairness constraints. It can also

96

be cleanly defined in PVS so that model checking can be used as a decision pro-
cedure for a well-defined fragment of PVS. The mu-calculus has one drawback:
the complexity of model checking is exponential in the number of alternations
of fixpoint operators, but this is rarely a problem in practice.

Our framework can also be used to integrate PVS with a CTL model checker
such as SMV by defining CTL operators in PVS and using SMV as a decision
procedure for the CTL fragment. For our present purpose, we have chosen the
mu-calculus for its greater expressiveness and for ease of translation. Note that ,
the model checkable fragment of PVS already provides a richer language than
SMV. One disadvantage with respect to SMV is that we are unable, at present,
to generate counterexample traces when a property does not hold in a model.
This is an impor tan t topic for future work. We also plan to investigate the use of
the combined technology to explore LTL model checking and verification based
on language-containment

R e f e r e n c e s

1. Julian Bradfield and Colin Stirling. Verifying temporal properties of processes. In
J. C. M. Baeten and J. W. Klop, editors, CONCUR '90, number 458 in Lecture
Notes in Computer Science, pages 115-125. Springer Verlag, 1990.

2. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Sym-
bolic model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design, 13(4):401-424, April 1994.

3. J. R. Burch, E. M. Clarke, K. L. McMiUan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 102o states and beyond. Information and Computation, 98(2):142-
170, June 1992.

4. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
In David Dill, editor, Computer-Aided Verification 94, volume 818 of Lecture Notes
in Computer Science, pages 415-427, Stanford, CA, June 1994. Springer Verlag.

5. Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking
and abstraction. A CM Transactions on Programming Languages and Systems,
16(5):1512-1542, September 1994.

6. R. Cleaveland. Tableau-based model checking in the propositional mu-calculus.
Technical Report 2/89, University of Sussex, March 1989.

7. Dennis Dams, Orna Grumberg, and Rob Gerth. Abstract interpretation of reactive
systems: Abstractions preserving u 3CTL* and CTL*. In Ernst-Riidiger
Olderog, editor, Programming Concepts, Methods and Calculi (PROCOMET '9~),
pages 561-581, 1994.

8. J/irgen Dingel and Thomas Filkorn. Model checking for infinite state systems using
data abstraction, assumption-commitment style reasoning and theorem proving. In
Computer-Aided Verification 95, 1995. This volume.

9. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 16, pages 995-1072. Elsevier and MIT press, Amsterdam, The Netherlands,
and Cambridge, MA, 1990.

97

10. E.A. Emerson and C.L Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Proceedings o] the lOth Symposium on Principles of Pro-
gramming Languages, pages 84-96, New Orleans, LA, January 1985. Association
for Computing Machinery.

11. Urban Engberg, Peter Grenning, and Leslie Lamport. Mechanical verification of
concurrent systems with TLA. In G. v. Bochmann and D. K. Probst, editors,
Computer-Aided Verification 92, number 663 in Lecture Notes in Computer Sci-
ence, pages 44-55. Springer Verlag, 1992.

12. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University Press, Cam-
bridge, UK, 1993.

13. Susanne Graf. Verification of a distributed cache memory by using abstractions.
In David L. Dill, editor, Computer-Aided Verification 94, number 818 in Lecture
Notes in Computer Science, pages 207-219. Springer Verlag, 1994.

14. G. Janssen. ROBDD Software. Department of Electrical Engineering, Eindhoven
University of Technology, October 1993.

15. Jeffrey J. Joyce and Carl-Johan H. Seger. Linking Bdd-based symbolic evaluation
to interactive theorem proving. In Proceedings of the 30th Design Automation
Conference. Association for Computing Machinery, 1993.

16. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, pages 333-354, December 1983.

17. R. Kurshan and L. Lamport. Verification of a multiplier: 64 bits and beyond. In
Costas Courcoubetis, editor, Computer-Aided Verification93, volume 697 of Lec-
ture Notes in Computer Science, pages 166-179, Etounda, Greece, June/July 1993.
Springer Verlag.

18. R.P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Prince-
ton University Press, Princeton, NJ, 1993.

19. R.P. Kurshan and K. McMillan. A structural induction theorem for processes.
In 8th ACM Symposium on Principles of Distributed Computing, pages 239-248,
Edmonton, Alberta, Canada, August 1989.

20. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, MA, 1993.

21. Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5 mi-
croprocessor: A case study in the industrial use of formal methods. In WIFT
'95: Workshop on Industrial-Strength Formal Specification Techniques, pages 2-
16, Boca Raton, FL, 1995. IEEE Computer Society.

22. Olaf MiiUer ~ d Tobias Nipkow. Combining model checking and deduction for I/O
automata. Draft manuscript, 1995.

23. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752,
Saratoga, NY, June 1992. Springer-Verlag.

24. D. Park. Finiteness is mu-effable. Technical Report 3, The University of Warwick,
March 1989. Theory of Computation Report.

25. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In J. Sifakis, editor, International Workshop on Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 68-80, Grenoble, France, June 1989. Springer-Verlag.

