
Th e Rabin Index and Chain a u t o m a t a , wi th
appl icat ions to a u t o m a t a and games

Sri ram C. Krishnan *, Anuj Purl**, Robert . K. Brayton, Pravin P. Varaiya
Emaih { k r i s h n a n , a n u j , b r a y t o n , v a r a i y a } @ e e c s , b e r k e l e y , edu

Department of EECS, University of California, Berkeley, CA-94720

Abstract. In this paper we relate the Rabin Index of an w-language to
the complexity of translation amongst automata, strategies for two-person
regular games, and the complexity of controller-synthesis and verification of
finite state systems, via a new construction to transform Rabin automata to
Chain automata. The Rabin Index is the minimum number of pairs required
to realize the language as a deterministic Rabin automaton (DRA), and is
a measure of the inherent complexity of the w-language. Chain automata
are a special kind of Rabin automata where the sets comprising the accep-
tance condition form a chain. Our main construction translates a DRA with
n states and h pairs to a deterministic chain automaton (DCA) with n.h k
states, where k is the Rabin Index of the language. Using this construction,
we can transform a DRA into a minimum-pair DRA or a minimum-pair
deterministic Streett automaton (DSA), each with n.h ~ states. Using a sim-
ple correspondence between tree automata (TA) and games, we extend the
constructions to translate between nondeterministic Rabin and Streett TA
while simultaneously reducing the number of pairs; for the class of "trim"
deterministic Rabin TA our construction gives a minimum-index determin-
istic Chain TA, or a minimum-pair DRTA or DSTA, each with n.h k states,
where k is RI of the tree-language.
Using these results, we obtain upper bounds on the memory required to
implement strategies in infinite games. In particular, the amount of memory
required in a game presented as a DRA, or DSA, is bounded by nh k , where
k is the RI of the game language.

1 Introduction

Determinis t ic w-au tomata have varying levels of complexi ty depending on the ac-
ceptance condition. A set of states is an accepting set if it satisfies the acceptance
condit ion. Determinist ic Buchi A u t o m a t a are the simplest w-au tomata . They have
the special proper ty tha t every set which contains an accepting set is also accept-
ing. For determinist ic w-au tomata with more general acceptance condit ion (such
as Rabin or Street t acceptance condition), this is no longer true. In general, a set
may be accepting, a set containing tha t not accepting, but a set containing tha t
in turn accepting, and so on. The number of a l ternat ions between accepting and
non-accepting sets is an indicat ion of the inherent complexi ty in the w-automata ,
and has a firm topological basis [21, 9, 11, 2]. I t is also closely related to the Rabin

* supported by NSF/DARPA Grant MIP-8719546
** supported by the Ca~fornia PATH program and NSF under grant ECS9417370

254

Index--the minimum number of pairs required for a deterministic Rabin automata
(DRA) to accept the same language. Chain automata (a syntactic variant of Parity
automata [5, 6]) are of fundamental interest because they capture the alternation
in the structure of their acceptance condition. A deterministic Chain automaton
can be trivially complemented, and admits a straightforward minimization in the
number of pairs to the Rabin Index of the language it accepts. The chain accep-
tance condition is also significant because/~-calculus model checking is polynomially
equivalent to chain TA-emptiness [6].

Our main construction converts a DRA with n states and h pairs, into a deter-
ministic Chain automaton with nh k states and k pairs where k is the Rabin Index of
the language. Using this construction, it becomes possible to transform a determin-
istic Rabin or Streett w-automaton with n states and h pairs into a minimum-pair
deterministic Rabin or Streett automaton with nh k states. Our construction us-
ing Chain automata also simplifies the construction in [11]. By employing a simple
correspondence between tree-automata and w-automata, we show that a "trim" de-
terministic Rabin tree automaton or Streett tree automaton can be converted to a
minimum-pair deterministic chain tree automaton (DCTA), DRTA, or DSTA with
the same complexity as before.

Chain automata are also of special significance in infinite two-person games. A
game is played by two players on an w-automaton (also called the Game Automaton)
with a certain game language. In general, due to the infinite nature of the game,
the strategies must be functions of the states that have been visited in the past.
But for chain automata, both players have strategies that are functions of only the
current state of the game (also called memory-less strategies) [5, 14, 20]. Using our
construction, it is possible to get upper bounds on the amount of memory needed
by the players to implement their strategies. In particular, in a game represented
by a DRA or DSA, the winning player has a strategy which requires memory of
size at most nh k, where k is Rabin Index of the game language. Since there is a
close relationship between strategies and trees, our results also imply bounds on the
"size" of regular trees accepted by tree automata.

Our constructions have applications to the synthesis and verification of compo-
sitional systems. In practice, hardware designs and protocols are conceived of as a
system of interacting components. The Rabin Index of such compositional systems,
the alternation complexity of their w-language, is often much lower than the num-
ber of pairs they are syntactically specified with. Our constructions can be used
to convert automata to the minimum-pair automata, providing a computational
advantage when used in conjunction with algorithms that are exponential in the
number of pairs. For example, deciding the controller synthesis problem is expo-
nential in the number of pairs [4, 15]. Our results make the algorithm a function
of the l~b in Index--of practical importance when the Rabin Index is smaller than
the number of pairs. Our pair minimization Mgorithms also have applications in the
context of compositional verification.

There have been two previously published algorithms to convert DRA to DCA.
For a DRA with n states and h pairs, Carton's [1] construction gives a DCA with
O(nh42h2) states. Emerson and Jutla I5] observe that an algorithm of Safra [t8] to
convert DRA to DSA can be modified to yield a DCA with n.h h states.

Section 2 presents our notation and definitions. In Section 3, we present our main
contribution: the transformation from a DRA to a minimum-index DCA. In Section

255

4 we show how to convert a DRA or DSA into a minimum-pair DRA or DSA.
In Section 5, we extend the constructions to TA by employing a correspondence
between tree automata and games. In Section 6, we discuss the relevance of our
results to two-person games. In Section 7, we discuss the practical significance of
the Rabin Index to the complexity of synthesis and verification.

2 P r e l i m i n a r i e s

2.1 w - a u t o m a t a

An w-automaton [19] over a finite alphabet, 27, is ,4 = (T, 4), where T is a tran-
sition structure and 4 is the acceptance condition. The transition structure is
T = (Q, q0, ,U, 6) where Q is a finite set of states, q0 E Q is the initial state,
and J : Q x ~U --~ Q is the transition function. For most of this paper we will be
concerned with complete deterministic w-automata (DOA), i.e. J is a total function.
The state transition graph (STG) is the directed graph on the vertex set Q denoted
by the transition structure T. The transition function J defines the ,U-labeled edges.

D e f i n i t i o n l . A word ~r E L TM has the run ra E Q~, where to(0) = q0 and
= ro(i + 1).

The infinity set of the run to , denoted i n f (r o) , is the set of states that are visited
infinitely often in to. The acceptance condition r is a Boolean formula, where the
Boolean variables are the states Q = (qt, q~}-

Def in i t i on 2. A Boolean formula is generated by the following rules
1) qi ~ Q is a Boolean formula
2) If 41,42 are Boolean formulae, then -'41, 4a V42,and 41 A42 are Boolean formulae.

The truth of qi E ~, is determined by the run to. For C C_ Q define the assign-
ment qi = t r u e provided qi E C. Let 4[C] denote the truth value of 4 under this
assignment.

De f in i t l on3 . The language generated by the w-automaton A = (T,4), denoted
s is {~rlcr E L TM and 4[in f (ro)] = t rue} .

Def in i t i on 4. We define various types of Boolean formulae which are used to define
acceptance criteria :
1) A disjunctive formula (DF) is a disjunction of Boolean variables, i.e., 4 =
qQ V . . . V qik"
2) A Rabin formula is 4 -" V~=x (Li A "(~i)) where Li, Ui, 1 < i < n are DF.
3) A Streett formula is 4 = A~=t (Li Y -,(Fi)) where Li , Ui, 1 < i < n are DF.

A Buchi automaton (DBA) is A = (T, r where r is a disjunctive formula. A Rabin
automaton (DRA) is defined by a Rabin formula and a Streett automaton (DSA)
with a Streett formula. Since each DF identifies a set of states, the Buchi condition
is often called the final states. The Rabin and Streett acceptance conditions are also
referred to as a set of pa i r s (Li, Ui) of subsets of states. Informally, a run ra in a
DRA is accepting if for some pair, i n f (r a) "touches" Li and is contained in Ui: A

256

DRA may be complemented to yield a DSA (and vice-versa) on the same transition
structure with the same number of pairs, by replacing each pair (Li, Ui) by (Ui, Li).
Thus DSA and DRA are syntactic complements of each other.

Remark. Our syntax for the Rabin and Streett condition differs from the standard
definition in the literature, where a Rabin formula is Vn=l(Li ^ ~Ui); a run is
accepting (for Rabin acceptance), if for some i, it visits Li (the GREEN states)
infinitely often, but Ui (the RED states) only finitely often. Complementing Ui
translates between the standard syntax and ours.

2.2 R a b in Index and Chain a u t o m a t a

Def in i t ionS. The chain acceptance condition [20] is represented by a formula ~b =
V~=I(FiA-.EI) where Fi,Ei,1 < i < n are DF, and E1 C F1 C E2 C F2 C . . . C
E. c F..

A run in a chain automaton is accepting if for some i, it visits El finitely often
and Fi infinitely often. In the traditional syntax of the P~bin condition, the chain
condition is a particular case where the sets form a chain under set inclusion.

For an c0-automaton A -- (T, ~b), define C to be the set of Strongly Connected
Sets 3 (SCSs) of T. There is a partial order on C induced by set inclusion (C).
A strongly connected set S is accep t ing provided ~[S] = True, and r e j ec t i n g
otherwise. The polarity of a SCS S is "+" if S is accepting, and "-" if S is rejecting.

A chain is a linearly ordered set $1 C S~ C -'- C Sin, where each Si is a SCS.
In an alternating chain, the polarity of Si+l is opposite o f 5'/. The i n d e x of an
alternating chain of length m is [-~1- A positive (negative) chain is an alternating
chain in which the polarity of the first set in the chain $1 is "+"(%"). The R a b l n
Index (RI) of a Deterministic w-automaton is the index of the longest positive
chain. The S t r e e t t I ndex (SI) is the index of the longest negative chain. The
difference between the SI and RI (and vice-versa) is at most one.

Wagner [21] and Kaminski [9] showed that the RI (SI) is also the minimum
number of pairs in a deterministic Rabin (Streett) automaton required to realize
the same language.

Figure I shows the SCSs of an w-automaton. An edge from i to j indicates that
i C j . The longest negative chain is (1, 2, 5, 6), and the longest positive chain is
(4, 5, 6). Therefore, the RI and the SI are both 2.

For an co-automaton A, we define the superse t closed SCSs to be sup(A) - {c I
the polarity o f c is "+ ' , and if e C d, then the polarity of d is "+"}. In Figure 1,
sup(A) = {6, 7, 8}.

The superset closed sublanguage is supLan(A) = {a I i n f (r .) E sup(A)}.
Given an w-automaton A = iT = (Q, qo, S, 5), ~b), a state q E Q is termed final

provided every SCS C containing q is accepting.
The terminology, final state, comes from BA where every SCS containing a final

state is accepting; every accepting SCS is superset closed. Landweber [19] showed
that the language of a DOA can be equivalently realized as a DBA if and only if
every accepting SCS is superset closed. Therefore the class of languages accepted by
DBA form a strict subset of the class of co-regular languages, and are contained in

a C c_ Q is a SCS if there is a path in the STG between any two states of C

257

+

4" r +

Fig. 1. Hasse Diagram of SCSs of an automaton

the Borel class G~ [19] (the to-regular languages are the class of languages accepted
by DRA or DSA).

2.3 Tree a u t o m a t a and G a m e s

We consider finite automata on labeled, infinite binary trees 4. The set {0, 1}* can
be viewed as the infinite binary tree, where the root node is the empty string ~ and
each node T/has two successors: the 0-successor ~0 and the l-successor I}1 [4]. An
infinite path through the tree is a sequence ~ E {0,1}% If E is a finite alphabet, a
S-valued tree is a labeling t : {0, I}* -~ ,U.

A finite automaton .A on infinite binary ~U-valued trees (henceforth tree automa-
ton) is .A -- (T, ~), where T is a transition structure and ~b is the acceptance condi-
tion. The transition structure is T - (Q, q0, ~U, 5) where Q is a finite set of states,
q0 E Q is the initial state, and 5 : Q x ~U --~ Q x Q is the transition function. The
acceptance condition is a Boolean formula over the states Q (as for to-automata).

A run of .A on a ~U-valued tree t is a Q-valued tree rt : {0, I}* -~ Q, such that
rt(e) - q0 and for all ~/E {0, I}*, 5(r:(r/),t(~})) = (rt(7/0), r:(r/l)). We say that .4
accepts tree t provided in the run rt of t on ,4, for every infinite Q-labeled path a
of rt, ~[inf(a)] = true.

Using P~bin acceptance condition leads to Rabin Tree automata (RTA), and
Streett acceptance condition to Streett Tree automaton (STA).

Def in i t lon6 . We say a TA .4 = iT = (Q, q0 ,S , J) , r is t r i m provided for every
s E Q the TA ,4, = (T = (Q, s, S , J), ~) accepts some tree.

There is a close relation between tree automata and two-person Gale-Stewart games.

Def in i t ion 7. Given finite alphabets A and B, a regular two-person Gale-Stewart
game is represented by an w-regular language/" C_ (A • B) ~ (the game language)
[19]. A single play of the game is as follows: player I picks some a0 E A, then I I
picks some b0 E B, followed by I picking some al E A, and so on in turns. Player I
wins if the resulting w-word (a0, b0)(a l, b t) . . , is in P; otherwise I I wins. A strategy
for I is a function f : B* ~ A, indicating to I what to play next. A strategy for

4 extension to k-ary trees is straightforward

258

I I is similarly a function # : A + - r B. We say that f is a winning strategy for I if
every play that results from I playing according to f is a win for I.

We call an w-automaton representing a game language F as above, a G a m e Au-
t o m a t o n . A tree-automaton can be viewed as a game between two players: the
E-player and the path-player (or {0, 1}-player). More formally, given a TA A =
((Q, q0, 27, J), r define the corresponding game automaton as .,4' = ((Q, qo, zU', J'),
r where ,U' = 27 x {0, 1}, and 5(q, ~r) -- (J'(q, (~, 0)), J'(q, (~, 1))). Similarly, given a
deterministic game automaton on alphabet 27 • {0, 1}, a corresponding DTA can be
inferred. Hence for a DTA the corresponding Game automaton (GA) is well-defined
and unique and vice-versa.

A S-valued tree accepted by a tree automaton can be viewed as a strategy for
the ,U-player in the corresponding game automaton. Hence, Player I has a winning
strategy in the game automaton iff the corresponding tree automaton has a non-
empty language. Emerson [3] showed that every RTA with non-empty language
accepts a tree that can be "embedded" in the automaton. It follows that in such an
automaton the S-player has a strategy that is just a function from Q --+ S, termed
a memory-less strategy by McNaughton [14].

3 C o n v e r t i n g D R A t o D e t e r m i n i s t i c C h a i n a u t o m a t a

We first review some constructions from [11] to isolate the superset closed snblan-
guage of Rabin automata and Streett automata.

3.1 Isola t ing t h e superse t closed sublanguage

Our basic constructions achieve the following: Given a deterministic automaton.A =
(T, r we construct a deterministic automaton A' = (T', r and identify a subset of
states S C_ Q' with the following properties: I) L(A'} = L(A} \ supLan(A), and 2)
L((T', S)) = supLan(A) where (T', S / denotes the DBA on transition structure T'
with final states S. We term this construction the exclusion construction; RabExcl
is the exclusion construction for Rabin automata and StrExcl for Streett automata.
R a b i n a u t o m a t a
We defined the notion of a final state in Section 2. We showed in [i0] how to
determine in polynomial time if a state in a l%A is final.

L e m m a 8 [11]. Given a DRA A, a SCS C is superset closed if and only i f C N F ~s
I~, where F is the set o/final states of the DRA.

R A B I N E X C L U S I O N C O N S T R U C T I O N (RabExcl)
I N P U T : DRA A = { T = (Q, qo, S , 6),r where r c o n s i s t s
of h p a i r s (Li, Ui).
O U T P U T : DRA A ' : (T,r where r cons i s t s of h p a i r s , (L} ,U ') : (Li \
F, U I \ F) , and F is the soy of final states of A,

L e m m a 9 [11]. RabExcl has the property that L(A') = L(A) \ supLan(A), and
L((T, F)) = supLan(A), where (T, F) is a DBA with final states F.

259

Note that the superset closed sublanguage of a DRA can be isolated by identifying
final states on the same transition structure as the DRA.
S t r e e t t A u t o m a t a
Consider a DSA A = (T, r with h pairs. Without loss of generality we can assume
Li Iq Ui = 0. Let .41 = (T, r denote the DSA with a single pair: the i th pair,
(Li, Ui), of @.

L e m m a 10 [11]. For DSA .41, a SCS C is superset closed if and only if Cf3Fi ~ O,
where Fi is the set of final states of `4i.

T h e o r e m 11 [11]. For a DSA .4, a SCS C is superset closed if and only ifCf3Fi ~:
for each i, where Fi is the set of final states of .4i.

The Streett exclusion construction is given below. The basic idea is to make h copies
of the transition structure and direct the transitions from the states in Fi in the z ah
copy to the corresponding states in the (i + 1) ' t copy.

S T R E E T T E X C L U S I O N C O N S T R U C T I O N (StrExcl)
INPUT: DSA .4 : (T : (Q, qo, E, 6),r .here r consists of
h pairs (Li, Ui).
O U T P U T : DSA .4' = (T' = (Q', q~, S, 6'), r and S C Q'
Let Fi denote the final states for the DSA .41
Q ' = Q x { 1 , . . . , h) , q~=(qo,1)

(6(q,a),j) i f q t Fj
6'((q,j) ,a) = (6(q,a),j + l) i f q E Fj and j < h

(J(q,a), 1) i f q E Fh
S = {(q,i)lq E Fs" and 1 < i < h}, r c o n s i s t s of h + 1 p a i r s (LI,U[),
where

L~ ~- {(q,J)lq qLi and I _<j < h},
Ul = {(q,j)]q E Ui and 1 < j < h}, and (L~+I, U~+I) = (~, S) .

In contrast to the Rabin case, for DSA we have to expand the transition structure
and add an extra pair (0, S) to exclude the superset closed language.

From Theorem 11 it follows that:

L e m m a l 2 . StrExcl has the property that L(A') - L(A) \ supLan(A) and
supLan(`4) = L((T', S)). ,4' has n.h states and h + 1 pairs, where n and h are
respectively the number of states and pairs in A.

From the properties of RabExcl and StrExcl it follows that:

L e m m a 13. Given a DSA (DRA) A = (T, ~), and A ' = (T' , r obtained by apply-
ing StrExcl ~abExcl) on .4, supLan(.4) C supLan(~) .

3.2 C o m p u t i n g the m i n i m u m - c h a i n - l e n g t h D C A

Using our constructions to isolate the superset closed sublanguage, we devise an
algorithm to transform DRA to minimum-chain-length DCA.

Given a DRA we successively apply complement, StrExcl, complement, and
RabExcl until the language of the automaton is empty. In each iteration we re-
duce the index of each positive chain by one. The number of iterations is bounded
by the index of the longest positive chain--the RI of the language.

260

StrEzcl and RabExcl may be seen as reversing the polarity of the SCSs that
are superset closed ("peels" them off). Therefore any positive chain ending in a
superset closed SCS has index one lower after applying the exclusion construction.
The outer SCSs, in alternating chains ending in rejecting SCSs, are peeled off in
complemented form, i.e. after complementing the automaton.

More formally, the construction is:

INPUT: DRA ,4 = (7, r where r consists of h pairs
i = 0;A0 =`4
Repeat

i = i + l ;
1. `411 = ,4i-1
2. (,412, Ei) = StrExcl(,4il)
3. A i s = `4i2
4. (,4i, Fi) = RabExcl(,413)

until L(Ai) = $
Return DCA ((Qk, q0k, 2Y, J~), r where tb in chain form is
~?l(E,) C ~?'(F,) C..,. C ~,'(E~) C 7r, a(F0 C ... C ~r;'(Ek) C ~-'(Fk), where k is
the RI of the language.

"Complement"
"Exclude supLan; expands Tr. Str."
"Complement"
"Exclude supLan"

For example, in the automaton whose SCSs are represented in Figure 1, during
the first iteration: in step 2 we pick up no SCSs, in step 4 we pick up 6,7, and 8.
During the second iteration, in step 2 we pick up SCSs 3 and 5, and in step 4 we
pick up 2 and 4. At this stage all the SCSs are of negative polarity and the language
is empty.

Each iteration involves a complement into a DSA (on the same transition struc-
ture), StrExcl (expands the transition structure h-fold), complement into a DRA
ion the same transition structure), and RabExcl ion the same transition structure).

Notation: The automaton ,4 = iT = (Q, q0, s ~), r The automaton obtained
after the i th iteration is ,41 = (7] = (Qi, q0,, 27, 6/), r where (it follows from Lemma
14 that) Qi = Qi-t • {1 , . . . , h}; after the k th iteration Qk -- Q x {1, . . . , h} h and
the map lrl : Qk -+ Qi is the natural projection map.

Before we prove the correctness of the construction we observe two preliminary
lemmas.

Lemma 14. In each iteration of the construction, the pair added in step 2 is re-
dundant after step 4.

Proof. StrExcl excluded the superset closed sublanguage at step 2, adding a pair
(0 ,~) . On complementing, this becomes a Rabin pair (El, Qi). Lemma 13, implies
that the state set returned at step 4, Fi, contains El, i.e. Fi D El. In RabExcl Fi is
deleted from each set in each pair, transforming the added Rabin pair (E/, Qi) to
(1~, Qi \ F/)--a pair with empty language that can be deleted. D

Hence at the end of each iteration we have exactly h pairs in `41.

L e m m a l 5 . Given ~ E ~ , 0 < i < k, and q E Qi, q E inf(vi) if and only i f for
some s E Qk, s E inf(rk) and lri(s) = q, where rj is the run o[~ on `4j.

261

Proof Sketch. By induction on k - i. Observe tha t StrExcl "copies" the transition
structure, t3

Theorem 16. Given a DRA .4 = (T = (Q, qo, ~ , 6), r where qb has h pairs, the
construction returns an equivalent DCA with n.h k states and chain length 2k (i.e.,
k pairs), where k is the RI of the language.

Proof sketch. Observe the following:

1. L e m m a 13 implies tha t r?1(E1) C ~r~'l(Fl) C ~r21(E2) C Ir~l(F~) C . . . C
r;1(Ek) C Ir~-l(Fk), i.e. form a chain.

2. L e m m a 14 implies tha t after k iterations in .4k, [Qk] = [Q] .hk - n.h k.

From Lemmas 9, 12, and 13 it follows that:

L e m m a l 7 . For each i, 1 < i < k, L (. 4 i - 1) = L(-41)UL((Ti , (~EiA~i))), where
k is the RI of L(-4).

Therefore from L e m m a 17 and Lemma 15 we have for each i, 1 < i < k,

i
L(A) = L((7], r V V ("~rT'CEj)Arr~ 1(Fj)))) (1)

j= l

L e m m a 18. For each i, 0 < i < k - 1, the Rabin Index of.41 is one less than the
Rabin Index .41-1.

Proof sketch. Consider any positive chain in -4i-1. I t either ends in an accepting
(" + ') SCS or a rejecting (. . . .) SCS. If it ends in a "+" SCS its polari ty is inverted
in step 4, reducing the index of the chain by 1.

Let the chain that ends in a rejecting SCS be: . . . + - + - . In step 1 the chain
reverses in polarity. After step 2 it is: . . . - + - - . After step 3 the chain again
reverses in polarity. After step 4 the chain is: . . . + - - - , and has index 1 lower. []

Since each iteration reduces the index of each positive chain by 1, we have k - - t h e
RI of the language---iterations, before L(-4k) = 0; a t this stage ~bk is unsatisfiable
and can be deleted.

Thus we get L(A) = L ((T k , V ~ = x (- ' ~ j - I (E j) A l r ~ ' l (F j)))) . The acceptance
condition in chain form is:

--r C lr~'l(Fx) C... C Ir~'l(Ek} C lr~'1(Fk) (2)

[]

Our t ransformation from DRA to DCA has complexi ty DR(n, h)-~DC(n.h k, k).
Carton ' s [1] t ransformation gives an equivalent DCA with nh42h= states. Emerson
and Jut la [5] suggest an adapta t ion of a construction of Sa l t s from [18] to con-
vert a DRA to DSA, to t ransform DRA to DCA; they achieve a t ransformation
DR(n, h) -~ DRC(n.h h, h). Our t ransformat ion is bet ter when k < h and matches
theirs in the worst case.

Also, our construction is op t imum in the sense tha t we cannot hope to get a
t ransformation tha t is polynomial in k because:

262

1. There is an exponential lower bound on translating DSA to DRA [17]. We show
in the next section that we can o b t i n a transformation from DSA to DRA of
the same complexity as for DRA to DCA.

2. We showed in [11] that it is NP-hard to determine the RI of a language specified
as a DRA or DSA.

4 T r a n s l a t i n g b e t w e e n d i f f e r e n t a u t o m a t a

In this section we use the construction of Section 3 to translate a DRA or DSA into a
minimum-pair DRA or DSA. We do this by exploiting the ease of complementation
and chain-length minimization of DCA; and straightforward translation of DCA
into DRA.

DCA can be trivially transformed to DRA: each Chain pair (Ei, Fi) gets trans-
formed to a Rabin pair (F , Ei).

Also, DCA can be trivially complemented. Given a DCA with h pairs (Ei, Fi),
with chain E1 C F1 C E2 C F2 C . . . C Eh C Fh, the complementary DCA has
h + 1 pairs (0, Zz), (F1, E2),..., (Fh-1, Eh), (Fh, Q), where Q is the state set of the
automaton.

Furthermore, the chain length in a DCA can be easily minimized to yield an
equivalent DCA on the same transition structure with c h i n length twice RI of
the language. We briefly sketch the basic idea behind a polynomial time algorithm
below.

We first define the parity acceptance condition [5, 6]. It consists of disjoint sets
M1, N1,M2, N2,. �9 Mh, Nh. A run is accepting provided for some i, 1 < i < h, it vis-
its Ni infinitely often but not any set to the left of it. More precisely, run r is accept-
. i i - 1 mg provided for some ,, mf(r)NNi • ~ and my(r)N((Uj-1 Mj) tO (Uj=I Nj)) = ~.
The chain acceptance condition can be readily translated to the parity acceptance
condition: for 1 < i < h, Ni = Fi \ Ei, M1 = El, and for every i, 2 < i < h,
Mi = El \ Fi-x. Similarly given the parity sets, the corresponding chain sets are
formed by taking increasing unions starting from the left.

To minimize the chain in a chain automaton, we first convert it to parity ac-
ceptance. The idea then is to "grow" positive chains starting from states in Nh.
We start with Nh and the subgraph induced by Q \ Eh, and the find the SCCs 5
of the states in Nh. We gradually let in sets to the left in the parity acceptance
condition and recompute SCCs. At each step we have a set of chains. Depending
on the nature of the SCCs of the new states let in, we either delete these states,
add them to existing ch ins / s t a r t a new chain, possibly promoting the state to the
right in the parity sets. When the procedure finishes we have exactly twice the RI
number of sets, and a positive chain attesting to the RI of the language (see [1] for
more details).

Using the transformation from DRA to minimum-chain-length DCA and the
properties of DCA outlined above we have a means to convert a DRA to either a
minimum-pair DRA or DSA, as shown in Figure 2. Note that the number of p i t s
in the DCA obtained on complementing a minimum-pair DCA can be at most 2
more than its minimum.

5 an SCC is a maximal SCS

263

(n,h) (nhkk)
DRA-- - - - - ~.- DCA

comtement

DCA
(nhk,k+l)

minimize thNn length
DCA

(nh k,s)

(nhk,k)
> DRA

expanded tr. str.

Legend:
- - RI

s-- SI

same tn ~r,

> DRP. compl. ~ DSA
(nh k,s) (nh k,s)

Fig. 2. Translation map

While the constructions presented in the previous section share the same spirit
as those in [11], using chain automata provides for a more elegant and uniform
treatment of the conversion between different automata.

5 T r a n s l a t i n g T r e e a u t o m a t a

In this section we extend the applicability of the constructions of the previous two
sections to nondeterministic TA.

L e m m a l 9 . Given a nondeterministie TA , 4 - - (T = (Q,q0,,U, cf),r there exists
a DTA A' --- (T' = (Q, q0, ,U', 6'), r and a projection ~r : ~ ' -+ ~ such that
5 (. 4) =

Proof. The construction is simple and well known. 2Y' = ~Y • Q • Q. The projection
r (a , ql, q2) - a. (i'(q, (a, ql, q2)) = (ql, q2) provided (ql, q2) E $(q, a). A ' can be
completed by the addition of a "dead" state. []

L e m m a 2 0 . Suppose ,4 and B are DTA, and AG and Be are the corresponding
Game automata. I f L(c4G) = L(BG) then L(A) = L(B).

Proof. Suppose L(AG) = L(I3G), and t 6 L(A). We need to show t E L(B). Since
.4 (B) is deterministic and complete, t has a unique run rt (r~) in .A (g). Let lr be
any infinite path starting from e in {0, 1}% Since A is deterministic the path in the
run tree rt corresponding to path 7r denotes a unique sequence cr in (,U • {0,1}) ~
such that o" 6 L(AG). Since L(Ba) -= L(.AG), the path in the run r~ corresponding
to path ~r satisfies the acceptance condition. Therefore t E L(B). []

The above Lemma asserts that the Game Automaton can be used to translate
between DTA.

Lemmas 20 and 19 imply that we can use the constructions of the previous
section to convert RTA to CTA and hence to either a STA or RTA, while simu-
latneously reducing the number of pairs. With TA, the RI upon transforming to
the corresponding GA could in general be greater than the actual RI of the tree
language.

264

However for a trim DRTA, minimizing the number of pairs in the GA also yields
a tree automaton with the minimum number of pairs.

T h e o r e m 21. Given a trim DRTA ,4, let A~ be the corresponding GA. Suppose
Ba is obtained from AG by minimizing the number of pairs. Then the DRTA g
corresponding to Ba has the minimum number of pairs.

Proof sketch. It will be sufficient to show that any equivalent DRTA 2t4 has at
least as many pairs as in the DRA BG..A4 can be trimmed giving an equivalent
automaton with the same number of pairs.

We claim that L(Ba) = L(A4a). Observe that in a trim TA every sequential
accepting run is "part" of some accepting tree run. In a DTA every sequential run
is a unique sequence in ,U • {0, 1}. Since the GA is exactly the set of accepting
sequential runs it follows that L(BG) = L(.A4G). []

6 S t r a t e g i e s in G a m e s

Two-person games are interesting from an applications viewpoint because the
synthesis-problem [16] can be seen as a game between the controller and the dis-
turbance [20]. Strategies that are easier to implement are desirable. A particularly
simple form of a strategy is a memory-less strategy where the strategy is a function
of just the current state set of the game automaton [13].

The existence of a winning strategy for one player being implied by the non-
existence of a winning strategy for the other player is a non-trivial and non-obvious
fact that holds in particular of all two-person perfect information games. In a game
presented as a Rabin automaton, if player I has a winning strategy, then I also has
a memory-less winning strategy [3]. If player I I has a winning strategy, the question
is how complex is the strategy function. Gurevich and Harrington [7] showed that it
is sufficient to remember the latest appearance record (LAB.) of the states visited and
not the entire sequence of states. This bounds the memory required to implement
the strategy by JQlJ. Depending on the acceptance condition used, the strategy can
be implemented with less memory than the complete LAR.

The chain acceptance condition has the special property that the union of two
rejecting (accepting) SCSs cannot be accepting (rejecting); McNaughton [14] calls
such a condition as lacking splits. He showed that in such a case the state set of the
automaton can be partitioned into two sets, one which from player I has a memory-
less winning strategy and the other from which player I I has a memory-less winning
strategy.

Our results bound the amount of memory needed for a strategy for player I (II)
in a game presented as a DSA (DRA) as a function of the Rabin Index (k) of the
language (n.h k, where n and h are respectively the number of states and pairs in
the GA).

7 T h e R a b i n I n d e x a n d r e a l s y s t e m s

In this section we discuss the relevance of the Rabin Index to the complexity of
practical problems in synthesis and verification.

265

The Synthesis problem is equivalent to finding a regular tree in a tree automaton.
There exist algorithms to check if an RTA or STA has nonempty language that are
exponential in the number of pairs, with complexity (nh)~ where n is the number
of states and h the number of pairs [4, 15]. On the other hand, nonemptiness of
Chain TA is exponential only in the RI k (of complexity n ~ [8}), and Buchi TA
nonemptiness is in polynomial time.

In practice, hardware designs and protocols are conceived of a system of interact-
ing components. Each component is typically simple and small, and has associated
with it a simple fairness constraints such as Buchi or Co-Buchi, each expressible
with a single Streett-pair. Although the product automaton is specified with as
many pairs as the sum of the number of pairs in the components, often the Strestt
Index of the product automaton is smaller.

The constructions presented to convert Strestt and Rabin automata to Chain
automata can be employed in conjunction with the CTA-emptineas algorithm to
yield a more efficient test for STA or RTA nonemptiness in case the corresponding
game languages have low RI in comparison to the number of pairs. Therefore the
controller-synthesis problem for a compositionally specified plant can be decided
more efficiently for systems of low RI.

The constructions also have applications to testing language emptiness of a set of
coordinating automata [12] that arises in the context of verification. As the product
automaton is formed incrementally, by including more component automata, the
number of pairs may be minimized. However, this is beneficial only when the SI is
leas than 2, since Streett w-automata emptiness is quadratic in the number of pairs
(as opposed to exponential for tree automata).

8 C o n c l u s i o n

Our main contribution in this.paper is a construction to convert a deterministic
Rabin automaton with n states and h pairs into a deterministic Chain automaton
with nh ~ states, where k is the Rabin Index of the language. The result has sev-
eral interesting applications to problems in w-automata, tree automata, two-person
games and controller synthesis. Chain automata can be trivially translated into
minimum pair Rabin automata or Streettautomata. Hence, our construction trans-
lates a DRA or DSA into either a minimum-pair DRA, or a minimum-pair DSA
of size nh k. The construction can be applied to a trim deterministic Rabin tree
automaton to obtain either a minimum-pair deterministic Rabin tree automaton,
or a deterministic Streett tree automaton of size nh k, where k is the Rabin Index
of the tree language.

The result also has several interesting implications for two-person infinite games,
and the controller synthesis problem. The complexity of determining the winner and
the strategy for the winner in a game given as a DRA or DSA is exponential in
the number of pairs. Our result suggests the complexity should be a function of
the Rabin Index of the game language. We also show that an upper bound on
the amount of memory needed to implement a strategy for player I (II) in a game
presented as a DSA (DR/k) is nh ~, where k is the Rabin Index of the game language.

We are currently trying to devise an algorithm for Rabin tree automata nonemp-
tiness that is exponential in the RI and is no worse than that in [4, 15] even in the
worst case.

266

References

1. O. Carton. Chain Automata. In IFIP 13th World Computer Congress, pages 451-458,
August 1994.

2. E. S. Chang, Z. Manna, and A. PnuelL The Safety-Progress Classification. In F. L.
Bauer, W. Bauer, and H. Schwichtenberg, editors, Logic and Algebra of Specification,
pages 143-202, 1993.

3. E. A. Emerson. Automata, tableaux, and temporal logics. In Logics of Programs,
LNCS, pages 79-88. Springer-Verlag, 1985.

4. E. A. Emerson and (3. S. Jufla. The complexity of tree automata and logics of pro-
grams. In Proc. of the Syrup. on Foundations of Computer Science, pages 328-337,
October 1988.

5. E. A. Emerson and C. S. Jutla. Trees automata, Mu-calculus and determinacy. In
Proc. of the Syrup. on Foundations of Computer Science, pages 368-377, October 1991.

6. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
mu -calculus. In Computer Aided Verification, volume 697 of LNCS, pages 385-396.
Springer-Verlag, 1994.

7. Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. of the ACM
Symposium on the Theory o] Computing, pages 60-65, May 1982.

8. C. S. Jutla. Personal communication, February 1995.
9. M. Kaminski. A Classification of w-regular languages. Theoretical Computer Science,

36:217-229, 1985.
10. S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic w-automata vis-a-vis De-

terministic Buchi Automata. In Algorithms and Computation, volume 834 of LNCS,
pages 378-386. Springer-Verlag, 1994.

11. S. C. Krishnan, A. Puff, and R. K. Brayton. Structural Complexity of w-automata. In
Symposium on Theoretical Aspects of Computer Science, volume 900 of LNCS, pages
143-156. Spffnger-Verlag, 1995.

12. R. P. Kurshan. Computer-aided Verification of Coordinating Processes: the Automata-
theoretic approach. Princeton University Press, 1994.

13. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of Discrete Controllers for Timed
Systems. In Symposium on Theoretical Aspects of Computer Science, volume 900 of
LNCS, pages 229-242. Springer-Verlag, 1995.

14. R. McNanghton. Infinite gmaes played on finite graphs. Annals of Pure and Applied
Logic, 65:149-184, 1993.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. of the ACM
Symposium on Principles of Programming Languages, pages 179-180, 1989.

16. M. O. Rabin. Automata on Infinite Objects and Church's Problem, volume 13 of Re-
gional Con]. Series in Mathematics. American Mathematical Society, Providence,
Rhode Island, 1972.

17. S. Safra and M. Y. Vardi. On w-Automata and Temporal Logic. In Proc. of the ACM
Symposium on the Theory of Computing, pages 127-137, May 1989.

18. Shmuel Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weiz-
mann Institute of Science, Rehovot, Israel, March 1989.

19. W. Thomas. Automata on Infinite Objects. In J. van Leeuwen, editor, Formal Models
and Semantics, volume B of Handbook of Theoretical Computer Science, pages 133-
191. Elsevier Science, 1990.

20. W. Thomas. On the synthesis of strategies in infinite games. In Symposium on Theo-
retical Aspects of Computer Science, volume 900 of LNCS, pages 1-13. Springer-Verlag,
1995.

21. K. Wagner. On w-Regular Sets. Information and Control, 43:123-177, 1979.

