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A b s t r a c t .  We show how HYTECH, a symbolic model checker for linear hy- 
brid systems, can be used to analyze an audio control protocol. This proto- 
col [BPV94] was first verified by Bosscher et al. without computer support. In 
this paper, we demonstrate that algorithmic methods can not only verify the 
protocol, but can also automatically synthesize the bound on the maximum 
clock drift, and suggest design modification for a more robust protocol. We 
believe the techniques we used--f ini te  state encodings, automata transfor- 
mations, strengthening of specif icat ions-  provide insight to the practictioner 
interested in modeling and analyzing similar real-world applications. 

1 In t roduc t i on  

Motivated by the desire to verify real-life reactive systems, Bosscher et al. [BPV94] 
met with engineers at  Phifips, Netherlands, and developed a formal description of 
an audio control protocol. The protocol uses timing-based Manchester encoding to 
transmit arbitrary length bit sequences between a single sender and receiver whose 
clocks are subject to a bounded error. Their modeling used an extension to timed 
I /O automata [LV92], and enabled them to verify its correctness using proof rules. 
Furthermore, they show that for correct operation, 1/17 is a tight bound on the error 
tolerance on the sender's and receiver's clocks. Their analysis is entirely mathematical 
and does not use computer support. They remark that it would be interesting to see 
how other methods, particularly algorithmic techniques, could handle their example. 

S u c c e s s f u l  a u t o m a t e d  a n a l y s i s .  We accept their proposal, and demonstrate that 
HYTECH [AHH93], a symbolic model checker for linear hybrid systems, can not only 
verify the protocol's correctness for Philip's tolerance specification of 1/20, but can also 
automatically synthesize the critical bound of 1/17. Indeed HVTECH even suggests 
a revision in the protocol to enable wider clock drifts of 1/15. This case study is 
particularly interesting because it is not immediately clear how to use an automatic 
tool to analyze this protocol. We show how arbitrary length data streams can be 
finitely encoded using linear hybrid automata [ACHH93]. The verification analysis not 
only establishes the correctness of the hybrid automaton, but also justifies our finite 
encoding of the infinite data streams. 

Synthesizing the critical bound is more delicate, and requires a number of steps. 
It involves introducing a parameter for the clock drift, applying two transformations 
to the automata, and adding locations to justify the synthesized bound is necessary as 
well as sufficient. 

* This research was supported in part by the NSF under grant CCR-9200794, by the 
USAFOSR under contract F49620-93-1-0056, and by DARPA under grant NAG2- 
892. 



382 

This study provides evidence that  model checkers can give more than a simple 
answer to the verification problem. We believe they can be used as powerful tools to 
verify properties i and to provide non-obvious parametric information that  can guide 
system design. We first provide an overview of the more interesting steps taken in our 
analysis. 

A r b i t r a r y  l e n g t h  i n p u t  s e q u e n c e s .  The first apparent difficulty is that  correct- 
ness should be ascertained for arbitrary length transmission sequences, not just  all 
bit streams up to some fixed finite length. However the algorithmic nature of m o d e l  
checking does not allow for storing unbounded input and output sequences. Instead 
we nondeterministically generate the input sequence on-the-fly. Rather than adding 
bits to the receiver's copy of the message, they are immediately checked against the 
input bits. In this way, we need only store that  part  of the sequence that  has been 
generated thus far, but  not yet acknowledged by the receiver. Indeed we find that  at 
most 3 unacknowledged bits need be stored. 

Bosscher et al. also prove the timeliness of the receiver's output  as a function of 
the length of the message. Again, a straightforward encoding of this property in hybrid 
automata  seems impossible because it depends on comparing the time of the output 
with an arbitrarily large timing constant dependent on the length of the message. 
We obviate this dit~culty by proving instead a stronger property that  can be checked 
without the need to track an arbitrarily large timer. 

S y n t h e s i z i n g  e r r o r  t o l e r a n c e s .  Automatic parametric analysis is introduced in 
[CH78], and applied to the analysis of real-time and hybrid systems in [AHH93, AHV93, 
HH95]. In order to synthesize a parameter  for a system's behavior we introduce a new 
variable, a parameter, whose value remains unchanged. HYTECH can then detect for 
which values of the parameter  error traces are present, in this study, we must synthesize 
the permissible rates at which the clocks progress. However immediate introduction of 
a variable into rates of the clocks is impossible, since clock variables in linear hybrid 
au tomata  must have constants as bounds on their rates (otherwise their behavior is non- 
linear). To overcome this, we must transform the automaton by translating all skewed 
clocks into perfect clocks with rate 1 with the information on variable rates transfered 
into the timing constraints on transitions and location invariants [OSY94, WT94]. A 
second difficulty arises: the resulting system would still be non-linear, having timing 
constraints with variables in the denominators. We apply a further clock transformation 
tha t  eliminates this problem. 

There is one further complication: without prior knowledge of the error tolerance, 
i t  is impossible to know how many additional input bits may be unacknowledged at  any 
time. Thus if we assume only k unacknowledged bits need be stored, we may encounter 
two sorts of errors: the tolerance is too large and bits are incorrectly received, or the 
large tolerance allows a trace with more than k unacknowledged bits. By separately 
analyzing these two errors , we find that  all parameter  values giving errors of the second 
type also give correctness errors, and thus the tolerance we infer is both necessary and 
sufficient for correctness. 

I m p r o v e d  p r o t o c o l .  By analyzing the exact circumstances under which errors arise, 
we can infer from HYTECH'S output that  a wider error tolerance is permitted if we alter 
the receiver's protocol to delay slightly longer before finalizing its bit stream. 

R e l a t e d  w o r k .  This paper is the first to apply automated parametric analysis to 
the audio control protocol. Previous applications of automatic methods performed ver- 
ification only, using either different models or more limited descriptions, In his thesis, 
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F i g .  1. Timing diagram for Manchester encoding of 10011 

Wong-Toi [WT94] verified correctness and timing properties by applying his real-time 
system verification tool to the timed automaton obtained by transforming a linear hy- 
brid system model. In [HH95], HYTECH is used to verify the correctness of the audio 
control protocol with inputs up to a fixed length only. 

2 Audio control protocol 
We describe the timing-based communication protocol using Manchester encoding, 
as presented by Bosscher et al. [BPV94]. The protocol forms a part  of a real audio 
control protocol under development by Philips. Bits are encoded based on timing delays 
between signals, and the rates of both the sender's and receiver's clocks vary within a 
given tolerance. 

Bit s treams are communicated using Manchester encoding. See Figure 1 for the 
encoding of 10011. The voltage on the communication bus is either high or low. A 0 
bit is sent as a Down signal from high voltage to low, and a 1 bit as an Up signal from 
low to high. The t ime line is divided into equal length time slots, and the signals are 
sent in the middle of each time slot. In order to send a repeated bit, there must be an 
intermediate change in voltage, and this occurs at the edge of the time slot as shown 
in the diagram for the last two bits. 

The audio control protocol has the following complications [BPV94], part ly due to 
the fact that  there is a 4-5% tolerance in the clock rates of the sending and receiving 
components: 

1. The receiver does not know when the first time slot begins, although it does know 
the agreed upon width of the slots. The sender and receiver synchronize the s tar t  
of transmission by requiring a low voltage whenever no bits are being sent, and 
start ing all bit  streams with a 1. 

2. The receiver is not explicitly told the length of the message being sent. I t  must 
infer the bit s t ream is complete after a suitable lapse in receiving bits. 

3. Drops in voltage are not instantaneous, and cannot be reliably detected. Therefore, 
the receiver must decode the message based solely on upgoing signals. Because the 
downgoing edge of a final 0 bit is not seen, this creates ambiguity between messages 
ending in 10 and in 1. This problem is solved by restricting bit streams to be either 
odd in length, or ending in 00. 

The sender and receiver have the same clock error tolerance. The receiver interprets 
the Up signals by rounding the times they are received to the nearest time it expects 
them to be sent, i.e. to the slot edges or to the middle of a time slot, whichever is 
closer. We verify for arbi trary length bit streams that  the receiver correctly receives all 
bits, and realizes the bit s tream has finished in a timely fashion. 

3 Analysis by hybrid automata 
Our system modeling language is linear hybrid automata.  Informally, a linear hybrid 
automaton [ACHH93] consists of a finite set X of real-valued variables and a labeled 
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multigraph (V, E).  The edges E represent discrete system actions and are labeled with 
nondeterministic guarded assignments to X.  The vertices V represent different control 
modes and are labeled with constraints on the slopes of X. The state of the automaton 
changes either through instantaneous system actions or, while time elapses, through 
continuous activities. 

L i n e a r  h y b r i d  a u t o m a t a  

A linear term over a set X of real-valued variables is a finite linear combination of vari- 
ables with integer coefficients. A linear inequality over a set X is a nonstrict inequality 
between linear terms over X. A linear hybrid automaton A consists of the following 
components: 

D a t a  v a r i a b l e s  A finite ordered set X --- { x l , x 2 , . . . ,  xn} of real-valued data vari- 
ables. A data state is a point (a l ,a2 , . . . , an )  in the n-dimensional space ~n, or 
equivalently, a function that  maps each variable xi to its value ai. A convex data 
region is a convex polyhedron in ]~n; and a data region is a finite collection of 
convex da ta  regions. A convex data predicate is a finite conjunction of linear in- 
equalities; and a data predicate is a finite disjunction of convex da ta  predicates. 
Each (convex) da ta  predicate ~ defines, then, a (convex) da ta  region [~] _C ~ n  
such that s �9 ~r iff ~ [ X  := s] is true. We often write s �9 ~ for s �9 [r 

C o n t r o l  l o c a t i o n s  A finite set V of vertices called control locations. A state (v, s) 
of the  hybrid automaton A consists of a control location v �9 V and a da ta  
state s �9 ]~n. A region U ~ v { ( v ,  s~)} is a collection of da ta  regions S~ C_ ~ ,  one 
for each control location v �9 V. A state predicate is a collection Uvev{(V, ~v)} 
of data  predicates r one for each control location v �9 V. Each state predicate 

-- Uvev{(V, r defines, then, the region [~] - Uvev( (% [~v])}. A location 
predicate is a s tate predicate in which each data  predicate ~ is either true or 
false. When writing state predicates, we use the location counter 1, which ranges 
over the set V of control locations. The location constraint 1 = v denotes the state 
predicate {(v, true)} O U~,r {(v',false)}. 

I n i t i a l  c o n d i t i o n  A state predicate ~0 called the initial condition. 
L o c a t i o n  i n v a r i a n t s  A labeling function inv that  assigns to each control location 

v �9 V a convex da ta  predicate inv(v), the invariant of v. The control of A may 
reside in the location v only while the invariant inv(v) is true, so the invariants 
enforce progress in the system. 

C o n t i n u o u s  a c t i v i t i e s  A labeling function dif that  assigns to each control location 
v �9 V and each da ta  variable zi �9 X a rate interval dif(v, xi) = [l=, uz], where 
l= and u= are finite integer constants with l= < u~. The rate interval dif(v, xi) = 
[l~, u~], specifies that  the rates of change of the data  variable zi may vary within 
the interval [l=, u=], while automaton control resides in location v. 
For 8 > 0, we define the time-step relation, ~ ,  such that  (v, s ) ~ ( v ' ,  s ')  if and 
only if v = v' and there is a function p :  [0, 8] --* ~'~ such that  (1) f(0)  = s, (2) 
f(6) = s', (3) for all t �9 [0, g], p(t) e ~inv(v)], and (4) for all time t �9 (0, 6) and 
for each data  variable x~, dp~(t)/dt �9 dif(v, z~), where p~(t) denotes the value of 
variable xi in the data  state p(t). 

T r a n s i t i o n s  A finite multiset E of edges called transitions. Each transition (v, v') 
identifies a source location v �9 V and a target location v' �9 V. 

D i s c r e t e  a c t i o n s  A labeling function act that  assigns to each transition e �9 E a 
guarded command act(e) = ~ --* a ,  where the guard ~ is a convex data  predicate, 
and (r = {xi := [hi, t2i] [ zi �9 Y C X} is a set of assignments, where t l i  and t2i are 
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l inear terms.  In the graphical representation, we write xi :=  ti for zi :=  [ti, ti], and 
we omit  the  guard true. A data  state s maps a linear term t to the real value s(t) 
of the  te rm t interpreted in the data  s ta te  s. An  assignment xi := [%i, t2i] indicates 
tha t  the  value of the variable zi in da ta  s tate  s is changed nondeterminist ical ly to 
any real number  in [s (hi ) ,  s(t2i)]. 
Let (v, s) be a s ta te  such that  s E [[inv(v)]], and let (v, v') be a t ransi t ion with the 
guarded command  ~ --* a.  If the data  state s E [[~], and all intervals [s(hi) ,  s(t~d] 
are non-empty,  then  the control of A can proceed from location v to location v' ,  
with the  da ta  s ta te  s nondeterminist ical ly  changed to a da ta  state s' E [inv(v')]] 
such tha t  s ' (x i )  E [s(hi),s(t2i)] if zi :=  [tti,t2d is in a, and s'(z d = s(z  d ,  
otherwise. 
We define the transition-step relation, ~ ,  such that  (v, s ) ~ ( v ' ,  s ' )  if and only if 
the s ta te  (v ' ,  s ' )  can be reached from the state (v, s) by taking transi t ion e. 

S y n c h r o n i z a t i o n  l a b e l s  A finite set L of s~.lnchronization labels and a labehng func- 
t ion s!/n tha t  assigns to each t ransi t ion e E E a synchronization label from L. 
The  synchronizat ion labels are used to define the parallel composition of hybrid 
au tomata .  

A hybrid au toma ton  is simple if all the da ta  predicates in the initial conditions, invari- 
ants  and guards are of the form z < c or z >__ c and all the assignments are of the form 
z :=  [c, d] for some integer constants  c and d. 

P a r a l l e l  c o m p o s i t i o n  

A hybrid system typically consists of several components  tha t  operate concurrently and 
communica te  with each other. We describe each component  as a linear hybrid automa-  
ton. The  component  au toma ta  coordinate through shared variables, and to facilitate 
message-type coordination,  we also use synchronization labels on the transitions.  The  
hnear  hybrid au tomaton  that  models the entire system is then constructed from the 
component  au toma ta  using a product  operation. 

Let At  = ( X ,  , V~ , ~ 0, invl , di] , , Et , act, ,  Lt  , syn, ) and A2 = (X2, V2 , ~ 0, inv2 , dif 2, 
E2, act2, L2, syn2) be two linear hybrid au tomata .  Then  in the product A ,  x A~ of At  
and A~, two t ransi t ions et and e~ from the two component  au tomata  A1 and A2 are 
interleaved, unless synl (e l  ) = syn2(e2 ). If synl (e l  ) = syn~(e2), t ransi t ions et and 
e2 are synchronized, and cause the simultaneous traversal of component  transit ions.  
Formally, the product  A1 • A2 of A, and A2 is the linear hybrid au tomaton  A = 
( X ~ U X2 , V~ • 112, ~o ~ ^ ~o ~ , inv , di] , E, act, L t U L2 , syn ) : 

- Each location (v, v') in V~ • V2 has the invariant  inv(v, v') = inv~ (v) A inv2(v').  For 
each variable x E X~ - X 2 ,  dif((v,  v'), x) = dif ,  (v, z); for each variable x E X2 - X t ,  
dif((v,  v') ,  a:) = dif~(v', ~c). For each shared variable ~c e X~ N X2, dif((v,  v') ,  z) = 
dill  (v, ~) N dif2(v',  z).  

- E contains  the  t ransi t ion e = ((vt,  v2), (v~, v~)) iff 

0) el = ( ~ , ~ I )  e ~ ,  v~ = ,~ ,  and syn~(e~) r Z~; or 
(2) e~ = (~ , ,  ~ )  e E~, ~,  = ~I, and s~n2(e2) r Z,;  or 
(3) el = (v~,v~) ~ E~, ez = (v~,v~) ~ E~, and syn~(et) = syn2(e2 ). 

Suppose tha t  a c h ( e l )  = r -- '  a~, and act~(e~) = r ~ a~. In case (1), syn(e) = 
synt(e~ ) and act(e) = actt(e~); in case (2), syn(e) = syria(e2) and act(e) = 
act~(e~); and in case (3), s~tn(e) = s~ln~(e~) = s~n2(e2) and act(e) = ~ A ~2 
trl O tr~ if no variable is assigned to two syntactically different terms in a l  U a2, 
and act(e) = .false ~ ~ otherwise. 
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T r a j e c t o r i e s  a n d  r e a c h a b i l i t y  

At  any time instant,  the state of a hybrid automaton specifies a control location and 
the values of all variables. The state can change in two ways: (1) by an instantaneous 
transition that  may change both the control location and the values of variables, or 
(2) by a time delay that  changes only the values of variables in a continuous manner 
according to the rate interval of the current control location. A trajectory r of A is a 
finite sequence 

(v0,s0)-~ (vl,sl) -~ (,~,s~) . . . . .  (~,s,) 

of control locations v~ E V, and da ta  states si E ~n  such that:  (1) (vO,so) C ~0]], 

(2) for all 0 _< i < k, there exists 7ri E ~>_0UL such that  (vi,si) ~.A, (vi+l,si+l), where 
]~>0 denotes the set of nonnegative reals. The final state of r is (vk, sk). We write T(A) 
for the set of trajectories of A. The reachable region R(A) of A is the set of final states 
of trajectories of A. 

R e a c h a b i l i t y  a n a l y s i s  u s i n g  HYTECH 

The teachability problem (A, r  for a hybrid automaton A and a state predicate !3 
asks if the region R(A) N [13]] is empty; that  is, if there is a t rajectory in T(A) whose 
final state is in [13]]. If [13]] represents the set of "unsafe" states specified by a safety 
property, then this safety property can be verified by reachability analysis. We say tha t  
the teachability problem has answer yes, if R(A) N [13]] -- O; and no, otherwise. 

HYTECH (The Cornell Hybrid Technology Tool) ~ is a symbolic model checker for 
linear hybrid systems [AHH93]. State sets (regions) are represented symbolically, as 
polyhedra. The existing version is limited to teachability analysis. The core of HYTECH 
is a semidecision procedure, which may not terminate on all inputs. The current stable 
version consists of a main control program in MATHEMATICA which calls C++ subrou- 
tines that  make use of Halbwachs' polyhedron manipulation library [Hal93, HRP94]. 
The tool is undergoing reimplementation entirely in C/C++.  

Given a teachability problem (A, 13), HYTECH returns the state predicate that  char- 
acterizes the region R(A)n  [13]], which provides the necessary and sufficient condition on 
the parameters under which the answer to teachability problem (A, 13) is yes. However 
the returned s tate  predicate may be too complex to infer the condition on the param- 
eters. We implemented additional features in HYTEOH to simplify it by existentially 
quantifying out information on locations and control variables. 

4 V e r i f i c a t i o n  o f  t h e  a u d i o  c o n t r o l  p r o t o c o l  

S y s t e m  d e s c r i p t i o n  

The system to be verified is modeled as the composition of the four processes modeled 
as the hybrid automata  depicted in Figures 2 - 5. The input bit stream is nondetermin- 
istically generated on-the-fly by the input process. The sender transmits timely Down 
and Up signals. The receiver recognizes only the Up signals. Instead of adding bits to 
its own copy of the message, the receiver has its output  bits directly acknowledged by 
the output process. To achieve this, we need only record the sequence of bits thus far 
sent as input to the sender, but not yet acknowledged as being received. This informa- 
tion is encoded in the variables leng and c: leng stores the number of unacknowledged 

2 The current Mathematica version of HYTECH, including tactics, is available 
by anonymous ftp from ftp.cs.corneU.edu, directory pub/ tah /HyTech (see also 
http: / /www'cs'c~176176 tah/hytech'html)" 
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bits, and c represents their binary encoding. This enables us to model the transmission 
of arbi t rary length bit sequences. We assume that  only 3 bits need be stored at any 
time, and later see how HYTECH justifies this assumption. 

The operation of each process is briefly described below. The constant Q denotes 
1/4 the length of the time slot. 

S e n d e r  The sender automaton in Figure 2 generates Manchester encoded signals by 
rea~ling the value of the next bit, and then determining the time for the next voltage 
change. The locations in which it is delaying until the right time to change voltage 
are transhiyhl,e, translowo, transhigho, and translowl. The locations translowo and 
transhighl,,, with invariant z < 2Q, correspond to waiting to send a signal at the 
end of the time slot, whereas the other two are for sending Up and Down signals 
in the middle of t ime slots. After  sending a signal in the middle of a t ime slot, the 
process issues int and ino commands. These events are synchronized with the input 
process, and correspond to consuming an input bit with the appropriate value from 
the input  stream, and causing a new bit value to be chosen. The reading signals 
head1, heado, and head~ correspond merely to checking the value of the next bit, 
and are used to decide whether it is necessary to make an intermediate change 
in voltage at the end of the time slot. For each location v in this automaton, 
dil(v, z) = [1 - e, 1 + el. 

I n p u t  The input process in Figure 3 nondeterministically generates valid bit sequences 
which are either odd in length or end in two trailing 0 bits. This is achieved through 
the use of an auxiliary variable k which denotes the parity of the length of the bit 
sequence created so far. Each time the sender consumes a bit, the value of the 
next bit  is chosen. At this point, the process may also terminate the sequence 
by entering the locations endevenoo or stop. The values of c and leng are also 
updated appropriately. This process also provides the sender read-access of the 
next bit value through the head1, heado, and heade signals. For each location 
air(v, c) = all(v, k) = dif(v, leng) = [0,0]. 

R e c e i v e r  The  receiver automaton in Figure 4 decodes its incoming Up signals by 
rounding its local t ime for when it received the signal to the nearest possible time 
it expects a signal. If  no signal is received in due time (within 7Q if the last received 
bit was a 0, and 9Q otherwise), the sequence is interpreted as being complete. It 
also uses an auxiliary variable to record the parity of the received sequence, since 
the finalization of the bit s t ream involves adding a trailing 0 unless the input 
sequence is odd and the last received bit is 1. Whenever an Up signal is received 
the component a t tempts  to emit an output  for values it believes were sent. This 
output  must synchronize with the output-acknowledgement process, which checks 
the a t tempted  output  value with the leading bit of the currently unacknowledged 
input. For each location v in the receiver automaton, dif(v, V) = [1 - e, 1 + e] and 
dif(v, m) = [0, 0]. 

O u t p u t - a c k n o w l e d g e m e n t  The role of the output automaton in Figure 5 is to mon- 
itor a t tempts  by the receiver to output  bits. I t  looks at the number of currently 
unacknowledged bits, and their binary encoding to infer whether the leading bit 
is a 0, 1, or non-existent (in the case of no remaining bits). Whenever bits are 
correctly acknowledged, the values of c and leng are updated. 

We note tha t  HYTECH's limitation to closed intervals for timing constraints forces us 
to model slightly inaccurately the strict inequalities of the original protocol [BPV94]. 
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S p e c i f i c a t i o n  

C o r r e c t  r e c e p t i o n  o f  bits. Our paradigm for specifying correctness is teachability 
analysis, in which we label certain states as violating. The system is correct if no 
violating states are reachable. 

Correctness of the received bit stream is verified by comparing each output bit with 
the value of the currently unacknowledged bits. If a bit cannot be correctly matched 
with the input bits, the receiver enters an error location. We also verify the entire bit 
stream is received by adding a transition from the receiver's o u t  location to the e r r o r  

location conditional on any input bits remaining unmatched. Thus the violating states 
are specified as l[receiver] = er ror .  

T i m e - b o u n d e d  o u t p u t .  Bosscher et al. prove the receiver's output occurs within 
a certain time bound dependent on the length of the message, namely within (4m + 
5)Q/(1 - e) where m is the length of the bit stream. Direct encoding of this property in 
hybrid automata would involve tracking the exact length of the bit stream in a separate 
variable. However, this would lead to a nonterminating reachability analysis where the 
value of m increases arbitrarily. We avoid this problem by proving instead a stronger 
property that can be checked without the need to record the message length. We use 
an additional timer that is reset every time a new input bit is generated. If there are 
m input bits, then the timer may only be reset m times. If the value of the timer is no 
more than 4Q/(1 - e) every time it is reset except for the last time when it may reach 
9Q/(1 - e) in the input 's  id le  location, the total accumulated time does not exceed 
(4(m - 1) + 9)Q/(1 - e) = (4,~ + 5)Q/(1 - e). 

One technicality remains: the current version of HYTECH allows only nonstrict 
inequalities in its constraints, so we cannot directly specify violation states with ex- 
pressions such as z > 4Q/(1 - e). We overcome this by specifying instead a violation if 
z >_ 4Q/(1 - e), and then visually inspecting HYTECH's output to check that the only 
possible violations in this location occur at z = 4Q[(1 - e). 

A n a l y s i s  

We verify the protocol using Philip's error tolerance of 1/20. We arbitrarily choose a 
value of 1 for Q, since the protocol's correctness is independent of its value. HYTECrl 
successfully discovers that the violating states are not reachable. Notice that this jus- 
tifies our assumption that  at most three unacknowledged bits need be stored, since 
the output process flags errors whenever there are four or more bits unacknowledged. 
The correctness of the transmitted sequence is verified in 4.9 hours. The verification 
of the timing property also takes 4.9 hours 3. All performance data in this paper was 
measured on a Sun 670MP workstation. 

5 Synthesis 
We show how algorithmic techniques can automatically discover the critical 1/17 error 
tolerance. 

M e t h o d o l o g y  

To synthesize the permissible clock drifts under which the protocol is correct, the first 
natural  step would be to add to the product automaton A a new parameter e for the 

s Preliminary results from our new implementation show marked improvement, with 
the correctness of bits verified in 48 seconds and the timing property in 61 seconds. 
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error tolerance. The rates of change of each clock would now vary between [1 - e, 1 + e] 
instead of the fixed bounds [19/20, 21/20]. However the resulting automaton is no 
longer a linear hybrid automaton. Linear hybrid automata restrict the rates of change 
to be bounded by constants in order to guarantee reachable regions are describable 
by linear inequalities. We overcome this problem by considering c as a constant and 
applying two transformations which are trace-preserving for every non-zero constant 
value of ~. 

Recall that  our modeling of the system allows two kinds of errors: correctness er- 
rors due to faulty reception of bit values, and modeling "errors" due to our assumption 
of an a priori bound on the number of unacknowledged bits. By analyzing these two 
categories of errors separately, ~[YTEcH shows that  any parameter  values causing mod- 
eling errors also cause correctness errors, so that  the bound is indeed necessary and 
sufficient. 

The synthesis procedure s tar ts  from the automaton A, and is summarized as follows: 

1. introducing a syntactic constant ~ for the clock drift, yielding A(r 
2. transforming A(e) into A'(~), by moving the constant from the rates into con- 

straints, 
3. transforming A'(r into A"(e), by making constraints linear in the constant, 
4. interpreting the constant c as a parameter  ranging over all values for the constant, 
5. synthesizing the bound of 1/17, and, 
6. checking 1/17 is both necessary and sufficient. 

C l o c k  t r a n s f o r m a t i o n s  

We assume the symbolic constant e has been introduced into the rate intervals of both 
the sender's and receiver's clocks. Let A(r denote the resulting automaton for each 
particular value of r E ~4. The foliowing two transformations are applied to each A(c). 

T r a n s f o r m a t i o n  I :  e l i m i n a t i n g  p a r a m e t e r i z e d  s l o p e s .  We first move the 
constant r from the slopes of the clock variables into constraints on the clocks' values. 
The automaton transformation, for constant bounded slopes, was reported in [OSY94]. 
I t  applies to automata  where there are no constraints explicitly enforced on the relative 
differences between variables. 

The clock transformation K applied to a simple hybrid automaton A yields the 
simple hybrid automaton K(A) where each variable z is replaced by the primed variable 
z '  with the rate  interval [1, 1]. For simplicity we assume that  for each variable v the 
rate intervals are fixed throughout tl~e automaton as [lv, t%], with all bounds strictly 
positive. The locations and transitions of K(A) as the same as those of A. The clock 
transformation K replaces (1) the atomic da ta  predicates of the form z < c (z > c) in 
the initial condition, invariants, and guards by the data  predicate z '  < c/l= (z' > c/~=), 
and (2) the assignments of the form �9 := [c, d] by the assignments z '  := [c/u=, d/l=]. 

For example, in our automata  from Figures 2 and 4, atomic data  predicates of the 
form 3Q < z < 5Q are replaced by 3Q/(1 + e) < z '  < 5Q[(1 - e), and z = 2Q by 
20/(1 + ~) < z '  < 2Q/(1 - c), p r o v i d e d ,  ~ { -1 ,  ]}. 

The clock transformation K is sound but  not complete for teachability problems 
of simple hybrid automata.  Fortunately, our automata  fall into the subclass of lin- 
ear hybrid automata  known as the reset skewed clock automata (RSCA) introduced 
in [WT94]. I t  is proven there that  for RSCAA and location predicates ~b, the teacha- 
bility problems (If(A), ~b) and (A, ~b) have the same answer. 

4 Technically we need to extend our definition of automata  to admit real-valued con- 
stants. Details are omitted. 
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D e f i n i t i o n  1. A reset skewed clock automaton (RSCA) is a simple linear hybrid au- 
tomaton whose constraints satisfy the following properties: 

- all slopes of variables are positive, 
- the values of two variables (clocks) are never compared in any constraints, 
- all the assignments set variables to [0, 0], and 
- along any pa th  in the automaton structure, there are never two constraints on a 

variable value without there being an intervening reset of the variable to a fixed 
value, except that  an upper bound constraint may occur as long as it is preceded 
by a looser upper bound constraint since the last reset. 

T h e o r e m  2. [WTg~] I] A is a reset skewed clock automata and ~ is a location predi- 
cate, then the reachabiIity problems ( K ( A ), r ) and ( A, r have the same answer. 

The sender automaton is then first converted into a RSCA before applying K,  while 
the receiver automaton is already a RSCA and can have the transformation applied 
directly. 

T r a n s f o r m a t i o n  I I :  e l i m i n a t i n g  n o n - l i n e a r  c o n s t r a i n t s .  The resulting au- 
tomaton K ( A ( e ) )  has non-linear constraints where e appears in the denominator. We 
eliminate these sources of non-linearity by applying a clock-transformation that  mul- 
tiplies every timing constant by (1 - e)(1 q- e). This operation corresponds to changing 
the time scale by a constant factor. We denote the transformation by value c as T~. 

T h e o r e m  3. I f  A is a hybrid automaton and ~b is a location predicate, then for any 
non-zero c, the reachability problems ( Tr ( A ) , ~b ) and (A , r  have the same answer. 

Therefore, given a RSCA A, a constant e such that  e ~ { -1 ,1}  and a location predi- 
cate ~b, the reachability problems (T(~_,)(I+,)(K(A(e))) ,  ~) and (A , r  have the same 
answer. The automata  for the sender and receiver after these two transformations are 
shown in Figures 6 and 7. 

M o n i t o r i n g  o v e r f l o w  

The final remaining difficulty has to do with modeling the system under uncertainty of 
the value of the parameter  e. Recall tha t  our finite s ta te  modeling assumed that  there 
could be at most 3 unacknowledged bits in the system. This assumption was shown 
true for the fixed parameter e = 1[20. However, for wider tolerances it may be possible 
for the number of unacknowledged bits to grow arbitrarily large as the sender may 
process bits much faster than the receiver. 

These "errors" should be separated from errors in faulty reception, since they are 
due to modeling simplifications only, and may not correspond to truly faulty systems. 
We therefore create a new location in the receiver to catch all instances where the 
number of unacknowledged bits exceeds 3. 

A n a l y s i s  

HYTECH provides the synthesized bound by showing that  correctness errors occur 
whenever 1/17 < e < 1 and the finiteness assumption is only violated if 1/15 < e < 1. 
Therefore the bound of 1/17 is both necessary and sufficient for correctness. Total 
computation time was 27.9 hours 5. 

s The new implementation being developed takes 14 minutes. 
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6 I m p r o v e d  des ign:  a m o r e  t o l e r a n t  rece iver  

With the help of HYTEcH we are able to modify slightly the receiver's protocol to 
enable a wider clock drift. A casual perusal of HYTECH's detailed output of the reach- 
able violating states showed that  the critical bound of 1/17 is not reached in many 
situations. Since the absolute clock drifts are maximal when the docks are compared 
to large values, we suspected the bound to be generated by the receiver's final output 
of the message at t ime 9Q after its last received Up signal. We reran HYTECH with 
all premature  termination errors caught in a separate location. HYTECH's output  then 
shows that  such termination errors occur when 1/17 < e < 1, other correctness errors 
occur only when 1/15 < e < 1, and modeling errors occur when 1/15 < e < 1. Thus 
the bound of 1/17 is only necessary for generating errors when the receiver believes the 
message is terminated before acknowledging all bits. We therefore altered the receiver 
to wait longer before assuming transmission was over. When it delays until loQ in- 
stead of 9Q out of its location last_is_l, the error tolerance should be widened to 1/15. 
HYTEcH verified this in 27.5 hours s. 

7 C o n c l u s i o n s  

Our analysis demonstrates some techniques that  may well prove useful in examining 
other systems: for example, the use of finite state modeling assumptions which are jus- 
tiffed by the verifier itself, the transformations on constants to enable rate information 
to be synthesized, and the separation of errors to gain greater insight into the protocol. 

I t  would be interesting to see whether there are better choices of timing constants 
in the sender and receiver tha t  would allow even greater clock drifts. Also, there may 
be bet ter  protocols that  do not rely on Manchester encoding. I t  may be possible to use 
HYTECI-I to help synthesize these. 
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A. Henzinger for helpful comments. 
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Fig. 2. The sender automaton 
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F i g .  3.  T h e  i n p u t  automaton 
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F i g .  4 .  The receiver automaton 
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F i g .  5 .  The  output automaton 
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F i g .  6.  T h e  t r a n s f o r m e d  sender  a u t o m a t o n  

(~ -.9_,!.? < y < (9 + 9~)q ^ . . . .  (m) -- ~ := 0 

F i g .  7. T h e  t r a n s f o r m e d  receiver a u t o m a t o n  


