
A u t o m a t e d Analys is of an Audio Control
Protocol*

Pei-Hsin Ho and Howard Wong-Toi

Computer Science Department, Cornell University, Ithaca, NY 14853
(holhowaxd)@cs.cornell.edu

A b s t r a c t . We show how HYTECH, a symbolic model checker for linear hy-
brid systems, can be used to analyze an audio control protocol. This proto-
col [BPV94] was first verified by Bosscher et al. without computer support. In
this paper, we demonstrate that algorithmic methods can not only verify the
protocol, but can also automatically synthesize the bound on the maximum
clock drift, and suggest design modification for a more robust protocol. We
believe the techniques we used--f ini te state encodings, automata transfor-
mations, strengthening of specif icat ions- provide insight to the practictioner
interested in modeling and analyzing similar real-world applications.

1 In t roduc t i on

Motivated by the desire to verify real-life reactive systems, Bosscher et al. [BPV94]
met with engineers at Phifips, Netherlands, and developed a formal description of
an audio control protocol. The protocol uses timing-based Manchester encoding to
transmit arbitrary length bit sequences between a single sender and receiver whose
clocks are subject to a bounded error. Their modeling used an extension to timed
I /O automata [LV92], and enabled them to verify its correctness using proof rules.
Furthermore, they show that for correct operation, 1/17 is a tight bound on the error
tolerance on the sender's and receiver's clocks. Their analysis is entirely mathematical
and does not use computer support. They remark that it would be interesting to see
how other methods, particularly algorithmic techniques, could handle their example.

S u c c e s s f u l a u t o m a t e d a n a l y s i s . We accept their proposal, and demonstrate that
HYTECH [AHH93], a symbolic model checker for linear hybrid systems, can not only
verify the protocol's correctness for Philip's tolerance specification of 1/20, but can also
automatically synthesize the critical bound of 1/17. Indeed HVTECH even suggests
a revision in the protocol to enable wider clock drifts of 1/15. This case study is
particularly interesting because it is not immediately clear how to use an automatic
tool to analyze this protocol. We show how arbitrary length data streams can be
finitely encoded using linear hybrid automata [ACHH93]. The verification analysis not
only establishes the correctness of the hybrid automaton, but also justifies our finite
encoding of the infinite data streams.

Synthesizing the critical bound is more delicate, and requires a number of steps.
It involves introducing a parameter for the clock drift, applying two transformations
to the automata, and adding locations to justify the synthesized bound is necessary as
well as sufficient.

* This research was supported in part by the NSF under grant CCR-9200794, by the
USAFOSR under contract F49620-93-1-0056, and by DARPA under grant NAG2-
892.

382

This study provides evidence that model checkers can give more than a simple
answer to the verification problem. We believe they can be used as powerful tools to
verify properties i and to provide non-obvious parametric information that can guide
system design. We first provide an overview of the more interesting steps taken in our
analysis.

A r b i t r a r y l e n g t h i n p u t s e q u e n c e s . The first apparent difficulty is that correct-
ness should be ascertained for arbitrary length transmission sequences, not just all
bit streams up to some fixed finite length. However the algorithmic nature of m o d e l
checking does not allow for storing unbounded input and output sequences. Instead
we nondeterministically generate the input sequence on-the-fly. Rather than adding
bits to the receiver's copy of the message, they are immediately checked against the
input bits. In this way, we need only store that part of the sequence that has been
generated thus far, but not yet acknowledged by the receiver. Indeed we find that at
most 3 unacknowledged bits need be stored.

Bosscher et al. also prove the timeliness of the receiver's output as a function of
the length of the message. Again, a straightforward encoding of this property in hybrid
automata seems impossible because it depends on comparing the time of the output
with an arbitrarily large timing constant dependent on the length of the message.
We obviate this dit~culty by proving instead a stronger property that can be checked
without the need to track an arbitrarily large timer.

S y n t h e s i z i n g e r r o r t o l e r a n c e s . Automatic parametric analysis is introduced in
[CH78], and applied to the analysis of real-time and hybrid systems in [AHH93, AHV93,
HH95]. In order to synthesize a parameter for a system's behavior we introduce a new
variable, a parameter, whose value remains unchanged. HYTECH can then detect for
which values of the parameter error traces are present, in this study, we must synthesize
the permissible rates at which the clocks progress. However immediate introduction of
a variable into rates of the clocks is impossible, since clock variables in linear hybrid
au tomata must have constants as bounds on their rates (otherwise their behavior is non-
linear). To overcome this, we must transform the automaton by translating all skewed
clocks into perfect clocks with rate 1 with the information on variable rates transfered
into the timing constraints on transitions and location invariants [OSY94, WT94]. A
second difficulty arises: the resulting system would still be non-linear, having timing
constraints with variables in the denominators. We apply a further clock transformation
tha t eliminates this problem.

There is one further complication: without prior knowledge of the error tolerance,
i t is impossible to know how many additional input bits may be unacknowledged at any
time. Thus if we assume only k unacknowledged bits need be stored, we may encounter
two sorts of errors: the tolerance is too large and bits are incorrectly received, or the
large tolerance allows a trace with more than k unacknowledged bits. By separately
analyzing these two errors , we find that all parameter values giving errors of the second
type also give correctness errors, and thus the tolerance we infer is both necessary and
sufficient for correctness.

I m p r o v e d p r o t o c o l . By analyzing the exact circumstances under which errors arise,
we can infer from HYTECH'S output that a wider error tolerance is permitted if we alter
the receiver's protocol to delay slightly longer before finalizing its bit stream.

R e l a t e d w o r k . This paper is the first to apply automated parametric analysis to
the audio control protocol. Previous applications of automatic methods performed ver-
ification only, using either different models or more limited descriptions, In his thesis,

383

F i g . 1. Timing diagram for Manchester encoding of 10011

Wong-Toi [WT94] verified correctness and timing properties by applying his real-time
system verification tool to the timed automaton obtained by transforming a linear hy-
brid system model. In [HH95], HYTECH is used to verify the correctness of the audio
control protocol with inputs up to a fixed length only.

2 Audio control protocol
We describe the timing-based communication protocol using Manchester encoding,
as presented by Bosscher et al. [BPV94]. The protocol forms a part of a real audio
control protocol under development by Philips. Bits are encoded based on timing delays
between signals, and the rates of both the sender's and receiver's clocks vary within a
given tolerance.

Bit s treams are communicated using Manchester encoding. See Figure 1 for the
encoding of 10011. The voltage on the communication bus is either high or low. A 0
bit is sent as a Down signal from high voltage to low, and a 1 bit as an Up signal from
low to high. The t ime line is divided into equal length time slots, and the signals are
sent in the middle of each time slot. In order to send a repeated bit, there must be an
intermediate change in voltage, and this occurs at the edge of the time slot as shown
in the diagram for the last two bits.

The audio control protocol has the following complications [BPV94], part ly due to
the fact that there is a 4-5% tolerance in the clock rates of the sending and receiving
components:

1. The receiver does not know when the first time slot begins, although it does know
the agreed upon width of the slots. The sender and receiver synchronize the s tar t
of transmission by requiring a low voltage whenever no bits are being sent, and
start ing all bit streams with a 1.

2. The receiver is not explicitly told the length of the message being sent. I t must
infer the bit s t ream is complete after a suitable lapse in receiving bits.

3. Drops in voltage are not instantaneous, and cannot be reliably detected. Therefore,
the receiver must decode the message based solely on upgoing signals. Because the
downgoing edge of a final 0 bit is not seen, this creates ambiguity between messages
ending in 10 and in 1. This problem is solved by restricting bit streams to be either
odd in length, or ending in 00.

The sender and receiver have the same clock error tolerance. The receiver interprets
the Up signals by rounding the times they are received to the nearest time it expects
them to be sent, i.e. to the slot edges or to the middle of a time slot, whichever is
closer. We verify for arbi trary length bit streams that the receiver correctly receives all
bits, and realizes the bit s tream has finished in a timely fashion.

3 Analysis by hybrid automata
Our system modeling language is linear hybrid automata. Informally, a linear hybrid
automaton [ACHH93] consists of a finite set X of real-valued variables and a labeled

384

multigraph (V, E). The edges E represent discrete system actions and are labeled with
nondeterministic guarded assignments to X. The vertices V represent different control
modes and are labeled with constraints on the slopes of X. The state of the automaton
changes either through instantaneous system actions or, while time elapses, through
continuous activities.

L i n e a r h y b r i d a u t o m a t a

A linear term over a set X of real-valued variables is a finite linear combination of vari-
ables with integer coefficients. A linear inequality over a set X is a nonstrict inequality
between linear terms over X. A linear hybrid automaton A consists of the following
components:

D a t a v a r i a b l e s A finite ordered set X --- { x l , x 2 , . . . , xn} of real-valued data vari-
ables. A data state is a point (a l ,a2 , . . . , an) in the n-dimensional space ~n, or
equivalently, a function that maps each variable xi to its value ai. A convex data
region is a convex polyhedron in]~n; and a data region is a finite collection of
convex da ta regions. A convex data predicate is a finite conjunction of linear in-
equalities; and a data predicate is a finite disjunction of convex da ta predicates.
Each (convex) da ta predicate ~ defines, then, a (convex) da ta region [~] _C ~ n
such that s �9 ~r iff ~ [X := s] is true. We often write s �9 ~ for s �9 [r

C o n t r o l l o c a t i o n s A finite set V of vertices called control locations. A state (v, s)
of the hybrid automaton A consists of a control location v �9 V and a da ta
state s �9]~n. A region U ~ v { (v , s~)} is a collection of da ta regions S~ C_ ~ , one
for each control location v �9 V. A state predicate is a collection Uvev{(V, ~v)}
of data predicates r one for each control location v �9 V. Each state predicate

-- Uvev{(V, r defines, then, the region [~] - Uvev((% [~v])}. A location
predicate is a s tate predicate in which each data predicate ~ is either true or
false. When writing state predicates, we use the location counter 1, which ranges
over the set V of control locations. The location constraint 1 = v denotes the state
predicate {(v, true)} O U~,r {(v',false)}.

I n i t i a l c o n d i t i o n A state predicate ~0 called the initial condition.
L o c a t i o n i n v a r i a n t s A labeling function inv that assigns to each control location

v �9 V a convex da ta predicate inv(v), the invariant of v. The control of A may
reside in the location v only while the invariant inv(v) is true, so the invariants
enforce progress in the system.

C o n t i n u o u s a c t i v i t i e s A labeling function dif that assigns to each control location
v �9 V and each da ta variable zi �9 X a rate interval dif(v, xi) = [l=, uz], where
l= and u= are finite integer constants with l= < u~. The rate interval dif(v, xi) =
[l~, u~], specifies that the rates of change of the data variable zi may vary within
the interval [l=, u=], while automaton control resides in location v.
For 8 > 0, we define the time-step relation, ~ , such that (v, s) ~ (v ' , s ') if and
only if v = v' and there is a function p : [0, 8] --* ~'~ such that (1) f(0) = s, (2)
f(6) = s', (3) for all t �9 [0, g], p(t) e ~inv(v)], and (4) for all time t �9 (0, 6) and
for each data variable x~, dp~(t)/dt �9 dif(v, z~), where p~(t) denotes the value of
variable xi in the data state p(t).

T r a n s i t i o n s A finite multiset E of edges called transitions. Each transition (v, v')
identifies a source location v �9 V and a target location v' �9 V.

D i s c r e t e a c t i o n s A labeling function act that assigns to each transition e �9 E a
guarded command act(e) = ~ --* a , where the guard ~ is a convex data predicate,
and (r = {xi := [hi, t2i] [zi �9 Y C X} is a set of assignments, where t l i and t2i are

385

l inear terms. In the graphical representation, we write xi := ti for zi := [ti, ti], and
we omit the guard true. A data state s maps a linear term t to the real value s(t)
of the te rm t interpreted in the data s ta te s. An assignment xi := [%i, t2i] indicates
tha t the value of the variable zi in da ta s tate s is changed nondeterminist ical ly to
any real number in [s (hi) , s(t2i)].
Let (v, s) be a s ta te such that s E [[inv(v)]], and let (v, v') be a t ransi t ion with the
guarded command ~ --* a. If the data state s E [[~], and all intervals [s(hi) , s(t~d]
are non-empty, then the control of A can proceed from location v to location v' ,
with the da ta s ta te s nondeterminist ical ly changed to a da ta state s' E [inv(v')]]
such tha t s ' (x i) E [s(hi),s(t2i)] if zi := [tti,t2d is in a, and s'(z d = s(z d ,
otherwise.
We define the transition-step relation, ~ , such that (v, s) ~ (v ' , s ') if and only if
the s ta te (v ' , s ') can be reached from the state (v, s) by taking transi t ion e.

S y n c h r o n i z a t i o n l a b e l s A finite set L of s~.lnchronization labels and a labehng func-
t ion s!/n tha t assigns to each t ransi t ion e E E a synchronization label from L.
The synchronizat ion labels are used to define the parallel composition of hybrid
au tomata .

A hybrid au toma ton is simple if all the da ta predicates in the initial conditions, invari-
ants and guards are of the form z < c or z >__ c and all the assignments are of the form
z := [c, d] for some integer constants c and d.

P a r a l l e l c o m p o s i t i o n

A hybrid system typically consists of several components tha t operate concurrently and
communica te with each other. We describe each component as a linear hybrid automa-
ton. The component au toma ta coordinate through shared variables, and to facilitate
message-type coordination, we also use synchronization labels on the transitions. The
hnear hybrid au tomaton that models the entire system is then constructed from the
component au toma ta using a product operation.

Let At = (X , , V~ , ~ 0, invl , di] , , Et , act, , Lt , syn,) and A2 = (X2, V2 , ~ 0, inv2 , dif 2,
E2, act2, L2, syn2) be two linear hybrid au tomata . Then in the product A , x A~ of At
and A~, two t ransi t ions et and e~ from the two component au tomata A1 and A2 are
interleaved, unless synl (e l) = syn2(e2). If synl (e l) = syn~(e2), t ransi t ions et and
e2 are synchronized, and cause the simultaneous traversal of component transit ions.
Formally, the product A1 • A2 of A, and A2 is the linear hybrid au tomaton A =
(X ~ U X2 , V~ • 112, ~o ~ ^ ~o ~ , inv , di] , E, act, L t U L2 , syn) :

- Each location (v, v') in V~ • V2 has the invariant inv(v, v') = inv~ (v) A inv2(v'). For
each variable x E X~ - X 2 , dif((v, v'), x) = dif , (v, z); for each variable x E X2 - X t ,
dif((v, v') , a:) = dif~(v', ~c). For each shared variable ~c e X~ N X2, dif((v, v') , z) =
dill (v, ~) N dif2(v', z).

- E contains the t ransi t ion e = ((vt, v2), (v~, v~)) iff

0) el = (~ , ~ I) e ~ , v~ = ,~ , and syn~(e~) r Z~; or
(2) e~ = (~ , , ~) e E~, ~, = ~I, and s~n2(e2) r Z,; or
(3) el = (v~,v~) ~ E~, ez = (v~,v~) ~ E~, and syn~(et) = syn2(e2).

Suppose tha t a c h (e l) = r -- ' a~, and act~(e~) = r ~ a~. In case (1), syn(e) =
synt(e~) and act(e) = actt(e~); in case (2), syn(e) = syria(e2) and act(e) =
act~(e~); and in case (3), s~tn(e) = s~ln~(e~) = s~n2(e2) and act(e) = ~ A ~2
trl O tr~ if no variable is assigned to two syntactically different terms in a l U a2,
and act(e) = .false ~ ~ otherwise.

386

T r a j e c t o r i e s a n d r e a c h a b i l i t y

At any time instant, the state of a hybrid automaton specifies a control location and
the values of all variables. The state can change in two ways: (1) by an instantaneous
transition that may change both the control location and the values of variables, or
(2) by a time delay that changes only the values of variables in a continuous manner
according to the rate interval of the current control location. A trajectory r of A is a
finite sequence

(v0,s0)-~ (vl,sl) -~ (,~,s~) (~,s,)

of control locations v~ E V, and da ta states si E ~n such that: (1) (vO,so) C ~0]],

(2) for all 0 _< i < k, there exists 7ri E ~>_0UL such that (vi,si) ~.A, (vi+l,si+l), where
]~>0 denotes the set of nonnegative reals. The final state of r is (vk, sk). We write T(A)
for the set of trajectories of A. The reachable region R(A) of A is the set of final states
of trajectories of A.

R e a c h a b i l i t y a n a l y s i s u s i n g HYTECH

The teachability problem (A, r for a hybrid automaton A and a state predicate !3
asks if the region R(A) N [13]] is empty; that is, if there is a t rajectory in T(A) whose
final state is in [13]]. If [13]] represents the set of "unsafe" states specified by a safety
property, then this safety property can be verified by reachability analysis. We say tha t
the teachability problem has answer yes, if R(A) N [13]] -- O; and no, otherwise.

HYTECH (The Cornell Hybrid Technology Tool) ~ is a symbolic model checker for
linear hybrid systems [AHH93]. State sets (regions) are represented symbolically, as
polyhedra. The existing version is limited to teachability analysis. The core of HYTECH
is a semidecision procedure, which may not terminate on all inputs. The current stable
version consists of a main control program in MATHEMATICA which calls C++ subrou-
tines that make use of Halbwachs' polyhedron manipulation library [Hal93, HRP94].
The tool is undergoing reimplementation entirely in C/C++.

Given a teachability problem (A, 13), HYTECH returns the state predicate that char-
acterizes the region R(A)n [13]], which provides the necessary and sufficient condition on
the parameters under which the answer to teachability problem (A, 13) is yes. However
the returned s tate predicate may be too complex to infer the condition on the param-
eters. We implemented additional features in HYTEOH to simplify it by existentially
quantifying out information on locations and control variables.

4 V e r i f i c a t i o n o f t h e a u d i o c o n t r o l p r o t o c o l

S y s t e m d e s c r i p t i o n

The system to be verified is modeled as the composition of the four processes modeled
as the hybrid automata depicted in Figures 2 - 5. The input bit stream is nondetermin-
istically generated on-the-fly by the input process. The sender transmits timely Down
and Up signals. The receiver recognizes only the Up signals. Instead of adding bits to
its own copy of the message, the receiver has its output bits directly acknowledged by
the output process. To achieve this, we need only record the sequence of bits thus far
sent as input to the sender, but not yet acknowledged as being received. This informa-
tion is encoded in the variables leng and c: leng stores the number of unacknowledged

2 The current Mathematica version of HYTECH, including tactics, is available
by anonymous ftp from ftp.cs.corneU.edu, directory pub/ tah /HyTech (see also
http: / /www'cs'c~176176 tah/hytech'html)"

387

bits, and c represents their binary encoding. This enables us to model the transmission
of arbi t rary length bit sequences. We assume that only 3 bits need be stored at any
time, and later see how HYTECH justifies this assumption.

The operation of each process is briefly described below. The constant Q denotes
1/4 the length of the time slot.

S e n d e r The sender automaton in Figure 2 generates Manchester encoded signals by
rea~ling the value of the next bit, and then determining the time for the next voltage
change. The locations in which it is delaying until the right time to change voltage
are transhiyhl,e, translowo, transhigho, and translowl. The locations translowo and
transhighl,,, with invariant z < 2Q, correspond to waiting to send a signal at the
end of the time slot, whereas the other two are for sending Up and Down signals
in the middle of t ime slots. After sending a signal in the middle of a t ime slot, the
process issues int and ino commands. These events are synchronized with the input
process, and correspond to consuming an input bit with the appropriate value from
the input stream, and causing a new bit value to be chosen. The reading signals
head1, heado, and head~ correspond merely to checking the value of the next bit,
and are used to decide whether it is necessary to make an intermediate change
in voltage at the end of the time slot. For each location v in this automaton,
dil(v, z) = [1 - e, 1 + el.

I n p u t The input process in Figure 3 nondeterministically generates valid bit sequences
which are either odd in length or end in two trailing 0 bits. This is achieved through
the use of an auxiliary variable k which denotes the parity of the length of the bit
sequence created so far. Each time the sender consumes a bit, the value of the
next bit is chosen. At this point, the process may also terminate the sequence
by entering the locations endevenoo or stop. The values of c and leng are also
updated appropriately. This process also provides the sender read-access of the
next bit value through the head1, heado, and heade signals. For each location
air(v, c) = all(v, k) = dif(v, leng) = [0,0].

R e c e i v e r The receiver automaton in Figure 4 decodes its incoming Up signals by
rounding its local t ime for when it received the signal to the nearest possible time
it expects a signal. If no signal is received in due time (within 7Q if the last received
bit was a 0, and 9Q otherwise), the sequence is interpreted as being complete. It
also uses an auxiliary variable to record the parity of the received sequence, since
the finalization of the bit s t ream involves adding a trailing 0 unless the input
sequence is odd and the last received bit is 1. Whenever an Up signal is received
the component a t tempts to emit an output for values it believes were sent. This
output must synchronize with the output-acknowledgement process, which checks
the a t tempted output value with the leading bit of the currently unacknowledged
input. For each location v in the receiver automaton, dif(v, V) = [1 - e, 1 + e] and
dif(v, m) = [0, 0].

O u t p u t - a c k n o w l e d g e m e n t The role of the output automaton in Figure 5 is to mon-
itor a t tempts by the receiver to output bits. I t looks at the number of currently
unacknowledged bits, and their binary encoding to infer whether the leading bit
is a 0, 1, or non-existent (in the case of no remaining bits). Whenever bits are
correctly acknowledged, the values of c and leng are updated.

We note tha t HYTECH's limitation to closed intervals for timing constraints forces us
to model slightly inaccurately the strict inequalities of the original protocol [BPV94].

388

S p e c i f i c a t i o n

C o r r e c t r e c e p t i o n o f bits. Our paradigm for specifying correctness is teachability
analysis, in which we label certain states as violating. The system is correct if no
violating states are reachable.

Correctness of the received bit stream is verified by comparing each output bit with
the value of the currently unacknowledged bits. If a bit cannot be correctly matched
with the input bits, the receiver enters an error location. We also verify the entire bit
stream is received by adding a transition from the receiver's o u t location to the e r r o r

location conditional on any input bits remaining unmatched. Thus the violating states
are specified as l[receiver] = er ror .

T i m e - b o u n d e d o u t p u t . Bosscher et al. prove the receiver's output occurs within
a certain time bound dependent on the length of the message, namely within (4m +
5)Q/(1 - e) where m is the length of the bit stream. Direct encoding of this property in
hybrid automata would involve tracking the exact length of the bit stream in a separate
variable. However, this would lead to a nonterminating reachability analysis where the
value of m increases arbitrarily. We avoid this problem by proving instead a stronger
property that can be checked without the need to record the message length. We use
an additional timer that is reset every time a new input bit is generated. If there are
m input bits, then the timer may only be reset m times. If the value of the timer is no
more than 4Q/(1 - e) every time it is reset except for the last time when it may reach
9Q/(1 - e) in the input 's id le location, the total accumulated time does not exceed
(4(m - 1) + 9)Q/(1 - e) = (4,~ + 5)Q/(1 - e).

One technicality remains: the current version of HYTECH allows only nonstrict
inequalities in its constraints, so we cannot directly specify violation states with ex-
pressions such as z > 4Q/(1 - e). We overcome this by specifying instead a violation if
z >_ 4Q/(1 - e), and then visually inspecting HYTECH's output to check that the only
possible violations in this location occur at z = 4Q[(1 - e).

A n a l y s i s

We verify the protocol using Philip's error tolerance of 1/20. We arbitrarily choose a
value of 1 for Q, since the protocol's correctness is independent of its value. HYTECrl
successfully discovers that the violating states are not reachable. Notice that this jus-
tifies our assumption that at most three unacknowledged bits need be stored, since
the output process flags errors whenever there are four or more bits unacknowledged.
The correctness of the transmitted sequence is verified in 4.9 hours. The verification
of the timing property also takes 4.9 hours 3. All performance data in this paper was
measured on a Sun 670MP workstation.

5 Synthesis
We show how algorithmic techniques can automatically discover the critical 1/17 error
tolerance.

M e t h o d o l o g y

To synthesize the permissible clock drifts under which the protocol is correct, the first
natural step would be to add to the product automaton A a new parameter e for the

s Preliminary results from our new implementation show marked improvement, with
the correctness of bits verified in 48 seconds and the timing property in 61 seconds.

389

error tolerance. The rates of change of each clock would now vary between [1 - e, 1 + e]
instead of the fixed bounds [19/20, 21/20]. However the resulting automaton is no
longer a linear hybrid automaton. Linear hybrid automata restrict the rates of change
to be bounded by constants in order to guarantee reachable regions are describable
by linear inequalities. We overcome this problem by considering c as a constant and
applying two transformations which are trace-preserving for every non-zero constant
value of ~.

Recall that our modeling of the system allows two kinds of errors: correctness er-
rors due to faulty reception of bit values, and modeling "errors" due to our assumption
of an a priori bound on the number of unacknowledged bits. By analyzing these two
categories of errors separately, ~[YTEcH shows that any parameter values causing mod-
eling errors also cause correctness errors, so that the bound is indeed necessary and
sufficient.

The synthesis procedure s tar ts from the automaton A, and is summarized as follows:

1. introducing a syntactic constant ~ for the clock drift, yielding A(r
2. transforming A(e) into A'(~), by moving the constant from the rates into con-

straints,
3. transforming A'(r into A"(e), by making constraints linear in the constant,
4. interpreting the constant c as a parameter ranging over all values for the constant,
5. synthesizing the bound of 1/17, and,
6. checking 1/17 is both necessary and sufficient.

C l o c k t r a n s f o r m a t i o n s

We assume the symbolic constant e has been introduced into the rate intervals of both
the sender's and receiver's clocks. Let A(r denote the resulting automaton for each
particular value of r E ~4. The foliowing two transformations are applied to each A(c).

T r a n s f o r m a t i o n I : e l i m i n a t i n g p a r a m e t e r i z e d s l o p e s . We first move the
constant r from the slopes of the clock variables into constraints on the clocks' values.
The automaton transformation, for constant bounded slopes, was reported in [OSY94].
I t applies to automata where there are no constraints explicitly enforced on the relative
differences between variables.

The clock transformation K applied to a simple hybrid automaton A yields the
simple hybrid automaton K(A) where each variable z is replaced by the primed variable
z ' with the rate interval [1, 1]. For simplicity we assume that for each variable v the
rate intervals are fixed throughout tl~e automaton as [lv, t%], with all bounds strictly
positive. The locations and transitions of K(A) as the same as those of A. The clock
transformation K replaces (1) the atomic da ta predicates of the form z < c (z > c) in
the initial condition, invariants, and guards by the data predicate z ' < c/l= (z' > c/~=),
and (2) the assignments of the form �9 := [c, d] by the assignments z ' := [c/u=, d/l=].

For example, in our automata from Figures 2 and 4, atomic data predicates of the
form 3Q < z < 5Q are replaced by 3Q/(1 + e) < z ' < 5Q[(1 - e), and z = 2Q by
20/(1 + ~) < z ' < 2Q/(1 - c), p r o v i d e d , ~ { -1 ,]}.

The clock transformation K is sound but not complete for teachability problems
of simple hybrid automata. Fortunately, our automata fall into the subclass of lin-
ear hybrid automata known as the reset skewed clock automata (RSCA) introduced
in [WT94]. I t is proven there that for RSCAA and location predicates ~b, the teacha-
bility problems (If(A), ~b) and (A, ~b) have the same answer.

4 Technically we need to extend our definition of automata to admit real-valued con-
stants. Details are omitted.

390

D e f i n i t i o n 1. A reset skewed clock automaton (RSCA) is a simple linear hybrid au-
tomaton whose constraints satisfy the following properties:

- all slopes of variables are positive,
- the values of two variables (clocks) are never compared in any constraints,
- all the assignments set variables to [0, 0], and
- along any pa th in the automaton structure, there are never two constraints on a

variable value without there being an intervening reset of the variable to a fixed
value, except that an upper bound constraint may occur as long as it is preceded
by a looser upper bound constraint since the last reset.

T h e o r e m 2. [WTg~] I] A is a reset skewed clock automata and ~ is a location predi-
cate, then the reachabiIity problems (K (A), r) and (A, r have the same answer.

The sender automaton is then first converted into a RSCA before applying K, while
the receiver automaton is already a RSCA and can have the transformation applied
directly.

T r a n s f o r m a t i o n I I : e l i m i n a t i n g n o n - l i n e a r c o n s t r a i n t s . The resulting au-
tomaton K (A (e)) has non-linear constraints where e appears in the denominator. We
eliminate these sources of non-linearity by applying a clock-transformation that mul-
tiplies every timing constant by (1 - e)(1 q- e). This operation corresponds to changing
the time scale by a constant factor. We denote the transformation by value c as T~.

T h e o r e m 3. I f A is a hybrid automaton and ~b is a location predicate, then for any
non-zero c, the reachability problems (Tr (A) , ~b) and (A , r have the same answer.

Therefore, given a RSCA A, a constant e such that e ~ { -1 ,1} and a location predi-
cate ~b, the reachability problems (T(~_,)(I+,)(K(A(e))) , ~) and (A , r have the same
answer. The automata for the sender and receiver after these two transformations are
shown in Figures 6 and 7.

M o n i t o r i n g o v e r f l o w

The final remaining difficulty has to do with modeling the system under uncertainty of
the value of the parameter e. Recall tha t our finite s ta te modeling assumed that there
could be at most 3 unacknowledged bits in the system. This assumption was shown
true for the fixed parameter e = 1[20. However, for wider tolerances it may be possible
for the number of unacknowledged bits to grow arbitrarily large as the sender may
process bits much faster than the receiver.

These "errors" should be separated from errors in faulty reception, since they are
due to modeling simplifications only, and may not correspond to truly faulty systems.
We therefore create a new location in the receiver to catch all instances where the
number of unacknowledged bits exceeds 3.

A n a l y s i s

HYTECH provides the synthesized bound by showing that correctness errors occur
whenever 1/17 < e < 1 and the finiteness assumption is only violated if 1/15 < e < 1.
Therefore the bound of 1/17 is both necessary and sufficient for correctness. Total
computation time was 27.9 hours 5.

s The new implementation being developed takes 14 minutes.

391

6 I m p r o v e d des ign: a m o r e t o l e r a n t rece iver

With the help of HYTEcH we are able to modify slightly the receiver's protocol to
enable a wider clock drift. A casual perusal of HYTECH's detailed output of the reach-
able violating states showed that the critical bound of 1/17 is not reached in many
situations. Since the absolute clock drifts are maximal when the docks are compared
to large values, we suspected the bound to be generated by the receiver's final output
of the message at t ime 9Q after its last received Up signal. We reran HYTECH with
all premature termination errors caught in a separate location. HYTECH's output then
shows that such termination errors occur when 1/17 < e < 1, other correctness errors
occur only when 1/15 < e < 1, and modeling errors occur when 1/15 < e < 1. Thus
the bound of 1/17 is only necessary for generating errors when the receiver believes the
message is terminated before acknowledging all bits. We therefore altered the receiver
to wait longer before assuming transmission was over. When it delays until loQ in-
stead of 9Q out of its location last_is_l, the error tolerance should be widened to 1/15.
HYTEcH verified this in 27.5 hours s.

7 C o n c l u s i o n s

Our analysis demonstrates some techniques that may well prove useful in examining
other systems: for example, the use of finite state modeling assumptions which are jus-
tiffed by the verifier itself, the transformations on constants to enable rate information
to be synthesized, and the separation of errors to gain greater insight into the protocol.

I t would be interesting to see whether there are better choices of timing constants
in the sender and receiver tha t would allow even greater clock drifts. Also, there may
be bet ter protocols that do not rely on Manchester encoding. I t may be possible to use
HYTECI-I to help synthesize these.

A c k n o w l e d g e m e n t s . We thank Peter Kopke for a careful reading, and Prof. Thomas
A. Henzinger for helpful comments.

R e f e r e n c e s

[ACHH93]

[AHH93]

[AHVg3]

[BPV94]

R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata:
an algorithmic approach to the specification and verification of hybrid sys-
tems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors,
Hybrid Systems, Lecture Notes in Computer Science 736, pages 209-229.
Springer-Verlag, 1993.
R. Alur, T.A. Henzinger, and P.-H. go. Automatic symbolic verification of
embedded systems. In Proceedings of the 14th Annual Real-time Systems
Symposium, pages 2-11. IEEE Computer Society Press, 1993.
R. Ainr, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning.
In Proceedings of the 25th Annual Symposium on Theory of Computing,
pages 592-601. ACM Press, 1993.
D. Bosscher, I. Polak, and F. Vaandrager. Verification of an audio-control
protocol. In H. Langmaack, W.-P. de Roever, and 3. Vytopil, editors,
FTRTFT 94: Formal Techniques in Real-time and Fault-tolerant Systems,
Lecture Notes in Computer Science 863, pages 170-192. Springer-Verlag,
1994.

The new implementation being developed takes 23 minutes.

392

[CHTS]

[Hal93]

[HH95]

I:HRP94]

[LV92]

[osY9~

[WT9~

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedinga of the Fifth Annual Sym-
posium on Principles of Programming Languages. ACM Press, 1978.
N. Halbwachs. Delay analysis in synchronous programs. In
C. Courcoubetis, editor, CAV 93: Computer-aided Verification, Lecture
Notes in Computer Science 697, pages 333-346. Springer-Verlag, 1993.
T.A. Henzinger and P.-H. tto. HYTEcH: The Cornell Hybrid Technology
Tool. To appear, 1995.
N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of finear hybrid
systems by means of convex approximation. In Proceedings of the First
Static Analysis Symposium, 1994.
N.A. Lynch and F. Vaandrager. Action transducers and timed automata.
In R.3. Cleaveland, editor, CONCUR 92: Theories of Concurrency, Lecture
Notes in Computer Science 630, pages 436-455. Springer-Verlag, 1992.
A. Olivero, 3. Sifalds, and S. Yovine. Using abstractions for the verification
of linear hybrid systems. In D.L. Dill, editor, CAV 94: Computer-aided
Verification, Lecture Notes in Computer Science 818, pages 81-94. Springer-
Verlag, 1994.
Howard Wong-Toi. Symbolic Approximations for Verifying Real- Time Sys-
tems. PhD thesis, Department of Computer Science, Stanford University,
CA, December 1994.

/k::"2... :..:: %: ,9

. . . <7) L) _..7< ,)
h e a d _ O ~ ~ n S ~ ---- 4Q ~ x :---- 0 input..O~= 2Q ~ h e ~ d " O

Fig. 2. The sender automaton

393

k : = k ~ l , c~ - - - - 2 c + I ~ ~ " ~ k : = k ~ l , c : = 2 c

len~ : = l eng + 1 / ' m p u t l ~ k : : k • 1, c := 2 r [inpu to~leu$: = leug + 1

[h r I he~d.Js-1] k : = k * I , r :----- 2c + I (he~d-is_O]headoJ
\ ~x /~ l eng : = l eng + 1 \ / /

o : = ~ , k : = o,,p ,. ~ % : : L :
leng : = i I I~. n p u t l k = o ~ ~ n p ~ g + 1

A ell

F i g . 3. T h e i n p u t automaton

I 1t = 9 Q ^ o d d (m) ~ y : = 0 / Is*st ~sl

I I \ " : 1 ~ ..40_<,_<,0- ~o~--. "~o<~<,,~--.-
�9 - o - - .---o 7-= o'- . - ~ . I l Z_o

II I ",r_-o ":~/ ~ L \
I I]output..neq_l .. / l \ \

/ ' o u t ~ L S - ; s O ' ~ o u t p u t . . q - O , : 7Q ' f . r <

\ oot,.t_~ \ / -- =,~,.._
~ - l eng > 1 \ ~ /

~q_O

F i g . 4 . The receiver automaton

(
OUt pu~..neq_l

I l e n g 1 ^ r
A r

| l e n g 3 ^ c
k l e n g)_ 4

(

o u t p u t 1
(| e n g = 1 A c = 1 ~ c := O,ler~g : ~ ~eng -- 1
[l e n g ---- 2 A c > 2 ~ c := c - - 2 , 1 e n g := l e n g -- I
I.. | e n g ---- 3 A c ~ 4 ~ c : = c -- 4, |er~g :---- | e n g -- 1

- -

"~--] . f] l e n g = 2 A c > 2

, , ~ v I~ l e n g > 4 --

] o u t p u t o
/ (l e n g = 1 A c = 0 ~ l e n g := l e n 9 -- 1

| | e n g = 2 h c < 1 ~ | e n g := | e n g -- 1
I,, l e n g = 3 A c ~ 3 ~ l e n g := lertg -- 1

F i g . 5 . The output automaton

394

(4 - 4 <) Q < s < (4 + 4 e) Q - = : = 0

~ r ~ ~ [ri,~-I ~ - 2 ~) Q < = < (~ o}

q ~ 2 / headA (2 -- 2e)Q ~ x ~ (2 -F 2eJqxx. / l

. . . . t ~ I,.-=._~E~ _ - ' ') ~ < = < ` ~ + , ' ' ~ A-..,o.~

F i g . 6. T h e t r a n s f o r m e d sender a u t o m a t o n

(~ -.9_,!.? < y < (9 + 9~)q ^ (m) -- ~ := 0

F i g . 7. T h e t r a n s f o r m e d receiver a u t o m a t o n

