
On polynomial -s ize programs winning
f inite-state games *

Helmut Lescow

Institut fiir Informatik und Praktische Mathematik
Christian-Albrechts-Universit ~t Kiel

D-24098 Kiel
email: hel@informatik.uni-kiel.d400.de

A b s t r a c t . Finite-state reactive programs are identified with finite au-
tomata which realize winning strategies in Biichi-Landweber games. The
games are specified by finite "game graphs" equipped with different win-
ning conditions ("Rabin condition", "Streett condition" and "Muller con-
dition", defined in analogy to the theory of w-automata). We show that
for two classes of games with Muller winning condition polynomials are
both an upper and a lower bound for the size of winning reactive pro-
grams. Also we give a new proof for the existence of no-memory strategies
in games with Rabin winning condition, as well as an exponential lower
bound for games with Streett winning condition.

1 I n t r o d u c t i o n

In the construction of correct programs there are two complementary approaches:
the verification of an existing program relative to a given specification (for ex-
ample, by a model-checking algorithm), or the algorithmic synthesis of a correct
p rogram from the specification. The present paper deals with the second ap-
proach in the context of nonterminating finite-state reactive programs.

We study the problem within the terminology of infinite games. Here a spec-
ification describes a set of infinite computat ions (represented by a set L of w-
words), which is defined by a finite au tomaton on infinite words. A computat ion
is an w-word built up interactively by two parties, called player 0 (also called
'Control ') and player 1 (also called 'Disturbance') . Thus a computat ion can be
viewed as an infinite play in a game associated with L. The two players perform
their actions in turn; and if a play built up in this way belongs to L then player
0 is said to win the play. A strategy for player 0 fixes the actions of this player
based on the information which actions have been taken so far; and it is called a
winning s t rategy if it ensures tha t such a play will be won by player 0 (whatever
actions are taken by player 1). A reactive program is correct with respect to the
specified w-language L if it realizes a winning strategy for player 0. The strategy
(or reactive program) is said to be finite-state if this realization is given by a

* This work was supported by Deutsche Forschungsgemeinschaft (Project Th 352/3-1).

240

finite automaton with output. The size of such a strategy is identified with the
number of states (or memory) of the corresponding automaton.

The theoretical basis of this approach is the theorem of Biichi and Landwe-
bet [BL69] which says that from a Muller automaton (defining a set L of w-words
and thus an "infinite finite-state game") one can decide effectively whether player
0 has a winning strategy in the game associated with L and in this case construct
even a finite-state winning strategy for player 0. The applicability of the Biichi-
Landweber Theorem is questionable due to the high complexity of the strategy
construction and by the large size of the automata which realize the winning
strategies. As is well-known in the literature on infinite games ([Gtt82] [Bfi83]
[EJ91] [McN93]) the size (number of states) of a strategy automaton is bounded
by the factorial of the number of states of the Muller automaton defining the
game. In fact, there have been relatively few papers on applications of the game
theoretical approach to the construction of correct reactive programs; among
the sparse examples are the works of Abadi, Lamport and Wolper [ALW89] and
Pnueli and Rosner [PR89].

The purpose of the present paper is to prove the first lower bounds on the
size of strategy automata and to exhibit some special cases of game specifications
(by w-automata) where polynomials are both an upper and a lower bound for
the size of strategy automata. This may be useful in finding out cases where
an automatic construction and the implementation of finite-state strategies is
efficient.

We refer to three kinds of acceptance condition in the w-automata that spec-
ify infinite games (which are called "winning condition" in the context of games):
the "Rabin condition", the "Streett condition", and the "Muller condition". Af-
ter introducing these conditions we collect some technical prerequisites in Sec-
tion 2. In Section 3 we show how to compose strategies. The main results on
polynomial size strategies are given in Section 4 and Section 5. We show that
polynomial size strategies can be guaranteed for games with Muller condition
where the collection of accepting (or winning) loops in the game graph satisfies
additional restrictions. We consider two such restrictions: that these loops form
a chain (say of length k), and that the system of accepting loops is closed up-
wards w.r.t, to set inclusion, containing say k minimal loops. The main result
states that (for game graphs with n nodes) the polynomial n ~ provides both an
upper and a lower bound for the size of winning strategies in these two cases.
In Section 5 we also show that in general games with Muller winning condition
may require an exponential memory. In Section 6 we consider Rabin and Streett
conditions. We develop a proof technique to show that games with Rabin condi-
tion can be won by player 0 with a memoryless strategy (earlier proved by e.g.
[Em85], [EJ91], [Kla94]). Subsequently we show that games with Streett condi-
tion may require a memory of exponential size. We conclude with some open
questions.

I thank Wolfgang Thomas for many helpful discussions during the prepara-
tion of this paper.

241

2 Def init ions and Prel iminaries

For the t reatment of infinite games, it is convenient to consider a type of "w-
automaton" introduced by McNaughton [McN93]. Since acceptance (and win-
ning condition) depends only on visits of states, we abstract from the labels of
transitions; moreover, each state is associated with just one of the two players
(whose turn it is to make the next move). We use the following set-up:

A finite-slate game is given by a bipartite finite directed graph G and a
"winning condition". The idea is that two players, called player 0 and player
1, are moving a token alternatively from vertex to vertex along edges in the
game graph. A game graph is presented in the form G -- (Q, Q0, Q1, E) with
Q = Q0 t~ Q1 and E C_ (Q0 x Q1) U (Q1 x Q0). Qi is the set of vertices where
it is the turn of player i to move the token. Each vertex of the game graph has
at least one outgoing edge. In graphical representations of game graphs we use
circles for nodes in Q0 and squares for those in Qx.

A play ~r is an infinite sequence of nodes from Q visited by the token in
successive moves, i.e., a sequence 7r E Q~ with (Tr[i], ~r[i + 1]) E E for all i. A
finite sequence over Q with this property is called partial play. For each play we
declare a winner by a winning (or accepting) condition Ace : Q~ ~ {0, 1} that
maps a play ~r to i iff the play 7r is won by player i. So a game F is given by a
pair F -- (G, Acc).

The games we want to discuss here are Muller games, Rabin games, and
Streett games (referring to the analogous acceptance conditions for w-automata,
cf. [Tho90]). These games are characterized by special winning conditions. A
Muller condition is induced by a system ~" C 2 Q of sets of nodes in the corre-
sponding game graph, and the condition Ace defined by

Acc(lr) = 0 r Inf(Tr) E Y:

where Inf(Ir) is the set of nodes visited infinitely often during the play ~r. We
call the sets in ~" positive loops (assuming without loss of generality these sets
really form loops in the game graph). A Rabin condition is given by a system

_C 2 Q x 2 Q, and the function Acc defined by Acc(~r) = 0 iff

3 (L ,U) E /2 s.t. Inf(~r) n L = O A Inf(~r) n U T~O

The Streett condition is dual to the Rabin condition in the sense that a play
7r is won by player 0 in a Rabin game iff ~r is accepted for player 1 in the
corresponding Streett game. So the Streett acceptance condition is given by a
sys tem/2 C 2 Q • 2 Q where the function Ace is defined by Acc(Ir) = 0 iff

V(L ,U) E /2: Inf(Tc) n U r --~ Inf(~r) n L r

A strategy for player i in the game F is a function which associates with a partial
play ending in Qi a node in Ql-i .W.l .o.g. a strategy may be defined as a partial
function ~ : Q*Qi ~ Q l - i with c~(pl , . . . ,pk) = pk+l such that (Pk,Pk+l) E E.
The strategy ~r is a winning strategy if, for any choice of moves of player 1 - i,

242

it induces a play won by player i. If a winning strategy for player i in the game
F exists we say player i wins F.

A strategy uses a partial play for deciding what will be the next move. Biichi
and Landweber showed that finite automata (with fixed finite memory of partial
plays) are sufficient to realize winning strategies for games on finite graphs (cf.
[BL69]), i.e. the strategies can be built up by the game graph and this additional
memory M providing each node of the graph with the information necessary for
choosing the next move. To realize the strategy in terms of graphs we use a notion
of strategy graph that is equivalent to using finite automata with output, but
has the advantage that the underlying structure of the game graph is preserved.
So a strategy ~ for player i with memory M in T' = (G, Acc) can be realized as
a s~rategy graph 9/~ = (Qo, Eo) with

(a) Qo = Q • M
(b) V(q,m) (q E Qi --* 31 (q',ml)[(q, qO E E A ((q,m), (q',m')) E Eo])

(For all pairs of a vertex q in Qi and a memory content m the new vertex qt
and updated memory content rn ~ are unique.)

(c) V(q,m) V (q,q~) E E [q E Ql-i --* 31m~((q,m), (q~,ml)) E Ea]
(For all pairs of a vertex q in Ql-i and a memory content m, and for all
choices of q~ as successor of q in G the updated memory content m t is uniquely
given.)

We call a strategy for player i no-memory if no additional memory is required,
i.e. the strategy graph can be achieved by deleting all but one outgoing edges of
the nodes in Qi of the game graph.

If we are interested only in the first components of states in the strategy
graph we will use the projection P r l ((q ,m)) . We use the same notation for
the projection on plays and sets. For a play ~r = (p~, m~) (P2, m2) , . . , in the
strategy graph we write Prl(Tr) instead of Prl((pl, ml)) Prl((p2, m2)), . . , and
analogously, for sets T of nodes, Prl(T) instead of {Prl(q)l q E T}.

3 B a s i c s t r a t e g i e s a n d t h e i r c o m p o s i t i o n

Many strategies are obtained in a simple way by composing simpler strategies.
In this section we explain the composition of strategy graphs and define some
basic strategies to be used later.

Assume we have two strategy graphs 92~ 1 = (Qol, Eol) and P2~ 2 = (Qa2, Eo~)
(realizing strategies for player i) in a game on the graph G = (Q, Q0, Q1, E).
We get the strategy graph for the strategy a "Play first strategy glo 1 and then
92~2" by the following modifications in the strategy graphs P2o 1 and P2o 2 : for all
nodes q E Qol with Pr~(q) E Pr~(Q~2) remove q and all its outgoing edges,
and replace any edge (p,q) E E1 by an edge (p,q') for some q' E Qo2 with
Pr~(q) = Pr~(q'). To meet condition c) for strategy graphs we may have to
add some edges: If there are nodes p, q E Prl(Qal U Qa2), p E Ql - i , an edge
(p, q) E E, and a node pt E Qal u Qo~ such that for all edges (p', q') E Eo we

243

have Prl(p') = p ~ Prl(q') # q then we add an edge (p', q') for an arbitrary
node q' E Q~I u Qo2 with Prl(q') ~ q.

Let us give some basic strategies that we will use later for composing new
ones. Here we refer to a give set T _ Q equipped with a "rank function" (in
our case a map into IN). The strategies are "Avoid T" (or "Keep out of T") and
"Decrease the rank" (as introduced by Gurevich and Harrington in [GH82]).

To explain this in more detail we follow Zielonka [Zie94] and define an / - t r ap
as a s e t M C Q with the properties Vp E Q i M M V(p,p') E E p' E M and
Vp E Q l - i M M 3(p, p') E E p' E M. Player i cannot leave M and player 1 - i
cannot be forced to do so. If M is a 1 - i-trap we can construct a strategy graph
for player i to avoid nodes in Q \ M. For every node p in M M Qi there is an edge
ep E E that does not leave M. So we get the strategy graph for "Avoid Q \ M"
by deleting for all p E Qi the outgoing edges except e v.

The standard way to fix the rank in the definition of "Decrease" the following
sets Ui, which collect the states of Q from which player 0 can force a visit within
i steps:

U1 = {p E Qo I 3(p, q) E E q E T} U {p E QI [V(p, q) E E q E T}

Ui+x = Ui U {p E Oo I 3(p,q) E E q E Ui} U {p E 011 V(P,q) E E q e U~(T)}.

Let rank(p)= r if p E Ur \ Ur-1. For p E Qi let ep = (p,q) be an edge with
rank(p) > rank(q). We get the strategy graph for "Decrease the rank" for player
i by deleting all edges but ep E E for p E Qi.

We shall apply the above construction only in cases where the result is indeed
a strategy graph (i.e. that for any node an outgoing edge exists).

In the following lemmas we describe a special usage of the strategies "Avoid"
and "Decrease".

Obviously the increasing sequence (Ui) becomes constant at some k since the
game graph is finite. We will denote this Uk by Force(T).

L e m m a 1. (a) For every node in Force(T) player 0 has a no-memory strategy
("Decrease the rank") to force the token into T.

(b) For every node in Q \ Force(T) player 1 has a no-memory strategy to avoid
T ("Avoid Force(T)").

The proof is easy and rests on the fact that for each node in Force(T) the
rank will decrease until T is reached and that Q \ Force(T) is a 0-trap.

To compose other strategies we introduce sub-graphs and sub-games. For a
set M _C Q let GM = (M , E N (M • M)) be the sub-graph induced by M.
For M C Q we define LeaveG(M) to be the set of targets of transitions in G
which player 1 can choose for leaving M, i.e. LeaveG(i) = {q E Q \ M I 3p E
M M Q1 (p, q) E E}. If the game graph is clear we omit the index G.

Assuming player 0 has a winning strategy for the game (GM, Ace), player 1
can avoid loosing only by moving the token to a node in Leave(M). We indicate
this situation by saying that Leave(M) is "weakly forced" by player 0 (just
disregarding the trivial case that the play remains in M).

244

Formally, for Leave(M) ~ ~ we will define when T can be "weakly forced"
by player 0 from nodes in M. Let

Vo = T,

Wi+l = Force(Vi),

(*) Vi+l = Wi+l U U { M C_ Q I Leave(M) C_ Wi+l A player 0 wins (GM, Acc)}.

Again the sequence (Wi) is increasing and becomes constant at some k, and we
write WForce(T) for such Wk.

L e m m a 2 . (a) For every node in WForce(T) player 0 has a strategy to weakly
force the token into T.

(b) For every node in O \ WForce(T) player I has a no-memory strategy to avoid
T.

Proof. For (a) let p E WForce(T). For a node in Wi \ ~ - 1 player 0 has a no-
memory strategy cri to force the token into k~-i as stated in Lemma 1. And for
a node in ~ \ Wi we have a set M and a winning strategy cr~ in (GM, Acc) such
that finally Wi is reached or player 0 will win the play by staying in the subset
M. We achieve a strategy for player 0 to force the token weakly into T by the
strategy "Use first ~ri+l, then c~, and then cri" which is composed as explained
above, and which uses the the union of memories used by the strategies for the
corresponding sub-games (GM, Acc)in (*).

For (b), Q \ WForce(T) is a 0-trap, so the no-memory strategy for player 1
to avoid T can be introduced as in Lemma 1: "Avoid nodes in WForce(T)". [:]

For M C_ Q we will write ForceM(T), resp. WForceM(T), to indicate that
the token can be forced (weakly forced, resp.) into T in the sub-game (GM, Acc)
induced by M.

4 U p p e r b o u n d s f o r s t r a t e g i e s i n M u l l e r g a m e s

T h e o r e m 3 . (a) In a finite-state game (over a set of n states) with Muller win-
ning condition where the positive loops form a chain of length k (by set
inclusion), player 0 has a winning strategy of size n k if he wins.

(b) In the games of (a), player 1 has a no-memory strategy if he wins.

Proof. The idea for part (a) is to use a memory M = F1 U x . . . • Fk where the
Fi are the " positive loops" (in the specified set ~ of subsets of Q). A memory-
entry (p l , . . . , p k) indicates that Pi is the momentary goal to be reached in Fi.
We use here a hierarchy of goals: The goals Pi ~ Fi are used as a means to reach
a goal pi+l E Fi+l by weakly forcing it.

Formally, we build the desired polynomial size strategy inductively starting
with the minimal positive loop in the given chain of positive loops.

Case k = 1: Let P = (p l , . . . , p m) be a permutation of the nodes in F1. In
this permutat ion we call Pi+l the P-successor of pi and Pl the P-successor of

245

pro. We determine for each Pi the set ForceFl(pi) which gives us a no-memory
strategy for nodes in the set to force the token into Pi. If q is the P-successor of
p in the permutat ion, then p E ForceF~ (q) must hold. Otherwise player 1 has a
no-memory strategy to win in GEl by avoiding q (see part (b)). So we have for
a node p a no-memory strategy aq to force the token to its P-successor q. Hence
for the winning strategy composed by executing these strategies one after the
other (execute aq after ap if q is the P-successor of p) a memory of size [Fll is
sufficient.

Case k > 1: Again we use a permutat ion P = (p l , - . . ,pro) of the nodes in Fk.
For each node q E Fk we determine the set WForceFk (q). For the P-successor q
of p, p E WForceFk (q) must hold. Let aq be the strategy for weakly forcing the
token from p to q using a memory Mq By the induction hypothesis we have that
for all gq the memory size IMql <_ n Ir The desired strategy ~ for player 0 uses
~q after Crp if q is the P-successor of p. The memory M used in c~ is the union of
memories used in ~q for q E Fk. Since [Fk[_< n holds composing the strategies
yields a strategy with a memory of size _< n k.

Remark. If Leave(Fi) = 0 and a is a winning strategy for GF~ then ~ is also a
winning strategy in G. If Leave(Fi) :~ @ this is only a "local" strategy and player
1 has a no-memory strategy to avoid loosing in Fi by leaving Fi.

For part (b) we show that if the above construction does not yield a strategy
for player 0 the opponent has a no-memory winning strategy. Assuming that
our construction did not give a winning strategy for player 0 there must exist
p,q E Fk with p ~ WForceFk(q). For all j < k Leave(Fj) ~ 0 or player 1 has a
no-memory winning strategy in GF~. We distinguish two cases:
i) There is no Fr C_ Fk \ WForce(q): Then the winning strategy for player 1
is:" Avoid WForceFk (q)". Using this no-memory strategy player 1 wins since no
set Fi E .T is a subset of Fk \ WForceFk (q).
ii) F~ is maximal positive loop in Fk \ WForceFk (q): Here an arbitrary strategy
"Avoid WForceFk (q)" is not sufficient since player 1 could not ensure that Fi
Inf(~) for i ~ r. So we construct a special Avoid strategy:

This Avoid strategy is composed from three components, an arbitrary Avoid
strategy to avoid nodes in Fk\F~, a strategy to leave loops Fj with s < j < r, and
a no-memory winning strategy for player 1 in the subgame induced by F8 where
F~ is the maximal positive loop F8 C F~ such that player 1 has a no-memory
strategy in (GF., Acc) (if such an Fs exists).

The last strategy guarantees that player 0 cannot win in loops Fj with j < s,
the "Leave-strategy" guarantees the same for loops Fj with s < j <_ r, and the
first mentioned Avoid strategy does it for loops Fj with j > r. []

In the second part of this section we consider a modified situation, where
the positive loops do not necessarily form a chain. A certain fixed number k of
minimal positive loops is allowed, and any loop extending (by set inclusion) a
positive loop is again positive. On the other hand, above any positive loop there
are only loops which are again positive. We call this subclass of Muller games

246

M~. This notation is motivated by Landweber's Theorem: A regular w-language
L is in the Borel class G6 iff it is recognizable by a Muller automaton with a
system of accepting sets Fi which is superset closed (see [Lan69] or [Tho90]).

T h e o r e m 4. (a) In a finite stale game F E M6 given with a Muller condition
having precisely k minimal positive loops and a game graph G with n nodes,
player 0 wins by a strategy of size n k if he wins at all.

(b) In a finite state game of (a) player 1 has a no-memory winning strategy if
he wins.

C o r o l l a r y 5. Player I has a no-memory strategy in Muller games with a system
of superset closed accepting sets (since the number of minimal positive loops is
always finite).

Proof of Theorem. For the proof of part (a) we give an algorithm for the con-
struction of a winning strategy for player 0. If the algorithm produces a winning

k strategy for player 0 then it is one of size YIi=1 IFil where F 1 , . . . , F~ are the min-
imal positive loops. Otherwise we can construct a winning strategy for player 1.
Again the idea is to use a memory M = F1 x ..- x F~ for minimal positive loops
Fi with (P l , . . - ,Pk) indicating that Pi is the momentary goal in Fi. Note that
player 0 has to ensure only that one of these Fi sets is included in Inf(~r). It is
not important which other nodes are visited infinitely often since the system 9 c
is superset closed.

Construction of a polynomial size strategy
Let I = {1 , . . . , k}. For all m C XiezFi determine-Force(T,~) where Tm is the
set of nodes in the vector m. If [-JicI Fi ~: Force(Tin) then there is a node p E Fj
from which player 1 has a no-memory strategy to avoid Tin. Delete j from I
and repeat this until [.Jiel Fi C Force(T,,). W.l.o.g. we assume that we were
successful for I = { 1 , . . . , k } (otherwise, as we shall explain later, we get an
even simpler strategy). Then for every m we have a no-memory strategy ~rm to
force the token into Tm from nodes in Force(Tin). Let Pi = (Pi,1,. . . ,Pi,k,) be
a permutation of the nodes in Fi and m = (q l , . . . , qk) be a memory content.
Then player 0 uses the no-memory strategy am until a node ql in T,~ is reached.
The new memory content is m' = (q I , . . . , q i - l ,q~ ,q i+~, . . . , qk) if q~ is the Pi-
successor of qi in the permutation of Fi and player 0 uses the strategy Crrn, until
another momentary goal is reached.

This yields obviously a winning strategy for player 0. The size of the memory
used is 1"[~=1 [Fi[. (Therefore the strategy would be simpler for a smaller set I .)
For part (b) our aim is to construct a sequence f - ~
of sets Ri that are 0-traps and do not include a
complete set Fj for j < i but include at least
one node from Fi. (R/ may include a set Fj with "-"
j > i .)
The sequence of 0-traps will provide player 1 with a sequence of no-memory
strategies with which (executing one after the other) he wins the game.

In more detail, assume that by (a) we did not find a winning strategy
for player 0. W.l.o.g. we assume the indexes are deleted from I in the order

247

k, k - 1 , . . . , 1. In every step there is a mj E XiexjFi and a q E ~JieIj Fi with

q ~ Force(T,~j), Ij = { 1 , . . . , j } . Let Rj = Q \ Force(T,,). Let anj be "Avoid
Force(Tmj)". So the composed strategy for player 1 is: "execute (rn~, . . . , c~nk in
this order".

This is a winning strategy since staying in Rj does not allow player 0 to
win in sets Fi with i < j . At least one node in Fi is in Ri+l. So player 0 has
to enter Ri+l if he tries to win by exhausting a positive loop Fi. But finally
having arrived in R~, player 1 can ensure that no positive loop will be exhausted
in Inf(Tc). []

5 L o w e r b o u n d s f o r s t r a t e g i e s i n M u l l e r g a m e s

T h e o r e m 6 . There is a family of finite-state games Fk, where Fk is given with a
Muller winning condition consisting of a chain of positive loops of length k, such
that player 0 wins Fk, however only by winning strategies of size n n(k) where n
is the number of states in Fk.

Proof. Consider a game graph Gk, built up from k different subgraphs, here
called modules, of the following kind:
Each module Mi has one node qi in Q0 and nodes
Pi,1, . . . ,Pi,n~ in Q1. For all Pi,j there exists an edge
(qi, Pi,j) and an edge (pi,j, q~) to the first module M1.
For the node pi,1 there is an edge (pi,1, qi+l) to the
next module Mi+l (if there is one in Gn). We denote
by Pj the nodes in the module Mj (including qj).
For k = 3 we get the following graph:

Module M i

' ~ Ml

Mi+l i i

The Muller condition is given by k positive loops, each of them defined by
i

= U _-I
The core of the proof is by the following lemma:

L e m m a 7. Every winning strategy for player 0 iu the game (Gk, Ace) (composed
from modules Mi as given above with nl nodes in Q1) has at least a memory of
size I] =1 hi.

The proof of Lemma 7 is done by induction on the memory used in the sub-
games (Gi,Acc), and rests on the fact that the strategy graph for (Gi+l,Aec)
has to contain ni+l copies of the strategy graph for (Gi, Ace).

To finish the proof of Theorem 6, assume that the game graph G~ is con-
structed as above. We take a module M1 with nl = 2 k nodes in Q1, and in

248

general Mi with 2 ~+l-i nodes in Q1- So the graph Gk has n < 2nl + k < 3nx
nodes since k < log(n 0. Hence using the lemma we have

k k nl k 1-~ nl . nlk_ 1 1
[MI = 1-~ ni ,~ ~ - = 2k+l = ~ �9 n ~(k)

i = 1 i = 1 []

We use the same idea for Muller games with superset closed acceptance sets.

T h e o r e m 8 . There is a family of games Fk �9 M~, where Fk is given with a
Muller winning condition consisting of k minimal positive loops, such that player
0 wins Fk, however only by winning strategies of size n~(k) where n is the number
of nodes in Fk.

Proof. We use modules as before which are connected in a modified way as
indicated in the following figure (again for k = 3). There are additional edges in
each inodule: for all Pi,j and all ql there is an edge (Pi,/, qz).

M1 '[" M2 " "~ ~ M3

The Muller condition is given by k minimal positive loops each defined by Fi = Pi
and all possible unions of different Fi sets, i.e.

Z = {F[F= U p' ' I C { 1 , . . . , / } } .
iEI

As before it is easy to show:

L e m m a 9 . Every winning strategy for player 0 in the game Gk has at least a
k memory of size YIi=l ni

The proof of the theorem is now as in the preceeding case. []

Le us finally show an exponential lower bound for strategies in unrestricted
Muller games. Define the games Fk with modules as in Theorem 6, where each
module is of size 3:

249

T h e o r e m 10. Player 0 wins I~k, and any finite state winning strategy of player
0 has to use at least a memory of size 2 o(n) i fn is the number of vertices in Gk.

Proof. An application of Lemma 7 shows that we need a memory of size 2 k,
and since n = 3k, we have]M I = 2 n/~. []

Let us remark that this lower bound involves only games whose winning
condition consists of a number of positive loops that increases linearly in the size
of the game graph. This is an improvement on a result of S. Seibert [Sei95] which
shows the above theorem using example games which involve Muller conditions
of exponential size in n.

6 R a b i n a n d S t r e e t t g a m e s

In the previous sections we examined Muller games. Now we want to show some
upper and lower bounds on strategies for Rabin and Streett games. It is known
that games with Rabin winning condition allow memoryless winning strategies
for player 0 ([Em85], [Kla94], IMPS95]). We reprove the result here in a new form
and show that the opponent may have to use memory of exponential size. (This
is in contrast to the restricted "Rabin chain condition" or "parity condition",
where the respective winner always has a no-memory winning strategy [EJ91],
[Tho95].)

T h e o r e m l l . (a) In a finite-state game with Rabin winning condition, player
0 has a no-memory strategy if he wins.

(b) The opponent may have to use a strategy with memory if he wins (in fact, a
strategy with memory of exponential size in the size of the game graph).

C o r o l l a r y 1 2 . In a finite-state game with Streelt winning condition, player 1
has a no-memory strategy if he wins, whereas player 0 may have to use a strategy
with memory of exponential size.

For the proof of a) we assume that player 0 has a winning strategy with mem-
ory in the Rabin game and reduce it in several steps to a no-memory strategy.
Each step uses Lemma 13 below that guarantees that at least one node does not
need the additional memory.
The reduction of the memory is based on the
following idea: We consider a strongly connected
component C in the strategy graph for player 0
that does not have any outgoing edges. Since the
strategy graph is assumed to be a winning strat-
egy for player 0, the set Pr l (C) must be compat-
ible with an accepting pair (L, U), i.e. we have
Pr l (C) n L = 0 and Pr l (C) n U # 0.

Since it is sufficient to visit one of the nodes in Pr l (C) n U infinitely often and
there is no escape from C only one node with this first component is necessary.

250

By disregarding these nodes in C we get other smaller components (in the figure:
C') to which we apply the same elimination procedure if leaving the component
is only possible by visiting a node in P r l (C) N U.

Let N C Q. A strongly connected component C is maximal w.r.t. N if there
is no strongly connected component C' D C such that C' N N = 0. We call a
maximal strongly connected component C a latest component if all paths from
C to other maximal components include nodes from N.

L e m m a 13 [R e d u c t i o n L e m m a] . Let Pla be the graph of a winning strategy
for player 0 in a Rabin game with the accepting pairs (L1, U1),.. . , (Lk, Uk). Let
N C_ Qo. Furthermore le~ C be a latest component in Pla such that

- for every path S from C to another component C I there is a pair (L, U) with
Prl(S) N L = 0 A Prl(S) N N N U r 0;

- if there is a path from C to another maximal component C ~ then there is a
path from C I to C.

Then there is a node (q,m) E C that can be replaced by the node q with some
edges to and from nodes in 9la, all nodes (q, m') can be removed from Pla, and
the resulting strategy graph determines again a winning strategy.

Proof of the Reduction Lemma. Assume the requirements are met. Since P/a is
a winning strategy, P r l (C) must be a set of vertices compatible with a pair
(Li, Ui) for some i 6 { 1 , . . . , k}. Let Iv be the set of indices of pairs compatible
with C,

Iv = {i ILi A Prl(C) = O A Ui A Prl(C) • 0}

Since there has to be at least one non-empty set Ui with i E Iv the set N ' =
[Jie~c Ui N Prl(C) is not empty.

Now we get a new strategy graph P/'~ by the following steps: For any q E N'
add q to P/o. Remove all nodes (q, m') from ~[o and replace all edges to nodes
(q, m') by edges to q.

It is easy to check that ?/'~ is still a winning strategy for player 0 in the game.
[]

Proof of Theorem 11. For a) assume we have a winning strategy graph 9/a for
the Rabin game. Let C be a latest component of 9/o. In the first step set N = 0.
Using the Reduction Lemma we find nodes in C that can be replaced by "no-
memory nodes". We add the no-memory nodes to N. If C is not completely
converted into no-memory nodes then C without the reduced nodes consists of
several strongly connected components C1 , . . .Ck . By construction of N every
path from Ci to Cj through N is compatible with an accepting pair. Hence
we can (recursively) apply the Reduction Lemma until no components of non-
reduced nodes exist. So C (and finally P/a) are completely reduced such that we
get a no-memory strategy.

For b) it suffices to show that player 0 has to use a strategy of exponential
size in a Streett game. The idea is to give a family of Streett games that is
equivalent to the family of Muller games of Theorem 10 above, and then apply
that theorem.

251.

So we take the same game graph Gk as is Theorem 10 and the Streett winning
condition given by

i, i A - l e Q l ~ ({i}, {i + l}) e /2 A ({i + l}, {i}) e~2

using the numbering of states as in the figure of Theorem 10.
It is easy to show that player 0 wins a play ~r in the Muller game iff he

wins 7r in the Streett game. Thus the games are equivalent and an application
of Theorem 10 shows that a winning strategy uses at least a memory of size
2 k _= 2lQI/3. []

7 Conclusion

The games allowing polynomial-size winning strategies as considered above show
a common feature, namely that only one or a fixed number of winning loops in
a game graph are minimal w.r.t, set inclusion. Present work is directed to a
general result which establishes polynomial-size strategies for any game with
this property.

Concerning arbi t rary "superset closed" winning conditions, it remains to be
analysed whether polynomial-size strategies are possible without a bound k on
the number of minimal positive loops.

In this paper we gave some algorithms for effective construction of strategies.
But these constructions are by no means efficient. Indeed, the given constructions
require all exponential t ime in the size of the game graph. So an interesting
question is to find classes of games for which the construction of strategies is
polynomial, not only the size of the resulting strategy.

References

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifica-
tions of reactive systems. In G. Ausiello et al., editor, Automata, Languages,
and Programming, volume 372 of LNCS, pages 1 - 17, Berlin, Heidelberg,
New York, 1989. Springer-Verlag.

[BL69] J .R . Biichi and L. H. Landweber. Solving sequential conditions by finite-
state strategies. Trans. Amer. Math. Soc., 138:295 - 311, 1969.

[Bfi83] J .R. Bfichi. State strategies for games in F~6 r G6~. J. Symb. Logic, 48:1171
- 1198, 1983.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy.
In Proc. 32nd IEEE Syrup. on the Foundations of Computing, pages 368 -
377, 1991.

[Em85] E.A. Emerson. Automat, tableaux, and temporal logics. In G. Goos and
J. Hartmanis, editors, Logics of Programs, volume 803 of LNCS, pages 79 -
88, Berlin, Heidelberg, New York, 1985. Springer-Verlag.
Y. Gurevich and L. Harrinton. Trees, automata, and games. In Proc 14th
ACM Syrup. on the Theory of computing, pages 60 -65, San Fancisco, 1982.
N. Klarlund. Progress measures, immediate determinacy, and a subset con-
struction for tree automata. Ann. Pure and Appl. Math., 69:243 - 268, 1994.

[GH82]

[Kla94]

252

[Lan69] L .H. Landweber. Decision problems for w-automata. MathematicalSystems
Theory, 3:376 - 384, 1969.

[McN93] R. McNaughton. Infinite games played on infinite graphs. Ann. Pure Appl
Logic, 65:149 - 184, 1993.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed-systems. In Ernst W. Mayr and Claude Puech, editors, STACS 95,
pages 229 - 242, Berlin, Heidelberg, New-York, 1995. Springer-Verlag.

[PR89] A. Pnueli and R. Rosner. On the systhesis of a reactive module. In Proc.
16th ACM Sympos. on Principles of Prog. Lang., pages 179 - 190, Austin,
1989.

[Sei95] S. Seibert. PhD thesis, University of Kiel, 1995. (in preparation).
[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B, chapter 4, pages 131-191.
North-Holland, Amsterdam, 1990.

[Tho95] W. Thomas. On effective strategies in infinite games. In Ernst W. Mayr and
Claude Puech, editors, STA CS 95, pages 1 - 13, Berlin, Heidelberg, New-York,
1995. Springer-Verlag.

[Zie94] W. Zielonka. Infinite games on finitely coloured graphs with some applica-
tions. Manuscript, 1994.

