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Abstract.  In this paper we relate the Rabin Index of an w-language to 
the complexity of translation amongst automata, strategies for two-person 
regular games, and the complexity of controller-synthesis and verification of 
finite state systems, via a new construction to transform Rabin automata to 
Chain automata. The Rabin Index is the minimum number of pairs required 
to realize the language as a deterministic Rabin automaton (DRA), and is 
a measure of the inherent complexity of the w-language. Chain automata 
are a special kind of Rabin automata where the sets comprising the accep- 
tance condition form a chain. Our main construction translates a DRA with 
n states and h pairs to a deterministic chain automaton (DCA) with n.h k 
states, where k is the Rabin Index of the language. Using this construction, 
we can transform a DRA into a minimum-pair DRA or a minimum-pair 
deterministic Streett automaton (DSA), each with n.h ~ states. Using a sim- 
ple correspondence between tree automata (TA) and games, we extend the 
constructions to translate between nondeterministic Rabin and Streett TA 
while simultaneously reducing the number of pairs; for the class of "trim" 
deterministic Rabin TA our construction gives a minimum-index determin- 
istic Chain TA, or a minimum-pair DRTA or DSTA, each with n.h k states, 
where k is RI of the tree-language. 
Using these results, we obtain upper bounds on the memory required to 
implement strategies in infinite games. In particular, the amount of memory 
required in a game presented as a DRA, or DSA, is bounded by nh k , where 
k is the RI of the game language. 

1 Introduction 

Determinis t ic  w-au tomata  have varying levels of  complexi ty  depending on the ac- 
ceptance condition. A set of states is an accepting set if  it  satisfies the acceptance 
condit ion.  Determinist ic  Buchi A u t o m a t a  are the simplest  w-au tomata .  They have 
the special proper ty  tha t  every set which contains an accepting set is also accept- 
ing. For determinist ic  w-au tomata  with more  general acceptance condit ion (such 
as Rabin  or Street t  acceptance condition),  this  is no longer true. In general, a set 
may  be accepting, a set containing tha t  not  accepting, but  a set containing tha t  
in turn  accepting, and so on. The number  of  a l ternat ions  between accepting and 
non-accepting sets is an indicat ion of the inherent  complexi ty  in the w-automata ,  
and has a firm topological basis [21, 9, 11, 2]. I t  is also closely related to the Rabin 
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Index--the minimum number of pairs required for a deterministic Rabin automata 
(DRA) to accept the same language. Chain automata (a syntactic variant of Parity 
automata [5, 6]) are of fundamental interest because they capture the alternation 
in the structure of their acceptance condition. A deterministic Chain automaton 
can be trivially complemented, and admits a straightforward minimization in the 
number of pairs to the Rabin Index of the language it accepts. The chain accep- 
tance condition is also significant because/~-calculus model checking is polynomially 
equivalent to chain TA-emptiness [6]. 

Our main construction converts a DRA with n states and h pairs, into a deter- 
ministic Chain automaton with nh k states and k pairs where k is the Rabin Index of 
the language. Using this construction, it becomes possible to transform a determin- 
istic Rabin or Streett w-automaton with n states and h pairs into a minimum-pair 
deterministic Rabin or Streett automaton with nh k states. Our construction us- 
ing Chain automata also simplifies the construction in [11]. By employing a simple 
correspondence between tree-automata and w-automata, we show that a "trim" de- 
terministic Rabin tree automaton or Streett tree automaton can be converted to a 
minimum-pair deterministic chain tree automaton (DCTA), DRTA, or DSTA with 
the same complexity as before. 

Chain automata are also of special significance in infinite two-person games. A 
game is played by two players on an w-automaton (also called the Game Automaton) 
with a certain game language. In general, due to the infinite nature of the game, 
the strategies must be functions of the states that have been visited in the past. 
But for chain automata, both players have strategies that are functions of only the 
current state of the game (also called memory-less strategies) [5, 14, 20]. Using our 
construction, it is possible to get upper bounds on the amount of memory needed 
by the players to implement their strategies. In particular, in a game represented 
by a DRA or DSA, the winning player has a strategy which requires memory of 
size at most nh k, where k is Rabin Index of the game language. Since there is a 
close relationship between strategies and trees, our results also imply bounds on the 
"size" of regular trees accepted by tree automata. 

Our constructions have applications to the synthesis and verification of compo- 
sitional systems. In practice, hardware designs and protocols are conceived of as a 
system of interacting components. The Rabin Index of such compositional systems, 
the alternation complexity of their w-language, is often much lower than the num- 
ber of pairs they are syntactically specified with. Our constructions can be used 
to convert automata to the minimum-pair automata, providing a computational 
advantage when used in conjunction with algorithms that are exponential in the 
number of pairs. For example, deciding the controller synthesis problem is expo- 
nential in the number of pairs [4, 15]. Our results make the algorithm a function 
of the l~b in  Index--of practical importance when the Rabin Index is smaller than 
the number of pairs. Our pair minimization Mgorithms also have applications in the 
context of compositional verification. 

There have been two previously published algorithms to convert DRA to DCA. 
For a DRA with n states and h pairs, Carton's [1] construction gives a DCA with 
O(nh42h2) states. Emerson and Jutla I5] observe that an algorithm of Safra [t8] to 
convert DRA to DSA can be modified to yield a DCA with n.h h states. 

Section 2 presents our notation and definitions. In Section 3, we present our main 
contribution: the transformation from a DRA to a minimum-index DCA. In Section 
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4 we show how to convert a DRA or DSA into a minimum-pair DRA or DSA. 
In Section 5, we extend the constructions to TA by employing a correspondence 
between tree automata  and games. In Section 6, we discuss the relevance of our 
results to two-person games. In Section 7, we discuss the practical significance of 
the Rabin Index to the complexity of synthesis and verification. 

2 P r e l i m i n a r i e s  

2.1 w - a u t o m a t a  

An w-automaton [19] over a finite alphabet, 27, is ,4 = (T, 4), where T is a tran- 
sition structure and 4 is the acceptance condition. The transition structure is 
T = (Q, q0, ,U, 6) where Q is a finite set of states, q0 E Q is the initial state, 
and J : Q x ~U --~ Q is the transition function. For most of this paper we will be 
concerned with complete deterministic w-automata (DOA), i.e. J is a total function. 
The state transition graph (STG) is the directed graph on the vertex set Q denoted 
by the transition structure T. The transition function J defines the ,U-labeled edges. 

D e f i n i t i o n l .  A word ~r E L TM has the run ra E Q~, where to(0) = q0 and 
= ro( i  + 1). 

The infinity set of the run to ,  denoted i n f ( r o ) ,  is the set of states that are visited 
infinitely often in to. The acceptance condition r is a Boolean formula, where the 
Boolean variables are the states Q = (qt, . . . .  q~}- 

Def in i t i on  2. A Boolean formula is generated by the following rules 
1) qi ~ Q is a Boolean formula 
2) If 41,42 are Boolean formulae, then -'41, 4a V42,and 41 A42 are Boolean formulae. 

The truth of qi E ~, is determined by the run to. For C C_ Q define the assign- 
ment qi = t r u e  provided qi E C. Let 4[C] denote the truth value of 4 under this 
assignment. 

De f in i t l on3 .  The language generated by the w-automaton A = (T,4), denoted 
s is {~rlcr E L TM and 4[ in f ( ro ) ]  = t rue} .  

Def in i t i on  4. We define various types of Boolean formulae which are used to define 
acceptance criteria : 
1) A disjunctive formula (DF) is a disjunction of Boolean variables, i.e., 4 = 
qQ V . . .  V qik" 
2) A Rabin formula is 4 -" V~=x (Li A "(~i) )  where Li,  Ui, 1 < i < n are DF. 
3) A Streett formula is 4 = A~=t (Li  Y -,(Fi)) where Li ,  Ui, 1 < i < n are DF. 

A Buchi automaton (DBA) is A = (T, r where r is a disjunctive formula. A Rabin 
automaton (DRA) is defined by a Rabin formula and a Streett automaton (DSA) 
with a Streett formula. Since each DF identifies a set of states, the Buchi condition 
is often called the final states. The Rabin and Streett acceptance conditions are also 
referred to as a set of pa i r s  (Li, Ui) of subsets of states. Informally, a run ra in a 
DRA is accepting if for some pair, i n f ( r a )  "touches" Li and is contained in Ui: A 
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DRA may be complemented to yield a DSA (and vice-versa) on the same transition 
structure with the same number of pairs, by replacing each pair (Li, Ui) by (Ui, Li). 
Thus DSA and DRA are syntactic complements of each other. 

Remark. Our syntax for the Rabin and Streett condition differs from the standard 
definition in the literature, where a Rabin formula is Vn=l(Li ^ ~Ui); a run is 
accepting (for Rabin acceptance), if for some i, it visits Li (the GREEN states) 
infinitely often, but Ui (the RED states) only finitely often. Complementing Ui 
translates between the standard syntax and ours. 

2.2 R a b in  Index  and  Chain  a u t o m a t a  

Def in i t ionS.  The chain acceptance condition [20] is represented by a formula ~b = 
V~=I(FiA-.EI ) where Fi,Ei,1 < i < n are DF, and E1 C F1 C E2 C F2 C . . .  C 
E. c F.. 

A run in a chain automaton is accepting if for some i, it visits El finitely often 
and Fi infinitely often. In the traditional syntax of the P~bin condition, the chain 
condition is a particular case where the sets form a chain under set inclusion. 

For an c0-automaton A -- (T, ~b), define C to be the set of Strongly Connected 
Sets 3 (SCSs) of T. There is a partial order on C induced by set inclusion (C). 
A strongly connected set S is accep t ing  provided ~[S] = True, and r e j ec t i n g  
otherwise. The polarity of a SCS S is "+" if S is accepting, and "-" if S is rejecting. 

A chain  is a linearly ordered set $1 C S~ C -'- C Sin, where each Si is a SCS. 
In an alternating chain, the polarity of Si+l is opposite o f  5'/. The i n d e x  of an 
alternating chain of length m is [-~1- A positive (negative) chain is an alternating 
chain in which the polarity of the first set in the chain $1 is "+"(%").  The R a b l n  
Index  (RI) of a Deterministic w-automaton is the index of the longest positive 
chain. The S t r e e t t  I ndex  (SI) is the index of the longest negative chain. The 
difference between the SI and RI (and vice-versa) is at most one. 

Wagner [21] and Kaminski [9] showed that the RI (SI) is also the minimum 
number of pairs in a deterministic Rabin (Streett) automaton required to realize 
the same language. 

Figure I shows the SCSs of an w-automaton. An edge from i to j indicates that 
i C j .  The longest negative chain is (1, 2, 5, 6), and the longest positive chain is 
(4, 5, 6). Therefore, the RI and the SI are both 2. 

For an co-automaton A, we define the superse t  closed SCSs to be sup(A) - {c I 
the polarity o f c  is "+ ' ,  and if e C d, then the polarity of d is "+"}. In Figure 1, 
sup(A) = {6, 7, 8}. 

The superset closed sublanguage is supLan(A) = {a I i n f ( r . )  E sup(A)}. 
Given an w-automaton A = iT = (Q, qo, S, 5), ~b), a state q E Q is termed final  

provided every SCS C containing q is accepting. 
The terminology, final state, comes from BA where every SCS containing a final 

state is accepting; every accepting SCS is superset closed. Landweber [19] showed 
that the language of a DOA can be equivalently realized as a DBA if and only if 
every accepting SCS is superset closed. Therefore the class of languages accepted by 
DBA form a strict subset of the class of co-regular languages, and are contained in 

a C c_ Q is a SCS if there is a path in the STG between any two states of C 
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Fig. 1. Hasse Diagram of SCSs of an automaton 

the Borel class G~ [19] (the to-regular languages are the class of languages accepted 
by DRA or DSA). 

2.3 Tree  a u t o m a t a  and  G a m e s  

We consider finite automata on labeled, infinite binary trees 4. The set {0, 1}* can 
be viewed as the infinite binary tree, where the root node is the empty string ~ and 
each node T/has two successors: the 0-successor ~0 and the l-successor I}1 [4]. An 
infinite path through the tree is a sequence ~ E {0,1}% If E is a finite alphabet, a 
S-valued tree is a labeling t : {0, I}* -~ ,U. 

A finite automaton .A on infinite binary ~U-valued trees (henceforth tree automa- 
ton) is .A -- (T, ~), where T is a transition structure and ~b is the acceptance condi- 
tion. The transition structure is T - (Q, q0, ~U, 5) where Q is a finite set of states, 
q0 E Q is the initial state, and 5 : Q x ~U --~ Q x Q is the transition function. The 
acceptance condition is a Boolean formula over the states Q (as for to-automata). 

A run of .A on a ~U-valued tree t is a Q-valued tree rt : {0, I}* -~ Q, such that 
rt(e) - q0 and for all ~/E {0, I}*, 5(r:(r/),t(~})) = (rt(7/0), r:(r/l)). We say that .4 
accepts tree t provided in the run rt of t on ,4, for every infinite Q-labeled path a 
of rt, ~[inf(a)] = true. 

Using P~bin acceptance condition leads to Rabin Tree automata (RTA), and 
Streett acceptance condition to Streett Tree automaton (STA). 

Def in i t lon6 .  We say a TA .4 = iT  = (Q, q0 ,S , J ) , r  is t r i m  provided for every 
s E Q the TA ,4, = (T = (Q, s, S ,  J), ~) accepts some tree. 

There is a close relation between tree automata and two-person Gale-Stewart games. 

Def in i t ion  7. Given finite alphabets A and B, a regular two-person Gale-Stewart 
game is represented by an w-regular language/" C_ ( A • B) ~ (the game language) 
[19]. A single play of the game is as follows: player I picks some a0 E A, then I I  
picks some b0 E B, followed by I picking some al E A, and so on in turns. Player I 
wins if the resulting w-word (a0, b0)(a l, b t ) . . ,  is in P; otherwise I I  wins. A strategy 
for I is a function f : B* ~ A, indicating to I what to play next. A strategy for 

4 extension to k-ary trees is straightforward 
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I I  is similarly a function # : A + - r  B. We say that f is a winning strategy for I if 
every play that results from I playing according to f is a win for I. 

We call an w-automaton representing a game language F as above, a G a m e  Au- 
t o m a t o n .  A tree-automaton can be viewed as a game between two players: the 
E-player and the path-player (or {0, 1}-player). More formally, given a TA A = 
((Q, q0, 27, J), r define the corresponding game automaton as .,4' = ((Q, qo, zU', J'), 
r where ,U' = 27 x {0, 1}, and 5(q, ~r) -- (J'(q, (~, 0)), J'(q, (~, 1))). Similarly, given a 
deterministic game automaton on alphabet 27 • {0, 1}, a corresponding DTA can be 
inferred. Hence for a DTA the corresponding Game automaton (GA) is well-defined 
and unique and vice-versa. 

A S-valued tree accepted by a tree automaton can be viewed as a strategy for 
the ,U-player in the corresponding game automaton. Hence, Player I has a winning 
strategy in the game automaton iff the corresponding tree automaton has a non- 
empty language. Emerson [3] showed that every RTA with non-empty language 
accepts a tree that can be "embedded" in the automaton. It follows that in such an 
automaton the S-player has a strategy that is just a function from Q --+ S,  termed 
a memory-less strategy by McNaughton [14]. 

3 C o n v e r t i n g  D R A  t o  D e t e r m i n i s t i c  C h a i n  a u t o m a t a  

We first review some constructions from [11] to isolate the superset closed snblan- 
guage of Rabin automata and Streett automata. 

3.1 Isola t ing t h e  superse t  closed sublanguage  

Our basic constructions achieve the following: Given a deterministic automaton.A = 
(T, r we construct a deterministic automaton A' = (T', r and identify a subset of 
states S C_ Q' with the following properties: I) L(A'} = L(A} \ supLan(A), and 2) 
L((T', S)) = supLan(A) where (T', S / denotes the DBA on transition structure T' 
with final states S. We term this construction the exclusion construction; RabExcl 
is the exclusion construction for Rabin automata and StrExcl for Streett automata. 
R a b i n  a u t o m a t a  
We defined the notion of a final state in Section 2. We showed in [i0] how to 
determine in polynomial time if a state in a l%A is final. 

L e m m a  8 [11]. Given a DRA A, a SCS C is superset closed if and only i f C N F  ~s 
I~, where F is the set o/final states of the DRA. 

R A B I N  E X C L U S I O N  C O N S T R U C T I O N  (RabExcl) 
I N P U T :  DRA A = { T =  (Q, qo, S ,  6),r where r c o n s i s t s  
of h p a i r s  (Li, Ui). 
O U T P U T :  DRA A ' :  (T,r where r cons i s t s  of h p a i r s ,  (L} ,U ' ) :  (Li \  
F, U I \ F ) ,  and F is the soy of final states of A, 

L e m m a  9 [11]. RabExcl has the property that L(A') = L(A) \ supLan(A), and 
L((T, F)) = supLan(A), where (T, F) is a DBA with final states F. 
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Note that the superset closed sublanguage of a DRA can be isolated by identifying 
final states on the same transition structure as the DRA. 
S t r e e t t  A u t o m a t a  
Consider a DSA A = (T, r with h pairs. Without loss of generality we can assume 
Li Iq Ui = 0. Let .41 = (T, r denote the DSA with a single pair: the i th pair, 
(Li, Ui), of @. 

L e m m a  10 [11]. For DSA .41, a SCS C is superset closed if and only if Cf3Fi ~ O, 
where Fi is the set of final states of `4i. 

T h e o r e m  11 [11]. For a DSA .4, a SCS C is superset closed if and only ifCf3Fi ~: 
for each i, where Fi is the set of final states of .4i. 

The Streett exclusion construction is given below. The basic idea is to make h copies 
of the transition structure and direct the transitions from the states in Fi in the z ah 
copy to the corresponding states in the (i + 1) ' t  copy. 

S T R E E T T  E X C L U S I O N  C O N S T R U C T I O N  (StrExcl) 
INPUT: DSA .4 : ( T :  (Q, qo, E, 6),r .here r consists of 
h pairs (Li, Ui). 
O U T P U T :  DSA .4' = (T' = (Q', q~, S,  6'), r and S C Q' 
Let Fi denote the final states for the DSA .41 
Q ' = Q x { 1 , . . . , h ) ,  q~=(qo,1)  

(6(q,a),j) i f  q t Fj 
6'((q,j) ,a) = (6(q,a),j  + l) i f  q E Fj and j < h 

(J(q,a), 1) i f  q E Fh 
S = {(q,i)lq E Fs" and 1 < i < h}, r c o n s i s t s  of h +  1 p a i r s  (LI,U[), 
where 

L~ ~- {(q,J)lq qLi and I _<j < h}, 
Ul = {(q,j)]q E Ui and 1 < j < h},  and (L~+I, U~+I) = (~, S) .  

In contrast to the Rabin case, for DSA we have to expand the transition structure 
and add an extra pair (0, S) to exclude the superset closed language. 

From Theorem 11 it follows that: 

L e m m a l 2 .  StrExcl has the property that L(A')  - L(A) \ supLan(A) and 
supLan(`4) = L((T',  S)). ,4' has n.h states and h + 1 pairs, where n and h are 
respectively the number of states and pairs in A. 

From the properties of RabExcl and StrExcl it follows that: 

L e m m a  13. Given a DSA (DRA) A = (T, ~), and A '  = (T' ,  r obtained by apply- 
ing StrExcl ~abExcl )  on .4, supLan(.4) C supLan(~) .  

3.2  C o m p u t i n g  the  m i n i m u m - c h a i n - l e n g t h  D C A  

Using our constructions to isolate the superset closed sublanguage, we devise an 
algorithm to transform DRA to minimum-chain-length DCA. 

Given a DRA we successively apply complement, StrExcl, complement, and 
RabExcl until the language of the automaton is empty. In each iteration we re- 
duce the index of each positive chain by one. The number of iterations is bounded 
by the index of the longest positive chain--the RI of the language. 
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StrEzcl and RabExcl may be seen as reversing the polarity of the SCSs that 
are superset closed ("peels" them off). Therefore any positive chain ending in a 
superset closed SCS has index one lower after applying the exclusion construction. 
The outer SCSs, in alternating chains ending in rejecting SCSs, are peeled off in 
complemented form, i.e. after complementing the automaton. 

More formally, the construction is: 

INPUT: DRA ,4 = (7, r where r consists of h pairs 
i =  0;A0 =`4  
Repeat 

i = i + l ;  
1. `411 = ,4i-1 
2. (,412, Ei) = StrExcl(,4il ) 
3. A i s  = `4i2 
4. (,4i, Fi) = RabExcl(,413) 

until L(Ai) = $ 
Return DCA ((Qk, q0k, 2Y, J~), r where tb in chain form is 
~?l(E,) C ~?'(F,) C..,.  C ~,'(E~) C 7r, a(F0 C ... C ~r;'(Ek) C ~-'(Fk), where k is 
the RI of the language. 

"Complement" 
"Exclude supLan; expands Tr. Str." 
"Complement" 
"Exclude supLan" 

For example, in the automaton whose SCSs are represented in Figure 1, during 
the first iteration: in step 2 we pick up no SCSs, in step 4 we pick up 6,7, and 8. 
During the second iteration, in step 2 we pick up SCSs 3 and 5, and in step 4 we 
pick up 2 and 4. At this stage all the SCSs are of negative polarity and the language 
is empty. 

Each iteration involves a complement into a DSA (on the same transition struc- 
ture), StrExcl (expands the transition structure h-fold), complement into a DRA 
ion the same transition structure), and RabExcl ion the same transition structure). 

Notation: The automaton ,4 = iT = (Q, q0, s ~), r The automaton obtained 
after the i th iteration is ,41 = (7] = (Qi, q0,, 27, 6/), r where (it follows from Lemma 
14 that) Qi = Qi-t  • {1 , . . . ,  h}; after the k th iteration Qk -- Q x {1, . . . ,  h} h and 
the map lrl : Qk -+ Qi is the natural projection map. 

Before we prove the correctness of the construction we observe two preliminary 
lemmas. 

Lemma 14. In each iteration of the construction, the pair added in step 2 is re- 
dundant after step 4. 

Proof. StrExcl excluded the superset closed sublanguage at step 2, adding a pair 
(0 ,~) .  On complementing, this becomes a Rabin pair (El, Qi). Lemma 13, implies 
that the state set returned at step 4, Fi, contains El, i.e. Fi D El. In RabExcl Fi is 
deleted from each set in each pair, transforming the added Rabin pair (E/, Qi) to 
(1~, Qi \ F/)--a pair with empty language that can be deleted. D 

Hence at the end of each iteration we have exactly h pairs in `41. 

L e m m a l 5 .  Given ~ E ~ ,  0 < i < k, and q E Qi, q E inf(vi) if and only i f  for 
some s E Qk, s E inf(rk) and lri(s) = q, where rj is the run o[~ on `4j. 



261 

Proof Sketch. By induction on k - i. Observe tha t  StrExcl "copies" the transition 
structure, t3 

Theorem 16. Given a DRA .4 = (T = (Q, qo, ~ ,  6), r where qb has h pairs, the 
construction returns an equivalent DCA with n.h k states and chain length 2k (i.e., 
k pairs), where k is the RI  of the language. 

Proof sketch. Observe the following: 

1. L e m m a  13 implies tha t  r?1(E1) C ~r~'l(Fl) C ~r21(E2) C Ir~l(F~) C . . .  C 
r;1(Ek) C Ir~-l(Fk), i.e. form a chain. 

2. L e m m a  14 implies tha t  after k iterations in .4k, [Qk] = [Q] .hk - n.h k. 

From Lemmas  9, 12, and 13 it follows that:  

L e m m a l 7 .  For each i, 1 < i < k, L ( . 4 i - 1 )  = L(-41)UL( (Ti , (~EiA~i)  ) ), where 
k is the RI  of L(-4). 

Therefore from L e m m a  17 and Lemma  15 we have for each i, 1 < i < k, 

i 
L(A) = L( (7], r V V (  "~rT'CEj)Arr~ 1(Fj)) ) )  (1) 

j= l  

L e m m a  18. For each i, 0 < i < k - 1, the Rabin Index of.41 is one less than the 
Rabin Index .41-1. 

Proof sketch. Consider any positive chain in -4i-1. I t  either ends in an accepting 
( " + ' )  SCS or a rejecting ( . . . .  ) SCS. If  it ends in a "+"  SCS its polari ty is inverted 
in step 4, reducing the index of the chain by 1. 

Let the chain that  ends in a rejecting SCS be: . . .  + - + - .  In step 1 the chain 
reverses in polarity. After step 2 it is: . . .  - + - - .  After step 3 the chain again 
reverses in polarity. After step 4 the chain is: . . .  + - - - ,  and has index 1 lower. [] 

Since each iteration reduces the index of  each positive chain by 1, we have k - - t h e  
RI  of the language---iterations, before L(-4k) = 0; a t  this stage ~bk is unsatisfiable 
and can be deleted. 

Thus we get L(A) = L ( ( T k , V ~ = x ( - ' ~ j - I ( E j )  A l r ~ ' l ( F j ) ) ) ) .  The acceptance 
condition in chain form is: 

--r C lr~'l(Fx) C... C Ir~'l(Ek} C lr~'1(Fk) (2) 

[] 

Our t ransformation from DRA to DCA has complexi ty DR(n, h)-~DC(n.h k, k). 
Carton ' s  [1] t ransformation gives an equivalent DCA with nh42h= states. Emerson 
and Jut la  [5] suggest an adapta t ion  of a construction of Sa l t s  from [18] to con- 
vert a DRA to DSA, to t ransform DRA to DCA; they achieve a t ransformation 
DR(n, h) -~ DRC(n.h h, h). Our t ransformat ion is bet ter  when k < h and matches 
theirs in the worst case. 

Also, our construction is op t imum in the sense tha t  we cannot hope to get a 
t ransformation tha t  is polynomial  in k because: 
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1. There is an exponential lower bound on translating DSA to DRA [17]. We show 
in the next section that we can o b t i n  a transformation from DSA to DRA of 
the same complexity as for DRA to DCA. 

2. We showed in [11] that it is NP-hard to determine the RI of a language specified 
as a DRA or DSA. 

4 T r a n s l a t i n g  b e t w e e n  d i f f e r e n t  a u t o m a t a  

In this section we use the construction of Section 3 to translate a DRA or DSA into a 
minimum-pair DRA or DSA. We do this by exploiting the ease of complementation 
and chain-length minimization of DCA; and straightforward translation of DCA 
into DRA. 

DCA can be trivially transformed to DRA: each Chain pair (Ei, Fi) gets trans- 
formed to a Rabin pair ( F ,  Ei). 

Also, DCA can be trivially complemented. Given a DCA with h pairs (Ei, Fi), 
with chain E1 C F1 C E2 C F2 C . . .  C Eh C Fh, the complementary DCA has 
h + 1 pairs (0, Zz), (F1, E2),..., (Fh-1, Eh), (Fh, Q), where Q is the state set of the 
automaton. 

Furthermore, the chain length in a DCA can be easily minimized to yield an 
equivalent DCA on the same transition structure with c h i n  length twice RI of 
the language. We briefly sketch the basic idea behind a polynomial time algorithm 
below. 

We first define the parity acceptance condition [5, 6]. It  consists of disjoint sets 
M1, N1,M2, N2,. �9 Mh, Nh. A run is accepting provided for some i, 1 < i < h, it vis- 
its Ni infinitely often but not any set to the left of it. More precisely, run r is accept- 
. . . . .  i i - 1  mg provided for some ,, mf(r)NNi • ~ and my(r)N( (Uj-1 Mj) tO (Uj=I Nj) ) = ~. 
The chain acceptance condition can be readily translated to the parity acceptance 
condition: for 1 < i < h, Ni = Fi \ Ei, M1 = El,  and for every i, 2 < i < h, 
Mi = El \ Fi-x. Similarly given the parity sets, the corresponding chain sets are 
formed by taking increasing unions starting from the left. 

To minimize the chain in a chain automaton, we first convert it to parity ac- 
ceptance. The idea then is to "grow" positive chains starting from states in Nh. 
We start with Nh and the subgraph induced by Q \ Eh, and the find the SCCs 5 
of the states in Nh. We gradually let in sets to the left in the parity acceptance 
condition and recompute SCCs. At each step we have a set of chains. Depending 
on the nature of the SCCs of the new states let in, we either delete these states, 
add them to existing ch ins / s t a r t  a new chain, possibly promoting the state to the 
right in the parity sets. When the procedure finishes we have exactly twice the RI 
number of sets, and a positive chain attesting to the RI of the language (see [1] for 
more details). 

Using the transformation from DRA to minimum-chain-length DCA and the 
properties of DCA outlined above we have a means to convert a DRA to either a 
minimum-pair DRA or DSA, as shown in Figure 2. Note that the number of p i t s  
in the DCA obtained on complementing a minimum-pair DCA can be at most 2 
more than its minimum. 

5 an SCC is a maximal SCS 
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(n,h) (nhkk) 
DRA-- - -  - -  ~.- DCA 

comtement 

DCA 
(nhk,k+l) 

minimize thNn length 
DCA 

(nh k,s) 

(nhk,k) 
> DRA 

expanded tr. str. 

Legend: 
- -  RI 

s-- SI 

same tn ~r, 

> DRP. compl. ~ DSA 
(nh k,s) (nh k,s) 

Fig. 2. Translation map 

While the constructions presented in the previous section share the same spirit 
as those in [11], using chain automata provides for a more elegant and uniform 
treatment of the conversion between different automata. 

5 T r a n s l a t i n g  T r e e  a u t o m a t a  

In this section we extend the applicability of the constructions of the previous two 
sections to nondeterministic TA. 

L e m m a l 9 .  Given a nondeterministie TA , 4 - - ( T  = (Q,q0,,U, cf),r there exists 
a DTA A' --- (T'  = (Q, q0, ,U', 6'), r and a projection ~r : ~ '  -+ ~ such that 
5 ( . 4 )  = 

Proof. The construction is simple and well known. 2Y' = ~Y • Q • Q. The projection 
r (a ,  ql, q2) - a. (i'(q, (a, ql, q2)) = (ql, q2) provided (ql, q2) E $(q, a). A '  can be 
completed by the addition of a "dead" state. [] 

L e m m a 2 0 .  Suppose ,4 and B are DTA, and AG and Be  are the corresponding 
Game automata. I f  L(c4G) = L(BG) then L(A) = L(B). 

Proof. Suppose L(AG) = L(I3G), and t 6 L(A). We need to show t E L(B). Since 
.4 (B) is deterministic and complete, t has a unique run rt (r~) in .A (g). Let lr be 
any infinite path starting from e in {0, 1}% Since A is deterministic the path in the 
run tree rt corresponding to path 7r denotes a unique sequence cr in (,U • {0,1}) ~ 
such that o" 6 L(AG). Since L(Ba) -= L(.AG), the path in the run r~ corresponding 
to path ~r satisfies the acceptance condition. Therefore t E L(B). [] 

The above Lemma asserts that the Game Automaton can be used to translate 
between DTA. 

Lemmas 20 and 19 imply that we can use the constructions of the previous 
section to convert RTA to CTA and hence to either a STA or RTA, while simu- 
latneously reducing the number of pairs. With TA, the RI upon transforming to 
the corresponding GA could in general be greater than the actual RI of the tree 
language. 
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However for a trim DRTA, minimizing the number of pairs in the GA also yields 
a tree automaton with the minimum number of pairs. 

T h e o r e m  21. Given a trim DRTA ,4, let A~ be the corresponding GA. Suppose 
Ba is obtained from AG by minimizing the number of pairs. Then the DRTA g 
corresponding to Ba has the minimum number of pairs. 

Proof sketch. It will be sufficient to show that any equivalent DRTA 2t4 has at 
least as many pairs as in the DRA BG..A4 can be trimmed giving an equivalent 
automaton with the same number of pairs. 

We claim that L(Ba) = L(A4a). Observe that in a trim TA every sequential 
accepting run is "part" of some accepting tree run. In a DTA every sequential run 
is a unique sequence in ,U • {0, 1}. Since the GA is exactly the set of accepting 
sequential runs it follows that L(BG) = L(.A4G). [] 

6 S t r a t e g i e s  in  G a m e s  

Two-person games are interesting from an applications viewpoint because the 
synthesis-problem [16] can be seen as a game between the controller and the dis- 
turbance [20]. Strategies that are easier to implement are desirable. A particularly 
simple form of a strategy is a memory-less strategy where the strategy is a function 
of just the current state set of the game automaton [13]. 

The existence of a winning strategy for one player being implied by the non- 
existence of a winning strategy for the other player is a non-trivial and non-obvious 
fact that holds in particular of all two-person perfect information games. In a game 
presented as a Rabin automaton, if player I has a winning strategy, then I also has 
a memory-less winning strategy [3]. If player I I  has a winning strategy, the question 
is how complex is the strategy function. Gurevich and Harrington [7] showed that it 
is sufficient to remember the latest appearance record (LAB.) of the states visited and 
not the entire sequence of states. This bounds the memory required to implement 
the strategy by JQlJ. Depending on the acceptance condition used, the strategy can 
be implemented with less memory than the complete LAR. 

The chain acceptance condition has the special property that the union of two 
rejecting (accepting) SCSs cannot be accepting (rejecting); McNaughton [14] calls 
such a condition as lacking splits. He showed that in such a case the state set of the 
automaton can be partitioned into two sets, one which from player I has a memory- 
less winning strategy and the other from which player I I  has a memory-less winning 
strategy. 

Our results bound the amount of memory needed for a strategy for player I (II) 
in a game presented as a DSA (DRA) as a function of the Rabin Index (k) of the 
language (n.h k, where n and h are respectively the number of states and pairs in 
the GA). 

7 T h e  R a b i n  I n d e x  a n d  r e a l  s y s t e m s  

In this section we discuss the relevance of the Rabin Index to the complexity of 
practical problems in synthesis and verification. 
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The Synthesis problem is equivalent to finding a regular tree in a tree automaton. 
There exist algorithms to check if an RTA or STA has nonempty language that are 
exponential in the number of pairs, with complexity (nh)~ where n is the number 
of states and h the number of pairs [4, 15]. On the other hand, nonemptiness of 
Chain TA is exponential only in the RI k (of complexity n ~ [8}), and Buchi TA 
nonemptiness is in polynomial time. 

In practice, hardware designs and protocols are conceived of a system of interact- 
ing components. Each component is typically simple and small, and has associated 
with it a simple fairness constraints such as Buchi or Co-Buchi, each expressible 
with a single Streett-pair. Although the product automaton is specified with as 
many pairs as the sum of the number of pairs in the components, often the Strestt 
Index of the product automaton is smaller. 

The constructions presented to convert Strestt and Rabin automata to Chain 
automata can be employed in conjunction with the CTA-emptineas algorithm to 
yield a more efficient test for STA or RTA nonemptiness in case the corresponding 
game languages have low RI in comparison to the number of pairs. Therefore the 
controller-synthesis problem for a compositionally specified plant can be decided 
more efficiently for systems of low RI. 

The constructions also have applications to testing language emptiness of a set of 
coordinating automata [12] that arises in the context of verification. As the product 
automaton is formed incrementally, by including more component automata, the 
number of pairs may be minimized. However, this is beneficial only when the SI is 
leas than 2, since Streett w-automata emptiness is quadratic in the number of pairs 
(as opposed to exponential for tree automata). 

8 C o n c l u s i o n  

Our main contribution in this.paper is a construction to convert a deterministic 
Rabin automaton with n states and h pairs into a deterministic Chain automaton 
with nh ~ states, where k is the Rabin Index of the language. The result has sev- 
eral interesting applications to problems in w-automata, tree automata, two-person 
games and controller synthesis. Chain automata can be trivially translated into 
minimum pair Rabin automata or Streettautomata. Hence, our construction trans- 
lates a DRA or DSA into either a minimum-pair DRA, or a minimum-pair DSA 
of size nh k. The construction can be applied to a trim deterministic Rabin tree 
automaton to obtain either a minimum-pair deterministic Rabin tree automaton, 
or a deterministic Streett tree automaton of size nh k, where k is the Rabin Index 
of the tree language. 

The result also has several interesting implications for two-person infinite games, 
and the controller synthesis problem. The complexity of determining the winner and 
the strategy for the winner in a game given as a DRA or DSA is exponential in 
the number of pairs. Our result suggests the complexity should be a function of 
the Rabin Index of the game language. We also show that an upper bound on 
the amount of memory needed to implement a strategy for player I (II) in a game 
presented as a DSA (DR/k) is nh ~, where k is the Rabin Index of the game language. 

We are currently trying to devise an algorithm for Rabin tree automata nonemp- 
tiness that is exponential in the RI and is no worse than that in [4, 15] even in the 
worst case. 
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