
Safety Property Verification of ESTEREL Programs and
Applications to Telecommunications Software

Lalita Jategaonkar Jagadeesan 1 , Carlos Puchol 2., and James E. Von Olnhausen a

i Software Production Research Dept., AT&T Bell Laboratories, Naperville, IL 60566 (USA)
2 Dept. ofComputer Sciences, The University of Texas at Austin, Austin, TX78712 (USA)

a Global Software Platform Lab, AT&T Bell Laboratories, Naperville, IL 60566 (USA)

Abstract. We present a technique for automatically verifying linear-time tempo-
ral logic safety properties of programs written in ESTEREL, a formally-defined
language for programming reactive systems. In our approach, linear-time tempo-
ral logic safety properties are first translated into ESTEREL programs that model
these properties. Using the ESTEREL compiler, the translations are compiled in
parallel with the ESTEREL program to be verified. A trivial reachability analysis
of the output of the compiler then indicates whether or not the safety property is
satisfied by the program. We describe two real-world software problems - - ES-
TEREL versions of two features of the AT&T 5ESS | switching system-- and one
well-known benchmark problem - - the generalized railroad crossing problem - -
that we have verified using our technique and associated tool set.

1 Introduction

The ESTEREL programming language[5] is a formally-defined, high-level language de-
signed specifically for programming reactive systems. It is based on the "synchrony hy-
pothesis," which states that every reaction of a system to a set of inputs is theoretically
instantaneous. In practice, this amounts to requiring that the environment of the reac-
tive system be invariant during every reaction. ESTEREL is especially well suited for
programming real-time reactive systems that are embedded inside larger applications.

Safety properties are typically sufficient to describe most intended properties of real-
time systems, since responses are required within bounded intervals. One of the more
widely accepted languages for specifying temporal behavior and safety properties of re-
active systems is linear-time temporal logic [16]. We present a technique for automat-
ically verifying a large class of propositional linear-time temporal logic safety proper-
ties of ESTEREL programs. We then describe two real-world software problems and one
benchmark problem that we have verified using our technique and associated tools. In
particular, we have performed a case study [13] to assess the suitability of ESTEREL to

switching software by writing ESTEREL versions of two features of the AT&T 5ESS |
telephone switching s y s t e m - - a reactive real-time system which provides telecommuni-
cations services. As part of this assessment, we have used our verification tools to prove
that our ESTEREL versions satisfy some safety properties required for the existing soft-
ware. The executable code generated by our ESTEREL version of the more complex of

* The author is currently supported by a Fulbright fellowship. The work described here was per-
formed while the author was visiting AT&T Bell Laboratories.

~28

these features has been successfully tested in the 5ESS switch environments; a detailed
presentation appears in [13]. We have also verified an ESTEREL solution of the gener-
alized railroad crossing problem [12] using our technique and tools.

Many traditional verification techniques allow properties to be proved only of mod-
els of programs rather than program texts themselves; these models are written by hand
and require a detailed understanding of the program and the target language, and hence
they may not faithfully represent the program. In contrast, we verify the actual text of
ESTEREL programs, guaranteeing that the actual implementation satisfies the intended
safety properties (as long as all the compilers involved are correct). This is in the spirit
of Berry's WYPIWYE principle-what you prove is what you execute.

In our approach, given a temporal logic safety formula, we first recursively translate
it into an ESTEREL program whose traces correspond to the computations that violate
the safety formula. The program derived from the formula is then composed in parallel
with the given ESTEREL program to be verified. The program resulting from this com-
position is compiled using commercially available ESTEREL tools [1]; a trivial analysis
of the output of the compiler then indicates whether or not the property is satisfied by the
original program. By exhaustively generating all the reachable states of the composed
program, the ESTEREL compiler in effect performs model checking [7].

The foundations for this approach were first introduced in [21] and [20] in the con-
text of temporal logic and finite-state automata. Specifically, given any propositional
temporal formula, [21] introduced a procedure to build a finite automaton on infinite
words that accepts precisely the sequences that satisfy the formula. In [20], this result
was used to impro vea procedure for model checking ([14]) by combining the automata
for the program and the formula and checking the language of the resulting automaton
for emptiness.

Our work was originally inspired by the work of Halbwachs et al. [6, 9, 10, 18],
which develops a technique for verifying safety properties for programs written in the
synchronous language Lustre [8]. Ours is a similar approach, but differs (aside from the
fact that it is based on ESTEREL) in that we allow the specification of the properties
directly in temporal logic, we make use of system resources such as operating system
timers and we provide support for bounded response properties (without blowup in the
bound). The current verifier supported in the native ESTEREL environment [1] is based
on bisimulation reduction and does not support temporal logic properties.

Our paper is organized as follows. Section 2 describes the class of temporal logic
safety properties currently supported by our approach, and a brief introduction to ES-
TEREL is given in Section 3. Section 4 presents our translation from this class of safety
properties into]~STEREL. Our verification technique and its proof of correctness is given
in Section 5. Optimizations for response operators are described in Section 6.

We then describe case studies in using our verification technique on three problems.
Section 7 gives an overview of some switching software, and Section 8 and Section 9
describe the verification of our ESTEREL versions of two features of the AT&T 5ESS
switching system. The verification of an ESTEREL implementation of the generalized
railroad crossing problem is described in Section 10. Our conclusions appear in Sec-
tion 11.

129

2 Temporal Logic Safety Formulas

E S T E R E L does not provide constructs for referencing future states of the program, hence
past-tense operators provide a good choice for implementation. Most temporal logics
typically contain only future-tense operators, however, past-tense operators are consid-
ered to make the formulation of properties more modular as well as natural and conve-
nient [15]. We have found past-tense operators to be as convenient as the future-tense
operators in proving properties of actual systems. In our approach, we consider the class
of canonical safety formulas [16], further restricted so that the state formulas consist
only of signal identifiers; in particular, we do not allow variables to occur in state for-
mulas. Formally,

Definition 1. Let Sig be a fixed finite alphabet of signal names, containing the constants
~ and FIaST. "P.AST- is defined to be Sig, closed under the boolean operators -,, V, A,
and --4 and the linear temporal logic past operators ~), S , [], ~ , and B (previous,
since, has-always-been, once and back-to). S.AQrS is defined to be the set of formulas
of the form [] p, where p 6 7).AST and o is the "always" operator of linear temporal
logic. We use p, q to range over P A S T and s to range over S.AJrs

The definition of satisfaction of a formula in P A S T and SA:7:E is standard, thus
not repeated here. :PAST is the class of past-tense temporal logic formulas and S A Y E
is the class of safety formulas, which can be characterized as follows [16]: a formula s is
a safety formula iff any sequence tr violating s (i.e., satisfying ~s) contains a prefix all
whose infinite extensions violate s. Informally these formulas stipulate that "something
bad never happens."

In addition to these standard safety formulas we have found it useful in practice to
consider bounded versions of response formulas as well. A canonical response formula
is a formula of the form [] (p --+ Oq) 4. This class of formulas states that for all compu-
tations, every position where p holds is followed by or coincides with a position where
q holds. However, no guaranteed bounds for obtaining q as response to p are expressed.
In real-time systems the interest lies fundamentally in the ability to limit the delay of
responses to stimuli, thus stronger formulas than these are needed. Adding timing con-
stralnts to temporal operators is a standard way to capture real-time requirements. Stan-
dard bounded-response formulas [3, 2] 5 are of the form n (p -4 (>dq) which state that
every p-position is followed by a q-position within d reactions. Intuitively, this class of
formulas are in fact safety formulas; they operate in an "interval" in which if the formula
is violated, all extensions of it will be violated. We define two past-tense versions of the
bounded response formulas, the bounded response (1) and the bounded ensures (2) op-
erators, which can in turn be defined in terms of the standard past operators as follows:

d d - 1

p--~>dq=--((~dp--'+V(~kq) (1) and p"-*~>dq=--(A@kp)"+q (2),
, k = 0 k = 0

where O ~ = f and O ' * f --- @ (~ , - l f) for a past temporal logic formula f .

4 The alternative form O <>p may be more familiar.
We do not currently consider interval operations such as p -+~[a,b]q.

130

3 The ESTEREL programming language

ESTEREL [5] is a language, with a precisely defined formal semantics, for programming
the class of deterministic reactive systems that wait for a set of possibly simultaneous in-
puts, react to the inputs by computing and producing outputs, and then quiesce, waiting
for new inputs. Since ESTEREL is based on the "synchrony hypothesis," every reaction
to a set of inputs is considered to be instantaneous. The programming model in ESTEREL
is the spe~:ification of components, or modules, that run in parallel. Modules communi-
cate with each other and the outside world through signals, which are broadcast and may
carry values of arbitrary types. Consistent with the synchrony hypothesis, the emission
and reception of signals is considered to be instantaneous.

ESTEREL allows only deterministic behaviors to be specified: the inputs to every re-
action (and the current values of variables) fully determine the outputs emitted in that
reaction as well as the input-output behavior of the rest of the program. Along with the
synchrony hypothesis, both communication and pre-emption preserve determinism. Fur-
thermore, all internal communication is compiled away, and a single deterministic fi-
nite state machine is generated by the compiler. Thus, the parallelism in ESTEREL is a
structuring tool for programming convenience, and does not incur any run-time over-
head - - the compiler automatically performs the complex interleaving between parallel
modules. Since this implementation is a finite state machine, an added benefit is that the
maximum amount of time taken by any reaction can be accurately bounded if the exe-
cution times of the transitions are known.

4 Structural Translation

Our approach is based on recursively translating safety formulas in S . A E s into ES-
TEREL programs. The resulting ESTEREL program can be viewed as a finite state ac-
ceptor of the computations satisfying the formula. Namely, it emits a special ESTEREL
signal SAT_S in exactly those reactions satisfying the formula s.

The program derived from s is then composed in parallel with the original ESTEREL
program to be verified. The ESTEREL program resulting from this composition is then
translated into a single finite-state automaton by the ESTEREL compiler [1]. The ES-
TEREL compiler in effect performs model checking as it compiles, by exhaustively gen-
erating all the reachable states. In particular, the process of compilation computes the
value of all subformulas of the formula along with the program itself. The verification
problem is simply reduced to the problem of checking that s is satisfied in all states of
this automaton; namely, that the signal SAT_S is emitted in every state of this automaton.

For practical reasons, the ESTEREL code we produce emits a signal vIOr~TED.S in
every state that the safety formula is not satisfied. The checking algorithm searchs for
a state where vior~wED_s is emitted, returning successfully if no such state exists, or re-
turning a computation of the program that violates s otherwise. Hence the checking al-
gorithm is very simple and very efficient in practice.

For pure ESTEREL programs, namely those which do not use variables or valued
signals and whose control structure is thus fully determined at compile-time, this ver-
ification technique is both sound and complete. However, for programs whose control
structure does depend on run-time values, our technique is sound but not complete be-

131

cause the ESTEREL compiler considers all paths, including those that are impossible due
to data values. Thus if a program violates a property, a computation leading to the state
violating it will always be found by our tools, but our procedure may incorrectly indicate
that some otherwise correct programs can violate a property.

An advantage of ESTEREL that carries into the verification technique is that it is not
necessary to model the environment under which the program is verified. The verifi-
cation is done over all possible environments (the "relation" feature in ESTEREL that
restricts the set of possible inputs at every time instant is enough for most practical pur-
poses).

4.1 Translation of Past Formulas

We define a recursive transformation Ep which given a past formula p, produces an ES-
TEREL program fragment that emits a signal SAT_p in exactly the reactions that p holds
true. It is clear from the definition below that the generation of Ep is linear (in time and
space) with respect to the size ofF. In the following definitions, let p and q denote past
formulas. The base case below is the translation of plain signals; for any signal S 6 Sig,
there is an associated signal SAT_S which is present/absent exactly at those time instants
S is.

Constants
The translation of TRUE and FIRST are very simple: STR~ = sustain SAT_TRUE and

~FIRST = emit SAT-FIRST.

Boolean Operators
The transformation for boolean operators is straightforward to define. We present

here the translation of a formula involving the V operator. The translation for each of
the A, --+ and -'1 operators is similarly defined.

Epvq =Cp [[Cqll [
every inunediate tick do
present [SAT_p or SAT_q]

then emit SAT_(pVq)
end present

end every

Past Operators
Below we illustrate the translation for the O and ,9 operators. The translation for

r~, ~> and B can either be defined in terms of these operators (S<~p = s $ p, E r~p =
E-, ~-~p and s q = E p S ~ v [] ~), or with more direct translations to E STEREL, omit- . (. ~)

ted here due to space hmltaUons. ~lae direct translation is somewhat more efficient, and
hence has been incorporated into our tools.

~Op = ~pjlt
loop
present SAT_p then

await tic~
emit SAT_~Jp

else await tick
end present

end loop

132

every immediate SAT_q do
do

sustain SA~_(pSq)
watching [not SAT_~]

end every

Bounded-Response and Bounded-Ensures Operators
Since the time constrained operators can be defined in terms of the above operators,

they can be translated by expanding their definition and then applying the transforma-
tions above. While this translation via standard past formulas is simple, it generates an
ESTEREL program fragment whose state space is at best quadratic in the bound d. This
renders such translation futile for many practical purposes; we briefly describe in Sec-
tion 6 some optimizations that make translations of these operators linear in d, hence
making them more useful in practice.

4.2 Translation of Safety Formulas

We now define the translation for the safety properties. This translation introduces the
signal denoting the violation of the property.

J

Definition 2. Let s = O p be a canonical formula of SASrE. Let Ip be the set of signal
names occurring in p minus {vzasT, ~Rtm}, and let L, be the set of signals in s minus
/ , - - these are local signals. Then the translation E,, which emits the signal WOLATEO_S
as soon as the safety formula s is violated, is defined as follows:

= module Safety:
input Z_p;
output VIOLATED S ;
signal L_p in
%tie

await immediate [not SAT_p] ;
emit VIOLATED_8

]
end signal

end module

5 Properties of the Translation

We now prove the correctness of our translation. We first need to do some minor syn-
tactic adjustments to conform to the modular structure of ESTEREL.

Definition3. Let Ep be the ESTEREL program fragment associated with p 6 P A S T ,
let Ip be the set of signal names that occur in p, and let Op be the set of signal names
that occur in E, but not in p. Then PTZO~ ofp is defined in Figure l(a).

Lemma4. Let Ip be the set of signal names that occur in p 6 P A S T , minus {vias%
~tm}, and let Op be the set of signal names that occur in Cp but not in p. Let ~r = I1 . . . Ik
be a sequence over the powerset of I m and let 7 = 01 . . . Ok be the unique sequence
over the powerset of Op produced by PT~O~(p) in reaction to ~r. Then for any j with
1 < j < k, Oj contains the signal SA'r_p iff(~, j) ~ p.

133

~)~O~(p) -~- module PROG_p:
input I_p;
output O_p;

end modUle

VETZZF(E, s) = module Verify_as:
input IE ;
ir~putoutput O~ ;
output VIOLATED 8 ;

end module

(a) Co)

Fig. 1. Definitions for the top level translation of formulas in S,4.TC.

DefinitionS. Let E8 be the ESTEREL program fragment associated with s 6 S,AYE
and let 18 be the set of signal names that appear in s, minus {F~RST, TRUe}. Furthermore
let E be an ESTEREL program without causality cycles and let IE and OE respectively
be the sets of input and output signals of E with IE U O~ _ I8 6. We define VERZY
as in Figure l(b).

Lemma 6. Let s 6 S .AYE and let E be an ESTEREL program without causality cycles.
Then the program i ;s s) does not have causality cycles in it.

The proof for Lemma 4 follows from an induction on the structure of safety formu-
las. Lemma 6 follows easily from the definition of causality cycles [5]. Theorem 7 now
gives a sound and complete verification technique for pure ESTEREL programs, namely
those without if statements. The control structure of such programs is fully determined
at compile-time.

Theorem 7. Let s 6 S~4Ys and let E be an ESTEREL program without causality cycles
and no i f statements. Then VIO~TED_S will be emitted in some state of the program
];ET~ZY(E, s) iff E does not satisfy s.

The theorem follows easily from Lemma 4, the above definitions and the semantics
of ESTEREL. We now show that our technique is sound but not complete for ESTEREL
programs containing ie statements. We have found that this is not a significant dif-
ficulty in practice, since the interesting values of variables can be typically indicated
finitely through signal emissions when needed.

Theorem8. Let s-~ $.AYE and let E be an ESTEREL program without causality cy-
cles, but possibly containing i f statements. I f E does not satisfy s, then there is some
state of the program VCTzzJr (E, s) that emits the output signal vio~r~ .s .

The proof is analogous to that of Theorem 7. We emphasize, however, that the con-
verse of this theorem does not hold. Let E contain the following code, where B is the
only piece that causes the property s to be violated.

6 We disallow s from containing references to signals not included in the input or output sets of
E for stylistic reasons. If s reads signals that E ignores, without loss of generality we require
that they appear in the input set of E.

134

var x:int in
x:=l;

if x = 1 then
else M

end if
end var

In this scenario, fragment B can never be executed; however, since the ESTEREL
compiler does not evaluate expressions, the state machine generated after compiling the
translation appears to potentially emit V~O~T~D_S.

6 Optimized Translation

This section discusses alternative translations for the bounded-response and the bounded-
ensures formulas. While the translation via standard past formulas presented in Sec-
tion 2 is simple, it generates an ESTEREL program fragment whose state space is qua-
dratic in the bound d. The new translations we propose, on the other hand, are more com-
plex, but yield ESTEREL program fragments whose state space is linear in the bound d:
hence these have been incorporated into our tools. Due to space limitations, we omit the
actual translations for these operators and only describe two interesting properties of the
optimized translations.

Lemma 9. There exists an optimized translation such that the state space of PT~ O~ (p)
for any bounded-ensures or bounded-response formula p with bound d is 0 (d).

We note that Lemma 4 holds for the new definition of the bounded-ensures operator
(we can prove this by using the verification technique itself!). However, our optimized
translation for the bounded-response operator satisfies the following weaker property:

Lemma 10. Let S denote the signal VIOr~ED_S in s for a bounded-response formula
s with the standard translation for s. Let S' denote the vio~rE~_s signal in E l with the
alternate translation for s. Then the formula [] (~>S ~ ~ S ~) is satisfied by the parallel
composition of both translations.

Lemma 10 states that "once S iff once S' " or in other words, once s is violated,
both translations capture it. However, the more powerful Lemma 4 does not hold for the
optimized translation. As a consequence, under the optimized translation, Theorems 7
and 8 hold only for those formulas in which no bounded-response formula appears as a
proper subformula. For other formulas, the standard translation must be used (through
an option in the tool set).

This completes the presentation of our technique. The remainder of the paper de-
scribes the use of the technique to two problems from industry and a benchmark prob-
lem.

7 An Overview of Our Case Studies for Switching Software

We have performed a case study [13] to assess the suitability of ESTEREL tO switching
software by writing ESTEREL versions of two features in the AT&T 5ESS telephone
switching system [17]. We then used our technique and tools to verify that our ESTEREL

135

versions satisfy some safety properties required for the existing switch software. The
descriptions of our case studies appear in the following two sections.

The 5ESS switch is a reactive, real-time system which provides telecommunications
services. Long-distance telephone calls are typically connected through a network of
hardware, referred to as carrier groups. Telephones are connected to switches via lines.
Inputs to the switch include requests for placing and disconnecting telephone calls, re-
quests for call forwarding and other calling features, as well status changes - - such as
malfunctions or recoveries from malfunctions - - on carriers and lines [11]. In response
to these inputs, the switch connects or disconnects calls, activates calling features, or in
the case of malfunctions/recoveries, removes/restores the associated carriers and lines
and routes new calls over functioning carriers and lines. The switch software is quite
large and complex, consisting of several million lines of code; many subsystems em-
bedded in the switch can themselves be regarded as reactive systems that communicate
with one another and with the outside world.

8 Case Study: Carrier Group Alarm Software

In switches, a wide variety of carrier group types are used to transmit data corresponding
to end-to-end telephone connections. These carrier groups are attached to various hard-
ware units on a distributed set of processors, which are responsible for routing telephone
calls. Malfunctions on these carrier groups, such as lost framing, lost signals, or physi-
cal accidents, can result in disturbance or abrupt termination of existing phone calls. The
Carrier Group Alarms (CGA) software in the 5ESS switch is responsible for reporting
status changes - - malfunctions or recoveries from malfunctions - - on carrier groups,
so that other 5ESS software can respectively remove or restore the associated carrier
groups from service, and route new telephone calls accordingly [11].

One of the main sources of inputs to the CGA software are "summary-requests" from
higher-level entities. When a summary request is received, either from a human operator
or from some other part of the switch, the CGA software must collect data about the sta-
tus of all the carriers on all the relevant processors, and print this information on various
consoles and printers via the Human-Machine Interface (HMI). The corresponding por-
tion of the CGA software can be considered a reactive system whose inputs are summary
requests and status change data about carriers, and whose outputs are requests to the rel-
evant processors for data, and outputs of relevant status information via the HMI. For
the purposes of our case study, we refer to this software as the "CGA Collection Soft-
ware." In our ESTEREL version, there are other pieces of software, meant to reside on
the processors to which carrier groups are attached; these pieces of software are respon-
sible for sending'the status data about the attached carrier groups to the CGA Collection
Software. We do not discuss this software here due to space limitations.

As part of a case study to assess the suitability of ESTEREL to switching software,
we have written an ESTEREL version of the summary request functionality of the Carrier
Group Alarms software. We emphasize that the descriptions of our ESTEREL version
given in this paper do not reflect the actual 5ESS switch software. Figure 2 illustrates our
design of the CGA Collection Software. All modules (denoted by boxes in the figure) are
composed by the E~'IEREL parallel operator. Arrows emanating from modules indicate
signals that are emitted by those modules; arrows pointing to modules indicate signals

136

', OVERBCAST . . / "summaly requests data from processors
A ./"

! " ~ ~ requests to ..""
i I D O N E / LAST-DATA ~ processors.."

', broadcast to ' """ processors l ~ t ~ 7 ~ ' - - - ABORT-ALL ~ - - - - ~ , / "

I I I expire / / / .set, dear / / I [I PROC-DATA I [clear
BCasttimer ex ire FLUS ire

It I s-.~ l I) '='~

i l l I s - - - -
[I l : =

', timer events
)

. external inputs and outputs
internal signals

Fig. 2. Simplified Design of ESTEREL Version of the Carrier Group Alarms Software

that are received by those modules. We note however that all these signals are broadcast
and hence can actually be observed by all the modules; for clarity, our communication
graph contains arrows only to those modules that actually respond to the corresponding
signal. Our ESTEREL program is simply an implementation of each of these modules,
and is described in more detail in [13]. Figure 2 is actually a simplified picture of our
ESTEREL version. For instance, in our version three different kinds of summary requests
(automatic periodic, manual and all-alarm) may be received; also, the rate and the queue
in the HMI where information is sent differs depending on the type and kind of message,
thus there are actually two different m~Z_aE~Y signals, one for each queue.

Our version uses several operating system timers; these correspond to the maximum
time allotted to the processing of any given request, the maximum time spent waiting for
a given processor to respond, and the period and maximum time spent on waiting for the
HMI to respond. These timers are set and cleared by our ESTEREL implementation; upon
expiration of these timers, corresponding input signals are sent to the ESTEREL program
by the operating system.

Our ESTEREL version consists of approximately 1000 lines of ESTEREL code. The
generated state machine has approximately 200 states if HMImonitor is reduced to con-
tinually emit both kinds ofr~L~z~e signals, approximately 450 states if the HMlmonitor

137

only models one queue, and approximately 1500 states with the fully refined HMlmon-
itor module. In most state machine based approaches, each state encodes a single, rela-
tively small decision, there are many internal states, and realistic applications typically
involve very large numbers of states. In contrast, in an ESTEREL-generated state ma-
chine, each state may encode a significantly large decision diagram representing all the
internal computation performed in a reaction; consequently, the total number of states
is substantially smaller. The corresponding state machine in typical approaches would
have size O(nm) , where n is the number of states in the ESTEREL-generated state ma-
chine, and m is the maximum number of "internal states" in a decision diagram com-
prising an individual state. We estimate that on average, each ESTEREL-generated state
consists of approximately 67 "internal states"; hence, in a conventional approach, our
most complex implementation would consist of approximately 100,000 states.

8.1 Safety Properties for the Carrier Group Alarms Software

In order to verify our ESTEREL version of the CGA software, we obtained some of the
safety properties that our ESTEREL version must satisfy in order to meet the require-
ments. The actual timing constants have been omitted here due to proprietary consider-
ations, and have been denoted by symbols ci. The symbol To, represents the number of
ESTEREL time instants corresponding to the time interval ci.

TO A summary request must be completed in less than time cl.
T1 If a queried processor does not reply within time c2, the request should be aborted

immediately and the next processor should be queried.
T2 If the HMI blocks on a message, the collection of new CGA data must suspend.
T3 If the HMI blocks on a message, the message should be resent with a period of time

ca, until the HMI unblocks. If time c4 elapses and the HMI has not yet unblocked,
the summary request should be aborted.

T4 If HMI unblocks after CGA data collection has been suspended, CGA data collec-
tion must be reactivated immediately.

T5 No summary request should be honored when another summary request is currently
running, j

8.2 Verification of the Carrier Group Alarms Software in ESTEREL

Using our verification technique and associated tools, we have formally verified that our
ESTEREL implementation satisfies the temporal logic version of the above safety prop-
erties. We note that since ESTEREL version used operating system timers to enforce tim-
ing constraints, our program can only be expected to satisfy the above properties under
certain obvious assumptions about these operating system timers. In particular, we need
to assume that when a timer is set with the value ci, it either expires or is cleared within
time ci after it is set.

We give a sketch of such a proof of property TO below; the other properties are
proved similarly. Ideally, to prove property TO, we would like to use our tools to au-
tomatically verify that

138

[] TT "--)" (GOT.COMMAND "-+@Tr 1 +2WAITING.FOR-COMMAND),
where TT = TOTm~_TI~ER -+@To~ (TOT~_TIM~R_~XPIRED V TOT~_T~MEa_C~.F_aR), GOT_CO~D =
MANUALSTART V PERIODICSTART V ALLALMSTART~ and

{ (~ -+ ~ALS'r~T)A }
WAITING_FOR_COMMAND : (PERIODIC --+ PERIODICSTART)A

However, we found that because T~I is quite a large number, automatic verification
of this property was not possible in practice. We thus took the alternate approach of prov-
ing that c o T _ c o ~ -'-)'~>Tex+ 2 WAITING.FOR_COMMAND, under the assumption that [] TT.

The proof was done in three steps: the first two of these steps used our verification
tools, while the last step, done by hand, followed easily from our assumption on timers
and simple formal reasoning.

Step 1 [] c, oT_com~-~ --+@x (TOT~-TIMER V roT~_~IMEa_cr.~a~): The TOT~ timer must be
either set or cleared at most 1 time instant after an external command is accepted.
We proved this property of our ESTEREL version of the CGA software using our
verification technique and tool.

Step 2 [] (rO~_TIr~ER_EXPIRED V TOT~_TIr~V~R_Cr.V-~a) --+<~1 WAITIr~G_FOR_COm~-D: The sys-
tem returns to a state where external commands are accepted at most 1 time instants
after the TOT~ timer has expired or cleared. We proved this property of our ESTEREL
version of the CGA software using our tools.

Step 3 [] c -o~_co~ --+4~Tol +2WA~TZNG-FOR-CO~: Done by hand; follows easily from
the assumption on timers and transitivity of properties 1 and 2 above.

The proofs of the other safety properties are similar, and rely upon analogous assump-
tions on the bounds Te~ and the expiration of timers. We now briefly describe the second
telecommunication application and our solution to the benchmark problem.

9 Case Study: Automatic Protection Switching Software

Telecommunications systems need to use redundant communication channels so that
spares are available in the event of failure. To ensure redundancy, a protocol called "Au-
tomatic Protection Switching" is often used. Under this protocol, whenever a line de-
grades or fails, a backup line, called a "protection line," is used instead. The protocol
ensures that the better quality line is always selected for communication, while respond-
ing to line quality changes and technician requests. A set of safety properties was drawn
from a 5ESS application for automatic protection switching. We implemented a protocol
in ESTEREL, and verified that our implementation satisfies these safety properties, using
the technique and tools presented here. A more detailed presentation of the problem and
our solution appears in [4].

10 Case Study: Generalized Railroad Crossing

The generalized railroad crossing problem is a benchmark problem that has been re-
cently proposed [12] to compare formal methods that exist for specifying, designing and
analyzing real-time systems and to better understand their utility in the development of

139

practical systems. It consists of a gate controlling a railroad intersection I within a re-
gion of interest R, where trains travel on multiple tracks in both directions. A sensor
system determines when each train enters and exits R. Our solution involves choosing
a model of gate and train behavior. Each train is modeled as follows. The presence of
signal APPaOACn_0 denotes train 0 entering R. We pick a fixed number of time units (IN_R
is sustained), until it enters I. We then again pick a number of time units for the train to
leave the region (IN_I sustained in that interval). We choose to model the gate as being
in one of possible four states: uP, DOWN, GOING_UP, GOING_DOWN, and we pick fixed values
for the time it takes to go from GOiNG_UP to uP and from GOiNG_DOWN to DOWN, commanded
by the ~ s ~ , and ~.o~R signals, emitted by the controller. We have to assume that for the
system to behave as specified, (our model of) the gate must take less time to lower than
any train in the region can take to reach the intersection; the properties below do not hold
otherwise. Our top-level solution is:

module GRC :
input APPROACH_ 0 APPROACH_N;
output UP, DOWN;
signal RAISE, LOWER, GOING_UP, GOING_DOWN,

run Gate II run Controller
II

run Train_0 II --" I L run Train_N
II

run Properties
end signal

end module

IN_R, IN.l, EXIT_R in

The problem then consists of developing a system to control the crossing gate that
ensures the satisfaction of the following properties, which we have formally verified
with the tools and techniques shown in this paper (see [19] for details):

Safety Property: [] IN_I -+ DO~. The gate is down if there is any train in the crossing.

Utility Property: [] ~(IN_R V IN_I)',-~UPo The gate is up when no train is in the
crossing for some specified time (5 time units in this case).

11 Conclusions

We have presented a technique for automatically verifying safety properties of ESTEREL
programs. This verification is performed using the ESTEREL compiler itself. An advan-
tage of our technique is that verification is performed on the actual text of ESTEREL
programs as opposed to models of programs. We argue that our technique is very useful
in practice and demonstrate this through applications to a suite of problems, including
ESTEREL case study versions of two features of the AT&T 5ESS telephone switching
system.

Acknowledgments

We thank Patrice Godefroid and Kedar Namjoshi for comments on background and pre-
vious research on some of the ideas in this paper. We are grateful to Mark Ardis, Peter
Mataga, Mark Staskauskas, David Weiss and Mary Zajac for many useful discussions.

140

References

1. AGEL workshop manual version 3.0, 1989. Produced by ILOG.
2. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Proc. ACM Symp.

on Principles of Distributed Computing, 1991.
3. R. Alur and T. Henzinger. Time for logic. ACMS1GACTNews, 22(3), 1991.
4. M. Ardis, John A. Chaves, L. Jagadeesan, P. Mataga, C. Puchol, M. Staskauskas, and

J. Von Olnhausen. A framework for evaluating specification methods for reactive systems.
In Proc. 17th Intl. Conf. on Software Engineering, April 1995.

5. G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design, se-
mantics, implementation. Science of Computer Programming, 19:87-152, 1992.

6. A. Bouajjani, J.C. Fernandez, and N. Halbwachs. On the verification of safety properties,
1994. Draft.

7. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite state concurrent
systems using temporal logic specifications. ACMTOPLAS, 8(2):244-263, 1986.

8. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-
ming language LUSTRE. Proceedings of the IEEE, 79:1305-1320, 1991.

9. N. Halbwachs, E Lagnier, and C. Ratel. Programming and verifying real-time systems by
meansofthe synchronousdata-flow languageLUSTRE. Transactions on Software Engineer-
ing, 18(9):785-793, 1992.

10. N. Halbwachs, D. Pilaud, E Ouabdesselam, and A.C. Glory. Specifying, programming and
verifying reactive systems, using a synchronous declarative language. In Workshop on Auto-
matic Verification Methods for Finite State Systems, LNCS Vol. 407, 1989.

11. G. Haugk, F.M. Lax, R.D. Royer, and J.R. Williams. The 5ESS(TM) switching system:
Maintenance capabilities. AT&T Tech. Journal, 64(6 part 2): 1385-1416, Jul-Aug 1985.

12. C. Heitmeyer, R.D. Jeffords, and B. Labaw. A benchmark for comparing different ap-
proaches for specifying and verifying real-time systems. In Proc. lOth International Work-
shop on Real-Time Operating Systems and Software, May 1993.

13. L.J. Jagadeesan, C. Puchol, and J.E. Von Olnhausen. A formal approach to reactive systems
software: A telecommunications application in ESTEREL. In Proc. Workshop on Industrial-
strength Formal Spec. Techniques, April 1995.

14. O Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs satisfy their
linear specifications. In ACM Symposiam on Priciples of Programming Languages, pages
97-107, 1985.

15. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Conference on Logics of
Programs, 1985.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, Specifi-
cation. Springer-Verlag, 1992.

17. K.E. Martersteck and A.E. Spencer. Introduction to the 5ESS(TM) switching system. AT&T
Tech. Journal, 64(6 part 2):1305-1314, Jul-Aug 1985.

18. D. Pilaud and N. Halbwachs. From a synchronous declarative language to a temporal logic
dealing with multi-form time. In Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Techniques, LNCS Vol. 331, 1988.

19. C. Puchol. A solution to the generalized railroad crossing problem in ESTEREL. Technical
Report UTCS-TR95-05, Dept. of Com. Sci., Univ. of Texas at Austin, Feb 1995.

20. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proc. LICS, pages 332-339, 1986.

21. E Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In IEEE
Symposium on Foundations of Computer Science, pages 185-194, 1983.

