
Toupi e = t-calculus + cons tra in t s

Antoine Rauzy

LaBRI - CNRS URA 1304 - Universit4 Bordeaux I
51, cours de la Liberation, F-33405 Talence (France)

emaih rauzy~labri.u-bordeaux.fr

Abs t rac t . This paper presents some of the features of the constraint
language Toupie (version 0.26). Toupie is basically a/z-calculus intepreter.
Variables takes their values in finite domains, i.e. finite sets of symbolic
or numerical constants. Toupie integrates a solver for systems of linear
inequations over finite domains and uses an extension of Bryant's binary
decision diagrams to encode relations. Combination of/,-calculus expres-
siveness, efficient coding and manipulation of relations through the use
of n-ary decision diagrams and constraint solving technics make Toupie
a powerfull tool to perform system of communicating processes analyses.

1 Introduct ion

Constraint logic programming (CLP) [15, 14] has demonstrated its ability to
handle problems coming from operation research. We think that basic ideas of
this paradigm - - simplicity of problem expressions, fast prototyping, flexibility,
versatility of the tools - - could be useful in other areas, especially for what con-
cerns the analysis of systems of concurrent processes. However, program analysis
requires often solvers for second order constraints, i.e. mainly fixpoint equations,
tha t are not available in CLP languages.

We present here the language Toupie that handles such second order con-
straints. More precisely, Toupie implements an extension of the propositional
p-calculus to finite domain constraints. In addition to classical functionalities of
finite domain constraint solvers, Toupie allows a full universal quantification and
t he definition of relations as least or greatest fixpoints of monotone functions.
These definitions can be seen as a kind of quantification over relations.

The main implementation problem with second order constraints is to store
efficiently tuples belonging to relations. Analyses of systems of concurrent pro-
cesses - - which is the main goal of Toupie - - require to handle relations with
huge numbers of elements because, even if each individual process can be de-
scribed by means of a small finite state automaton, the whole system often goes
through thousands and thousands of different states. This combinatorial explo-
sion is due to the various possible interleaving of individual process actions.
Toupie achieves this goal by encoding relations by means of decision diagrams,
an extension to finite domains of Bryant's binary decision diagrams [5].

The idea of using BDDs to encode large finite state automata is not new.
Mac Millan ~: als on the one hand [8], Madre and Coudert on the other hand [10]
have shown very impressive examples of its power. The contribution of Toupie

115

is twofolds : At a technical level, it integrates decision diagrams features and
constraint solving. At a functional level, it integrates already mentioned basic
ideas of the CLP paradigm into a model checking tool.

The remaining of this paper is organized as follows : Toupie are presented
section 2. Some technical implementat ion details are given section 3. The use of
Toupie for symbolic model checking is described section 4.

2 S y n t a x a n d S e m a n t i c s o f T o u p i e P r o g r a m s

In order to present syntax and semantics of Toupie in an informal way, we deal,
through this section, with the well-known two players Nim's game (the reader
interested in a more formal presentation could see [17]).

Nim's game : The game starts with N lines numbered from 1 to N and con-
taining 2 • i - 1 matches (where i is the number of the line). At each step, the
player who has the turn takes as many matches as he wants in one of the line.
Then the turn changes. The winner is the player who takes the last matches.

Variables, Constants, Domains, Composite Variables : A position in the Nim's
game is characterized by the player who has the turn and the number of matches
in each line. In Toupie, such a position is described by means of a composite vari-
able that groups several individual variables. Before using a composite variable,
one must declare its type. For the Nim's game with three lines of matches, the
declaration is as follows.

l e t p o s i t i o n - - tuple (
P : {a,b},
L1 : 0 . . 1 ,
L2 : 0 . . 3 ,
L3 : 0 . .5)

A variable of type p o s i t i o n groups four individual variables : P (for Player)
that takes its value in the set of symbolic constants {a , b} and L1, L2 and L3 (for
Line 1, 2 and 3) that take there values in ranges of integers. {a ,b} , 0 . . 1, 0 . . 3
and 0 . . 5 are the domains of the variables P, L1, L2 and L3. Variable identifiers"
begin with upper case letters and symbolic constant identifiers begin with lower
case letters.

Formulae, Predicates : Assume declared a variable Poa of type position. In order
to constrain Pos to describe the initial state of the game, one uses a formula :

/

((Pos.P--a) & {Pos. L1--1, Pos. L2=3, Pos.L3=5})

The above formula is a conjunction - - a stands for A - - of two atomic con-
straints : an equality and a system of linear inequations. The "field" F of a
composite variable C is denoted by C.F. When a composite variable is manipu-
lated per se its identifier is prefixed with a caret : "C.

116

A move is described by means of binary predicate, i.e. a relation, whose first
member (' S for Source) is the position before the move and the second member
(' T for Target) is the position after the move :

move('S:position,'T:position) += (
(S.P#T.P)

~ (
{S.LI>T.LI, S.L2=T.L2, S.L3=T.L3}

I {S.LI=T.LI, S.L2>T.L2, S.L3=T.L3}
I {S.LI=T.LI, S.L2=T.L2, S.L3>T.L3}

)
)

The relation move is defined as a conjunction of the difference S. P#T. P mean-
ing that the turn changes and the disjunction of three systems of linear in-
equations representing the different ways the player who has the turn can take
matches in a line.

A Toupie program is a set of n-ary predicate definitions.

Quantifiers, Queries : Toupie is an interpreter. Once entered the definition of
p o s i t i o n and move, it is possible to ask queries. For instance, the positions
where no move is playable are obtained by means of the following query.

lambda ('S:position) forall "T:position ~move('S,'T) ?

The form lambda is just a way to declare the type of the variable(s) of the
query (here "S is of type p o s i t i o n) . The quantifier f o r a l l has its intuitive
meaning and " stands for --. In response to the above query, one obtains :

{S.LI=0,S.L2=O,S.L3=0}

This encodes the two final positions (player a wins or player b wins). This
example illustrates the fact that Toupie is a deterministic language. In response
to a query it computes the decision diagram associated with this query and then
goes through this da ta structure to display the tuples belonging to the relation.
The result of a computat ion is thus an unique relation eventually containing
several tuples. Decision diagrams perform some factoring of tuples which explains
tha t only one tuple is displayed.

Fixpoinls : All the positions are not reachable from the initial one (for instance,
< a , 0 , 3 , 5 > is not). A position "T is reachable either if it is the initial one or
if there exists a reachable position "S and a move from "S to "T. This char-
acterization of reachable positions is recursive. I t means that it is not possible
to express it just with first order constraints. One needs a kind of quantifica-
tion over relations. As a mat te r of fact, our characterization is typically a least
fixpoint definition.

In Toupie, predicates are actually defined as least or greatest fixpoints of
equations for the inclusion in the powerset 2 9 of the cartesian product ~ =

117

D1 • �9 �9 • Dn of the domains Di's of their formal parameters. 29 equipped with
the set inclusion forms a complete lattice. The Tarksi's theorem asserts that
given a monotone function] from 29 to 29,

1. f is continuous.
2. The equation R =](R) (R 6 7~(:D)) admits a least and a greatest solu-

tions, denoted with #R.f(R) and vR.f(R), that are respectively equal to
~]{RIf(R) C R} and U{RI / (R) D n}.

3. There exist two integers m and n such that #R.f(R) = f 'n(0) and uR.f(R) =
f"(:D) where fk(R) denotes the k-nth application of f to R.

We use only a very restricted version of this theorem, since we are only
concerned with finite Boolean lattices. It is easy to generalize this result to the
case of systems of fixpoint equations. It provides the computation principle of
Toupie predicates.

Syntactically, least and greatest fixpoint definitions are denoted by equations
respectively in the form p += f and p -= f .

The predicate move is thus defined as a least fixpoint, but, since there is no
recursive call in its equation, it could be defined as a greatest fixpoint as well.

The predicate encoding reachable positions is as follows.

r eachab le ('T :pos i t ion) +-- (
initial ('T)

i exist ^S:position (reachable('S) & move('S,'T)))

Winning Positions : A position is winning if there exists a move leading to a
losing position and conversely a position is losing if any playable move leads to
a winning position. This is simply what express the two following predicates.

.irming('S:position) +=
exist "T:position (move(^S,'T) & losing('T))

losing('S:state) +=
forall "T:pos i t ion (move('S, 'T) => winning('T))

The following table gives some running times necessary to compute reachable
and winning positions on a SUN IPX Sparc Station 48 MgB.

INumberof nes 1 4 1 I 6 I 7 I s
Number of reachable positions 763 7,674 92,123 1,290,232 20,643,831
Times reachable positions 0s21 0s43 0s75 ls25 ls93
Times winning positions 0sh0 ls7'3 6s23 25s18 141s60

Nested fizpoints : Nested fixpoints are also allowed in Toupie version 0.26. In
the literature, nested fixpoint definitions are used mainly to express infinite path
properties. Let us consider the automaton pictured Fig.l , and let us characterize
states that are source of paths going infinitely often through odd states.

This is achieved by means of a u# term, i.e. a greatest fixpoint of a least
fixpoint.

118

\ .)

Fig. 1. An automaton

~9

let vertex = domain I..9

g(S:vertex,T:vertex) += /* description of the automaton *I

odd(S:vertex) += exist N:O..4 {S=2*N+I}

t au (U :ve r t ex) -=
l e t aux(V:ver tex) += (/* l o c a l d e f i n i t i o n */

e x i s t W : v e r t e x (g(V,W) & aux(W))
] e x i s t W:vertex (g(V,W) & odd(W) & tau(W))
)

i n aux(U) /* body of the d e f i n i t i o n */

The idea of this definition is to compute the set of predecessors of odd states,
then to intersect this set with the set of odd states, then to restart the computa-
tion of predecessors from this last set and so on. The remaining states are those
belonging to a loop going through at least an odd state.

Toupie versus propositional #-calculus : There exist several different presenta-
tions of the p-calculus in the literature. This formalism allows the expression of
state properties of automata. The differences between the presentations stand
mainly in the type of the considered automata. The key point being to know
whether transitions are labeled or not. Authors working with labeled transitions
add to the formalism connectives allowing to characterize transition labels and
coming typically from the Henessy & Milner's logic [13].

Toupie is closer to the Park's original presentation [16] (used for instance in
the already cited paper [8]). We prefer this version because it is as expressive as
the former but does not impose interpretations in terms of au tomata and thus
is far more versatile.

Toupie is different from this theoretical formalism for essentially two reasons.
- Atoms of the propositional p-calculus are in the form IX = Y], where X
and Y are individual variables. If individual variables are interpreted in a finite
domain, there is no substantial difference with Toupie. In general, the authors
consider only individual variables belonging to {0, 1}. The extension to finite do-
main variables improves the efficiency, especially when dealing with arithmetical
constraints (of course, it does not provide any improvement for what concerns
expressiveness). Infinite interpretation domains would raise some effectiveness
problems . . ,
- The p-calculus does not allow to name relations and thus it does not consider
systems of fixpoint equations. However, this extension is easy and useful.

119

3 D D s v e r s u s B D D s

Decision Diagrams : Decision Diagrams used in Toupie to encode relations are
an extension for finite domains of the Bryant's Binary Decision Diagrams [4]. The
BDD associated with a Boolean formula is a compact encoding of the decision
tree describing the set of solutions of this formula. This encoding is canonical up
to a variable ordering. Even if the worst case size of a BDD is exponential w.r.t.
the number of variables, in many practical cases this size is quite small. Classical
Boolean operations can be performed directly on BDDs. One of the most inter-
esting features of BDDs is that, once built the BDDs associated with formulae,
testing whether a formula is satisfiable or a tautology, testing the equivalence
of two formulae becomes trivial. Due to space limitations, we cannot present
BDDs here, and so we limit ourselves to innovations introduced in Toupie. The
interested reader should see the paper by Bryant [6].

The main difference between BDDs and DDs is that a DD node is n-ary (and
not binary), where n is the cardinality of the domain of the variable it is labeled
with. Such a node encodes a case connective :

Let X be a variable, { k l , . . . , kr} be its domain, and f l , . . . , fr be formulae.

case(X, f l , . . . , f .) = ((X = ka) A f l) V . . . V ((X = kr) A f r)

The case connective keeps all good properties of the If-Then-Else (ITE) con-
nective that labels the BDD nodes : It is orthogonal both with the connective
-- - - which makes a negation in constant time possible by put t ing a flag on
negated edges, the leftmost outedge of a node being always positive to ensure
the canonicity of the representation - - and with the I T E connective - - which
makes possible to use exactly the same computation principle based on a unique
connective (ITE) for DDs than for BDDs.

Let X and u be two variables and 0 . . 2 be their domain. The DD encoding the
constraint (X + u <=1) is pictured Fig. 2(a) (complemented edges are marked
with a black dot).

(a)

Fig. 2. The DD associated with
associated with X < 5, X E 0..10

1
(b)

0 . . 4 ~ 5 . . 1 0

X + Y <_ 1,X,Y E 0..2 (a) and the compacted DD
(b)

120

Compacted representation : When dealing with variables having rather large do-
mains (it could be the case especially for numerical variables) many consecutive
outedges of a node may point to the same son. In this case, one can compact the
representation by labeling outedges with ranges of constants rather than with
individual constant (such a DD is pictured Fig. 2(b)).

The "good" properties of DDs are preserved: negation in constant time,
canonicity. The representation is canonical if any two adjacent ranges that point
the same DD are merged. Logical operations can be accelerated by this cod-
ing since one can treat several values in one step when applying the recursive
computation principle. E.g.

ITE(case(X, 0..2 : F1,3..6: F2), case(X, 0..3: G1,4..6: G2), 1)
= case(X, 0..2: ITE(F1, G1, 1), 3..3 : ITE(F2, G1, 1), 4..6: ITE(F2, G2, 1))

Note, finally, that such a representation allows the coding of approximations
of relations between variables taking their values in dense domains : there is no
need for X to be a natural number in the DD pictured Fig. 2. It could be a real
variable as well.

Constraint solving : In order to solve systems of linear equations, we use the
classical implicit enumeration/propagation technique (see [14]). Note that solv-
ing a system means here computing a DD that encodes all the solutions of the
system. We had restricted allowed constraints to linear sets of linear inequations
for sake of efficiency only.

The principle of the resolution is to going through a search tree and to build
the DD in a bottom-up way. Each time a value is assigned to a variable (when
descending along a branch of the tree) a filtering mechanism is applied to remove
from the domain of the remaining variables the values that are not consistent
with the current partial assignment. The propagation we adopt - - the Waltz's
filtering [19] - - consists in maintaining, for each variable a minimum vMue and
maximum value. The values between these two extrema are considered as al-
lowed.

Let alX1 + ... + c~,X,~ < b be a linear inequation (~i ~ 0, Vi). The maxi-
mum value of the variable Xi, denoted by max(Xi), must verify the following
inequality.

max(X,) <- rna~ (b - Sj#'c~jXj i

Propagating a modification in the domain of one of the Xj consists in updating
each max(Xi) according to the above inequality. Each time a variable domain
is modified, this modification is propagated on the whole system until a fixpoint
is reached.

Note that the compacted representation of DDs shown above is well adapted
to this kind of propagation.

121

Variable ordering : Since the original paper by R. Bryant [5], it is well known
that the size of a decision diagram (binary or not) crucially depends on the
indices chosen for the variables.

By default, in Toupie, the variables are indexed with a very simple heuristic,
known for its rather good accuracy. It consists in traversing the formula consid-
ered as a syntactic tree with a depth-first left-most procedure and to number
variables in the induced order.

Nevertheless, this heuristic can produce very poor performances. The user is
allowed to define its own indices. A variable declaration in the form X@i indicates
that the variable X has the index i . For composite variables, declarations with
fixed indices are in the form "X@i ! j , meaning that the first field of X is numbered
i , the second one i+ j , the third one i+2j and so on.

What's new ? The idea that the case connective allows a canonical encoding
of discrete functions is rather old and due, as far as we know, to J.P. Billon
[2]. Buettner, in [7], used this encoding for multivaluated functions. However,
none of these works fully implements BDDs technics as they are described in
[4]. The extension from BDDs to DDs has been proposed in [18]. We proposed it
independently in 1992. The compacted representation proposed here is original
(at least in our knowledge). The integration of constraint solving technics and
DDs is also new.

DDs versus Constraints A simple illustration of the power of constraints is as
follows. Consider n variables X i , . . . ,Xn belonging to the range [1, 10]. The prob-
lem is to determine the tuples such that:

- X i < _ X i + l , f o r i = l , . . , n - 1 .
- ~ i = i , . . , X i = (n x 10)/2.

With an almost pure DD formulation, it would give something like:

((XI<=X2) & (X2<=X3) & (X3<=X4) & {Xl+X2+X3+X4=20})

With a pure constraint formulation, it gives something like:

{XI<=X2, X2<=X3, X3<=X4, XI+X2+X3+X4--20}

The difference between the two formulations is that in the former case, one
cannot use the inequalities to solve the equality. The cost is thus more or less
proportional to an exploration of the whole cartesian product of variable do-
mains. On the converse, with the latter formulation, each constraint is used to
prune this exploration. Running times are as follows.

In [4 I 5 [6 [7 I 8 [9 I 10 [
]DDformula t ion Os26 3s8150s48 562s06 ? ? ~

Constraint formulation 0s05 0s15 0s51 ls35 3s33 7s70 16v70

A comparison between the various possible formulations of a number of clas-
sical artificial intelligence puzzles and their relative efficiencies, including a com-
parison DD versus BDD, could be found in [17].

122

4 S y m b o l i c M o d e l C h e c k i n g w i t h i n T o u p i e

In this section we study, by means of an example, how Toupie is used to perform
system of concurrent process analyses.

The notion of transition system plays an important role for describing pro-
cesses and systems of communicating processes. A simple way to represent pro-
cesses widely used in many works on verification, is to consider that a process
is a set of stales and that an action or an event changes the current state of the
process and can thus be represented as a transition between states. Transit ion
systems are also used to describe systems of communicating processes: states of
the system are tuples of states of its components and transitions are tuples of
allowed transitions. The resulting au tomaton is called by Arnold and Nivat the
synchronized product [1]. This model is basically synchronous, even if it allows
the description of non-synchronous phenomena.

Description. Let us consider the problem of designing a protocol between a re-
sources dispatcher and a number of buffers. At the beginning, the dispatcher
owns a given number of resources and the buffers are empty. During the process,
each buffer tries to get one by one a number of resources from the dispatcher.
When it has obtained them, it performs an action (no ma t t e r what this action
actually is), then starts to give them back to the dispatcher (still one by one).
When it is empty, it performs another action and starts to get resources again.
And so on infinitely. The protocol must ensures some properties such as deadlock
freeness, safety, fairness . . .

Let us examine first a very simple version in which the dispatcher non deter-
ministically gives a resource to a buffer or get a resource from a buffer without
any additional control. In order to make the Toupie code sufficiently small to be
easily readable we consider the case where there are only two buffers.

Individual Processes. The behavior is thus modeled by means of labeled transi-
tion system. For the dispatcher the states are the possible numbers of resources
the dispatcher has, and the transitions model its actions, i.e. ge t (a resource
from a buffer), pu t (a resource in a buffer) and e (when it remains idle). This
transit ion system is described by using a ternary predicate d i s p a t c h e r (S ,L ,T) ,
where the variables S, L, T are respectively the sources, labels and targets of tran-
sitions.

l e t r e s o u r c e s = 5 / * n u m b e r o f r e s o u r c e s */
l e t d i s p a t c h e r _ s t a t e = d o m a i n O . . r e s o u r c e s

let dispatcher label = domain {e, get ,put}

dispatcher (S : dispatcher_st at e, L: dispatcher_label, T: dispatcher st ate) += (
((L=e) & (T=S))

I ((L=get) & (T--S+1))
] ((L=put) & (T--S-l)))

The behavior of the two buffers is modeled in the same way. Here, states are
pairs (section, current number of resources), where section is a Boolean variable

123

indicating whether the buffer tries to get (up) or to put back (down) a resource.
The actions performed by the buffer when it is full or empty are modeled by
means of the same transition label tau .

l e t maxs ize = 5 /* maximum s i z e of b u f f e r s * /
let buffer_size = domain O..maxsize
let buffer_section = domain {up,do,n}
let buffer_label = domain {e,get,put,tau}
let buffer_state = tuple (Size:buffer_size, Section:buffer_section)

buffer('S@1!1:buffer_state,L@3:buffer_label,'T@4!i:buffer_state) += (
((L=e) & (T.Size=S.Size) & (T.Section=S.Section))
((L=get) & (S.Section=up) & (T.Section--up)
{S.Size<maxsize, T.Size=S.Size+1})

) ((L=pur & (S.Section=do,n) ~ (T.Section=down)
{S.Size>O, T.Size=S.Size-l})
((L=tau) ~ ((T.Section=down) ~ (S.Section=up) &
{S.Size=maxsize,T.Size=S.Size})
((T.Section=up) ~ (S.Section=down) & {S.Size=O, T.Size=S.Size}))))

Variable indices are fixed in the above predicate. S.Size, S.Section, L,

T. S i z e , T. S e c t i o n receive respectively indices 1 to 5. In the r emain ing , we keep
index declarations in order to provide a faithful Toupie session, but we don' t
discuss these choices. Such a discussion can be found in [11] and [9].

Synchronized Product. Now, one must synchronize the three processes, that is
to constrain, for instance, the dispatcher to give a resource (put) when the first
buffer gets it (ge t) while the second one remains idle (e) :

let label = tuple (D:dispatcher_label, Bl:buffer_label, B2:buffer_label)

synchronizator('L@3!5:label) += (
((L.D=e) & (L.Bl=tau) ~ (L.B2=e))

I ((L.D=e) ~ (L.BI=e) & (L.B2=tau))
I ((L.D=get) & (L.Bl=put) ~ (L.B2=e))
I ((L.D=get) & (L.BI=e) & (L.B2=put))
I ((L.D=put) ~ (L.Bl=get) & (L.B2=e))
I ((L.D=put) ~ (L.BI=e) a (L.B2=get)))

Initial state and edges of the synchronized product are described as follows:

let state = tuple (
D:dispatcher_state, ^Bl@O!1:buffer_state, "B2@O!1:buffer_state)

initial('S@1!5:state) += ((S.D=resources) ~ (S.Bl. Size=O) & (S.B2.Size=O))

edge('S@l!5:state , "T@4!5:state) += exist "L@3!5:label (
dispatcher(S.D,L.D,T.D)
buffer(S.'Bl, L.B1, T.'B1)

& buffer(S.'B2, L.B2, T.^B2)
& synchronizator('L))

124

There are tuples of individual states that do not correspond to reachable
states of the synchronized product. The set of reachable states is computed
by means of a least fixpoint, starting from the initial state and traversing the
automaton:

reachable('TQ415:state) += (
initial('T)

[exist "S@I!5: state (reachable('S) k edge('S,'T)))

Deadlocks. The predicates above (r e a c h a b l e and edge) allow the verification
of properties of the system. Let us recall that a deadlock (in a weak sense) is a
reachable state from which no transition is possible or only a transition leading
in a deadlockstate. The Toupie program to detect deadlocks is as follows:

deadlock('S@l!5:state) += (
reachable('S)

k forall "T@4!S:state (transition('S,'T) => deadlock('T)))

There are 10 deadlock states (in this toy example). A quick analysis shows
that the problem arises when both buffers try to get (up) resources while the
dispatcher has not enough resources to satisfy at least one of them.

The protocol must be modified to avoid this situation. A simple way to do
this is to add the constraint that the dispatcher never gives a resource to a buffer
if it has not enough resources to satisfy its request. This is done by modifying
the synchronization constraints in the following way:

synchronizator('S@l!5:state, "L@3!5:label) += (
((L.D=e) k (L.Bl=tau) k (L.B2=e))

] ((L.D=e) k (L.BI=e)
i ((L.D=get) k (L.Bl=put)
] ((L.D=get) k (L.BI=e)
[((L.D=put) k (L.Bl=get)
I ((L.D=put) k (L.BI=e)

k (L.B2=tau))
k (L.B2=e))

(L.B2=put))
k (L.B2=e) k (S.D>=maxsize-S.B1.Size))

(L.B2=get) k (S.D>=maxsize-S.B2.Size)))

The protocol shows now to be deadlock free. Note that the same kind of
synchronizator could be used in order to break the symetries between processes.
For instance, by forcing if all of the buffers are in their up sections, the buffer
1 to have more resources than the buffer 2 that must have itseff more resources
than buffer 3 and so on.

Fairness. An important property to be verified by the protocol is that a buffer
that asks resources will always obtain these resources. Such a fairness property
can be expressed as the greatest fixpoint of a least fixpoint. With the least one,
we compute the set of states S such that every path leaving S goes to a state
in which the first buffer is full (from symmetry arguments it suffices to consider
only the first buffer). With the greatest one, we remove from the set the states
that are not on infinite loops composed by states of the set.

125

t r a n s i t i o n (' S g l ! 5 : s t a t e , ' T @ 4 ! 5 : s t a t e) += (reachable('S) & edge(*S, 'T))

live('S@l!5:state) += (reachable('S) & ~deadlock('S))

t o_ f u l l _bu f f e r l (' S@l !5 : s t a t e) += (
l i v e (' S)

& forall "TQ4!5:state
(transition(*S,'T) => ((T.BI.Size=maxsize) I to_full_bufferl('T))))

f a i r _ s t a t e (' S @ l ! 5 : s t a t e) -ffi (

t o_ful l_buf f e r l ("S)
& f o r a l l "Te4!5:s ta te (t r ans i t ion ('S ,~T) ffi> f a i r (' T)))

The computation reveals that the protocol is not fair. Actually, it is possible
to make it fair, but it would be too long to present the new protocol here.
Anyhow, the fairness property is interesting both from practical and theoretical
points of view since it requires a greatest fixpoint computation.

Performances. The tables below indicate running times for various number of
buffers, buffer sizes and initial number of resources respectively for the non-
compacted representation (left), and the compacted one (right).

51515 5/5/10 515115 5/5/25 51515 51511ol515115 515125
states 832 58944 189696 248832 states 832 58944 189696 248832

reachable 0s85 10s63 22s28 28s26" reachable 0s70 10s28 20s01 20s55
fairness 3s93 17s23 23s06 30s05. fairness 2s88 12s00 lls01 lls03

These examples show that Toupie can handle rather large examples. It is
not surprising that limitations are due to lack of memory and not to excessive
running times: it is in general the case with BDDs. It is also interesting to point
out that the compacted representation really improves the performances.

5 C o n c l u s i o n

Experiments reported in [9] show that Toupie is more efficient, on classical exam-
pies such as the Milner's scheduler or the dinning philosophers, than specialised
tools based on BDDs such those described in [3, 11]. It shows that its expres-
siveness can be coupled a good efficiency, thanks to DDs.

Nevertheless, Toupie can be improved is several ways : DD management,
introduction of arithmetic builtins, heuristics for variable indexing, . . .

A very interesting way to extend Toupie is to handle constraints over dense
domains (real or rational) in order to modelize real time systems. The union of
two relations being approximated, as proposed by Halbwachs [12], by computing
the convex hull of the union of each relation.

R e f e r e n c e s

1. A. Arnold and M. Nivat. Comportements de processus. In Colloque AFCET "Les
Mathdmatiques de l 'informatique ", 1989.

126

2. J.P. Billon. Perfect Normal Forms for Discrete Functions. Technical Report
DSG/CRG/87014, Centre de Recherche, BULL, 1987.

3. A. Bouali. l~tudes et raises en oeuvre d'outils de v~rification bas~e sur la bisimu-
lation. PhD thesis, Universit$ Paris VII, 03 1993. in french.

4. K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD Package.
In Proceedings of the 27th A CM/1EEE Design Automation Conference. IEEE 0738,
1990.

5. R. Bryant. Graph Based Algorithms for Boolean Fonction Manipulation. IEEE
Transactions on Computers, 35:677-691, 8 1986.

6. R. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams. ACM Computing Surveys, 1992.

7. W. Buettner. Unification in Finite Algebras is Unitary (?). In 9 th Conference on
Automatic Demonstration, volume 310. LNCS, 1988.

8. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
Model Checking: 102o States and Beyond. IEEE transactions on computers, 1990.

9. M-M. Corsini and A. Rauzy. Symbolic Model Checking and Constraint Logic
Programming: a Cross-Fertilization. In Don Sannella, editor, Proceedings of the
European Symposium on Programming ESOP'9~, volume 788. LNCS, 1994.

10. O. Coudert, C. Berthet, and J-C. Madre. Verification of Synchronous Sequential
Machines Based on Symbolic Execution. In J. Sifakis, editor, Automatic Verifica-
tion Methods for Finite State Systems, volume 407. LNCS, 1989.

11. R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for Symbolic Model
Checking in CCS. Journal of Distributed Computing, 6:155-164, 6 1993.

12. N. Halbwachs. Delay Analysis in Synchronous Programs. In Proceedings of the 5th
international conference on Computer Aided Verification CAV'93, volume 697 of
LNCS. Springer Verlag, June 1993.

13. M. Henessy and R. Milner. Algebraic laws for non-determinism and concurrency.
J. Assoc. Comput. Mach., 32:137-161, 1985.

14. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. MIT Press, 1989.

15. J. Jaffar and J.L. Lassez. Constraint Logic Programming. In Proceedings of Prin-
ciple of Programming Languages (POPL '87), january 1987.

16. D. Park. Fixpoint Induction and Proofs of Program Properties. Machine Intelli-
gence, 5, 1970.

17. A. Rauzy. Toupie Version 0.25 : User's Manual. Technical Report 959-94, LaBRI
- URA CNRS 1304 - Universit6 Bordeaux I, 1994.

18. A. Srinivasan, T. Kam, S. Malik, and R.K. Brayton. Algorithms for Discrete Func-
tion Manipulation. In Proceedings of International Conference on Computer Aided
Design, ICCAD'90, pages 92-95. IEEE, 1990.

19. D.L. Waltz. Generating semantic descriptions for drawings of scenes with shadows.
In P.H. Winston, editor, The Psychology of Computer Vision, pages 19-91. Mc
Graw Hill, New York, 1975.

