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6 Conclusions

In this paper, we have given an O(n2) time algorithm to determine whether we can
add edges to a given three-colored graph such that it becomes a properly colored
interval graph. The algorithm can be modi�ed such that it outputs an intervalization,
if existing, and still uses quadratic time. To get a faster algorithm for the problem
considered in this paper might well be a hard problem. It seems that even the simplest
cases, e.g., when G is a simple cycle, need O(n2) time to resolve, and might well already
capture the main di�culties for speed-up.

We have shown that this problem is NP-complete for four or more colors. We feel
however that the graphs, arising in the reduction of this proof, will not be typical for
the type of colored graphs, arising in the sequence reconstruction application. It may
well be that special cases of ICG, which capture characteristics of the application data,
have e�cient algorithms. Further research could perhaps give new meaningful results
here.
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Now, suppose S1; S2;:::; Sm is a partition of f1;:::; 3mg, such that for all j, 1 �
j � m,

P
i2Sj si = Q. We will give a path decomposition (V1;:::; Vr) of G = (V;E),

such that no Vi contains two vertices of the same color. We leave most of the easy
veri�cation that the given path decomposition ful�lls the requirements to the reader.

Take t = 48Q, r = mt + 1.
Take V1 = A, Vr = B.
For each vertex ci;j 2 C, put ci;j in set Vti+1.
For each vertex di;j 2 D, put di;j in sets Vt(i�1)+2j�1, Vt(i�1)+2j, and Vt(i�1)+2j+1.

(Identi�ed vertices are just put in every set, indicated by their `di�erent names'; one
easily observes that these are consecutive sets.)

For each i, 1 � i � m, suppose Si = fl1; l2; l3g. Put vertex el1;1 in set Vt(i�1)+2.
For all j, 2 � j � 24sl1 � 2, put vertex el1;j in sets Vt(i�1)+2j�2, Vt(i�1)+2j�1,
Vt(i�1)+2j. For all j, 1 � j � 24sl2 � 2, put vertex el2;j in sets Vt(i�1)+48sl1+2j�2,
Vt(i�1)+48sl1+2j�1, Vt(i�1)+48sl1+2j . For all j, 1 � j � 24sl3 � 2, put vertex el3;j in sets
Vt(i�1)+48sl1+48sl2+2j�2, Vt(i�1)+48sl1+48sl2+2j�1, Vt(i�1)+48sl1+48sl2+2j .

Finally, put f in all sets V2;:::; Vr�1.
A straightforward, but somewhat tedious veri�cation shows that the resulting path

decomposition is indeed a path decomposition of G, and that no set Vi contains two
di�erent vertices with the same color.

2

As 3-partition is strongly NP-complete and our transformation is polynomial in Q and
m, the claimed theorem now follows. 2

Note that we even proved a slightly stronger result:

Corollary 5.1. ICG is NP-complete for four-colored graphs G, with the property that
there is one color that is only given to three vertices of G.
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jm = r. As there is a path from d1;1 to dm;24Q in G that does not contain vertices with
color 4 or vertices in E, it follows that each set Vi contains at least one vertex in C[D
with color 1, 2 or 3.

For each i, 1 � i � m, call the interval [ji�1 + 1; ji � 1] the ith valley. Each vertex
di;j must be in one or more successive nodes V� with � in the ith valley. It can not
be in another valley, since that gives a color con
ict. Note that there are exactly 8Q
vertices di;j (for �xed i) with color 2. For a 2-colored vertex di;j , we call the interval
f� j di;j 2 V�g a 2-range. Note that all 2-ranges are disjoint, otherwise we have a color
con
ict. So, in each valley, we have exactly 8Q 2-ranges.

For each l, 1 � l � 3m, look at the vertices El. Note that all vertices in El must be
contained in nodes V� with all �'s in the same valley. Otherwise, the path induced by
El will cross a middle clique, and we have a color con
ict between a vertex in El and a
vertex in C. Write Si = fl j vertices in El are in sets V� with � in the ith valleyg. We
show that S1;:::; Sm is a partition of f1;:::; 3mg such that for each j,

P
i2Sj

si = Q.
For each edge fel;j ; el;j+1g with el;j of color 3 (and hence, el;j+1 has color 1), there

must be a node � with fel;j ; el;j+1g � V�. � must be in a 2-range, as otherwise V�
contains a 1-colored or 3-colored vertex from C [ D, and we have a color con
ict. If
there exists an � with fel;j ; el;j+1; di;j0g � V�, with di;j0 of color 2, then we say that the
2-range of di;j0 contains the 1-3-E-edge fel;j; el;j+1g.

Claim 5.2. No 2-range contains two or more 1-3-E-edges.

Proof. Suppose fel1;j1 ; el1;j1+1g and fel2;j2 ; el2;j2+1g are distinct 1-3-E-edges, and
there is a di;j0 such that fel1;j1 ; el1;j1+1; di;j0g � V�, fel2;j2 ; el2;j2+1; di;j0g � V�. Suppose
w.l.o.g. that � < �. Note that both v = el1;j1 and w = el1;j1+1 are adjacent to a
2-colored vertex. Let [
; �] be the 2-range of di;j0 . Note that 
 � � < � � �. If V
�1
contains a 1-colored vertex from C[D, then consider the 1-colored vertex w. It cannot
belong to V
�1 and it cannot belong to V�. So, if w 2 V�, then 
 � � � �. Hence, there
cannot be a set V� that contains w and its 2-colored neighbor el1;j1+2, contradiction. If
V
�1 does not contain a 1-colored vertex from C[D, then it contains a 3-colored vertex
from C [D, and by considering v and using a similar argument, also a contradiction
arises. 2

Let 1 � i � m. Suppose Si = fl1; l2;:::; ltg. Note that El1 [ � � � [ Elt induces
8sl1 � 1 + 8sl2 � 1 + � � �+ 8slt � 1 1-3-E-edges. As there are 8Q 2-ranges in a valley, we
must have

8(sl1 + sl2 + � � �slt)� t � 8Q

By noting that each sl � Q=4 + 1=4, it follows that 8(Q=4 + 1=4)t� t � 8Q, so t � 3,
and that hence also, by integrality,

8(sl1 + sl2 + � � �slt) � 8Q

So, we have a partition of f1;:::; 3mg into sets S1;:::; Sm, such that for all j; 1 � j � m,P
i2Sj

si � Q. As
Pm

j=1

P
i2Sj

si = mQ, it follows that for all j, 1 � j � m,
P

i2Sj
si =

Q.
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d1;1 d1;2 d1;3 d1;24Q�1 d1;24Q d2;1 dm;1 dm;24Qdm�1;24Q

= a1

a2

a3

a4
= b3

b2

b4

b1

c1;3
=

c1;2

cm�1;3 cm�1;1

cm�1;2

f

=
c1;1

= =

e1;1 e1;2 e1;24s1�2

e2;1 e2;2 e2;24s2�2

e3m;1 e3m;2 e3m;24s3m�2vertex of color 1

vertex of color 2

vertex of color 3

vertex of color 4

Figure 70: The constructed graph G = (V;E).

Number representing paths Take vertices E = fel;j j 1 � l � 3m; 1 � j � 24sl �
2g. Color each vertex el;j 2 E with color 2 if j mod 3 = 1, with color 3 if j mod 3 = 2,
and with color 1 if j mod 3 = 0. For each l, the vertices El = fel;j j 1 � j � 24sl � 2g
form a path: add edges fel;j ; el;j+1g for all l, j, 1 � l � 3m, 1 � j � 24sl � 3.

Attachment vertex Take one vertex f . Color f with color 4. Take edges ff; a1g
ff; b3g, and for all l, 1 � l � 3m, edge ff; el;1g.

The four-colored graph, resulting from this construction, is the graph G = (V;E).
Note that the transformation can be done in polynomial time in Q and m.

Claim 5.1. There exists a partition of the set f1;:::; 3mg into sets S1;:::; Sm such thatP
i2Sj si = Q for each j if and only if there is an intervalization of G.

Proof. Suppose that G is a subgraph of a properly colored interval graph. So, we
have a proper path decomposition (V1;:::; Vr) of G. We may assume that there are no
Vi; Vi+1 with Vi � Vi+1 or Vi+1 � Vi. (Otherwise, we may omit the smaller of these two
sets from the path decomposition and still have a path decomposition of G.)

Note that, by the clique containment lemma (Lemma 2.4), there exist i0 with
Vi0 = A, and i1 with Vi1 = B. Without loss of generality suppose i0 < i1. If i0 6= 1,
then there exists a v 2 Vi0�1 with v 62 A. Note that such a vertex v has a path to a
vertex in B that avoids A. It follows that Vi0 must contain a vertex from this path, but
this will yield a color con
ict with a vertex in A, contradiction. So, i0 = 1. A similar
argument shows that i1 = r.

Also, from Lemma 2.4 it follows that for each i, 1 � i � m � 1, there is a ji,
2 � ji � r � 1 with Ci � Vji . We must have j1 < j2 < j3 < � � � < jm�1, otherwise a
color con
ict will arise between a track vertex and a vertex in a set Ci. Write j0 = 1,
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5 Intervalizing Four-Colored Graphs

For some time, it has been an open problem whether there existed polynomial time
algorithms for ICG for a constant number of colors, k � 4. Older results showed �xed
parameter intractability [FHW93, BFH94], but did not resolve the question. Our NP-
completeness result resolves this open problem in a negative way (assuming P 6= NP ).

Theorem 5.1. ICG is NP-complete for four-colored graphs.

Proof. Clearly, ICG 2 NP.
To prove NP-hardness, we transform from 3-partition, which is strongly NP-

complete [GJ79].

3-Partition

Instance: Integers m 2 N and Q 2 N, a sequence s1;:::; s3m 2 N such
that

�
3mX
i=1

si = mQ, and

� 81�i�3m
1
4Q < ai <

1
2Q.

Question: Can the set f1;:::; 3mg be partitioned into m disjoint sets
S1;:::; Sm such that

81�j�m
X
i2Sj

si = Q

Suppose input m;Q; s1; s2;:::; s3m 2 N is given. Now, we de�ne a graph G = (V;E),
which consists of the following parts (see Figure 70):

Start clique Take vertices A = fa1; a2; a3; a4g. Color vertex ai with color i (i =
1; 2; 3; 4). Add edges between every two vertices in A.

End clique Take vertices B = fb1; b2; b3; b4g. Color vertex bi with color i (i =
1; 2; 3; 4). Add edges between every two vertices in B.

Middle cliques Take vertices C = fci;j j 1 � i � m � 1; 1 � j � 3g. Color each
vertex ci;j 2 C with color j. Make each set Ci = fci;1; ci;2; ci;3g into a clique.

Tracks Take vertices D = fdi;j j 1 � i � m; 1 � j � 24Qg. Color each vertex
di;j 2 D with color 1 if j mod 3 = 1, with 2 if j mod 3 = 2 and with 3 if j mod 3 = 0.
Identify vertex a1 with d1;1, vertex b3 with dm;24Q, and, for all i, 1 � i � m�1, identify
di;24Q with ci;3, and di+1;1 with ci;1. These track vertices form m paths: take edges
fdi;j; di;j+1g for all i, j, 1 � i � m, 1 � j � 24Q� 1.
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I

in:r

pout:l:lb

p[1]:llr:v

p[1]:l:v

b[i]:e:v q

II

in:r b[i]:e:v = q

b[i]:e:v = q

= out:l:rb

III

Figure 69: Cases for vq in the algorithm.
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m =

I

m+ 1

in0:r

bc:rrl:v nn= n

II

p[i]:l:v

m

m+ 1

in0:r

p[3� i]:rrl:v nn= n

m =

III

m+ 1
bc:rrl:v nn= n

out0:l:rb =

pout0:l:lb

p[i]:llr:v

p[3� i]:r:v

p[i]:l:v

p[3� i]:r:v

m =

IV

out0:l:rb

pout0:l:lb

p[i]:llr:v

m+ 1
p[3� i]:rrl:v nn= n

Figure 68: Cases in the algorithm in which out is computed, vm:bc:ok holds, and
vm:nr > 1. In parts I and III, vm:p[3� i]:H is not drawn.
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m

I

m + 1

in0:r

bc:rrl:v nn= n

II

p[1]:l:v

m

m + 1

in0:r

p[1]:rrl:v nn= n

m =

III

m + 1
bc:rrl:v nn= n

out0:l:rb

pout0:l:lb

p[1]:llr:v

Figure 67: Cases in the algorithm in which out is computed, vm:bc:ok holds, and
vm:nr = 1.
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I

bc:lr:la =
m = m + 1 bc:lr:ra n

m + 1

m =

p[3� i]:rrr:v n

II

p[3� i]:r:v =

bc:lll:v =

out0:l:rb

pout0:l:lb

p[i]:llr:v

pout0:l:lb

p[i]:llr:v

m+ 1

m =

p[3� i]:rrl:v n

III

bc:llr:v

pout0:l:lb

p[i]:llr:v

out0:l:rb

out0:l:rb

Figure 65: Cases in the algorithm in which in is computed, vm:bc:ok holds, vm:nr > 1
and out0:l is used. In part I, vm:p[3� i]:H is not drawn.

m

II

m+ 1

in0:r

bc:rrr:v nn
= n

m

I

m + 1

in0:r

bc:rrl:v nn= n

Figure 66: Cases in the algorithm in which out is computed, vm:bc:ok holds, vm:nr = 0
and in0 is used.
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I

bc:lr:la =
m = m+ 1 bc:lr:ra nin0:r p[i]:l:v

m + 1

m =in0:r p[i]:l:v

p[3� i]:rrr:v n

II

p[3� i]:r:v

bc:lll:v

m+ 1

m =in0:r p[i]:l:v

p[3� i]:rrl:v n

III

bc:llr:v

Figure 64: Cases in the algorithm in which in is computed, vm:bc:ok holds, vm:nr > 1
and in0 is used. In part I, vm:p[3� i]:H is not drawn.
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I

bc:lr:la

II

m m + 1 bc:lr:ra nin0:r

bc:lr:la

m = m + 1 bc:lr:ra nin0:r p[1]:l:v

m + 1

min0:r bc:lll:v

p[1]:rrr:v n

m + 1

min0:r bc:llr:v

p[1]:rrl:v
n

III

IV

Figure 62: Cases in the algorithm in which in is computed, vm:bc:ok holds, vm:nr = 0
(Part I) or vm:nr = 1 and in0 is used (Part II, III and IV).

I

bc:lr:la =
m = m+ 1 bc:lr:ra n

out0:l:rb

p

II

bc:lr:la =
m = m + 1 bc:lr:rb n

out0:r:rb

p

out0:l:lb

out0:r:lb

p[1]:lll:v

p[1]:llr:v

Figure 63: Cases in the algorithm in which in is computed, vm:bc:ok holds, vm:nr = 1
and out0 is used.
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return false
end

i1b[1]:e:v

I

1

i1b[i]:e:v = 1

II

Figure 61: Cases for v1 in the algorithm. In part I, nrb = 1 and nr = 0. In part II,
nr + nrb > 1, and only the ending biconnected component is shown.

Lemma 4.28. If su�ces to keep track of two pairs (out:l:li; out:l:ri), and two pairs
(out:r:li; out:r:ri).

Proof. Consider the computation of the new value of out:l at vertex vm of the path. If
out:l:ok holds, then we want to keep track of all pairs (li; ri) 2 S, where S is as de�ned
in De�nition 4.21.

If vm:bc:ok is false, then jSj � 1, as is shown in Lemma 4.19. If vm:bc:ok is true and
there vm:nr = 0, then jSj � 1, because the only possible pair is (in0:r; vm:bc:rrl:v). If
vm:nr > 1, then jSj � 1, since for each possible pair (li; ri), li = m. If vnr = 1, jSj � 2,
since there is one possible pair (li; ri) with li = m, and one possible pair with li = in0:r.

2

The main result of this section is as follows.

Theorem 4.2. The algorithm given in this section computes in O(n2) time whether
there is a proper path decomposition of a three-colored partial two-path G (n = jV (G)j).

Proof. The correctness of the algorithm follows from previous lemmas. The total time
taken by the algorithm is O(n2), since the number of candidate nice paths is constant,
and for each nice path, the function Check Nice Path runs in O(n2) time, which can
be shown in the same way as in the proof of Theorem 4.1. 2

This completes the description of the algorithm to check for a given three-colored
graph G whether there is a proper path decomposition of G. The algorithm can be
made constructive in the sense that it returns an intervalization if there exists one in
the same way as the algorithm for trees.
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! return false
�

rof

fhandle vq g
if vq :nr+ vq:nrb = 0
! fno ending biconnected component g

return in:ok

2 vq :nr+ vq:nrb = 1
! fvq :nr = 0 ^ vq :nrb = 1 g

compute vq:b[1]:e;
fsee Figure 69, part I g
return (in:ok ^ vq:b[1]:e:ok^ vq :b[1]:e:v � in:r)

2 vq :nr+ vq:nrb > 1
! for i := 1 to vq:nrb

! compute vq:b[i]:e
rof;
nr0 := nr + nrb� 1; fnr0 is # partial one-paths g
for i := 1 to vm:nrb
! if vq :b[i]:e:ok^ vq:b[i]:e:v = q

! fthis can happen at most three times g
add other biconnected components to array vq:p;
permute new array vq:p such that no vq:p[i]:H, 1 < i � vq:nr

0,
has a vertex of color c(vq);
if this is not possible, then return false

compute vq:p[1]:l, vq :p[1]:lll and vq:p[1]:llr;
fcompute �nal result g
ftry in g
if in:ok ^ vq :p[1]:l:ok^ vq :p[1]:l:r � in:r

! fsee Figure 68, part II g
return true

�;
ftry out:l g
if out:l:ok ^ vq :p[1]:llr:ok
! for b := 1 to 2

! if out:l:lb � vq:p[1]:llr:v
! fsee Figure 68, part III g

return true
�

rof

�;
ftry out:r g
if out:r:ok ^ vq:p[1]:lll:ok
! similar
�

�

rof

�;
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�;
fcompute out:r g
similar
if vm:bc:rl:ok

! for i := 1 to 2
! fcompute out:l g

if vm:p[i]:l:ok^ vm:p[i]:l:v � in0:r ^ vm:p[3� i]:rrl:ok
! fsee Figure 68, part II g

out:l:ok := true;
out:l:l1 := out:l:l2 := m;
out:l:r1 := out:l:r2 := minfout:l:r1; vm:p[3� i]:rrl:vg

�;
fcompute out:r g
similar

rof

�;
�;

ftry out0:l g
if out0:l:ok

! for b := 1 to 2
! for i := 1 to 2

! fcompute out:l g
if vm:bc:rrl:ok ^ vm:p[i]:llr:ok ^

vm:p[i]:llr:v � out0:l:lb ^ vm:p[3� i]:r:ok
! fsee Figure 68, part III g

out:l:ok := true;
out:l:l1 := out:l:l2 := m;
out:l:r1 := out:l:r2 := minfout:l:r1; vm:bc:rrl:vg;

�;
if vm:bc:rl:ok ^ vm:p[i]:llr:ok ^

vm:p[i]:llr:v � out0:l:lb ^
vm:p[3� i]:rrl:ok

! fsee Figure 68, part IV g
out:l:ok := true;
out:l:l1 := out:l:l2 := m;
out:l:r1 := out:l:r2 :=

minfout:l:r1; vm:p[3� i]:rrl:vg;
�

fcompute out:r g
similar

rof

rof

�

ftry out0:r g
similar

�

�

�;
if :in:ok ^ :out:l:ok ^ :out:r:ok
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�;
fcompute out:r g
similar

�;

ftry out0:l g
if out0:l:ok

! for b := 1 to 2
! fcompute out:l g

if vm:p[1]:llr:ok ^ vm:p[1]:llr:v � out0:l:lb ^
vm:bc:rrl:ok

! fsee Figure 67, part III g
out:l:ok := true;
out:l:l1 := m;
out:l:r1 := minfout:l:r1; vm:bc:rrl:vg

�;
fcompute out:r g
similar

rof

�;
ftry out0:r g
similar

fmake sure out:l and out:r are as de�ned in De�nition 4.21 g
if out:l:ok

! if out:l:l1 � out:l:l2 ^ out:l:r1 � out:l:r2
! out:l:l2 := out:l:l1;

out:l:r2 := out:l:r1;
2 out:l:l2 � out:l:l1 ^ out:l:r2 � out:l:r1
! out:l:l1 := out:l:l2;

out:l:r1 := out:l:r2;
�;

�;
if out:r:ok

! similar
�;

2 vm:nr > 1
! ftry in0 g

if in0:ok

fcompute out:l g
if vm:bc:rrl:ok

! for i := 1 to 2
! if vm:p[i]:l:ok^ vm:p[i]:l:v � in0:r ^ vm:p[3� i]:r:ok

! fsee Figure 68, part I g
out:l:ok := true;
out:l:l1 := out:l:l2 := m;
out:l:r1 := out:l:r2 := minfout:l:r1; vm:bc:rrl:vg

�;
rof

136



if vm:bc:llr:ok

! for i := 1 to 2
! if vm:p[i]:llr:ok ^ vm:p[i]:llr:v � out0:l:lb ^

vm:p[3� i]:rrl:ok ^ vm:p[3� i]:rrl:v � n

! fsee Figure 65, part III g
in:ok := true;
in:r := minfin:r; vm:p[3� i]:rrl:vg

�

rof;
�

rof

�;
ftry out0:r g
similar to out0:l

fcompute out g
if vm+1:nr = 0
! fno partial one-path connected to vm can use [j; j0], n � j � j0 � nn g

skip
2 vm+1:nr � 1
! if vm:nr = 0

! ftry in0 g
if in0:ok

! fcompute out:l g
if vm:bc:rrl:ok

! fsee Figure 66, part I g
out:l:ok := true;
out:l:l1 := out:l:l2 := in0:r;
out:l:r1 := out:l:r2 := vm:bc:rrl:v;

�;
fcompute out:r g
similar fsee Figure 66, part II g

�

fout0 does not have to be tried since vm:nr = 0g

2 vm:nr = 1
! ftry in0 g

if in0:ok

! fcompute out:l g
if vm:bc:rrl:ok ^ vm:p[1]:l:ok^ vm:p[1]:l:v � in0:r

! fsee Figure 67, part I g
out:l:ok := true;
out:l:l1 := m;
out:l:r1 := vm:bc:rrl:v;

�;
if vm:bc:rl:ok ^ vm:p[1]:rrl:ok
! fsee Figure 67, part II g

out:l:ok := true;
out:l:l2 := in0:r;
out:l:r2 := vm:p[1]:rrl:v
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�

rof

�;
if vm:bc:lll:ok

! for i := 1 to 2
! if vm:p[i]:l:ok^ vm:p[i]:l:v � in0:r ^

vm:p[3� i]:rrr:ok ^ vm:p[3� i]:rrr:v � n

! fsee Figure 64, part II g
in:ok := true;
in:r := minfin:r; vm:p[3� i]:rrr:vg

�

rof

�;
if vm:bc:llr:ok

! for i := 1 to 2
! if vm:p[i]:l:ok^ vm:p[i]:l:v � in0:r ^

vm:p[3� i]:rrl:ok ^ vm:p[3� i]:rrl:v � n

! fsee Figure 64, part III g
in:ok := true;
in:r := minfin:r; vm:p[3� i]:rrl:vg

�;
rof

�

�;
�;

ftry out0:l g
if out0:l:ok

! for b := 1 to 2
! if vm:bc:lr:ok

! for i := 1 to 2
! if vm:p[i]:llr:ok ^ vm:p[i]:llr:v � out0:l:lb ^ vm:p[3� i]:r:ok

! for a := 1 to 4
! fsee Figure 65, part I g

in:ok := true;
in:r := minfin:r; vm:bc:lr:rag

rof

�

rof;
�;
if vm:bc:lll:ok

! for i := 1 to 2
! if vm:p[i]:llr:ok ^ vm:p[i]:llr:v � out0:l:lb ^

vm:p[3� i]:rrr:ok ^ vm:p[3� i]:rrr:v � n

! fsee Figure 65, part II g
in:ok := true;
in:r := minfin:r; vm:p[3� i]:rrr:vg

�

rof;
�;
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2 vm:nr = 1
! ftry in0 g

if in0:ok

! if vm:bc:lr:ok ^ vm:p[1]:l:ok^ vm:p[1]:l:v � in0:r

! for a := 1 to 4
! fsee Figure 62, part II g

in:ok := true;
in:r := minfin:r; vm:bc:lr:rag

rof

�;
if vm:bc:lll:ok ^ vm:bc:lll:v � in0:r ^ vm:p[1]:rrr:ok
! fsee Figure 62, part III g

in:ok := true;
in:r := minfin:r; vm:p[1]:rrr:vg

�;
if vm:bc:llr:ok ^ vm:bc:llr:v � in0:r ^ vm:p[1]:rrl:ok
! fsee Figure 62, part IV g

in:ok := true;
in:r := minfin:r; vm:p[1]:rrl:vg

�;
�;

ftry out0:l g
if out0:l:ok

! for b := 1 to 2
! if vm:p[1]:llr:ok ^ vm:p[1]:llr:v � out0:l:lb ^ vm:bc:lr:ok

! for a := 1 to 4
! fsee Figure 63, part I g

in:ok := true;
in:r := minfin:r; vm:bc:lr:rag

rof

�;
rof;

�;
ftry out0:r g
similar to out0:l
fsee Figure 63, part II g

2 vm:nr > 1
! ftry in0 g

if in0:ok

! if vm:bc:lr:ok

! for i := 1 to 2
! if vm:p[i]:l:ok^ vm:p[i]:l:v � in0:r ^

vm:p[3� i]:r:ok ^ vm:p[3� i]:r:v = m

! for a := 1 to 4
! fsee Figure 64, part I g

in:ok := true;
in:r := minfin:r; vm:bc:lr:rag

rof
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for j := 1 to t

! in0 := in; out0 := out;
finitialize in and out g
in:ok := false; in:r := q;
out:l:ok := false; out:l:l1; out:l:r1; out:l:l2; out:l:r2 := q; q; q; q;
out:r:ok := false; out:r:l1; out:r:r1; out:r:l2; out:r:r2 := q; q; q; q;
m := ij;
p := ij�1;
pp := ij�2;
n := ij+1;
nn := ij+2;

Permute array vm:p of partial one-paths such that no vm:p[i]:H, 2 < i � vm:nr,
has a vertex of color c(vm). If this is not possible, return false
for i := 1 to vm:nr
! if vm:p[i]:H has vertex of color c(vm) or vm:nr = 1

! Compute vm:p[i]:l, vm:p[i]:r, vm:p[i]:lr, vm:p[i]:lll, vm:p[i]:llr, vm:p[i]:rrl,
and vm:p[i]:rrr using PPW2 and PPW20

2 else
! vm:p[i]:l:ok := true;

vm:p[i]:l:v := m;
vm:p[i]:r:ok := true;
vm:p[i]:r:v := m;
vm:p[i]:lr:ok := false;
vm:p[i]:lll:ok := false;
vm:p[i]:llr:ok := false;
vm:p[i]:rrl:ok := false;
vm:p[i]:rrr:ok := false;

�

rof;
if :vm:bc:ok
! fNo connecting biconnected component between vm and vm+1 g

see Check Nice Path for trees
2 vm:bc:ok

! compute vm:bc:lr, vm:bc:lll, vm:bc:llr, vm:bc:rrl, vm:bc:rrr and vm:bc:rl

fcompute in g
if vm:nr = 0
! ftry in0 g

if in0:ok ^ vm:bc:lr:ok

! for a := 1 to 4
! if vm:bc:la � in0:r

! fsee Figure 62, part I g
in:ok := true;
in:r := minfin:r; vm:bc:lr:rag

�

rof

�;
fno need to try out0 g
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rof;
return false

�;

fq > 1 g
Let i1;:::; it denote thosa vertices of P , except v1 and vq, for which
vij :nr > 0 _ vij :bc:ok, for all j, 1 � j � t, such that i1 < i2 < � � � < it
i0; i�1; it+1; it+2 := 1; 1; q; q;

finitialize in and out on false g
in:ok := false; in:r := q;
out:l:ok := false; out:l:l1; out:l:r1; out:l:l2; out:l:r2 := q; q; q; q;
out:r:ok := false; out:r:l1; out:r:r1; out:r:l2; out:r:r2 := q; q; q; q;

fhandle v1 g
if v1:nr + v1:nrb = 0
! fno ending biconnected component g

in:ok := true; in:r := 1;
2 v1:nr + v1:nrb = 1 ^ :v1:bc:ok
! fv1:nr = 0 ^ v1:nrb = 1 g

compute v1:b[1]:e
if v1:b[1]:e:ok
! fsee Figure 61, part I g

in:ok := true;
in:r := v1:b[1]:e:v

2 :v1:b[1]:e:ok
! return false
�

2 v1:nr + v1:nrb > 1 _ v1:bc:ok

! nr0 := nr + nrb� 1; fnr0 is # partial one-paths g
for i := 1 to vm:nrb
! Compute v1:b[i]:e

if v1:b[i]:e:ok^ v1:b[i]:e:v = 1
fthis can happen at most three times g

! fsee Figure 61, part II g
Handle biconnected components except v1:b[i]:G as partial one-paths of type IV;
Compute local information for all partial one-paths, and for the connecting

biconnected component if v1:bc:ok holds;
in0:ok := true;
in0:r := 1;
out0:l := out0:r := false;
Compute in and out in same way as for ij, 1 � j � t.

�

rof

�;
if :in:ok ^ :out:l:ok ^ :out:r:ok
! return false
�;

fhandle vij , for all j, 1 � j � t g
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vm and vm+1, and
if vm:bc:ok then vm:bc:G is graph GB, where B is biconnected component which
connects vm and vm+1 )

8m2f1;qg( vm:nrb = # non-connecting biconnected components containing vm, and
81�i�vm:nrb (vm:b[i]:G is graph GB for ith non-connecting biconnected component B,

and vm:b[i]:t is type of vm:b[i]:G) )
g
f output: true if there is a proper path decomposition of G
with nice path P , false otherwise

g

fq = 0 g
if q = 0
! let B be biconnected component of G;

if B has vertices of state I1 or E1
return false

2 else
! use PPW20 to compute whether there is a proper path

decomposition of G;
return result of this computation

�

�;

fq = 1 g
if q = 1
! fv1:nrb � 2 g

for i := 1 to v1:nr
! if v1:p[i]:H has vertex of color c(v1)

! return false
�

rof;
for i := 1 to v1:nrb
! compute v1:b[i]:e
rof;
for i := 1 to vm:nrb
! if v1:b[i]:e:ok^ v1:b[i]:e:v = 1

! fthis is at most four times g
for j := 1 to v1:nrb
! if j 6= i ^ v1:b[j]:e:ok^ v1:b[j]:v = 1

! b := true
for l := 1 to v1:nrb
! if l 6= j ^ l 6= i ^

v1:p[l]:H has vertex of color c(v1)
! b := false
�

rof;
if b ! return true �

�

rof

�
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(out:l:l; out:l:r), namely the case that vm:nr = 1 and vm:bc:ok is true. However, two
pairs su�ce, as we will show after the algorithm.

Let i1;:::; it denote the vertices of P , except v1 and vq, for which vij :nr > 0_vij :bc:ok,
for all j, 1 � j � t, such that i1 < i2 < � � � < it. Furthermore, let i0 = i�1 = 1 and
it+1 = it+2 = q.

Suppose the nice path is processed up to and including ij , 0 � j � t. Let m = ij ,
p = ij�1, n = ij+1 and nn = ij+2. The global information that is kept is de�ned as
follows.

Definition 4.21. The global information consists of two records in and out, which are
de�ned as follows.

� in is a record with two �elds ok and r, which are de�ned in De�nition 4.11.

� out is a record with two �elds l and r, which each have �ve �elds: ok, l1, l2, r1
and r2. The ok �eld is as de�ned in De�nition 4.11. If out:l:ok is true, then
out:l:li and out:l:ri, 1 � i � 2, are such that

f (out:l:li; out:l:ri) j 1 � i � 2 g = S;

where S is de�ned as follows.

S = f (j; j 0) j p � j � m ^ n � j0 � nn ^ there is a `partial' nice
proper path decomposition up to and including vm and the partial
one-paths connected to vm and biconnected components containing
vm, such that it is possible that a partial one-path H 0 connected to
vn uses [l; l0], j � l � l0 � m, the sticks of vm which have color c(vn)
occur on the right side of the occurrence of fvm; vng, and all partial
one-paths connected to vi, i � n, except H 0, can use j0 at least.
Furthermore, there is no pair (s; s0), j � s � m and m � s0 � j 0, for
which this also holds, but j < s or j0 < s0. g

If out:r:ok holds, then out:r:li and out:r:ri, 1 � i � 2, are such that the same
condition holds, but with the sticks of vn which have color c(vn) occurring on the
right side of the occurrence of fvm; vng.

We now show how variables in and out are initialized and adapted by giving a
complete description of function Check Nice Path. In Figures 61 up to 69, a symbolic
representation of all cases in the algorithm is given.

function Check Nice Path(P : Path): boolean;
f pre:
P = (v1;:::; vq) is a possible nice path for G.
81�m�q ( vm:nr = # partial one-paths of type I, II, III, and if 1 < m < q, also

of type IV connected to vm, and
81�i�vm:nr (vm:p[i]:H is partial one-path i and vm:p[i]:t is type of vm:p[i]:H), and

vm:bc:ok is true i� there is a connecting biconnected component between
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� vm:b[i]:e stores the ending biconnected component info of Case 2:

vm:b[i]:e has two �elds: ok and v, which denote the following. vm:b[i]:e:ok is true
if and only if j1 as de�ned in De�nition 4.15 is de�ned and one of the following
conditions holds

{ vm:b[i]:t = PW2,

{ vm:nrb = 1 and q > 1,

{ vm:nrb = 2 and q = 1,

{ q > 1, there is no i0 with vm:b[i
0]:t = PW2 and vm:nrb + vm:nr � 2,

{ q = 1, there is no i0 with vm:b[i0]:t = PW2 and vm:nrb + vm:nr � 3,

{ there is no i0 with vm:b[i
0]:t = PW2, and vm:b[i]:G� fvmg has a vertex of

color c(vm), or

{ q > 1, there is no i0 with vm:b[i
0]:t = PW2 or for which vm:b[i

0]:G� fvmg
has a vertex of color c(vm), vm:nrb+ vm:nr � 3, and vm:b[i]:G is selected in
the sense of Case 2.

{ q = 1, there is no i0 with vm:b[i
0]:t = PW2 or for which vm:b[i

0]:G� fvmg
has a vertex of color c(vm), vm:nrb+ vm:nr � 4, and vm:b[i]:G is selected in
the sense of Case 2.

If v1:b[i]:e:ok is true, then v1:b[i]:e:v = j1 (j1 as de�ned in De�nition 4.15).

� vm:b[i]:l, vm:b[i]:r and vm:b[i]:lr store the partial one-path info of Case 2. They
are de�ned in the same way as vm:p[i]:l, vm:p[i]:r and vm:p[i]:lr, except that
vm:b[i]:l:ok, vm:b[i]:r:ok and vm:b[i]:lr:ok can only be true if vm:b[i]:t = PW1,
and vm:b[i]:nrb > 1.

We now show how the global information is computed. Therefore, we construct a
modi�ed version of the function Check Nice Path for trees. We consider three cases,
namely the case that the nice path is empty, the case that the nice path consists of
one vertex, and the case that the nice path consists of two or more vertices. If the
nice path is empty, then G is a biconnected component with sticks, and we can check
whether there is a nice proper path decomposition of G with nice path P by simply
using PPW20.

If the nice path consists of one vertex, then there are two ending biconnected
components: one for each side. All partial one-paths of type I, II, III and IV may
not have a vertex of color c(v1).

Next consider the case that the nice path consists of more than one vertex. In
this case, the global information can be computed using a modi�ed version of the
for-loop of the function Check Nice Path for trees. We now show how the function
Check Nice Path for trees is adapted for general partial two-paths. We use the same
structure, and the same variable in. Only variable out has to be modi�ed, since there
is one case in which it does not su�ce to have one pair (out:l:l; out:l:r) and one pair
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� vm:bc:rl stores the local information for Case 3.1:

vm:bc:rl has a �eld ok which is true if and only if there is a nice proper path
decomposition of vm:bc:G such that vm and vm+1 are in all nodes (vm:bc:rl:ok = b,
where b is as de�ned in De�nition 4.16).

� vm:bc:lll and vm:bc:llr store the local information for Case 3.2:

{ vm:bc:lll has two �elds: ok and v which denote the following. vm:bc:lll:ok

is true if and only if j1 as de�ned in De�nition 4.17 is de�ned. If not
vm:bc:lll:ok, then vm:bc:lll:v = p, otherwise, vm:bc:lll:v = j1.

{ vm:bc:llr has two �elds: ok and v which denote the following. vm:bc:llr:ok

is true if and only if j2 as de�ned in De�nition 4.17 is de�ned. If not
vm:bc:llr:ok, then vm:bc:llr:v = p, otherwise, vm:bc:llr:v = j2.

� vm:bc:rrl and vm:bc:rrr store the local information for Case 3.3:

{ vm:bc:rrl has two �elds: ok and v which denote the following. vm:bc:rrl:ok
is true if and only if j1 as de�ned in De�nition 4.18 is de�ned. If not
vm:bc:rrl:ok, then vm:bc:rrl:v = n, otherwise, vm:bc:rrl:v = j1.

{ vm:bc:rrr has two �elds: ok and v which denote the following. vm:bc:rrr:ok
is true if and only if j2 as de�ned in De�nition 4.18 is de�ned. If not
vm:bc:rrr:ok, then vm:bc:rrr:v = n, otherwise, vm:bc:rrr:v = j2.

� vm:bc:lr stores the local information for Case 3.4:

vm:bc:lr has nine �elds: ok and for a, 1 � a � 4, la and ra, which denote
the following. vm:bc:lr:ok is a boolean which is true if and only the set Q as
de�ned in De�nition 4.19 is non-empty. If vp:bc:lr:ok is true, then vm:bc:lr:la
and vm:bc:lr:ra, 1 � a � 4, are such that

Q = f (vm:bc:lr:la; vm:bc:lr:ra) j 1 � a � 4 g:

Furthermore, for m = 1 and m = q, vm is a record with �elds nr, p, bc, nrb and b,
which are de�ned as follows. Fields vm:nr, vm:p and vm:bc are as de�ned before, but
vm:nr and vm:p are only de�ned for partial one-paths of type I, II and III. vm:nrb

denotes the number of non-connecting biconnected components which contain vm. vm:b
is an array of vm:nrb records with �elds G, t, e, l, r and lr, which are de�ned as
follows. For each i, 1 � i � vm:nrb:

� vm:b[i]:G denotes the graph GB, where B is the ith non-connecting biconnected
component which contains vm.

� vm:b[i]:t is the type of vm:b[i]:G, i.e. vm:b[i]:t 2 fPW1;PW2g, where type PW1
denotes that vm:b[i]:G � fvmg has pathwidth one, and type PW2 denotes that
vm:b[i]:G� fvmg has pathwidth two.
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in the rightmost node, or there is a proper path decomposition of Gu
m�1 with fvm�1; ug

in the leftmost node and fvm�1; wg in the rightmost node, and j = 1. If Gu
j is not

de�ned, or there is no such j, let lu1 be unde�ned.
Let lu2 be the largest value of j, p � j � m � 1, for which there is a proper path

decomposition of Gu
j [ fsticks of wg with fvj ; ug in the leftmost node and fvm�1; wg

in the rightmost node. If Gu
j is not de�ned, or there is no such j, let lu2 be unde�ned.

Let ru
0

1 be the smallest value of j0, m � j0 � n, for which there is a proper path
decomposition of Gu0

j0 [ fsticks of wg with fvm�1; wg in the leftmost node and fvj0 ; u
0g

in the rightmost node. If Gu0

j0 is not de�ned, or there is no such j, let ru1 be unde�ned.

Let ru
0

2 be the smallest value of j0, m � j0 � n, for which there is a proper path de-
composition of Gu0

j0 [fsticks of vm�1g with fvm�1; wg in the leftmost node and fvj0 ; u
0g

in the rightmost node. If Gu0

j0 is not de�ned, or there is no such j, let ru2 be unde�ned.

Let lu
0

1 , lu
0

2 , ru1 and ru2 be de�ned analogously.
Let Q0 be de�ned as follows.

Q0 = f(lu1 ; r
u0

1 ); (lu2 ; r
u0

2 ); (lu
0

1 ; r
u
1); (lu

0

1 ; r
u
1)g

Claim 4.23. If WB = fw;w0g, then

Q = f (j; j0) 2 Q0 j j and j0 are de�ned ^ :9(l;l0)2Q0 (j < l � l0 � j _ j � l � l0 < j 0) g

Proof. Can be shown in the same way as Claim 4.5 in Case 2 for trees. 2

The computation of lu1 and lu2 can be done in O(n2) time, where n = jV (Gu
p) [

f sticks of vm�1 and w gj, using PPW2. Analogously for ru
0

1 , ru
0

2 , lu
0

1 , lu
0

2 , ru1 , and ru2 .
This completes the description of the case that WB = fw;w0g. All other cases are

similar.

Case 4. vm 2 V (P ), m 2 f1; qg, and there is a connecting biconnected

component containing vm.
This case a straightforward combination of cases 2 and 3.

This completes the description of the four cases. During the algorithm, we use the
following record to store all local information for each vertex of the path.

Definition 4.20. Let G be a three-colored partial two-path, P = (v1;:::; vq) a possible
nice path for G. For each m, 1 < m < q, vm is a record with �elds nr, p and bc. The
�elds vm:nr and vm:p are as de�ned in De�nition 4.10. The �eld vm:bc has eight �elds,
namely ok, G, rl, lll, llr, rrl, rrr, and lr, which are de�ned as follows. vm:bc:ok is a
boolean which is true if and only if there is a connecting biconnected component between
vm and vm+1. If vm:bc:ok is true, then the other �elds are de�ned as follows (let B
denote the connecting biconnected component between vm and vm+1).

� vm:bc:G denotes the graph GB.
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WB = fw;w0g, w 6= w0. If WB = fw;w0g, then st(w) = st(w0) = E1. Let Hw

and Hw0 be the components of GT which contain w and w0, respectively, let H 0
w =

G[V (Hw) � fsticks of wg], and let H 0
w0 = G[V (Hw0) � fsticks of w0g]. Let (C;S) be

a path of chordless cycles for �B, with C = (C1;:::; Cp), such that vm�1 2 V (C1) and
vm 2 V (Cp). Let u be the end point of P1(H

0
w) such that the path from u to w contains

P1(H
0
w). Similarly, let u0 be the end point of P1(H

0
w0) such that the path from u0 to w0

contains P1(H
0
w0). See Figure 60 for an example.

If dst1(vm�1; w) and dstp(vm; w
0) hold, then for each j, p � j � m�1, let Gu

j be the
subgraph of G obtained by deleting GB�fvm�1g�H 0

w , vertices fv1;:::; vj�1; vm;:::; vqg
and all sticks, partial one-paths and biconnected components except B which are con-
nected to vertices fv1;:::; vj; vm;:::; vqg, and by adding edges fvm�1; wg and fvj ; ug. See
e.g. Figure 60. Furthermore, for each j0, m � j0 � n, let Gu0

j0 be the subgraph of G
obtained by deleting Hw � fwg, vertices fv1;:::; vm�2; vj0+1;:::; vqg, and all sticks, par-
tial one-paths and biconnected components except B which are connected to vertices
fv1;:::; vm�1; vj0;:::; vqg, and by adding edges fvm�1; wg and fvj0 ; u

0g. If dst1(vm�1; w)
or dstp(vm; w0) does not hold, then Gu

j and Gu0

j0 are unde�ned for all j, j 0, p � j �m�1
and m � j0 � n. See e.g. Figure 60.

For all j, p � j � m � 1, and all j0, m � j0 � n, let Gu0

j and Gu
j0 be de�ned

analogously (if dst1(vm�1; w
0) or dstp(vm; w) does not hold, Gu0

j and Gu
j0 are unde�ned).

P vm

w w0

vm�1

u u0

vj vj0

Hw Hw0

B

w

vm�1

u

vj

Gu
j

vm

w w0

vm�1

u0

vj0

Gu0

j0

G

Figure 60: Example of a connecting biconnected component B with WB = fw;w0g, and
graphs Gu

j and Gu0

j0 . Note that in �B, dst1(vm�1; w) and dstp(vm; w0) hold (if (C;S) is a
path of chordless cycles for B with vm�1 2 V (C1) and vm 2 V (Cp)), but dstp(vm; w)
and dst1(vm�1; w0) do not hold, which means that Gu0

j and Gu
j0 are unde�ned.

Let lu1 be the largest value of j, p � j � m � 1, for which there is a proper path
decomposition of Gu

j [fsticks of vm�1g with fvj ; ug in the leftmost node and fvm�1; wg
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Figure 59: Examples for the di�erent cases in values of WB, and the di�erent occur-
rences of GB.
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Claim 4.22. If GB occurs in (Vj;:::; Vj0), l is the smallest integer, 1 � l � m � 1, for
which vl 2 Vj and l0 is the largest integer, m � l0 � q, for which vl0 2 Vj0 , then a partial
one-path H 00 connected to vm0 , can use [a; a0] with a0 � l if m0 � m � 1, and a � l0 if
m0 � m.

Proof. Corollary 4.4 shows that a0 � l if m0 � m� 1, and a � l0 if m0 � m.
In the same way as for Claim 4.1, Case 1 for trees, we can show that it is possible

that a0 = l of a = l0. 2

Let p be the largest integer, p � m � 1, for which there is a partial one-path or
biconnected component (except B) connected to vp. Let n be the smallest integer,
n � m, for which there is a partial one-path or biconnected component (except B)
connected to vn. Claim 4.22 implies that we only need all values of (j; j0), p � j < m �
j0 � n, for which partial one-paths connected to vm0 can use j at most if m0 � m� 1,
and can use j0 at least if m0 � m, and there is no pair (l; l0) for which this also holds
and j � l � l0 � j0 and j < l or l0 < j0.

Definition 4.19. The local information for B for the case that all partial one-paths
connected to vm�1 occur on the left side of the occurrence of GB and all partial one-
paths connected to vm occur on the right side of the occurrence of GB is the set

Q = f (j; j 0) j p � j < m � j0 � n ^ there is a proper path decomposition of

GB [ fvj ;:::; vj0g [ fsticks of vj+1;:::; vj0�1g with vj in the leftmost node

and vj0 in the rightmost node

^ :9l;l0 (j < l < m � l0 � j0 _ j � l � m � l0 < j 0) ^ there is a

proper path decomposition of GB [ fvl;:::; vl0g [ fsticks of vl+1;:::; vl0�1g

with vl in the leftmost node and vl0 in the rightmost node g

We now brie
y show how Q can be computed and that jQj � 4. Let WB be the set
of vertices of B which have state I1 or E1. We consider four cases, namely

1. WB = fw;w0g, w 6= w0,

2. WB = fwg and st(w) = I1,

3. WB = fwg and st(w) = E1, and

4. WB = ;.

Figure 59 gives an example for each case.
We only show how to compute Q for the �rst case. All other cases are similar.
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of fvm�1; vmg. If they occur on the left side, then the sticks of vm with color c(vm�1)
occur on the right side, and vice versa (see also Case 3 for trees, Page 84). This means
that we can de�ne the local information for this case as follows.

Definition 4.17. The local information for B for the case that there is a partial one-
path H 0 connected to vm�1 which uses [j; j0], j � m, is the pair (j1; j2), p � j1; j2 �
m� 1, where

� j1 is the largest value of j, p � j � m � 1, for which there is a proper path
decomposition of GB [fvj ;:::; vm�1g[fsticks of vj+1;:::; vm�1g with vm�1 and vm
in the rightmost node and vj in the leftmost node (j1 is unde�ned if there is no
such j), and

� j2 is the largest value of j, p � j � m � 1, for which there is a proper path
decomposition of GB[fvj ;:::; vm�1g[fsticks of vj+1;:::; vm�2; vmg with vm�1 and
vm in the rightmost node and vj in the leftmost node (j2 is unde�ned if there is
no such j).

Note that B has at most one vertex of state E1, and no vertices of state I1, since
edges of GB � B can only occur on the left side of the occurrence of B.

The computation of j1 and j2 can be done with PPW2 in O(n2) time, where
n = jV (GB) [ fvj ;:::; vm�1g [ fsticks of vj+1;:::; vmgj. This can be shown in the same
way as for Case 2 for trees.

Case 3.3 All partial one-paths connected to vm�1 occur on the left side of
Vj, a partial one-path connected to vm occurs on the left side of Vj
According to Lemma 4.23, vm�1 and vm both occur in the leftmost node of the oc-
currence of GB. This case is similar to Case 3.2. If there are two or more partial
one-paths connected to vm, let n = m, otherwise let n be the smallest integer n > m
for which there is a partial one-path or biconnected component connected to vn. The
local information is de�ned as follows.

Definition 4.18. The local information for B for the case that there is a partial one-
path H 0 connected to vm which uses [j; j0], j0 � m�1, is the pair (j1; j2), m � j1; j2 � n,
where

� j1 is the smallest value of j, m � j � n, for which there is a proper path decom-
position of GB [ fvm;:::; vjg [ fsticks of vm�1; vm+1:::; vj�1g with vm�1 and vm in
the leftmost node and vj in the rightmost node (j1 is unde�ned if there is no such
j), and

� j2 is the smallest value of j, m � j � n, for which there is a proper path de-
composition of GB[fvm;:::; vjg[fsticks of vm;:::; vj�1g with vm�1 and vm in the
leftmost node and vj in the rightmost node (j2 is unde�ned if there is no such j).

Case 3.4 All partial one-paths connected to vm�1 occur on the left side of

Vj, all partial one-paths connected to vm occur on the right side of Vj0

In this case, vm�1 and vm do not have to occur in an end node of the occurrence of
GB.
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B

Figure 57: Example of the case that a partial one-path connected to vm�1 uses [l; l0],
l � m, and a partial one-path connected to vm uses [j; j0], j � m� 1. In this example,
there is one partial one-path connected to vm�1, and one connected to vm.

Case 3.2 A partial one-path connected to vm�1 occurs on the right side of
Vj0, all partial one-paths connected to vm occur on the right side of Vj0

According to Lemma 4.23, vm�1 and vm both occur in the rightmost node of the
occurrence of GB. For example, see Figure 58.

P

vm vj vj0

P

vm�1 H0vl

B

Figure 58: Example of the case that a partial one-path H 0 connected to vm�1 uses
[j; j0], j � m.

Claim 4.21. If GB occurs in (Vj ;:::; Vj0), vm�1; vm 2 Vj0 , and l is the smallest integer,
l � m� 1, for which vl 2 Vj , then a partial one-path H 0 connected to vm0 , 1 � m0 � q,
can use [a; a0], where a0 � l if m0 < m � 1, a � m if m0 � m, and a0 � l or a � m if
m0 = m� 1.

Proof. It is clear that a0 � l if m0 < m � 1, that a0 � l or a � l0 if m0 = m � 1, and
a � m if m0 � m (Corollary 4.4, Lemmas 4.23 and 4.24). Showing that a0 = l and
a = m are possible can be done in the same way as in the proof of Claim 4.1, Case 1
for trees. 2

If there are two or more partial one-paths connected to vm�1, let p = m � 1,
otherwise let p be the largest integer p < m � 1 for which there is a partial one-path
or biconnected component connected to vp. It follows from the claim that for a partial
one-path H 0 which occurs on the left side of the occurrence of GB, we only need the
largest l, p � l � m � 1, for which H 0 can use l at most. For a partial one-path H 0

connected to vm�1 which uses [j; j0], j � m, we need more information about the sticks
of vm�1 and vm, since there is a node containing vm�1 and vm, and the sticks of vm�1
which have color c(vm) occur either on the left side or on the right side of the occurrence
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Claim 4.14 in Case 3 for trees also hold.
If there is no connecting biconnected component between vm and vm+1, then the

local information for the case that H 0 uses [j; j0], n � j � j0 � nn is the same as in
Case 1. If there is a connecting biconnected component then the local information for
the case that H 0 uses [j; j 0], n � j � j0 � nn is similar to the local information for the
case that H 0 uses [l; l0], pp � l � l0 � p.

Local information for biconnected component B connecting vm�1 and vm.
We �rst analyze the structure of a nice proper path decomposition PD = (V1;:::; Vt) of
G with nice path P in which GB uses (Vj ;:::; Vj0). Consider the di�erent possibilities
in PD for partial one-paths connected to vm�1 and vm. There are four di�erent cases.

3.1 One partial one-path connected to vm�1 occurs on the right side of Vj0 and one
partial one-path connected to vm occurs on the left side of Vj .

3.2 One partial one-path connected to vm�1 occurs on the right side of Vj0 and all
partial one-paths connected to vm occur on the right side of Vj0 .

3.3 All partial one-paths connected to vm�1 occur on the left side of Vj and one partial
one-path connected to vm occurs on the left side of Vj.

3.4 All partial one-paths connected to vm�1 occur on the left side of Vj and all partial
one-paths connected to vm occur on the right side of Vj0 .

For each of these cases we have to compute local information which shows whether
this case is possible w.r.t. GB.

Case 3.1 A partial one-path connected to vm�1 occurs on the right side of

Vj0, a partial one-path connected to vm occurs on the left side of Vj
According to Lemma 4.23, vm�1 and vm are both in Vj and in Vj0 . See e.g. Figure 57.
This means that GB is a biconnected component with sticks, and there is a proper path
decomposition of GB with vm�1 and vm in the leftmost and rightmost end node. The
sticks of vm�1 which have color c(vm), and the sticks of vm which have color c(vm�1)
must occur either on the right side or on the left side of the occurrence of GB. The
sticks of vm which do not have color c(vm�1) and the sticks of vm�1 which do not
have color c(vm) can always be made to occur within the occurrence of GB, because
edge fvm�1; vmg is a middle edge. Hence this gives the following de�nition of the local
information for this case.

Definition 4.16. The local information for B for the case that there is a partial one-
path connected to vm�1 which may occur on the right side of the occurrence of GB,
and there is a partial one-path connected to vm which may occur on the left side of
the occurrence of GB is a boolean b which is true if and only if there is a proper path
decomposition of GB with vm�1 and vm in the leftmost and in the rightmost end node.

Note that b can be computed in O(n2) using PPW2, where n = jV (GB)j, since GB

is a biconnected component with sticks.
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biconnected component containing vj . If there is no such j, then pp = 1. Furthermore,
the ending biconnected component info for a biconnected component Bi containing vq
consists of value j2, which is the largest j, p � j � q, for which there is a proper path
decomposition of Gi [ fvj ;:::; vqg [ fsticks of vj+1;:::; vqg with vertex vj in the leftmost
node.

The case that m = q = 1 is also similar to the case that m = 1 and q > 1, except
that pp = p = m = n = nn = 1. The ending biconnected component info and the
partial one-path info are the same as for the case that q > 1, but there may be more
biconnected components for which the ending biconnected component info is computed.
It is not shown here for which ending biconnected components the ending biconnected
component info must be computed, but it can be shown in the same way as for the
case that q > 1, and the number of biconnected components for which it must be done
is still at most four.

Case 3 vm 2 V (P ), 1 < m < q, and there is a connecting biconnected
component containing vm.

First suppose there is a connecting biconnected component B which connects vm�1 and
vm.

We �rst consider the local information for partial one-paths connected to vm. After
that, we consider the local information for biconnected component B.

Local information for partial one-paths connected to vm. Let pp, p, n and
nn be de�ned as follows. p = m, pp = m � 1. If there is a connecting biconnected
component between vm and vm+1, then n = m and nn = m + 1, otherwise, n is the
smallest j > m such that there is a connecting biconnected component containing vj , or
a partial one-path connected to vj . If there is no such j, n = q. Furthermore, if there is
a connecting biconnected component between vn and vn�1, then nn = n, otherwise nn
is the smallest j > n such that there is a connecting biconnected component containing
vj , or a partial one-path connected to vj . If there is no such j, nn = q. Note that
pp, p, n and nn are well-de�ned, since partial one-paths of type II, III and IV can use
[j; j0], with p � j � j0 � n only, and partial one-paths of type I can use [j; j0] with
p � j � j0 � n, n � j � j0 � nn, or pp � j0 � j0 � p (see Lemma 4.23).

For partial one-paths of type II, III and IV, the local information for this case is the
same as for the case that vm does not contain a connecting biconnected component,
because of Corollary 4.4 and Lemmas 4.23 and 4.24. Now consider a partial one-path
H 0 of type I which is connected to vm. For the case that H 0 uses [j; j0] for some
p � j � j0 � m, m � j � j0 � n or p � j � j0 � n, the local information is the same
as for the case that there is no connecting biconnected component containing vm. For
the case that H 0 uses [j; j 0], n � j � j0 � nn, and there is no connecting biconnected
component between vm and vm+1, the local information is also the same.

Consider the case that H 0 uses [j; j0], pp � j � j0 � p. This case is similar to Case
3 for trees (see Page 84). The analogs of Claim 4.11 and Claim 4.12 in Case 3 for trees
also hold for H 0, because of Lemma 4.23. This means that we can use De�nition 4.9
for the local information for H 0 if it uses [j; j0], pp � j � j0 � p, and Claim 4.13 and
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Suppose there is no such proper path decomposition, but j1 is de�ned. Suppose
j1 > 1, let PD = (V1;:::; Vt) be a proper path decomposition of G[V (GBr)[fv2;:::; vj1g[
fsticks adjacent to v1;:::; vj1�1g] with vj1 2 Vt. Suppose Br occurs in (Vj ;:::; Vj0). Then
there must be a vertex w 2 V (B) of which a stick occurs on the right side of the
occurrence of Br in PD. There can be at most one w for which this holds, and
furthermore, w 2 Vj0 , and dst1(v1; w) or dstp(v1; w) must hold. Hence Vj0 contains v1
and w, and w 2 Vj1 . This means that c(w) 6= c(v2), c(v1) 6= c(v2) and c(v1) 6= c(w),
so the sticks of w have color c(v1) or color c(v2). Furthermore, all sticks of v1 of color
c(w) must occur on the left side of Vj0 , since each Vi, i � j0, contains w.

Let PD0 be the proper path decomposition of GBr[fsticks of v1g which is obtained
from PD as follows. Delete Vj0+1;:::; Vt, add a node fv1; w; w

0g on the right side of Vj0

for each stick w0 of w which has color c(v2), then add a node fv1; v2; wg on the right
side, then add a node fv2; w; w

0g on the right side for each stick w0 of w with color
c(v1). v2 is in the rightmost node of this proper path decomposition, hence j1 = 2.
Contradiction. 2

Claim 4.19. If Br has no vertices of state E2, then j1 can be computed in O(n2) time,
where n is the number of vertices of GBr [ fsticks of v1g.

Proof. The computations can be done using PPW2 and PPW20: there are at most
two candidates for vertex w, and PPW2 has to be used twice, PPW20 once. 2

This completes the description of the ending biconnected component info.

Partial one-path info. Let H 0 be a partial one-path connected to v1, i.e. either
H 0 = Hi for some i, 1 � i � nr, or H 0 = Gi for some i, 1 � i � nr0 for which the
partial one-path info must be computed.

Claim 4.20. If the ending biconnected component info j1 > 1 for some bicon-
nected component Bi, then there is no proper path decomposition of Gi[fv1;:::; vj1g[
f sticks of v1;:::; vj1�1 g with v1 in rightmost node.

Proof. Suppose there is a proper path decomposition PD = (V1;:::; Vt) of Gi [
fv1;:::; vj1g [ f sticks of v1;:::; vj1�1 g with v1 in rightmost node. Then PD[V (G0

i)] is a
proper path decomposition of G0

i with v1 in the rightmost node. Hence j1 = 1. 2

The claim implies that the partial one-path info can be computed in the same way as
in Case 1, for partial one-paths connected to vm, 1 < m < q in which no non-connecting
biconnected component contains vm (note that pp = p = 1). This completes the case
that m = 1 and q > 1.

The case that m = q and q > 1 is similar, except that n = nn = q, p is the largest
j, j < q, for which there is a partial one-path connected to vj , or there is a biconnected
component containing vj . If there is no such j, then p = 1. Furthermore, pp = p if
there is a connecting biconnected component between vp�1 and vp, otherwise pp is the
largest j, j < p, for which there is a partial one-path connected to vj , or there is a
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Figure 56: Examples of G0 and Gj for the case that Br has a vertex w of state E1.

Let l2 be the smallest j, 1 � j � n, for which there is a proper path decomposition
of G0 [ fsticks of wg with edge fv1; wg in the rightmost node, and either there is a
proper path decomposition of Gj [ fsticks of v1g with edge fv1; wg in the leftmost
node and edge fwr; vjg in the rightmost node, or j = 1, and there is a proper path
decomposition of G1 with edge fwr; v1g in the rightmost node. If there is no such j,
then l2 is unde�ned.

Claim 4.16. Suppose Br has a vertex w of state E1, and suppose j1 is de�ned. Then
j1 = minfl1; l2g.

Proof. This can be shown in the same way as Claim 4.2, Case 1 for trees. 2

Claim 4.17. If Br has a vertex of state E2, then j1 can be computed in O(n2) time,
where n is the number of vertices of GBr [ fv1;:::; vng [ fsticks adjacent to v1:::; vn�1g.

Proof. The computations can be done using PPW2: PPW2 has to be used twice for
G0 and twice for Gn. 2

Suppose Br has no vertices of state E2. We now show how to compute j1 for this
case. Let (C;S) be a correct path of chordless cycles for �Br.

Claim 4.18. Suppose Br has no vertices of state E1. j1 = 1 if there is a proper
path decomposition of GBr with v1 in the rightmost node. j1 = 2 if there is no proper
path decomposition of GBr with v1 in the rightmost node, but there is a proper path
decomposition of GBr � fsticks of wg [ fsticks of v1g with w and v1 in the rightmost
node, where w 2 V (Br) and dst1(v1; w) or dstp(v1; w) holds. Otherwise, j1 is unde�ned.

Proof. Clearly, there is a proper path decomposition of GBr with v1 in the rightmost
node if and only if j1 = 1.
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Ending biconnected component info. Let r, 1 � r � nr0, be such that ending
biconnected component info must be computed for Br. If Br has two or more vertices
of state E1, or one vertex of state I1, then the ending biconnected component info for
Br is false. Suppose Br has at most one vertex of state E1, and no vertices of state
I1. We �rst analyze the structure of a nice proper path decomposition with nice path
P = (v1;:::; vq) in which GBr occurs in (V1;:::; Vj0), and the rightmost vertex of P which
occurs in Vj0 is vl.

Claim 4.15. If GBr occurs in (V1;:::; Vj0), and the rightmost vertex of P which occurs
in Vj0 is vl, then a partial one-path H 0 of type I, II, III or IV connected to vm0 , m0 � 1,
can use [a; a0], with a � m0.

Proof. It follows from Corollary 4.5 that a � m0. Showing that it is possible that
a = m0 can be done in the same way as for in the proof of Claim 4.1, Case 1 for trees.

2

It follows from the claim that we only need the smallest value of l, 1 � l � n,
for which it is possible that vl is the rightmost vertex of P which occurs within the
occurrence of GBr .

Definition 4.15. The ending biconnected component info for Br is j1, 1 � j1 � n,
which is the smallest value of l for which GBr can occur in (V1;:::; Vj0), and vl is the
rightmost vertex of P which occurs in Vj0.

We now show how to compute j1. Therefore, we consider two cases, namely the
case that Br has a vertex of state E1, and the case that Br has no vertices of state E1.

Suppose Br has a vertex w of state E1. Let Hw be the component of GT which
contains w. Note that P1(Hw) is unique. Let P 0 = (w1;:::; wr) be the shortest path
containing w and P1(Hw), such that w1 = w. Let H 0

w be the graph obtained by deleting
all sticks of w of Hw.

It must be the case that v1 and w are in the same chordless cycle of �Br, and that
either fv1; wg 2 E(Bi), or v1 and w have a common neighbor which has no sticks.

Let G0 be the graph obtained from G by adding edge fv1; wg if it is not present,
and deleting v2;:::; vq, and all sticks, partial one-paths and biconnected components
connected to these vertices, Hw � fw1g, and all partial one-paths and sticks connected
to v1. Note that G0 is a biconnected component with sticks. See for example Figure 56.

For each j, 1 � j � n, let Gj be the graph obtained from G by adding edge fv1; wg
if it is not present, adding edge fwr; vjg, and deleting Gi � fwg, all sticks and partial
one-paths connected to v1, all vertices vj+1;:::; vq and all sticks, partial one-paths and
biconnected components connected to vertices vj ;:::; vq. Note that Gj is a cycle with
sticks. See for example Figure 56.

Let l1 be the smallest j, 1 � j � n, for which there is a proper path decomposition
of G0 [ fsticks of v1g with edge fv1; wg in the rightmost node, and there is a proper
path decomposition of Gj [ fsticks of wg with edge fv1; wg in the leftmost node and
edge fwr; vjg in the rightmost node. If there is no such j, then l1 is unde�ned.
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The local information for the case that a biconnected component is handled as
ending biconnected component is called ending biconnected component info, and the
local information for the case that a biconnected component is handled as a partial
one-path of type IV is called partial one-path info. Lemma 4.21 and Lemma 4.26 show
that for a given biconnected component Bi, the following local information must be
computed (assumed that there are at most three i, 1 � i � nr0, for which Gi has a
vertex of color c(v1)).

1. There is an i0 for which cond1(st(Bi0)) does not hold.

(a) If i0 6= i, then the partial one-path info is computed.

(b) If i0 = i, then the ending biconnected component info is computed.

2. For all i0, cond1(st(Bi0)) holds.

(a) If nr0 + nr = 1, then the ending biconnected component info is computed.

(b) If nr0 +nr = 2, then the ending biconnected component info and the partial
one-path info are computed.

(c) nr0+nr � 3 and Gi has a vertex of color c(v1), then the ending biconnected
component info is computed.

(d) nr0 + nr � 3 and Gi has no vertex of color c(v1), but there is an i0 6= i for
which Gi0 has a vertex of color c(v1), or there is a j, 1 � j � nr, for which
Hj has a vertex of color c(v1), then the partial one-path info is computed.

(e) nr0 + nr � 3 and there is no i0, 1 � i0 � nr0 for which Gi0 has a vertex of
color c(v1), and there is no j, 1 � j � nr, for which Hj has a vertex of color
c(v1), and Bi is selected to be ending biconnected component(in the sense
of Lemma 4.21), then the ending biconnected component info is computed.

(f) nr0 + nr � 3 and there is no i0, 1 � i0 � nr0, for which Gi0 has a vertex of
color c(v1), there is no j, 1 � j � nr, for which Hj has a vertex of color
c(v1), and Bi is not selected to be ending biconnected component, then the
partial one-path info is computed.

Note that if for all i, 1 � i � nr0, cond1(st(Bi)) holds, nr0 +nr � 3 and there is no
i, 1 � i � nr0 for which Gi has a vertex of color c(v1), and there is no j, 1 � j � nr,
for which Hj has a vertex of color c(v1), then at most one Bi is selected to be ending
biconnected component, because of Lemma 4.21.

Note furthermore that if for all i, 1 � i � nr0, cond1(st(Bi)) does not holds, and
Bi has two or more vertices of state E1, or one vertex of state E2, then we do not have
to compute the ending biconnected component info for Bi, because of Lemma 4.26.

For partial one-paths of type I, II or III, also the partial one-path information is
computed.

We now show what the ending biconnected component info and the partial one-path
info consist of, and how they are computed.
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Let rw1 be the smallest value of j0, m � j0 � n, for which there is a proper path
decomposition of Gw

j0 [f sticks of vu g with edge fvm; vg in the leftmost node and edge
fvj0 ; ug in the rightmost node. If there is no such j0, then rw1 is unde�ned.

Let lu2 be the largest value of j, p � j � m, for which there is a proper path
decomposition of Gu

j [ f sticks of vu g with edge fvm; vg in the rightmost node and
fvj ; ug in the leftmost node. If there is no such j, lu2 is unde�ned.

Let rw2 be the smallest value of j0, m � j0 � n, for which there is a proper path
decomposition of Gw

j [f sticks of vm g with edge fvm; vg in the leftmost node and edge
fvj0 ; ug in the rightmost node, or j0 = m and there is a proper path decomposition of
Gw
j0 with edge fv; vmg in the leftmost node and edge fw; vmg in the rightmost node. If

there is no such a j0, then rw2 is unde�ned.
De�ne lw1 , ru1 , lw2 and ru2 similarly.
Let Q0

1 be de�ned as follows.

Q0
1 = f (j; j 0) 2 f(lu1 ; r

w
1 ); (lu2 ; r

w
2 ); (lw1 ; r

u
1); (lw1 ; r

w
1 )g j j and j0 are not unde�ned g

Claim 4.5 also holds for Q0
1, which can be shown in the same way as for Claim 4.5.

The values of lu1 , rw2 , etc. can be computed in O(n2) time in the same way as for Case
2.1 for trees.

Field lr is now computed as follows. If there are two or more partial one-paths
connected to vm, then lr:ok is false, If H 0 is the only partial one-path connected to vm,
then lr:ok is true if and only if Q1 is not empty. In this case, the values of lr:la and
lr:ra, 1 � a � 8, are such that

Q1 = f (vm:p[i]:lr:la; vm:p[i]:lr:ra) j 1 � a � 8 g:

If lr:ok is false, then lr:la = p and lr:ra = n, for all a, 1 � a � 8. This completes the
description of Case 1.

Case 2 vm 2 V (P ), m 2 f1; qg, and there is no connecting biconnected
component containing vm.

First consider the case that m = 1 and q > 1. Suppose there is no connecting bi-
connected component between v1 and v2. If there is no biconnected component at all
which contains v1, then there is no partial one-path connected to v1, because of the
choice of nice paths, and there is no local information to compute. Suppose there is
a non-connecting biconnected component containing v1. Let pp = p = 1, let vn be
the leftmost vertex of P on the right side of v1 which is contained in a biconnected
component or to which a partial one-path is connected, if there is no such vertex then
n = q. If there is a connecting biconnected component between vn and vn+1, then
let nn = n, otherwise let vnn be the leftmost vertex on the right side of vn which is
contained in a biconnected component or to which a partial one-path is connected. If
there is no such vertex then let nn = q. Let H1;:::; Hnr be the partial one-paths of
type I, II and III which are connected to v1. Let B1;:::; Bnr0 be the (non-connecting)
biconnected components which contain v1. For each i, let Gi = G[V (GBi

)� fv1g].
First consider the local information for biconnected components which contain v1.
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v0 of v in H 0 for which fv0; vmg 2 E(G). Let vu 2 V (P 0) be the vertex with smallest
distance to u, such that fvu; vmg 2 E(G0), and let vw 2 V (P 0) be the vertex with
smallest distance to w, such that fvw; vmg 2 E(G0). (Note that vu = u and vw = w

are possible.)
For each j, p � j � m, let Gu

j denote the graph obtained from G0 as follows (see
e.g. Figure 57). Add edge fu; vjg. Delete vertices fv1;:::; vj�1; vm+1;:::; vqg, and all
sticks and partial one-paths connected to fv1;:::; vj; vm;:::; vqg, except H 0. Delete all
components of G[V (H 0)�fvug] which do not contain u. Note that the remaining graph
Gu
j is a chordless cycle with sticks.

For each j 0, m � j 0 � n, let Gw
j0 be the graph obtained from G0 as follows. Add edge

fw; vj0g. Delete vertices fv1;:::; vm�1; vj0+1;:::; vqg, and all sticks and partial one-paths
connected to fv1;:::; vm; vj0;:::; vqg, except H 0. Delete the component of G[V (H 0)�fvug]
which contains u.

Similarly, for each j, p � j � m, let Gw
j be the graph obtained from G0 as fol-

lows. Add edge fw; vjg. Delete vertices fv1;:::; vj�1; vm+1;:::; vqg, and all sticks and
partial one-paths connected to fv1;:::; vj; vm;:::; vqg, except H 0. Delete all components
of G[V (H 0)� fvwg] which do not contain w.

Furthermore, for each j0, m � j0 � n, let Gu
j0 denote the graph obtained from G as

follows. Delete vertices fv1;:::; vm�1; vj0+1;:::; vqg, and all sticks and partial one-paths
connected to fv1;:::; vm; vj0 ;:::; vqg, except H 0. Delete the components of G[V (H 0) �
fvwg] which contains w.

Gu
j

P

vj

vm

H0

u w

vp vj0

vu

vn

u vu

vm

w

vj0

vu

Gw
l

vj

vm

v0

v0

vw

vw

Figure 55: Example of Gu
j and Gw

j0 , for a given partial one-path H 0 of type IV, which
is connected to vm, and with p � j � m and m � j0 � n.

Let lu1 be the largest value of j, p � j � m, for which there is a proper path
decomposition of Gu

j [ f sticks of vm g with edge fvm; vg in the rightmost node, edge
fvj ; ug in the leftmost node, or j = m and there is a proper path decomposition of
Gu
m with edge fu; vmg in the leftmost node and edge fv; vmg in the rightmost node. If

there is no such j, then lu1 is unde�ned.
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to vm. De�ne Gw
j in the same way for each j, p � j � m. Note that Gu

j and Gw
j are

biconnected components with sticks.

P vj vm

H0

u w

vp

Gu
j

vj vm

u w

Figure 54: Example of Gu
j for a given partial one-path H 0 of type IV which is connected

to vm.

Let l1 be the largest j, p � j � m, for which there is a proper path decomposition
of Gu

j with vertex vm in the rightmost node and edge fvj ; ug in the leftmost node,
unde�ned if there is no such proper path decomposition. Let l2 be the largest j,
p � j � m, for which there is a proper path decomposition of Gw

j with end vertex vm
and end edge fvj ; wg, unde�ned if there is no such proper path decomposition.

Claim 4.2 of Case 1 for trees now holds for l1 and l2, which can be shown in the
same way as for Claim 4.2. The values of l1 and l2 can be computed in O(n2) time
with use of PPW2 and PPW20, in the same way as in Case 1 for trees.

Hence �eld l can be computed as follows. If H 0 has no vertex of color c(vm), then
l:ok is true and l:v = m. If H 0 has vertices of color c(vm), then j1 is computed. If j1 is
de�ned, then l:ok is true, and l:v = j1, otherwise, l:ok is false and l:v = p.

This completes the description of the local information for the case that p � j �
j0 � m. The case that m � j � j0 � n can be done in the same way.

Case 1.3 H 0 is the only partial one-path connected to vm and p � j � j0 � n

This case corresponds to Case 2 for trees of pathwidth two (see page 75). In fact,
it corresponds to case 2.1, since the graph G[V (H 0) [ fvmg] contains a biconnected
component of which vm is double end point. This means that there is an edge e 2 E(H 0)
for which there is a node in the path decomposition which contains vm and e, so
j � m � j0.

Claim 4.4 of Case 2.1 for trees also holds for H 0, hence De�nition 4.6 de�nes the
local information for H 0, which consists of the set Q1.

We now show how to compute the set Q1 for H 0, and that jQ1j � 4.
Let P 0 2 P1(H 0), let u and w be the two end points of P 0. Let G0 be the graph

obtained from G by adding all edges fv; vmg, for which v 2 V (P 0) and there is a stick
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vn+1, then nn = n, otherwise, vnn is the leftmost vertex on the right side of vn which
is contained in a biconnected component or to which a partial one-path is connected,
nn = q if there is no such vertex.

Note that this de�nition is correct, e.g. if there is a connecting biconnected compo-
nent between vp�1 and vp, then partial one-paths connected to vm can not use any j,
j < p, because of Corollary 4.4.

First consider the local information for partial one-paths of type I, II or III which
are connected to vm. For these partial one-paths, we compute the same information
as for trees of pathwidth two, i.e. if there is more then one partial one-path connected
to vm then the �elds l, r, lll, llr, rrl and rrr are computed for all partial one-paths
which have a vertex of color c(vm), and only �elds l and r are computed for all partial
one-paths which have no vertex of color c(vm). If there is only one partial one-path
connected to vm, then �elds lr, lll, llr, rrl and rrr are computed for this partial one-
path. This information can be computed in the same way as for trees of pathwidth
two.

Now consider the partial one-paths of type IV which are connected to vm. We use
the same local information for these partial one-paths, i.e. we compute �elds l, r, lr,
lll, llr, rrl and rrr, as is shown here. Let H 0 be a partial one-path of type IV which
is connected to vm. Let PD be a nice proper path decomposition of G with nice path
P , suppose H 0 uses [j; j 0]. We consider three di�erent cases.

1.1 pp � j � j0 � p or n � j � j0 � nn.

1.2 There are two or more partial one-paths connected to vm, and p � j � j0 � m or
m � j � j0 � n.

1.3 H 0 is the only partial one-path connected to vm and p � j � j0 � n.

Case 1.1 pp � j � j0 � p or n � j � j0 � nn

It is not possible that j � n, and there is a partial one-path H 00 connected to vn which
uses [l; l0], p � l � l0 � m, because of Lemma 4.18. Hence p � j � j0 � n. This means
that the �elds lll:ok, llr:ok, rrl:ok and rrr:ok are false.

Case 1.2 There are two or more partial one-paths connected to vm, and

p � j � j0 �m or m � j � j0 � n

This case corresponds to Cases 1 and 4 for trees of pathwidth two (see page 112).
Claim 4.1 in Case 1 for trees holds for H 0, so we can use De�nition 4.5 for the local
information for this case, which means that the local information is an integer j1,
p � j1 � m.

We now show how to compute j1.
Let P 0 2 P1(H

0), let u and w be the two end points of P 0. For each j, p � j � m,
let Gu

j denote the graph obtained from G as follows (see e.g. Figure 54). Add edge
fu; vjg, and edge fw; vmg. For each stick v0 of some v 2 V (P 0) for which fv0; vmg 2 G,
add edge fvm; vg. Furthermore, delete vertices fv1;:::; vj�1; vm+1;:::; vqg and all sticks
and partial one-paths adjacent to these vertices, all sticks adjacent to vj and vm, all
partial one-paths adjacent to vj and all partial one-paths except H 0 that are adjacent
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vmvm�1 vm+1
1

vm vm+1

3

vm = v1

2
v2

vm = v1

4
v2

Figure 53: Examples of possible kinds of vertices in nice path P = (v1;:::; vq). In
case 1, 1 < m < q, and there is no connecting biconnected component between vm�1
and vm or between vm and vm+1. In case 2, m = 1, and there is no connecting
biconnected component between v1 and v2. In case 3, 1 < m < q and there is a
connecting biconnected component between vm and vm+1. In case 4, m = 1, and there
is a connecting biconnected component between v1 and v2.

4 is a combination of cases 2 and 3. All other information remains the same, although
it must be computed slightly di�erent.

Case 1 vm 2 V (P ), 1 < m < q, and no connecting biconnected component
contains vm
Let vm 2 V (P ) such that 1 < m < q, there is no connecting biconnected component
containing vm, and there is at least one partial one-path connected to vm. Let pp, p, n
and nn, pp � p � m � n � nn, be de�ned as follows. Vertex vp is the rightmost vertex
on the left side of vm which is contained in a biconnected component or to which a
partial one-path is connected, or p = 1 if there is no such vertex, and vn is the leftmost
vertex on the right side of vm which is contained in a biconnected component or to
which a partial one-path is connected, or n = q if there is no such vertex. If there
is a connecting biconnected component between vp�1 and vp, then pp = p, otherwise,
vpp is the rightmost vertex on the left side of vp which is contained in a biconnected
component or to which a partial one-path is connected, pp = 1 if there is no such
vertex. Analogously, if there is a connecting biconnected component between vn and
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stick of w1 in the leftmost node, and wr in the rightmost node, such that there is a node
Wa which contains wr�1 only. Note that a < b. For each i, a � i � b add vertex x to
Wi. Note that c(wr�1) 6= c(wr) so all sticks of x have color c(wr�1) or color c(wr). For
each stick x00 of x with c(x00) = c(wr), add a node fx; x00; wr�1g between Va and Va+1.
For each stick x00 of x with c(x00) = c(wr�1), add a node fx; x00; wrg on the right side of
Wb. Let PD1 again denote this proper path decomposition. Let PD2 denote that path
decomposition obtained from PD by deleting (V1;:::; Vj�1). Then PD0 = PD1 ++PD2

is the desired nice proper path decomposition of G. 2

The following lemma gives the analog of Lemma 4.26 for the case that the nice path
is empty. The proof of this lemma is the same as for Lemma 4.26.

Lemma 4.27. Let G be a three-colored partial two-path, suppose there is a nice proper
path decomposition PD = (V1;:::; Vt) of G with nice path P = (). Let B be the bicon-
nected component of G. If there is an edge e with e \ V (B) = ;, and e occurs on the
left side of the occurrence of B, then there is a nice proper path decomposition of G
with nice path P 0 = (w1;:::; wr), where wr 2 V (B), st(wr) 2 fE1; I1g, and w1 is end
point of a path P1(H 0), where H 0 is the component of GT which contains wr.

The analogs of Lemma 4.26 and Lemma 4.27 also hold for the right side of the path
decomposition. Hence Lemma 4.27 implies that an empty nice path has to be tried
only if G is a biconnected component with sticks.

We show what local information is computed, and how it is computed for all vertices
of the nice path P = (v1;:::; vq) to which a partial one-path is connected, or which
contains a biconnected component. We distinguish four di�erent kinds of vertices of
P . Suppose q � 1, let 1 � m � q, such that there is a partial one-path connected to
vm or there is a biconnected component which contains vm. The following cases are
distinguished for vm.

1. 1 < m < q, and there is no connecting biconnected component between vm�1 and
vm or between vm and vm+1,

2. m 2 f1; qg, and there is no connecting biconnected component between vm and
vm+1, or between vm�1 and vm,

3. 1 < m < q, and there is a connecting biconnected component between vm�1 and
vm, or between vm and vm+1, and

4. m 2 f1; qg, and there is connecting biconnected component between vm and
vm+1, or between vm�1 and vm.

Figure 53 gives an example for each case.
For case 1, the local information that is computed for each partial one-path con-

nected to vm is the same as for trees of pathwidth two. For case 2, we have to compute
information if there is a biconnected component which contains vm. For case 3, we
have to compute extra information for the connecting biconnected components. Case
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side of Vs or on the right side of Vj . If it occurs on the right side of Vj , then v1 2 Vj,
since Vj can not contain any vertex which is not in GB or fvlg. 2

Lemma 4.25 implies the following corollary.

Corollary 4.5. Let G be a three-colored partial two-path, suppose there is a nice
proper path decomposition of G with nice path P = (v1;:::; vq), such that v1 2 V (B),
B is ending biconnected component. Let vl be the rightmost vertex on P which occurs
within the occurrence of GB. Let H 0 be a partial one-path which is connected to vn,
1 � n � q. If n > 1, then H 0 can at least use vl. If n = 1, then H 0 occurs on the left
side of the occurrence of B, or H 0 can at least use vl.

In the following lemma, the number of possibilities for ending biconnected compo-
nents are bounded.

Lemma 4.26. Let G be a three-colored partial two-path, suppose there is a nice proper
path decomposition PD = (V1;:::; Vt) of G with nice path P = (v1;:::; vq) with ending
biconnected component B. If there is an edge e with e\V (B) = ;, and e occurs on the
left side of the occurrence of B, then there is a nice proper path decomposition of G with
nice path P 0 = (w1;:::; wr; v1;:::; vq), where wr 2 V (B), and either fwr; v1g 2 E(G) and
there is a partial one-path H 0 connected to v1 such that wi 2 V (H 0) for all i, 1 � i � r,
and w1 is end point of a path in P1(H

0), or wr 2 V (B), st(wr) 2 fE1; I1g, and w1 is
end point of the path P1(H 0), where H 0 is the component of GT which contains wr.

Proof. Suppose B occurs in (Vj ;:::; Vj0). Note that V1 does not contain an edge of
B, since then each Vi, i < j, contains two vertices of B and can not contain e. Let
x 2 V (B), and x0 a stick adjacent to x such that x; x0 2 V1. Note that x 2 Vj .

For all i, 1 � i < j, Vi can not contain vertices from the component of G[V � fv1g]
which contains v2, if q > 1. Furthermore, Vi contains a vertex of B, or a stick of
a vertex of B, which means that there is no biconnected component B0 6= B which
occurs on the left side of Vj. Hence there is a partial one-path H 0 with e � E(H 0), and
either H 0 is connected to v1, or there is w 2 V (B) with st(w) 2 fI1;E1g, and H 0 is the
component of GT which contains w. If H 0 is connected to v1, let w = v1. Let He be
the component of G[V � fwg] which contains e. Let H 0

e be G[V (He) [W ], where W

contains w and all sticks of w which occur on the left side of Vj . Note that H 0
e occurs

completely on the left side of Vj , and w 2 Vj . Furthermore, note that w is an end point
of P1(H 0

e) or a stick adjacent to this end point, since each Vi, 1 � i < j, contains x.
Suppose H 0

e occurs in (Vl;:::; Vl0), 1 � l � l0 < j. There are no edges e0 with
e0 =2 E(H 0

e), and e0 occurs on the left side of Vj , except edges fx; x00g, where x00 is a
stick of x, since each Vi, l � i < j, contains x and at least one vertex of H 0

e, and there
is at least one node Vi, l � i < j, which contains x and two vertices of H 0

e. No vertex
of H 0

e has color c(x). Let (w1;:::; wr) be the shortest path in H 0
e which contains P1(H

0
e)

and w, such that w = wr.
We now transform PD into a nice proper path decomposition of G with nice path

(w1;:::; wr�1; v1;:::; vq) if w = v1, and nice path (w1;:::; wr; v1;:::; vq) otherwise. Let
PD1 = (W1;:::;Wb) be a proper path decomposition of width two of H 0

e with w1 and a
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incident with vm+1 which are in B. But then jVj0 j � 4, hence vm 2 Vj0 . Suppose
vm+1 =2 Vj0 . Then Vj0 contains vm, a vertex of vm+2;:::; vq, and an edge of GB, which
cannot contain vm. But then jVj0 j � 4, hence vm+1 2 Vj0 .

We now show that H 0 has type I. Suppose H 0 occurs in (Vb;:::; Vb0). Then vm 2 Vb
and each node Vi, b � i � b0, contains a vertex of vm+1;:::; vq, hence only an end point
of a path in P1(H

0), or a stick adjacent to such an end point can be adjacent to vm.
Each node Vi, j

0 � i � b, contains vm and a vertex of the path vm+1;:::; vq, which
means that there can be no partial one-path which uses [n; n0], m + 1 � n � n0 � l.
Furthermore, there can be no partial one-path connected to vm which uses [n; n0], n � l0,
since it is not possible that vm 2 Vb0 . 2

The following Lemma gives conditions for the case that a partial one-path connected
to vm occurs on the left side of the occurrence of GB.

Lemma 4.24. Let G be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (v1;:::; vq). Let B be a connecting bicon-
nected component which connects vm and vm+1, 1 � m < q. Suppose GB occurs in
(Vj;:::; Vj0). Let H 0 be a partial one-path which is connected to vm, suppose H 0 uses
[l; l0], l � m. Then vm 2 Vj.

Proof. Suppose vm =2 Vj . Then Vj contains a vertex of the path v1;:::; vm�1, a vertex
of H 0, and an edge of GB . This means that jVjj � 4, hence vm 2 Vj . 2

Consider the local information for ending biconnected components.
We now prove the analog of Lemma 4.22 for ending biconnected components.

Lemma 4.25. Let G be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (v1;:::; vq), such that v1 2 V (B), B is ending
biconnected component. Suppose GB occurs in (V1;:::; Vj). Let vl be the rightmost vertex
on P which occurs in (V1;:::; Vj). Then vl 2 Vj, and for all i, 1 < i < l, vi and all sticks
adjacent to vi occur within (V1;:::; Vj), and there is no partial one-path connected to vi,
or a connecting biconnected component B0 6= B containing vi. Furthermore, there is
no partial one-path connected to v1, or v1 2 Vj, or a partial one-path connected to v1
occurs on the left side of the occurrence of B.

Proof. Node Vj contains a vertex of the path from v1 to vq, but it does not contain
any vertex vi with i > l, hence vl 2 Vj . Furthermore, Vj contains an edge of GB, which
means that Vj contains no vertices of fv2;:::; vl�1g, or any other vertices which are not in
GB or fvlg. Hence all sticks, partial one-paths, and connecting biconnected components
which are connected to some vi, 1 < i < l, occur within (V1;:::; Vj). Suppose B occurs
in (Vs;:::; Vs0), 1 � s � s0 � j. For each a, s � a � s0, each node Va contains two
vertices of B. For each a, s0 < a � j0, Va contains a vertex of P and a vertex of
V (GB) � fv1g. Furthermore, partial one-paths connected to vi, 1 < i < l, can not
occur on the left side of the occurrence of Vs. Hence it is not possible that there is a
partial one-path or a connecting biconnected component which is connected to any vi,
1 < i < l. Furthermore, a partial one-path connected to v1 either occurs on the left
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within (Vj;:::; Vj0), and there is no partial one-path connected to vi, or a connecting
biconnected component B0 6= B containing vi, and there is no partial one-path which
uses [a; a0], with l � a � l0 or l � a0 � l0.

Proof. Node Vj contains a vertex of the path from v1 to vm. But Vj does not contain
any vertex vi with 1 � i < l, hence vl 2 Vj , and l � m. Similarly, vl0 2 Vj0 and
l0 � m + 1. Furthermore, Vj and Vj0 contain an edge of GB, which means that Vj and
Vj0 contain no vertices of fvl+1;:::; vm�1; vm+2;:::; vl0�1g, or any other vertices which are
not in V (GB)[fvl; vl0g. Hence all sticks, partial one-paths, and connecting biconnected
components which are connected to some vi, l < i < m or m + 1 < i < l0, occur with
(Vj;:::; Vj0). Suppose B occurs in (Vs;:::; Vs0), j � s � s0 � j 0. For each a, s � a � s0,
each node Va contains two vertices of B. For each b, j � b < s, or s0 < b � j0, Vi
contains a vertex of P and a vertex of V (GB)�fvm; vm+1g. Hence it is not possible that
there is a partial one-path or a connecting biconnected component which is connected
to any vi, l < i < m or m+ 1 < i < l0, or a partial one-path which uses [a; a0], for some
l � a � l0 or l � a0 � l0. 2

Lemma 4.22 implies the following corollary.

Corollary 4.4. Let G be a three-colored partial two-path, suppose there is a nice
proper path decomposition of G with nice path P = (v1;:::; vq). Let B be a connecting
biconnected component which connects vm and vm+1, 1 � m < q. Let vl be the leftmost
vertex on P which occurs within the occurrence of GB and let vl0 be the rightmost vertex
on P which occurs within the occurrence of GB. Let H

0 be a partial one-path which is
connected to vm0, 1 � m0 � q. If m0 < m, then H 0 can at most use l, if m0 > m + 1,
then H 0 can at least use l0, and if m0 = m or m0 = m + 1 then H 0 can use at most l,
or at least l0.

Let G be a three-colored graph with pathwidth two, suppose there is a nice proper
path decomposition of G with nice path P = (v1;:::; vq), and there is a connecting
biconnected component B between vm and vm+1, 1 � m < q. Partial one-paths which
are connected to vm or vm+1 can both occur on the left side and on the right side of
the occurrence of GB. The following Lemma gives conditions for the case that a partial
one-path connected to vm occurs on the right side of the occurrence of GB.

Lemma 4.23. Let G be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (v1;:::; vq). Let B be a connecting bicon-
nected component which connects vm and vm+1, 1 � m < q. Suppose GB occurs in
(Vj;:::; Vj0). Let H 0 be a partial one-path which is connected to vm, suppose H 0 uses
[l; l0], l � m+ 1. Then vm; vm+1 2 Vj0, H

0 has type I, there is no other partial one-path
connected to vm which uses [n; n0], m + 1 � n, and there is no partial one-path which
uses [n; n0], m + 1 � n � n0 � l.

Proof. Suppose B occurs in (Va;:::; Va0). Clearly, j � a � a0 � j0 and vm; vm+1 2 Va0.
Suppose vm =2 Vj0 . Then Vj0 contains a vertex of the path (vm+1;:::; vq), a vertex of
H 0, and an edge of GB, which does not contain vm+1 because GB contains only edges
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It follows directly from Lemma 4.21 how the possible nice paths can be selected.
Next we concentrate on the computation of local information for each vertex of a

nice path of G. Let PG = (u1;:::; us), and let P = (v1;:::; vq) be a possible nice path of
G.

Let vm 2 V (P ), 1 < m < q, suppose there there is a non-connecting biconnected
component B which contains vm. The component H 0 of G[V � fvmg] which contains
V (B)� fvmg has pathwidth one (Lemma 3.14), hence it can be handled in the same
way as other partial one-paths connected to P . Therefore, we extend the types of
partial one-paths as follows.

Definition 4.13. (Types of Partial One-Paths). Let G be a tree of pathwidth two, P
a path in G. Let v 2 V (P ), and H 0 a component of H [V � V (P )] such that H 0 has
pathwidth one and H 0 has only vertices which are adjacent to v, i.e. H 0 is connected
to v. Let W � V (H 0) be the set of vertices for which fv; wg 2 E(H). Let P 0 2 P1(H

0).
If jW j = 1, then the type of H 0 is as de�ned in De�nition 4.2. If jW j > 1, then H 0 has
type IV.

From now on, by partial one-paths connected to a path P , we do not only mean the
partial one-paths of type I, II and III connected to P , but also the partial one-paths of
type IV connected to P , unless stated otherwise.

In the same way as for trees of pathwidth two (Corollary 4.1 and Lemma 4.15),
we can show that if there is a proper path decomposition of G with nice path P ,
then there is a proper path decomposition of G in which for each m, 1 � m � q,
for which G[V � fvmg] has four or more components which contain at least one edge,
all components of G[V � fvmg] which do not have a vertex of color c(vm) and which
have pathwidth one, occur within the occurrence of vm, and furthermore for each two
components H 0 and H 00 of G[V �V (P )] which have pathwidth one, such that H 0 6= H 00,
PD contains no node which contains a vertex of H 0 and a vertex of H 00. Hence the
notion of use can also be used for partial one-paths of type IV.

Definition 4.14. Let G be a three-colored partial two-path, P = (v1;:::; vq) a possible
nice path for G. Let B be a biconnected component of G. If V (B)\V (P ) = fvmg, then
GB is the subgraph of G induced by vm and the vertices of the component of G[V �fvmg]
which contains V (B)� fvmg. If V (B)\ V (P ) = fvm; vm+1g, then GB is the subgraph
of G induced by vm, vm+1, and the vertices of the component of G[V � fvm; vm+1g]
which contains V (B)� fvm; vm+1g.

Now consider the local information for connecting biconnected components.

Lemma 4.22. Let G be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (v1;:::; vq). Let B be a connecting bicon-
nected component which connects vm and vm+1, 1 � m < q. Suppose GB occurs in
(Vj;:::; Vj0). Let vl be the leftmost vertex on P which occurs in (Vj ;:::; Vj0), and vl0 the
rightmost vertex on P which occurs in (Vj ;:::; Vj0). Then vl 2 Vj, vl0 2 Vj0, l � m < l0,
and for all i, l < i < m or m + 1 < i < l0, vi and all sticks adjacent to vi occur
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(b) There is a non-connecting biconnected component B which contains v1, such
that the component of G[V �fv1g] which contains V (B)�fv1g has a vertex
of color c(v1), there is nice proper path decomposition PD0 with nice path
P 0 = (w1;:::; wr) such that wr = uq and either w1 = v1 and B is ending
biconnected component, or there is a component H 0 of GT which contains a
vertex w of B with st(w) 2 fI1;E1g, and w1 is an end point of some path
in P1(H

0).

4. For each non-connecting biconnected component B which contains v1,
cond1(st(V )) holds, and furthermore G[V � fv1g] has four or more components,
and there is no component H 0 of G[V � fv1g], vs =2 V (H 0), which has a vertex of
color c(v1). Then both of the following conditions holds.

(a) For all partial one-paths H 0 connected to v1, there is a nice proper path
decomposition PD0 with nice path P 0 = (w1;:::; wr), such that wr = uq and
w1 is an end point of some path in P1(H

0).

(b) For all non-connecting biconnected components B which contain v1, there
is nice proper path decomposition PD0 with nice path P 0 = (w1;:::; wr) such
that wr = uq and either B is ending biconnected component and w1 = v1,
or there is a component H 0 of GT which contains a vertex w of B with
st(w) 2 fI1;E1g, and w1 is an end point of some path in P1(H 0).

Proof. If there is a non-connecting biconnected component B which contains v1 such
that cond1(st(B)) does not hold, then the component G0 of G[V �fv1g] which contains
V (B)� fv1g has pathwidth two, which means that in each path decomposition of G,
V1 contains only vertices of the G0. Hence case 1 holds.

If for each non-connecting biconnected component B which contains v1,
cond1(st(B)) holds, then each component of G[V � fv1g] which does not contain vs
has pathwidth at most one. Hence cases 2, 3 and 4 can be proved in the same way as
Lemma 4.13. 2

If jV (PG)j = 1, then a similar lemma holds, which is omitted here, since the number
of cases is large (but constant).

If jV (PG)j > 1, then there are at most three components of G[V � fv1g] which do
not contain a vertex of PG, which have a vertex of color c(v1). The partial one-paths
connected to v1 which have a vertex of color c(v1) each give two end points to try. The
biconnected components containing v1 each give at most three end points to try, since
they have at most three vertices of state E1, or at most one vertex of state I1 and at
most one vertex of state E1. Hence there are at most nine end points to try, together
with end point v1, this gives at most ten end points to try on one side, and at most
ten on the other side, which gives at most 100 nice paths in total. If jV (PG)j = 1, a
similar calculation can be made.

This shows that the number of nice paths that has to be tried is constant, since if
jV (PG)j = 0, then the number of vertices with state I1 or E1 is at most four, which
means that the number of choices for end points of possible nice paths is bounded.
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transformation of case 4 can only be done once per transformation of case 5. The trans-
formation of case 3 can only be done a �nite number of times for each transformation
of case 5, since the length of the path decomposition remains �nite.

This completes the proof for the case that s � 1. If s = 0, then the proof is similar,
so it is omitted here. 2

Next we have to show that the number of nice paths that has to be tried is constant.
This is done in the same way as for trees of pathwidth two. Let G be a three-colored
partial two-path, P = (v1;:::; vq) a nice path of G. The analog of Lemma 4.12 holds for
three-colored partial two-paths, i.e. if there is a proper path decomposition of G, then
there is a proper path decomposition PD of G in which for each v 2 V , if G[V � fvg]
has four or more components, then there is a node fvg in PD. We can now state which
nice paths have to be tried and which do not have to be tried.

Lemma 4.21. Let G be a connected three-colored graph with pathwidth two which is
not a tree. Let PG = (v1;:::; vs), suppose q > 1 and suppose there is a proper path
decomposition of G. Let PD be a nice proper path decomposition of G with nice path
P = (u1;:::; uq). One of the following conditions holds.

1. There is a non-connecting biconnected component B which contains v1 and for
which cond1(st(B)) does not hold. Then one of the following conditions holds.

(a) There is a component H 0 of GT which contains a vertex w of B, st(w) 2
fI1;E1g, and u1 is an end point of some path in P1(H 0).

(b) u1 = v1 and B is ending biconnected component.

2. For each non-connecting biconnected component B which contains v1,
cond1(st(B)) holds, and furthermore G[V � fv1g] has three or less components.
Then one of the following conditions holds.

(a) There is a partial one-path H 0 connected to v1, and u1 is an end point of
some path in P1(H 0).

(b) There is a non-connecting biconnected component B which contains v1, and
either B is ending biconnected component and u1 = v1, or there is a com-
ponent H 0 of GT which contains a vertex w of B with st(w) 2 fI1;E1g, and
u1 is an end point of some path in P1(H 0).

3. For each non-connecting biconnected component B which contains v1,
cond1(st(B)) holds, and furthermore G[V � fv1g] has four or more components,
and there is a component H 0 of G[V � fv1g], vs =2 V (H 0), which has a vertex of
color c(v1). Then one of the following conditions holds.

(a) There is a partial one-path H 0 connected to v1 which has a vertex of color
c(v1), and there is a nice proper path decomposition PD0 with nice path
P 0 = (w1;:::; wr), such that wr = uq and w1 is an end point of some path in
P1(H

0).
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1. fv; v0g 2 E(H 0) for some partial one-path H 0 connected to v1 such that v is an
end point of some path P 0 2 P1(H

0),

2. fv; v0g 2 E(H 0) for some component H 0 of GT containing a vertex w of state E1
or I1 of a biconnected component containing v1, such that v is an end point of
the path P 0 containing a path of P1(H

0) and w such that v 6= w if jV (P 0)j > 1,
or

3. v 2 V (B) for some biconnected component B which contains v1, st(v) = S, and
v0 is a stick adjacent to v.

(See also the proof of Lemma 4.9.)
Hence if case 1 or case 2 holds, then we are ready. Now, we apply the following

transformations on PD such that one of the previous cases holds again after each
transformation, until case 1 or case 2 holds for V1, and case 1 or case 2 holds for Vt.
First transform PD using the following rules until case 1 or case 2 applies for V1, next
transform PD using the following rules, adapted for Vt, until case 1 or case 2 applies
for Vt. During the transformations, G1 and G2 are changed, in order to show that the
number of transformations is �nite.

If case 3 holds, delete V1. Note that still V1 � V (G1).
If case 4 holds, let e 2 E(G1) such that e � V1, and add a node containing e only

on the left side of V1.
If case 5 holds, do the following. Consider the components of G[V � fvg] which

consist of more than one vertex. Note that at least one of these components is a
subgraph of G1 which does not contain v1, and hence Vt does not contain any vertex of
this component. If G[V � fv0g] does not have two or more components which contain
two or more vertices, then v0 has degree one, otherwise case 2 would hold. This means
that in this case, there is a component of G[V � fvg] which has two or more vertices,
does not contain vertices of PG, and does not contain v0. In this case, let G0 be such a
component. Note that G0 is a subgraph of G1. If G[V �fvg] and G[V �fv0g] both have
two or more components which have two or more vertices, then either G[V �fvg] has a
component which contains v0 and vertices of PG, or G[V �fv0g] has a component which
contains v and vertices of PG. Suppose w.l.o.g. that the �rst one holds. In this case,
let G0 be a component of G[V � fvg] which has at least two vertices, and which does
not contain v0. Note again that G0 is a subgraph of G1. Let G0

1 be the subgraph of G
induced by V (G0) and v, and note that G0

1 is a proper subgraph of G1, and it contains
at least one edge. Now transform PD into rev(PD[V (G0

1)] ++PD[V � V (G0)], and let
G1 be equal to G0

1. The new path decomposition is indeed a proper path decomposition
of G, since v is the only vertex that H [V (G1)] and H [V � V (G0)] have in common,
and v occurs in the rightmost node of rev(PD[V (G1)]) and in the leftmost node of
PD[V �V (G0)]. Furthermore, the leftmost node of the new PD contains only vertices
of G1 and the rightmost node of the new PD contains only vertices of G2.

The total number of transformations that is done this way is �nite, because of
the following. The transformation of case 5 can only be done for a �nite number of
times, since each time this transformation is done, the size of G1 or G2 decreases. The
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Figure 52: Examples of possible values of v and v0 as de�ned in De�nition 4.12. In G1,
s = 0, and in G2, s � 1. If v and v0 are equal to a1 and a01, b1 and b01 or c1 and c01, then
case 1 holds. If v 2 V (B1), and v0 is either a stick adjacent to v, or fv; v0g 2 E(B),
then case 2 holds. If v = b2, and v0 is equal to b02 or b002, then case 3 holds. If v = a2
and v0 = a02, then case 4 holds, and if v 2 V (B2), and v0 is either a stick adjacent to v,
or fv; v0g 2 E(B2), then case 5 holds.

PD = (V1;:::; Vt) is a proper path decomposition of G. Let G1 be the subgraph of
G induced by v1 and the components of G[V � fv1g] of which V1 contains at least
one vertex (note that G1 contains no vertices of the component of G[V � fv1g] which
contains vs, because of Lemma 3.20). Similarly, let G2 be the subgraph of G induced
by vs and the components of G[V �fvsg] of which Vt contains at least one vertex. Note
that, if s = 1 then V (G1) \ V (G2) = fv1g).

We now show how PD can be transformed into a nice proper path decomposition
of G by `unfolding' PD until it satis�es the described condition. The following cases
may occur for V1.

1. V1 = fv; v0g for some edge fv; v0g 2 E(G1) such that v0 has degree one and
G[V � fvg] has exactly one component which contains two or more vertices.

2. V1 = fv; v0g for some edge fv; v0g 2 E(G1), such that there is a biconnected
component B in G1 for which v; v0 2 V (B) and st(v) 2 fN; Sg, and either v0 = v1
or st(v0) 2 fN; Sg.

3. V1 contains no edge.

4. jV1j = 3, but contains an edge.

5. V1 = fv; v0g for some edge fv; v0g 2 E(G1), and G[V � fvg] has two or more
components which contain at least one edge, but 2 does not hold.

For Vt, the possible cases are similar.
If case 1 holds for V1, then there are three possibilities:
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proper path decomposition of G. Then PD is a nice path decomposition of G if there
are no two consecutive nodes which are equal, V1 contains an edge e = fv; v0g 2 E and
Vt contains an edge e0 = fx; x0g 2 E, in such a way that x 6= v and the path from v

to x contains PG. Furthermore, one of the following condition holds for V1 and e, and
analogously for Vt and e

0.

1. s = 0, B is the only biconnected component of G, e 2 E(H 0) for some component
H 0 of GT containing a vertex w 2 V (B) of state E1 or I1, such that v is an end
point of the path P 0 containing P1(H

0) and w, and v 6= w.

2. s = 0, B is the only biconnected component of G, e 2 E(G), v 2 V (B) and either
v0 is a stick adjacent to v, or v0 2 V (B).

3. s � 1, e 2 E(H 0) for some partial one-path H 0 connected to v1 such that v is an
end point of some path P 0 2 P1(H

0),

4. s � 1, e 2 E(H 0) for some component H 0 of GT containing a vertex w of state
E1 or I1 of a biconnected component containing v1, such that v is an end point
of the path P 0 containing P1(H

0) and w, and v 6= w.

5. s � 1, there is a biconnected component B containing v1 such that v 2 V (B) �
fv1g, and either fv; v0g 2 E(B) or v0 is a stick adjacent to v.

The nice path P 0 corresponding to nice path decomposition PD is de�ned as follows. If
s = 0, then P 0 is the empty path if condition 2 holds for both V1 and Vt. If condition 1
holds for V1, and 2 for Vt, then P 0 is the path from v to the vertex w 2 V (B) for which
v and w are in the same component of GT. Analogously, if condition 1 holds for Vt and
2 holds for V1, then P 0 is the path from the vertex w 2 V (B) to x, such that w and x

are in the same component of GT. If condition 1 holds for both V1 and Vt, then P 0 is
the largest common subsequence of all paths from v to x. If s � 1, then P 0 is the largest
common subsequence of all paths from w to w0 in G, where w = v1 if condition 5 holds
for V1, w = v otherwise, and w0 = vs if condition 5 holds for Vt, w = x otherwise.

Figure 52 shows an example of all conditions in De�nition 4.12.
Note that each nice path contains PG. If there is a nice proper path decomposition

of G for which condition 5 of De�nition 4.12 holds for v1 or vs, then B is called the
ending biconnected component.

We now show that there is a nice proper path decomposition of G if and only if
there is a proper path decomposition of G.

Lemma 4.20. Let G be a connected three-colored graph with pathwidth two. There is
a proper path decomposition of G if and only if there is a nice proper path decomposition
of G.

Proof. The `if' part is clearly true.
The proof of the `only if' part is similar to the proof of Lemma 4.9. If G is a tree,

then it clearly holds, because of Lemma 4.9. Suppose G is not a tree, s � 1. Suppose
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Theorem 4.1. The algorithm given in this section computes in O(n2) time whether
there is a proper path decomposition of a three-colored tree H (n = jV (H)j).

Proof. The correctness of the algorithm follows from previous lemmas. We show that
the total time taken by the algorithm is O(n2). We only have to show that for a given
candidate nice path P , function Check Nice Path runs in O(n2) time, since the number
of candidate nice paths is constant.

To show that function Check Nice Path runs in O(n2), we only have to show that
the total time to compute all local information for all i, 1 � i � q, is O(n2). Let
vm 2 V (P ). For each partial one-path vm:p[i]:H connected to vm, the number of
calls of PPW2 and PPW20 is constant, since for vm:p[i]:l, vm:p[i]:r, etc., PPW2 and
PPW20 are called a constant number of times, as is shown above.

If vm:nr > 1, then for all i, 1 � i � vm:nr, for which vm:p[i]:H does not have any
vertex of color c(vm), PPW2 and PPW20 are not called at all, since vm:p[i]:l:ok and
vm:p[i]:r:ok are both true, vm:p[i]:l:v = vm:p[i]:r:v = m, and all other ok-�elds are false.
This means that each v 2 V (P ) is involved in the computation of local information
of a constant number of partial one-paths connected to P , and hence v is involved in
a constant number of calls of PPW2 and PPW20. Hence each vertex v 2 V (H) is
involved in a constant number of calls of PPW2 and PPW20.

Since PPW2 and PPW20 run in quadratic time, it follows that the computation
of local information takes O(n2) time. 2

This completes the description of the algorithm to check for a given properly three-
colored tree H of pathwidth two, whether there is a proper path decomposition of H .
The algorithm can be made constructive in the sense that it returns an intervaliza-
tion if there exists one as follows. For each vertex vm of a nice path P , for each i,
1 � i � vm:p[i]:nr, if vm:p[i]:l:ok is true, keep a pointer to a list of edges that is present
in an intervalization corresponding to a partial path decomposition for this value of
vm:p[i]:l:v. Such a list can be made during the computation of PPW2 or PPW20, as is
shown in Section 4.2, Do the same for vm:p[i]:r, etc. Furthermore, in the main loop of
Check Nice Path, keep a pointer to a list of edges that is present in a partial interval-
ization of the processed part of H for variables in, out:l and out:r, which correspond
to the values found for these variables. The adaptation of these lists of edges is done
by adding the lists of edges pointed to by the variables that are combined.

4.4 General Graphs

In this section we give an algorithm to determine for a given three-colored partial
two-path G whether there is a proper path decomposition of G. This algorithm is an
extension of the algorithm for trees of pathwidth two. Therefore, we �rst extend the
notion of nice paths. After that, we show what extra local and global information has
to be computed, and how this extra information can be computed.

Definition 4.12. (Nice Path Decomposition). Let G be a connected three-colored
graph with pathwidth two, G not a tree, let PG = (v1;:::; vs), let PD = (V1;:::; Vt) be a
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Figure 51: Cases in the algorithm in which out is computed, and vm:nr > 1.

98



m nin0:r p[i]:l:v p[3� i]:r:v

n

out0:l:l p[i]:llr:v

out0:l:r

p

m =

p[3� i]:r:v

n

out0:r:l p[i]:lll:v

out0:r:r

p

m =

p[3� i]:r:v

I

II

III

Figure 49: Cases in the algorithm in which in is computed, and vm:nr > 1.
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Figure 50: Cases in the algorithm in which out is computed, and vm:nr = 1.
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Figure 48: Cases in the algorithm in which in is computed, and vm:nr = 1.

Lemma 4.19. If su�ces to keep track of only one pair (out:l:l; out:l:r), and one pair
(out:r:l; out:r:r).

Proof. Consider the computation of the new value of out:l at vertex vm of the path.
If out:l:ok holds, then we want to keep track of all pairs (li; ri), p � li � m and
n � ri � nn for which there is a partial proper path decomposition of the processed
part in which one partial one-path H 0 connected to vm uses [l; ri] for some l, n � l � ri
and the sticks of vm of color c(vn) occur on the right side of the occurrence of fvm; vng,
and all other partial one-paths connected to some vi, i � m, use li at most, and
furthermore, there is no pair (l; r), for which this also holds, p � l � li, n � r � ri
and either l < li or r < ri. It seems that may be more than one pair (li; ri) for which
this holds. However, if nr = 1, there is at most one such pair possible, namely the pair
(in0:r; vm:p[1]:rrl:v). If nr > 1, then li = m for all possible pairs, which means that
there is only one such pair. Hence it su�ces to keep track of only one pair (l; r) for
out:l, and similar for out:r. 2

The main result of this section is as follows.
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out:l:r := minfout:l:r; vm:p[3� i]:rrl:vg
�;
fcompute out:r g
if vm:p[3� i]:rrr:ok ^ vm:p[i]:l:ok^ vm:p[i]:l:v � in0:r

! fsee Figure 51, part II g
out:r:ok := true;
out:r:l := m;
out:r:r := minfout:r:r; vm:p[3� i]:rrr:vg

�;
rof

�;

ftry out0:l g
if out0:l:ok ^ out0:l:r = m

! for i := 1 to 2
! fcompute out:l g

if vm:p[3� i]:rrl:ok ^ vm:p[i]:llr:ok ^ vm:p[i]:llr:v � out0:l:l

! fsee Figure 51, part III g
out:l:ok := true;
out:l:l := m;
out:l:r := minfout:l:r; vm:p[3� i]:rrl:vg

�;
fcompute out:r g
if vm:p[3� i]:rrr:ok ^ vm:p[i]:llr:ok ^ vm:p[i]:llr:v � out0:l:l

! fsee Figure 51, part IV g
out:r:ok := true;
out:r:l := m;
out:r:r := minfout:r:r; vm:p[3� i]:rrr:vg

�;
rof

�;

ftry out0:r g
if out0:r:ok ^ out0:r:r = m

! for i := 1 to 2
! fcompute out:l g

if vm:p[3� i]:rrl:ok ^ vm:p[i]:lll:ok ^ vm:p[i]:lll:v � out0:r:l

! fsee Figure 51, part V g
out:l:ok := true;
out:l:l := m;
out:l:r := minfout:l:r; vm:p[3� i]:rrl:vg

�;
fcompute out:r g
if vm:p[3� i]:rrr:ok ^ vm:p[i]:lll:ok ^ vm:p[i]:lll:v � out0:r:l

! fsee Figure 51, part VI g
out:r:ok := true;
out:r:l := m;
out:r:r := minfout:r:r; vm:p[3� i]:rrr:vg

�;
rof
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in:ok := true;
in:r := minfin:r; vm:p[3� i]:r:vg

�

rof

�;

ftry out0:r g
if out0:r:ok ^ out0:r:r = m

! for i := 1 to 2
! if vm:p[i]:lll:ok ^ vm:p[3� i]:r:ok ^ vm:p[i]:lll:v � out0:r:l

! fsee Figure 49, part III g
in:ok := true;
in:r := minfin:r; vm:p[3� i]:r:vg

�;
rof

�

�;

fcompute out g
if vm:nr = 1
! ftry in0 g

if in0:ok

! fcompute out:l g
if vm:p[1]:rrl:ok
! fsee Figure 50, part I g

out:l:ok := true;
out:l:l := in0:r;
out:l:r := vm:p[1]:rrl:v;

�;
fcompute out:r g
if vm:p[1]:rrr:ok
! fsee Figure 50, part II g

out:r:ok := true;
out:r:l := in0:r;
out:r:r := vm:p[1]:rrr:v;

�;
2 else
! fout0 does not have to be tried since vm:nr = 1g

skip
�

2 vm:nr > 1
! ftry in0 g

if in0:ok

! for i := 1 to 2
! fcompute out:l g

if vm:p[3� i]:rrl:ok ^ vm:p[i]:l:ok^ vm:p[i]:l:v � in0:r

! fsee Figure 51, part I g
out:l:ok := true;
out:l:l := m;
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�

rof

fcompute in g
if vm:nr = 1
! ftry in0 g

if in0:ok ^ vm:p[1]:lr:ok
! for a := 1 to 8

! if vm:p[1]:lr:la � in0:r

! fsee Figure 48, part I g
in:ok := true;
in:r := minfin:r; vm:p[1]:lr:rag

�

rof

�;

ftry out0:l g
if out0:l:ok

! if vm:p[1]:llr:ok ^ vm:p[1]:llr:v � out0:l:l

! fsee Figure 48, part II g
in:ok := true;
in:r := minfin:r; out0:l:rg

�

�;

ftry out0:r g
if out0:r:ok

! if vm:p[1]:lll:ok ^ vm:p[1]:lll:v � out0:r:l

! fsee Figure 48, part III g
in:ok := true;
in:r := minfin:r; out0:r:rg

�;
�

2 vm:nr > 1
! ftry in0 g

if in0:ok

! for i := 1 to 2
! if vm:p[i]:l:ok^ vm:p[3� i]:r:ok ^ vm:p[i]:l:v � in0:r

! fsee Figure 49, part I g
in:ok := true;
in:r := minfin:r; vm:p[3� i]:r:vg

�

rof

�;

ftry out0:l g
if out0:l:ok ^ out0:l:r = m

! for i := 1 to 2
! if vm:p[i]:llr:ok ^ vm:p[3� i]:r:ok ^ vm:p[i]:llr:v � out0:l:l

! fsee Figure 49, part II g
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� out is a record with two �elds l and r, which each have three �elds: ok, l and r,
which are de�ned as above.

We now show how variables in and out are initialized and adapted by giving a
complete description of function Check Nice Path. In Figures 48, 49, 50, and 51, a
symbolic representation of all cases in the algorithm is given.

function Check Nice Path(P : Path): boolean;
f pre: P = (v1;:::; vq) is a nice path of H.
81�m�t ( vm:nr = # partial one-paths connected to vm, and

81�i�vm:nr (vm:p[i]:H is partial one-path i and vm:p[i]:t is type of vm:p[i]:H) )
g
f output: true if there is a proper path decomposition of H
with nice path P , false otherwise

g

in:ok := true; in:r := 1;
out:l:ok := false;
out:r:ok := false;
i1;:::; it denote vertices of P for which vij :nr > 0,

for all j, 1 � j � t, such that i1 < i2 < � � � < it
i0; i�1; it+1; it+2 := 1; 1; q; q;
for j := 1 to t
! in0 := in; out0 := out;

finitialize in and out g
in:ok := false; in:r := ij+1;
out:l:ok := false; out:l:l; out:l:r := q; q;
out:r:ok := false; out:r:l; out:r:r := q; q;
m := ij;
p := ij�1;
pp := ij�2;
n := ij+1;
nn := ij+2;

Permute partial one-paths such that no vm:p[i]:H, 2 < i � vm:nr,
has a vertex of color c(vm). If this is not possible, return false
for i := 1 to vm:nr
! if vm:p[i]:H has vertex of color c(vm) or vm:nr = 1

! Compute vm:p[i]:l, vm:p[i]:r, vm:p[i]:lr, vm:p[i]:lll, vm:p[i]:llr, vm:p[i]:rrl,
and vm:p[i]:rrr using PPW2 and PPW20

2 else
! vm:p[i]:l:ok := true;

vm:p[i]:l:v := m;
vm:p[i]:r:ok := true;
vm:p[i]:r:v := m;
vm:p[i]:lr:ok := false;
vm:p[i]:lll:ok := false;
vm:p[i]:llr:ok := false;
vm:p[i]:rrl:ok := false;
vm:p[i]:rrr:ok := false;
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vm

vpP
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vm:p[1]:llr:v

vpp out:l:l

out:l:r

Figure 47: If vm:p[1]:llr:v is combined, then there must be a partial nice proper path
decomposition in which a partial one-path connected to vp uses [l; l0], m � l � l0 �
n, such that the sticks of vp which have color c(vm) occur on the right side of the
occurrence of fvp; vmg. Furthermore, all other partial one-paths connected to vi, i < m,
use [a; a0] with a0 � vm:p[1]:llr:v at most. out:l:ok is true if there is a partial nice
proper path decomposition in which a partial one-path connected to vp uses [l; l0],
m � l � l0 � n, such that the sticks of vp which have color vm occur on the right side
of the occurrence of fvp; vmg. If out:l:ok is true, then the pair (out:l:l; out:l:r) is the
lexicographically smallest pair (j; l0) for which l0 is as given above, and all other partial
one-paths connected to some vi, i < m, use [a; a0] with a0 � j at most.

combined with vm:p[1]:lll. Both out:l and out:r have three �elds ok, l and r, which
denote the following. out:l:ok is true if and only if there is a `partial' nice proper path
decomposition in which

� a partial one-path H 0 connected to vp uses [l0; l], for some l and l0, m � l0 � l � n,

� it is possible that a partial one-path H 00 which is connected to vm uses [j; j0] for
some j and j0, pp � j � j0 � p, and

� the sticks of vp which have color c(vm) occur on the right side of the occurrence
of fvp; vmg.

If out:l:ok is true, then out:l:l and out:l:r are such that (out:l:l; out:l:r) is the lexico-
graphically smallest pair (j; l), m � l � n and pp � j � p, for which there is a `partial'
nice proper path decomposition in which a partial one-path H 0 connected to vp uses
[l0; l], m � l0 � l, the sticks of vp which have color c(vm) occur on the right side of the
occurrence of fvp; vmg, and all partial one-paths connected to vi, i � p, except H 0, use
j at most. We show that one pair is su�cient after giving the algorithm.

The �elds of out:r are de�ned in the same way, except that the sticks of vm which
have color c(vm) occur on the right side of the occurrence of fvm; vpg.

The name out refers to the fact that the rightmost partial one-path connected to
vj , j < m, use vertices outside of [1; m].

Definition 4.11. The global information consists of two records in and out, which are
de�ned as follows.

� in is a record with two �elds ok and r, which are de�ned as above.
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discuss which information is needed from the processed part to be able to process vm
and its partial one-trees.

First consider the case that we want to combine vm:p[i]:l or vm:p[i]:lr for some i,
1 � i � vm:nr with the previously processed part. If, for example, vm:p[i]:l:ok holds,
and we want to combine vm:p[i]:l:v with the processed part, then we need to know
whether there is a `partial' path decomposition of the processed part of H in which
the processed partial one-paths connected to P do not use any vl, l � vm:p[1]:l:v. See
e.g. Figure 46. Similarly for vm:p[i]:lr:la for all i, 1 � i � vm:nr and all a, 1 � a � 8.

vmvp

H0

P vnin:r vm:p[1]:l:v

Figure 46: If vm:p[1]:l:v is combined, then there must be a partial nice proper path
decomposition in which partial one-paths connected to vi, i < m, use vm:p[1]:l:v at
most. in:ok is true if there is a j, j � m, and a partial nice proper path decomposition
in which the partial one-paths connected to vi, i < m, use j at most, and if in:ok is
true, then the smallest value of j for which this is possible is in:r.

Therefore, it su�ces to know the smallest i, p � i � m, for which there is a partial
path-decomposition of the processed part, such that vi is the rightmost vertex of P
that is used by some processed partial one-path connected to v1;:::; vp. We keep track
of this information by a variable in, which has a �eld ok which is true if there is such
an i, false otherwise, and a �eld r denoting this smallest i, if in:ok is true. The name
in refers to the fact that the partial one-paths connected to vj , j < m, only use vertices
within [1; m].

Next consider the case that we want to combine vm:p[i]:lll or vm:p[i]:llr for some
i, 1 � i � vm:nr with the previously processed part. Suppose for example that
vm:p[1]:llr:ok holds. We only have to show how to combine the values of vm:p[1]:llr:l
etc. with a partial path decomposition in which there is a partial one-path connected
to vp that uses vertices of vm;:::; vn. See e.g. Figure 47. Thus, we need to know if there
are partial path decompositions in which there is a partial one-path H 0 connected to vp
which uses vertices of vm;:::; vn such that the sticks of vp which have color c(vm) occur
on the right side of the occurrence of fvp; vmg, which vertices of vpp;:::; vp are used by a
partial one-path H 00 which is connected to any vi, i � p, and which vertices of vm;:::; vn
are used by H 0, since these vertices can not be used by partial one-paths connected to
vm, vn or vnn. It su�ces to know all pairs (j; l), pp � j � p, m � l � n, for which the
vertices of vj ;:::; vp and the vertices of vl;:::; vn can be used for the partial one-paths of
vm, vn and vnn, and there is no such pair (j0; l0) for which this also holds, and either
(j0 < j ^ l0 � l) or (j0 � j ^ l0 < l).

To keep track of this information, we use a variable out, which has two �elds l
and r, where out:l is the one that can be combined with vm:p[1]:llr, and out:r can be
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and the set Q as de�ned in De�nition 4.8 is not empty. If not vm:p[i]:lr:ok, then
vm:p[i]:lr:la = p and vm:p[i]:lr:ra = n for each a, 1 � a � 8. If vm:p[i]:lr:ok, then
vm:p[i]:lr:la and vm:p[i]:lr:ra, 1 � a � 8, are such that

Q = f (vm:p[i]:lr:la; vm:p[i]:lr:ra) j 1 � a � 8 g

� vm:p[i]:lll and vm:p[i]:llr store the local information for Case 3.

{ vm:p[i]:lll has two �elds: ok and v, which denote the following. vm:p[i]:lll:ok
is true if and only if j1 as de�ned in De�nition 4.9 is de�ned, and
vm:nr � 1 or vm:p[i]:H has a vertex of color c(vm). If not vm:p[i]:lll:ok,
then vm:p[i]:lll:v = pp. If vm:p[i]:lll:ok, then vm:p[i]:lll:v = j1.

{ vm:p[i]:llr has two �elds: ok and v, which denote the following. vm:p[i]:llr:ok
is true if and only if j2 as de�ned in De�nition 4.9 is de�ned, and vm:nr �
1 or vm:p[i]:H has a vertex of color c(vm). If not vm:p[i]:llr:ok, then
vm:p[i]:llr:v = pp. If vm:p[i]:llr:ok, then vm:p[i]:llr:v = j2.

� vm:p[i]:rrl and vm:p[i]:rrr stores the local information for Case 5.

{ vm:p[i]:rrl has two �elds: ok and v, which are de�ned in the same way as for
vm:p[i]:lll, except that vm:p[i]:H must use [j; j0] for some n � j � j0 � nn,
and if vm:p[i]:rrl:ok then vm:p[i]:rrl:v is the largest j0 for which this holds.

{ vm:p[i]:rrr has two �elds: ok and v, which are de�ned in the same way as for
vm:p[i]:llr, except that vm:p[i]:H must use [j; j0] for some n � j � j0 � nn,
and if vm:p[i]:rrl:ok then vm:p[i]:rrl:v is the largest j0 for which this holds.

The local information that is computed for each vertex v 2 V (P ) in function
Check Nice Path(P ) consists of v:p[i]:l, v:p[i]:r, v:p[i]:lr, v:p[i]:lll, v:p[i]:llr, v:p[i]:rrl,
and v:p[i]:rrr, for all i, 1 � i � v:nr.

Next we discuss which global information is computed in Check Nice Path, and
how it is computed. Let i1;:::; it denote the vertices of P for which vij :nr � 1 for all
j, 1 � j � t, and i1 < i2 < � � � < it. The main loop of Check Nice Path(P ) has the
following structure.

initialize global information variables
for j := 1 to t

! m := ij ;
for i := 1 to vm:nr

! compute local information for vm
rof

adapt global information variables
rof

Suppose we have processed vi1 ;:::; vij�1
, for some j, 1 � j � t. Let m = ij , p = ij�1,

pp = ij�2, n = ij+1 and nn = ij+2 (suppose j0 = j�1 = 1, jt+1 = jt+2 = q). We now
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Claim 4.11 of this case (see also Figure 44). Note that Gj1 is a subgraph of G. There
is a node which contains fvp; vmg, hence we can modify PD in such a way that for
each stick w of vp which has color c(vm), or w stick of vm which has color c(vp), there
is a node fvp; vm; wg. Let (Va;:::; Va0) be the occurrence of fvp; vmg in the modi�ed
path decomposition. The sticks of vp which have color c(vm) occur on the left side of
Va, which means that Gj1 � f sticks of vmg occurs in (Vs;:::; Va0), with edge fvj1 ; ug in
the leftmost node and edge fvm; vpg in the rightmost node. Hence l1 is de�ned, and
l1 � j1.

In the same way we can prove that l2 � j2.
Showing that j1 � l1 and j2 � l2 can be done in the same way as in the proof of

Claim 4.2. 2

Claim 4.14. j1 and j2 can be computed in O(n2) time, where n is the number of
vertices of Gpp.

Proof. PPW2 can be used to compute j1 and j2. The procedure to compute PPW2
must be called once for j1, and once for j2 (see also proof of Claim 4.3). 2

This completes the description of Cases 1, 2, and 3.
During the algorithm, we use the following record to store all local information for

each vertex of the path to which one or more partial one-paths are connected.

Definition 4.10. Let H be a three-colored partial two-path, P = (v1;:::; vq) a possible
nice path for H. For each m, 1 � m � q, vm is a record with �elds nr and p.

The �eld vm:nr denotes the number of partial one-paths connected to vm, vm:p is an
array of vm:nr records with �elds H, t, l, r, lr, lll, llr, rrl and rrr, which are de�ned
as follows. Let pp, p, n and nn be as de�ned before. For each i, 1 � i � vm:nr,

� vm:p[i]:H denotes the ith partial one-path connected to vm.

� vm:p[i]:t denotes the type of vm:p[i]:H, i.e. vm:p[i]:t 2 fI; II; IIIg.

� vm:p[i]:l stores the local information for Case 1:

vm:p[i]:l has two �elds: ok and v which denote the following. vm:p[i]:l:ok is
a boolean which is true if and only if vm:nr > 1 and j1 as de�ned in De�ni-
tion 4.5 exists, false otherwise. If not vm:p[i]:l:ok, then vm:p[i]:l:v = p, otherwise
vm:p[i]:l:v = j1.

� vm:p[i]:r stores the local information for Case 4:

vm:p[i]:r has two �elds: ok and v which are de�ned in the as for vm:p[i]:l, but for
the case that vm:p[i]:H uses [j; j0], m � j � j0 � n.

� vm:p[i]:lr stores the local information for Case 2:

vm:p[i]:lr has 17 �elds: ok, and for all a, 1 � a � 8, �elds la and ra, which denote
the following. vm:p[i]:lr:ok is a boolean which is true if and only if vm:nr = 1
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� j1 is the largest value of j, pp � j � p, for which H 0 can use [j; j0] for some
j � j0 � p, and the sticks of vp which have color c(vm) occur on the left side of
the occurrence of fvp; vmg (j1 is unde�ned if there is no such j) and

� j2 is the largest value of j, pp � j � p, for which H 0 can use [j; j0] for some
j � j0 � p, and the sticks of vm which have color c(vp) occur on the left side of
the occurrence of fvp; vmg (j2 is unde�ned if there is no such j).

We now show how to compute j1 and j2.
Let P 0 2 P1(H

0), let u be the end point of P 0 for which the path from u to vm
contains P 0. For each j, pp � j � p, let Gj denote the graph obtained from H as
follows (see e.g. Figure 45). Take the graph induced by H 0, vm, fvj ;:::; vpg and the
sticks of vj+1;:::; vp and vm. Add edge fu; vjg and if m = p+ 2, check if c(vp) 6= c(vm),
add edge fvp; vmg, and delete vp+1 and its incident edges. If m > p+2 or c(vp) = c(vm),
then Gj is unde�ned. Note that Gj is a biconnected component with sticks.

P
vm

H0

u

vpp vnvj

Gj

vm
u

vj

vp

vm�1
vp

Figure 45: Example of Gj for the case that m = p + 2.

Let l1 be the largest value of j, pp � j � p, for which there is a proper path
decomposition of Gj � f sticks of vm g in which edge fvj ; ug occurs in the leftmost
node and edge fvp; vmg occurs in the rightmost node. If there is no such proper path
decomposition, then l1 is unde�ned.

Let l2 be the largest value of j, pp � j � p, for which there is a proper path
decomposition of Gj � f sticks of vp g in which edge fvj ; ug occurs in the leftmost
node and edge fvp; vmg occurs in the rightmost node. If there is no such proper path
decomposition, then l2 is unde�ned.

Claim 4.13. j1 = l1 and j2 = l2.

Proof. We �rst show that j1 � l1 and j2 � l2.
Suppose j1 is de�ned, and suppose there is a nice proper path decomposition PD =

(V1;:::; Vt) of H with nice path P such that H 0 uses [j1; j
0] for some j0 with j1 � j 0 � p,

there is a partial one-path H 00 connected to vp which uses [l; l0] for some m � l � l0 � n,
and sticks of vp which have color c(vm) occur on the left side of the occurrence of
fvp; vmg.

Suppose H 0 occurs in (Vr;:::; Vr0) and H 00 occurs in (Vs;:::; Vs0). Let P 0 2 P1(H
0)

be as de�ned above, such that u 2 Vs, let P 00 2 P1(H 00) and let w 2 V (H 00) be the
end point of P 00 for which w 2 Vs0 . Let G, C1 and C2 be as de�ned in the proof of
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Figure 44: Example of the graph G as de�ned in the proof of Claim 4.12, and a part of
a proper path decomposition of G. c(vm) = 1, c(vp) = 2, w1 and w2 are sticks of vm,
w3 and w4 are sticks of vp, with c(w1) = 2, c(w2) = c(w4) = 3, and c(w3) = 1. Sticks
w1 and w4 occur within the occurrence of fvp; vmg.

sticks of vm of color c(vp) can not occur within the occurrence of C1 (see Lemma 4.7).
Furthermore, they can not occur on the left side of Vr, since vm does not occur there.
Hence the sticks of vm of color c(vp) occur on the right side of Va0.

We now prove 4. If vp has sticks of color c(vm), and these sticks occur on the right
side of Va0 , then they must occur within the occurrence of C2, since vp does not occur
on the right side of Vs0 . Then the sticks of vm which have color c(vp) can not occur
within the occurrence of C2 (Lemma 4.7). Furthermore, l0 > m, because if l0 = m,
then each node of the occurrence of C2 contains vm, which means that the sticks of
vp which have color c(vm) can not occur within this occurrence. Because l0 > m, it is
not possible that the sticks of vm which have color c(vp) occur on the right side of Vs0 .
Hence they must occur on the left side of Va. 2

The claim implies that if H 0 uses [j; j0], pp � j � j0 � p, then either the sticks of
vp which have color c(vm) occur on the left side of the occurrence of fvp; vmg, or the
sticks of vm which have color c(vp) occur on the left side of the occurrence of fvp; vmg,
but not both. Therefore, the local information is de�ned as follows.

Definition 4.9. The local information for H 0 for the case that H 0 uses [j; j 0], pp �
j � j0 � p, and there may be a partial one-path H 00 connected to vm which uses [l; l0],
pp � l � l0 � p, is the pair (j1; j2), pp � j1; j2 � p, where
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Proof. It is clear that a0 � j if m0 < m, and that a � l0 if m0 � m (Lemma 4.17).
Showing that a0 = j and a = l0 are possible can be done in the same way as in the
proof of Claim 4.1. 2

It follows from the claim that we only need all pairs (j; l0), pp � j � m � l0 � n,
for which there are j0 and l, j � j0 � m and m � l � l0, such that H 0 can use [j; j0]
and there is a partial one-path H 00 connected to vp which can use [l; l0], and there is no
pair (a; b0) for which this holds with j < a � b0 � l0 or j � a � b0 < l0.

However, the local information for H 0 consists only of information about H 0. There-
fore, we �rst further analyze the occurrences of H 0 and H 00, to show how H 0 and H 00

can be handled independently.

Claim 4.12. Suppose there is a proper path decomposition PD = (V1;:::; Vt) of H
with nice path P , such that H 0 uses [j; j0], pp � j � j 0 � p, and there is a partial
one-path H 00 connected to vp which uses [l; l0], m � l � l0 � n. The following holds.

1. m = p + 1 or m = p + 2, and if m = p + 2, then vp+1 has degree two.

2. There is a node Vb which contains vp, vp+1 and vm.

3. If the sticks of vp which have color c(vm) occur on the left side of the occurrence
of fvp; vmg, then the sticks of vm which have color c(vp) occur on the right side
of the occurrence of fvp; vmg.

4. If the sticks of vp which have color c(vm) occur on the right side of the occurrence
of fvp; vmg, then the sticks of vm which have color c(vp) occur on the left side of
the occurrence of fvp; vmg.

Proof. 1 and 2 are proven in Lemma 4.18, so we only prove 3 and 4. Suppose H 0

occurs in (Vr;:::; Vr0) and H 00 occurs in (Vs;:::; Vs0). Note that r0 < s (see Lemma 4.18).
Let P 0 2 P1(H

0) and P 00 2 P1(H
00), and let u 2 V (H 0) be the end point of P 0 for

which u 2 Vr, and let w 2 V (H 00) be the end point of P 00 for which w 2 Vs0 . Note that
the path from u to vm contains P 0, and the same holds for H 00. Let G be the graph
obtained from H by adding edges fu; vjg and fw; vl0g, and if m = p + 1, adding edge
fvp; vmg and deleting vertex vp+1 and its incident edges. See e.g. Figure 44. PD is a
proper path decomposition of G. Let G0 be the subgraph of G induced by the vertices
of H 0, H 00, fvj ;:::; vl0g and the sticks of vertices fvj+1;:::; vl0�1g. G0 is a biconnected
component with sticks, which has two chordless cycles which have edge fvp; vmg in
common. Let C1 and C2 be the chordless cycles of G0, such that C1 contains vertices of
H 0 and C2 contains vertices of H 00. Graph G0 occurs in (Vr;:::; Vs0), edge fu; vjg occurs
in Vr and fw; vl0g occurs in Vs0 . Let (Va;:::; Va0) be the occurrence of fvp; vmg.

We �rst prove 3. If vp has sticks of color c(vm), and these sticks occur on the left
side of Va, then either j = p and the sticks occur on the left side of Vr, or the sticks
occur within the occurrence of C1. In the �rst case, each node of the occurrence of C1

contains vertex vp, and vm does not occur on the left side of Vr, hence the sticks of
vm which have color c(vp) must occur on the right side of Va0 . In the second case, the
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of the three chordless cycles must have three vertices, such that the third vertex of this
cycle has no sticks. This must be C2, since C2 is the chordless cycle which occurs in
between C1 and C3 in PD (Theorem 3.1). Hence if i < m � 1, then i = m � 2, and
vm�1 has no sticks, so G0

j is a subgraph of G00.
Consider the occurrence (Vb;:::; Bb0) of C3 (see Figure 43). Edge fvi; vmg � Vb , and

edge fvi; vj0g � Vb0 . Since j0 � m+1, this means that there is a node Vc, b � c � c0, such
that vi; vm+1 2 Vc. This means that c(vm) 6= c(vi) and c(vm+1) 6= c(vi). Furthermore,
c(vm) 6= c(vm+1), which means that all sticks of vi either have color c(vm) or color
c(vm+1). So we can modify PD in such a way that for each stick w of vi with color
c(vm), there is a node fvi; vm+1; wg in PD, and for each stick w of color c(vm+1) of vi,
there is a node fvi; vm; wg in PD, and vi can be deleted from all nodes which contain
vd, d > m + 1 (see Lemma 4.2). In this modi�ed version of PD, the occurrence of G0

j

contains edge fvj ; ug in the leftmost node and edge fvi; vm+1g in the rightmost node.
Hence l2 is de�ned, and l2 � j, so (l2; m+ 1) 2 Q0

2.
Showing that for all pairs (j; j0) 2 Q0

2, there is a pair (l; l0) 2 Q2 such that j � l �
l0 � j0 is similar to part 2 of the proof of Claim 4.2. 2

Claim 4.10. Q2 can be computed in time O(n2), where n is the number of vertices
of Gj [ fsticks of vmg.

Proof. The value of l1 can be computed by using PPW20, and the value of l2 can be
computed by using PPW2. Both have to be computed once (see proof of Claim 4.3).

2

Case 2.3 m < j � j0 � n

This case is similar to case 2.2. The local information consists of the set Q3, which
contains at most two pairs (j; j0), and if there are two, then one of them has j = m,
the other one has j = m� 1.

This results in the following local information for Case 2.

Definition 4.8. The local information for H 0 for the case that H 0 uses [j; j0], p � j �
j0 � n, is the set

Q = f (j; j 0) 2 Q1 [ Q2 [Q3 j :9(l;l0)2Q1[Q2[Q3
(j < l � l0 � j0 _ j � l � l0 < j0)

Case 3 pp � j � j0 � p
We �rst analyze the structure of a proper path decomposition in which H 0 uses [j; j0]

for some pp � j � j0 � p. We assume that there is a partial one-path H 00 which is
connected to vp and which uses [l; l0] for some l � m, since otherwise, j = j0 = p and
this case is considered in Case 1.

Claim 4.11. If H 0 uses [j; j 0] for some j; j0 with pp � j � j0 � p, and there is a partial
one-path H 00 connected to vp which uses [l; l0], m � l � l0 � n, then a partial one-path
H 000 connected to vm0 , H 0 6= H 000 and H 00 6= H 000, can use [a; a0], with a0 � j if m0 < m

and a � l0 if m0 � m.
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Suppose j 0 > m. Let i < m such that there is a node containing vj0 ; vi and a stick
of vi. Let G0 be the graph obtained from G by adding edge fvj0 ; vig, and deleting all
vertices v1;:::; vj�1, vj0+1;:::; vq, and all sticks adjacent to vertices v1;:::; vj, vj0 ;:::; vq.
See for example Figure 42. Note that PD[V (G0)] is a proper path decomposition of

P vm

H0

u

vp vnvj

vi

w

vj0

vm

u

vj vi

vj0G0

Figure 42: Example of graph G0.

G0, and note that G0 is a biconnected component with sticks. There are three disjoint
paths in G0 from vi to vm, which means that there is a node containing vi and vm
(Lemma 3.1). Let G00 be the graph obtained from G by adding edge fvi; vmg. See for
example Figure 43. If i = m � 1, then G00 consists of two chordless cycles which have
edge fvi; vmg in common. If i < m� 1, then G00 contains three chordless cycles which

vm

u

vj vi

vj0G00

vj vi vi

u

Vb Vb0

vm
vj0

vi

vm+1

C1 C3
C2

Figure 43: Example of graph G00, and the occurrence of G00. Chordless cycle C3 occurs
in (Vb;:::; Vb0).

have edge fvi; vmg in common (Theorem 3.1). Let C1 denote the chordless cycle which
contains vj , let C3 denote the chordless cycle which contains vj0 , and if i < m � 1, let
C2 denote the chordless cycle which contains vertices vi;:::; vm, If i < m � 1, then one
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Figure 41: Example of graphs Gj and G0
j for a partial one-path H 0 connected to vm,

where vm�1 has no sticks.

unde�ned, otherwise, delete vm�1 and its incident edges, and delete the sticks of vm�2.
Note that the graph G0

j is also a chordless cycle with sticks.
Let l1 be the largest j, p � j < m, for which there is a proper path decomposition

of Gj with vertex vm in the rightmost node and edge fu; vjg in the leftmost node. If
there is no such proper path decomposition, then l1 is unde�ned.

Let l2 be the largest j, p � j < m, for which G0
j is de�ned and there is a proper

path decomposition of G0
j with edge fu; vjg in the leftmost node and edge fvm�2; vmg

in the rightmost node if vm�1 is deleted, end edge fvm�1; vmg in the rightmost node
otherwise. If there is no such proper path decomposition, then l2 is unde�ned.

Let Q0
2 be de�ned as follows.

Q0
2 = f(l1; m); (l2; m+ 1)g

Claim 4.9.

Q2 = f (j; j0) 2 Q0
2 j j is de�ned ^ :9(l;l0)2Q0

2
(j < l � l0 � j 0 _ j � l � l0 < j0) g

Proof. We �rst show that for each pair (j; j0) 2 Q2, there is a pair (l; l0) 2 Q2 with
j � l � l0 � j0.

Suppose there is a nice proper path decomposition PD = (V1;:::; Vt) of H with nice
path P , such that H 0 uses [j; j 00], p � j � j00 < m, and other partial one-paths may use
[l; l0], l0 � j or l0 � j0 for some j0 � m. Suppose w.l.o.g. that (j; j0) 2 Q2.

Let P 0 2 P1(H 0) be as de�ned above, with end points u and w. Suppose w.l.o.g.
that vm is adjacent to w or a stick adjacent to w. Let G be the graph obtained from
H by adding edge fvj ; ug. Note that PD is a proper path decomposition of G, and
that Gj is a subgraph of G. Let (Vs;:::; Vs0) denote the occurrence of Gj in PD. Then
fu; vjg � Vs and if j0 = m, then vm 2 Vs0 , and hence there is an l, j � l � m, for which
(l;m) 2 Q0

2.
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Figure 40: Example of a partial one-path H 0 which uses [j; j0], p � j � j0 < m, such
that the edge fvi0 ; wg `uses' i, i � m, and the corresponding graphs G and G00,

Definition 4.7. The local information for H 0 for the case that H 0 uses [j; j0], p � j �
j0 < m, is the set

Q2 = f (j; j 0) j p � j � m � j0 � n

^ H 0 can use [j; j00], j � j00 < m,

^ other partial one-paths can use [l; l0], l0 � j or l � j 0

^ (:9a;a0 (j < a � m � a0 � j0 _ j � a � m � a0 < j0)

^ H 0 can use [a; a00], a � a00 < m,

^ other partial one-paths can use [b; b0], b0 � j or b � a0) g

We now show how to compute the set Q2, and that jQ2j � 2.
Let P 0 2 P1(H 0), let u and w be the two end points of P 0, such that w or a

stick of w is adjacent to vm. For each j, p � j � m, let Gj denote the graph
obtained from H as follows (see e.g. Figure 41). Add edge fu; vjg. Furthermore,
delete vertices fv1;:::; vj�1; vm+1;:::; vqg, and all sticks and partial one-paths connected
to fv1;:::; vj; vm;:::; vqg, except H 0. Note that the graph Gj is a chordless cycle with
sticks.

Furthermore, for each j, p � j � m, let G0
j denote the graph obtained from H

as follows. Add edge fu; vjg. Furthermore, delete vertices fv1;:::; vj�1; vm+1;:::; vqg,
and all sticks and partial one-paths connected to fv1;:::; vj; vm+1;:::; vqg. If vm�1 has
sticks, delete them. If vm�1 does not have sticks, check if c(vm�2) = c(vm), if so, G0

j is
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vj0 . H
0 is a partial one-path of type I, and either w is adjacent to vm, or a stick of w

is adjacent to vm.

Proof. Suppose H 0 occurs in (Vs;:::; Vs0). m > j0, which means that vm occurs only
on the right side of Vs0 . But w and some stick of w are the only vertices of H 0 which
occur in Vs0 , hence w or this stick is adjacent to vm. 2

Claim 4.8. Suppose there is a nice proper path decomposition PD = (V1;:::; Vt) of H
with nice path P in which H 0 uses [j; j0] for some j; j 0, p � j � j 0 < m. Let a be the
maximum of m and the largest value of i, i � n, for which there is a node Vb in PD,
an integer i0 < m, and a stick w of vi0 , such that Vb contains vi and edge fvi0 ; wg. Then
a partial one-path H 00 with H 0 6= H 00, H 00 connected to vm0 , can use [l; l0] with l0 � j if
m0 < m, and l � a if m0 > m.

Proof. Let H 00 be a partial one-path connected to vm0 , H 00 6= H 0, and suppose H 00

uses [l; l0]. Clearly, if m0 < m, then l0 � j, and l0 = j is possible (see also proof of
Claim 4.1).

Consider the case that m0 > m. Clearly, l � m. Suppose vm occurs in (Vr;:::; Vr0)
and H 0 occurs in (Vs;:::; Vs0). Note that s0 < r. Let P 0 2 P1(H

0), let u 2 V (H 0) such
that u is end point of P 0, and u 2 Vs. Let G be the graph obtained from H by adding
edge fu; vjg (see e.g. Figure 40). Note that PD is a proper path decomposition of G.
Let G0 be the subgraph of G induced by the vertices of H 0 and vertices vj ;:::; vm and
all sticks adjacent to vj+1;:::; vm�1. Note that G0 is a chordless cycle with sticks. Let C
denote the chordless cycle in G0. Suppose G0 occurs in (Va;:::; Va0). Then a = s. Vertex
vm occurs in the rightmost node of the occurrence of C, so if i � m, then vm 2 Va0 . In
this case, all vertices of V (G0)� fvmg may be deleted from all nodes on the right side
of Va0, and we can add a node fvmg between Va0 and Va0+1, which means that l = m is
possible.

Suppose i > m. Let G00 be the graph obtained from G by adding edge fw; vig.
Note that PD is a proper path decomposition of G00. See for example Figure 40. Let
G000 be the subgraph of G00 induced by the vertices of H 0, vertices vj ;:::; vi, and all
sticks adjacent to vertices vj+1;:::; vi�1. Note that G000 is a biconnected component
with sticks, which contains two chordless cycles, and fu; vjg occurs in the leftmost
node of its occurrence, and vertex fvig occurs in the rightmost node. Each node in
the occurrence of G000 contains at least two vertices of G000 which means that there is
no vertex vc, m < c < i, which has a partial one-path connected to it, and it is not
possible that l < i. Furthermore, l = i is possible, since we can add a node fvig on the
right side of the occurrence of G000. 2

The claim implies that we only need all values of (j; j0), p � j � m � j 0 � n, for
which H 0 can use [j; j 00], for some j � j00 < m, and other partial one-paths can use
[l; l0], where l0 � j or l � j0, and there are no a; a0, j < a � m � a0 < j0, such that H 0

can use [a; a00] for some a � a00 < m, and other partial one-paths can use [b; b0], b0 � a
or b � a0.
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Figure 39: Example of a partial one-path H 0 which uses [j; j 0], p � j � m � j0 � n,
and the corresponding graph G0 with chordless cycles C1 and C2.

G0 contains two chordless cycles which have edge fvm; vg in common. Let C1 and C2

denote these chordless cycles, such that C1 contains edge fu; vjg and C2 contains edge
fw; vj0g, let b, a � b � a0, be such that no vertex of V (C1) � fvm; vg occurs on the
right side of Vb, and no vertex of V (C2) � fvm; vg occurs on the left side of Vb (this
is possible, see Lemma 3.3). Note that fvm; vg � Vb. The sticks of vm which have
color c(v) occur either on the left side of the occurrence of Vb or on the right side of
the occurrence of Vb (it is not necessary that one of them occurs on the left side, and
another one on the right side, since they all have the same color), and the sticks of v
which have color c(vm) occur either on the left side of Vb or on the right side. If vm has
sticks of color c(v) and v has sticks of color c(vm), then the sticks of v and vm do not
both occur on the same side of Vb (see Lemma 4.7). Delete all sticks of vm which do
not have color c(v), and all sticks of v which do not have color c(vm) from PD, and for
each of these sticks w, add a node fvm; v; wg between Vb and Vb+1. Let (Va; : : : ; Va00)
be the new occurrence of G00, and let (Vb;:::; Vb0) be the occurrence of all these sticks.
Suppose w.l.o.g. that the sticks of vm of color c(v) occur on the left side of Vb. Then
(Va;:::; Vb0) is a proper path decomposition of Gu

j [fsticks of vmg if j < m, and of Gu
j if

j = m, such that fu; vjg is in the leftmost node and fv; vmg is in the rightmost node,
and (Vb;:::; Va00) is a proper path decomposition of Gw

j0 [ fsticks of vg with fv; vmg in
the leftmost node and fw; vj0g in the rightmost node. Hence j � lu1 and j0 � rw1 .

Showing that for all pairs (j; j0) 2 Q0
1, there is a pair (l; l0) 2 Q1 is similar to part

2 of the proof of Claim 4.2. 2

Claim 4.6. Q1 can be computed in time O(n2), where n is the number of vertices of
Gu
p [ G

w
n [ fsticks of vm and vg.

Proof. The values of lu1 , rw1 , etc. can be computed by using PPW1, which has to be
computed once for each of the four values (see proof of Claim 4.3). 2

Case 2.2 p � j � j0 < m

We �rst analyze the structure of a nice proper path decomposition with nice path P

in which H 0 uses [j; j 0], p � j � j0 < m.

Claim 4.7. Suppose H 0 uses [j; j0] for some j; j0, p � j � j0 < m, and let w be the
end point of some path P 0 2 P1(H

0) such that there is a node which contains w and
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Let lu1 be the largest value of j, p � j � m, for which Gu
j is de�ned, and there is a

proper path decomposition of Gu
j [ f sticks of vm g with edge fvm; vg in the rightmost

node, edge fvj ; ug in the leftmost node, or j = m and there is a proper path decompo-
sition of Gu

m with edge fu; vmg in the leftmost node and edge fv; vmg in the rightmost
node. If there is no such j, then lu1 is unde�ned.

Let rw1 be the smallest value of j0, m � j0 � n, for which Gw
j0 is de�ned, and

there is a proper path decomposition of Gw
j [ f sticks of v g with edge fvm; vg in the

leftmost node and edge fvj0 ; ug in the rightmost node. If there is no such j 0, then rw1
is unde�ned.

Let lu2 be the largest value of j, p � j � m, for which Gu
j is de�ned, and there is a

proper path decomposition of Gu
j [ f sticks of v g with edge fvm; vg in the rightmost

node and fvj ; ug in the leftmost node. If there is no such j, lu2 is unde�ned.
Let rw2 be the smallest value of j0, m � j0 � n, for which Gw

j is de�ned, and there is
a proper path decomposition of Gw

j [f sticks of vm g with edge fvm; vg in the leftmost
node and edge fvj0 ; ug in the rightmost node, of j0 = m and there is a proper path
decomposition of Gw

j0 with edge fv; vmg in the leftmost node and edge fw; vmg in the
rightmost node. If there is such a j0, then rw2 is unde�ned.

Similarly, de�ne lw1 , ru1 , lw2 and ru2 .
Let Q0

1 be de�ned as follows.

Q0
1 = f(lu1 ; r

w
1 ); (lu2; r

w
2 ); (lw1 ; r

u
1); (lw1 ; r

u
1)g

Claim 4.5.

Q1 = f (j; j0) 2 Q0
1 j j and j0 are de�ned ^:9(l;l0)2Q0

1
(j < l � l0 � j _ j � l � l0 < j0) g

Proof. We �rst show that for each pair (j; j0) 2 Q1, there is a pair (l; l0) 2 Q0
1, such

that j � l � l0 � j0.
Let PD = (V1;:::; Vt) be a nice proper path decomposition of H with nice path P ,

such that H 0 uses [j; j 0] for some pair (j; j0) 2 Q1. Suppose vm occurs in (Vr;:::; Vr0)
and H 0 occurs in (Vs;:::; Vs0). Let P 0 2 P1(H 0) as de�ned before, with end points u and
w, suppose w.l.o.g. that u 2 Vs and w 2 Vs0 . Let u0; w0 2 V (H 0) such that u0 2 Vs,
w0 2 Vs0 , and u0 is a stick adjacent to u, w0 is a stick adjacent to w. Let v 2 V (H 0) such
that fv; vmg 2 E(H). If v is a stick of u or w, then there is a node containing vm, v
and u, or vm, v and w, respectively, because of Lemma 3.11, and because j � m � j0.

Let G be the graph obtained from H by adding edges fu; vjg and fw; vj0g, and if
v is a stick of u, add edge fu; vmg, and delete v and its incident edges, similarly if v
is a stick of w. Let v denote the new vertex of H 0 for which fv; vmg 2 E(H). Note
that PD is a proper path decomposition of G. Let G0 be the induced subgraph of G
obtained by deleting the vertices of fv1;:::; vj�1; vj0+1;:::; vqg and the sticks and partial
one-paths connected to vertices fv1;:::; vj; vj0 ;:::; vqg. See e.g. Figure 39. Then G0 is a
biconnected component with sticks, and G0 is the union of the graphs Gu

j and Gw
j0 , and

the sticks of vm and v. Suppose G0 occurs in (Va;:::; Va0). Clearly, a � s and a0 � s0.
In fact, s = a and s0 = a0, since all vertices vj+1;:::; vj0�1 and sticks adjacent to these
vertices occur only within (Vs;:::; Vs0). Furthermore, fu; vjg � Vs and fw; vj0g � Vs0 .
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Figure 38: Example of Gu
j and Gw

l , with p � j � m and m � l � n. In Part I, v is
a vertex of P1(H 0). In Part II, v is a stick of u, which means that c(vm) 6= c(u) must
hold, and v is deleted (u is the new vertex that is adjacent to vm).
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2.1 p � j � m � j0 � n,

2.2 p � j � j0 < m, and

2.3 m < j � j0 � n.

For each case, we show which local information must be computed, and how it is
computed.

Case 2.1 p � j �m � j0 � n

We �rst analyze the structure of a nice proper path decomposition with nice path P

in which H 0 uses [j; j 0], p � j � m � j0 � n.

Claim 4.4. If H 0 uses [j; j 0] for some j; j0, p � j � m � j0 � n, then a partial one-path
H 00 connected to vm0 , H 0 6= H 00, can use [l; l0] with l0 � j if m0 < m, and l � j0 if
m0 > m.

Proof. Suppose there is a nice proper path decomposition PD = (V1;:::; Vt) with nice
path P in which H 0 uses [j; j 0] for some j and j0 with p � j � m � j 0 � n. Let H 00 be
a partial one-path connected to vm0 , H 00 6= H 0, and suppose H 00 uses [l; l0]. Clearly, if
m0 < m, then l0 � j, and if m0 � m then l � j.

In the same way as for Claim 4.1, we can show that it is possible that l0 = j of
l = j0. 2

The claim implies that we only need all values of (j; j0), p � j � m � j � n, for
which H 0 can use [j; j0], and there are no l; l0, j � l � m � l0 � j0, such that H 0 can
use [l; l0] and j < l or l0 < j0.

Definition 4.6. The local information for H 0 for the case that H 0 uses [j; j0], p � j �
m � j0 � n, is the set

Q1 = f (j; j0) j p � j � m � j0 � n ^ H 0 can use [j; j0]

^ :9l;l0 (j < l � m � l0 � j0 _ j � l � m � l0 < j0) ^ H 0 can use [l; l0] g

We now show how to compute the set Q1, and that jQ1j � 4.
Let P 0 2 P1(H 0), let u and w be the two end points of P 0. Let v 2 V (H 0) such that

fv; vmg 2 E(H). For each j, p � j � m, let Gu
j denote the graph obtained from H as

follows (see e.g. Figure 38). Add edge fu; vjg. If v is a stick of u, check if c(u) 6= c(vm),
and if so, add edge fu; vmg, and delete v and its incident edges. Similarly, if v is a stick
of w, check if c(w) 6= c(vm), and if so, add edge fw; vmg, and delete v and its incident
edges. If c(w) = c(vm), then Gu

j is unde�ned. Let v again denote the vertex of H 0 for
which fv; vmg is an edge. Furthermore, delete vertices fv1;:::; vj�1; vm+1;:::; vqg, and
all sticks and partial one-paths connected to fv1;:::; vj; vm;:::; vqg, except H 0. Delete all
components of H 0[V (H 0)�fvg] which do not contain u. Note that the remaining graph
Gu
j is a chordless cycle with sticks. In a similar way, de�ne Gu

j for all j, m � j0 � n,
and Gw

j for all j with p � j � m, or m � j � n.
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be the induced subgraph of H consisting of vertices vj1 ;:::; vj and all sticks adjacent to
vertices vj1+1;:::; vj. Note that H3 has pathwidth one at most. Let PD0 be a proper
path decomposition of H3 with vj1 in the leftmost node and vj in the rightmost node.
Let PD00 be a proper path decomposition of Gu

j or Gw
j with vm in the rightmost node

and fu; vjg in the leftmost node, or fw; vjg in the leftmost node, respectively. Then
PD[H1] ++PD0 ++PD00 ++PD[H2] is a nice proper path decomposition of H with nice
path P , such that H 0 uses [j; l] for some j � l � m, hence j1 � j. 2

Claim 4.3. j1 can be computed in O(n2) time, where n is the number of vertices of
Gu
p .

Proof. For all j, p � j � m, Gu
j is a biconnected component with sticks, hence we can

compute in O(n2) time whether there is a proper path decomposition of Gu
j with vm in

the rightmost node and fu; vjg in the leftmost node. This can be done by computing
PPW20 with vm as starting vertex and edge fu; vjg as end edge.

However, if this is done for all j, p � j � m, and both for u and w, then this may
result in an 
(n3) algorithm. Fortunately, we can use the structure of the algorithm
to compute PPW2' to compute j1 in such a way, that the algorithm has to be called
only twice: once for u and once for w.

Let p0, p � p0 � m, be such that p0 is as small as possible and c(u) 6= c(vp0).
If v = w or v is a stick of w, then Gu

p0 contains one chordless cycle C. Number
the vertices of C in order as fu0;:::; un�1g in such a way that uj = vj for each j,
p0 � j � m, and hence u = up0�1 (note that for all i, ui denotes uimodn). See for
example Figure 37. For each j, p0 � j � m, determine PPW20(Gu

p0 ; fvmg; p
0� 1; p0):ft

and PPW20(Gu
p0; fvmg; p

0� 1; p0):lt. During this computation, PPW20(Gu
p0 ; fvmg; p

0 �
1; j):ft and PPW20(Gu

p0; fvmg; p
0 � 1; j):lt are computed for each j, p0 � j � m, and

hence we can determine the largest j, p0 � j � m, for which PPW20(Gu
p0; fvmg; p

0 �
1; j):ft holds, which is exactly the value we want. If v 6= w and v is not a stick of w,
then Gu

p0 contains two chordless cycles, and we can do a similar thing.

up0 = vp0

u = up0�1

w = um+1

Gu
p0 up0+1

um = vmP
vp0 vm

H0

u w

vp

Figure 37: Example of Gu
p0 , and the numbering of the vertices in its chordless cycle.

In the same way this can be done for w. This gives (at most) two values for j. j1
is the largest of these two values, so it can be computed in O(n2) time. 2

Case 2 nr = 1 and p � j � j0 � n
We consider three sub cases, namely
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I
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Figure 36: Examples of H 0 if it uses [j1; j
0], j1 � j0 � m, and of the occurrence of H 0.

In part I, vm is adjacent to w. In part II, vm is adjacent to an inner vertex v of P 0,
which means that j0 = m.
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vp

Gu
j

v
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I

II

vmvj

u w

v

Figure 35: Examples of Gu
j for the case that vm is adjacent to w (I), and for the case

that vm is not adjacent to w or a stick of w, but vm is adjacent to a stick of u (II).

this end point. Let P 0 2 P1(H 0) as de�ned before, with end points u and w. Suppose
w.l.o.g. that u 2 Vs and w 2 Vs0 . Let u0; w0 2 V (H 0) such that u0 2 Vs, w

0 2 Vs0 , and u0

is a stick adjacent to u, w0 is a stick adjacent to w. For an example, see Figure 36. Let
v 2 V (H 0) be such that fv; vmg 2 E(H). If v is an inner vertex of P 0 (i.e. H 0 has type
II), or if v 6= w and v = u or v is a stick adjacent to u, then j0 = m, since v occurs
only on the left side of Vs0 , and there is a Vi, s � i < s0, with v 2 Vi and vm 2 Vi
(Lemma 3.11). Note also that, if v is a stick of u, then there is a node containing vm,
v and u (also Lemma 3.11).

If v = w or v is a stick adjacent to w, let G be the graph obtained from H by adding
edge fu; vj1g only. Otherwise, let G be the graph obtained from H by adding edges
fu; vj1g and fw; vj0g = fw; vmg, and if v is a stick of u, add edge fu; vmg, and delete v
and its incident edges. Note that PD is a proper path decomposition of G, and that
Gu
j1

is a subgraph of G (see Figure 36). Suppose G0 occurs in (Vb;:::; Vb0). Clearly, b � s
and s0 � b0 � a. In fact, s = b, since all vertices vj1+1;:::; vq and sticks adjacent to these
vertices occur on the right side of Vs only. Furthermore, vm 2 Vb0 and fvj ; ug � Va.
Hence there is a proper path decomposition of Gu

j1
with edge fu; vjg in the leftmost

node and vertex vm in the rightmost node, so j1 � l1.
We now show that j1 � maxfl1; l2g.
Suppose there is a nice proper path decomposition PD = (V1;:::; Vt) of H in which

P uses [j1; j
0], p � j � j0 � m. Let j = maxfl1; l2g. We modify PD such that it is a

nice proper path decomposition with nice path P , and H 0 uses [j; l] for some j � l � m.
Let H1 be the induced subgraph of H consisting of vertices v1;:::; vj1, and all sticks

and partial one-paths connected to these vertices. Let H2 be the induced subgraph
of H consisting of vertices vm;:::; vq, and all sticks and partial one-paths connected to
these vertices, except H 0. Note that the rightmost node of PD[H1] contains vj1 only,
and the leftmost node of PD[H2] contains vm. We have shown that j1 � j. Let H3
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First consider vm. Vertex vm separates H in four or more components which contain
an edge. Hence PD can be modi�ed such that there is a node Va with Va = fvmg,
PD is still a nice proper path decomposition with nice path P , and H 0 uses [j; j0] (see
Lemma 4.12). Suppose H 0 occurs in (Vs;:::; Vs0) and suppose vm occurs in (Vr;:::; Vr0).
Note that s0 < a, since H 0 contains a vertex of color c(vm), which means that j < m

and hence s < a.
Next consider vj . Suppose Vs = fvj ; u; u

0g, for some u; u0 2 V (H 0). For all i, i < s,
it is not necessary that there is a v 2 V (H 0) such that v 2 Vi, since all edges containing
a vertex of H 0 occur within (Vs;:::; Vt). Furthermore, no Vi, i < s, contains a vertex of
the path (vj+1;:::; vq) or a vertex of a stick or partial one-path that is connected to this
path. This means that we can delete all vertices of H 0 from nodes Vi, i < s, and add a
node fvjg between Vs�1 and Vs. 2

It follows from the claim that we only need the largest value of j, such that H 0 can
use [j; j0] for some j0, p � j � j0 � m.

Definition 4.5. The local information for H 0 for the case that H 0 uses [j; j0], p �
j � j0 � m is j1, p � j1 � m, which is the largest value of j for which there is a j0,
j � j0 � m, such that H 0 can use [j; j0].

We now show how to compute j1.
Let P 0 2 P1(H 0), let u and w be the two end points of P 0. Let v 2 V (H 0) such

that fv; vmg 2 E(H). For each j, p � j � m, let Gu
j denote the graph obtained

from H as follows (see e.g. Figure 35). Add edge fu; vjg. If v 6= w and v is not a
stick of w, then also add edge fw; vmg. If v is a stick of u and u 6= w, then also
add edge fu; vmg. Furthermore, delete vertices fv1;:::; vj�1; vm+1;:::; vqg and all sticks
and partial one-paths adjacent to these vertices, all sticks adjacent to vj and vm, all
partial one-paths adjacent to vj and all partial one-paths except H 0 that are adjacent
to vm. De�ne Gw

j in the same way for each j, p � j � m. Note that Gu
j and Gw

j are
biconnected components with sticks.

Let l1 be the largest j, p � j � m, for which either there is a proper path decom-
position of Gu

j with vertex vm in the rightmost node and edge fvj ; ug in the leftmost
node, unde�ned if there is no such proper path decomposition.

Let l2 be the largest j, p � j � m, for which there is a proper path decomposition
of Gw

j with vertex vm in the rightmost node and edge fvj ; wg in the leftmost node,
unde�ned if there is no such proper path decomposition.

Claim 4.2. Suppose j1 is de�ned, i.e. there is a nice proper path decomposition with
nice path P in which H 0 uses [j; j0], p � j � j0 � m. Then j1 = maxfl1; l2g.

Proof. We �rst show that j1 � maxfl1; l2g.
Let PD = (V1;:::; Vt) be a nice proper path decomposition of H with nice path P

in which H 0 uses [j1; j
0] for some j0 with j1 � j0 � m. Suppose there is a node Va with

Va = fvmg. Note that j1 < m, since H 0 has a vertex of color c(vm). Note also that for
each P 0 2 P1(H

0), Vs and Vs0 each contain an end point of P 0 and a stick adjacent to
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If nr > 1, then for all partial one-paths Hi connected to vm which have no vertex
of color c(vm), the local information consists of the interval [m;m] only. For all other
partial one-paths Hi, the local information consists of certain intervals [j; j0] which can
be used by Hi, for the case that pp � j � j0 � p, the case that p � j � j0 � m, the
case that m � j � j0 � n and the case that n � j � j0 � nn. These values for di�erent
partial one-paths connected to vm can then be combined such that they satisfy one of
the four cases that are given above.

Let H 0 be a partial one-path that is connected to vm. We distinguish �ve possibilities
for the interval that H 0 can use in a nice proper path decomposition of H .

1. nr � 2 and there are j; j 0, p � j � j0 � m, such that H 0 uses [j; j0].

2. nr = 1 and there are j; j 0, p � j � j0 � n, such that H 0 uses [j; j0].

3. There are j; j0, pp � j � j0 � p, such that H 0 uses [j; j0].

4. nr � 2 and there are j; j 0, m � j � j0 � n, such that H 0 uses [j; j 0].

5. There are j; j0, n � j � j0 � nn, such that H 0 uses [j; j 0].

We now describe what information is computed for cases 1, 2 and 3, and how it is
computed. Cases 4 and 5 are similar to cases 1 and 3. Suppose all partial one-paths
of type III are transformed into partial one-paths of type II. In each of the cases 1, 2
and 3, we �rst analyze how a proper path decomposition looks if this case holds, after
which we show what the local information is that has to be computed, and how this
information can be computed.

Case 1 nr � 2 and p � j � j0 � m
We �rst analyze the structure of a proper path decomposition in which H 0 uses [j; j0]

for some p � j � j0 � m. We assume that there is no partial one-path H 00 which is
connected to vp and which uses [l; l0] for some l � m, since in that case, j = j0 = p,
and hence this case is considered in case 3. Furthermore, we assume that H 0 contains
a vertex of color c(vm).

Claim 4.1. If H 0 uses [j; j 0] for some j; j0 with p � j � j0 � m, then a partial one-path
H 00 connected to vm0 , H 0 6= H 00, can use [l; l0], with l0 � j if m0 < m and l � m if
m0 � m.

Proof. Suppose there is a nice proper path decomposition PD = (V1;:::; Vt) of H with
nice path P in which H 0 uses [j; j0] for some j and j0 with p � j � j0 � m. Let H 00 be a
partial one-path connected to P , H 00 6= H 0, which uses [l; l0]. Clearly, l0 � j if m0 < m,
and l � m if m0 � m.

We have to show that it is possible that l0 = j or l = m. Therefore, we show that
we can modify PD slightly, such that there is a node fvjg in PD which occurs on the
left side of the occurrence of H 0, and there is a node fvmg in PD which occurs on the
right side of the occurrence of H 0.
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Figure 34: The four possible cases of the use [ji; j0i] of partial one-paths Hi, 1 � i � 3,
with j01 � j2 and j02 � j3.
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rightmost vertex on the left side of vp which has partial one-paths connected to it, or
pp = 1 if there is no such vertex, and vnn is the left most vertex on the right side of vn
having partial one-paths connected to it, or nn = q if there is no such vertex.

Suppose nr � 1. If nr = 1, then the following three cases are possible (see Fig-
ure 33).

1. pp � j1 � j01 � p.

2. p � j1 � j01 � n.

3. n � j1 � j01 � nn.

vj1 vj0

1

H1

P vmvpvpp vn vnn

P vpvpp vn vnnvj1 vj0

1

H1

P vpvpp vn vnnvj1 vj0

1

H1

vm

vm

1

2

3

Figure 33: The three possible cases of the use [j1; j 01] of a partial one-path H1.

If nr > 1, then the following four cases are possible (see Figure 34).

1. pp � j1 � j01 � p, m � jnr � j0nr � n, and for all i, 1 < i < nr, ji = j0i = m.

2. pp � j1 � j01 � p, n � jnr � j0nr � nn, and for all i, 1 < i < nr , ji = j0i = m.

3. p � j1 � j01 � m, m � jnr � j0nr � n, and for all i, 1 < i < nr, ji = j0i = m.

4. p � j1 � j01 � m, n � jnr � j0nr � nn, and for all i, 1 < i < nr, ji = j 0i = m.

The local information that is computed by function Check Nice Path, consists of
certain values for each partial one-path connected to the nice path. If nr = 1, then for
partial one-path H1, the local information consists certain intervals [j; j0] which can be
used by H1 for each of the three cases above.
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Figure 32: Example of the use of partial one-paths H 0 and H 00 in a tree H of path-
width two, a path decomposition PD of H , and the graph G0 as given in the proof of
Lemma 4.18.
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Lemma 4.18. Let H be a three-colored tree of pathwidth two, PD = (V1;:::; Vt) a nice
proper path decomposition of H with nice path P = (v1;:::; vq). Let vm; vm0 2 V (P ),
m0 > m, and let H 0 be a partial one-path connected to vm, H

00 a partial one-path
connected to vm0. Suppose H 0 uses [j; j0], m0 � j � j0 � q and H 00 uses [l; l0], 1 � l �
l0 � m. Then m0 = m + 1 or m0 = m + 2 and vm+1 has degree two; there is a node in
PD containing vm, vm+1 and vm0, and H 0 and H 00 have type I.

Proof. Suppose H 0 occurs in (Vr;:::; Vr0) and H 00 occurs in (Vs;:::; Vs0). Then s0 < r,
since l0 < j. Let Vr0 = fvj0 ; u; u

0g, u; u0 2 V (H 0) and Vs = fvl; w; w
0g, w;w0 2 V (H 00).

Suppose u is an end point of a path P 0 2 P1(H
0) and w is an end point of a path

P 00 2 P1(H
00). See also Figure 32. Vertex vm does not occur in (Vr;:::; Vr0), hence

u and u0 are not adjacent to vm. Similarly, w and w0 are not adjacent to vm0 . Let
G = H [ ffu0; vj0g; fw

0; vlgg. PD is also a path decomposition of G. We �rst prove
that m0 = m + 1 or m0 = m + 2 and vm+1 has degree two and that there is a node
containing vm, vm+1 and vm0 .

Suppose m0 > m+ 1. Then G contains three disjoint paths between vm and vm0 , as
can be seen in Figure 32. According to Lemma 3.1, PD is a proper path decomposition
of the graph G0 which is obtained from G by adding edge fvm; vm0g. Graph G0 contains
three chordless cycles which have edge fvm; vm0g in common. At least one of these
chordless cycles, say C, must have three vertices, and the vertex v 2 V (C) with v 6=
vm; vm0 has degree two, i.e. it is only adjacent to vm and vm0 . Cycle C can not be the
cycle containing vertices of H 0 or H 00, since the path from vm to u0 in H 0 contains at
least two edges, and the path from vm0 to w0 in H 00 also contains at least two edges.
Hence it must be the cycle consisting of vm;:::; vm0. So either m0 = m+1 or m0 = m+2
and vm+1 has degree two. Furthermore, the two or three vertices vm, vm+1 and vm0

occur in one node, which also means that they must have di�erent colors.
We now have to prove that H 0 and H 00 both have type I. Let C0 be the chordless

cycle of G0 which contains vl and let C00 be the chordless cycle of G which contains vj0 .
C0 and C00 have edge fvm; vm0g in common. All edges between vertices vl;:::; vj0, edges
between vertices vl+1;:::; vj0�1 and their adjacent vertices, and all edges of H 0 and H 00

occur within (Vs;:::; Vr0). Suppose H 0 has type II or III, then let v 2 V (P1(H 0)) be such
that v is adjacent to vm if H 0 has type II, or v has distance two to vm if H 0 has type
III. Then v 2 V (C0), and there is a vertex connected to v that does not have degree
one. This means that v should occur in the leftmost node containing an edge of C0.
This is node Vr0 , but Vr0 = fvj0 ; u; u

0g, and u0; u 6= v. Contradiction. 2

Let H be a properly colored tree of pathwidth two, PD = (V1;:::; Vt) a nice proper
path decomposition of H with nice path P = (v1;:::; vq). Let vm 2 V (P ), 1 � m � q,
let H1;:::; Hnr be the partial one-paths connected to vm, nr � 1, for each i, 1 � i � nr,
suppose Hi uses [ji; j 0i] such that for all i, 1 � i < nr, j 0i � ji+1. Using Corollaries 4.2
and 4.3, and Lemma 4.18, we can derive what situations are possible for the intervals
[ji; j0i]. Let pp, p, n and nn, 1 � pp � p � m � n � nn � q, be such that vp is the
rightmost vertex on the left side of vm which has partial one-paths connected to it, or
p = 1 if there is no such vertex, vn is the leftmost vertex on the right side of vm which
has partial one-paths connected to it, or n = q if there is no such vertex, vpp is the
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Figure 30: Example of partial one-paths H 0 and H 00 as used in the proof of part 1 of
Lemma 4.17.
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Figure 31: Example of partial one-paths H 0 and H 00 as used in the proof of part 2 of
Lemma 4.17.
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Figure 29: Example of partial one-paths H1;:::; Hnr which are connected to a vertex
vm of the path P . For each i, Hi uses [ji; j0i]. In Part I, nr = 3. In Part II, H1 uses
[j1; j

0
1] with j1 < m < j01. Hence nr = 1.

� either l0 � m or l � j0, and

� if l � j0 then H 00 occurs on the right side of H 0 and j0 = j = m0.

Proof. There are three possibilities for [l; l0], namely

1. 1 � l � l0 � m,

2. j0 � l � l0 � q, or

3. m � l � l0 � j and neither case 1 nor case 2 holds.

We �rst show that case 3 is not possible. Suppose m � l � l0 � j and case 1 and case
2 do not hold. Suppose H 0 occurs in (Vr;:::; Vr0), H

00 occurs in (Vs;:::; Vs0). See also
Figure 30. Vertex vl is the only vertex of H [V � V (H 00)] occurring in Vs and m < l0,
which means that vm does not occur in Vs0 or on the right side of Vs0 . Furthermore,
vl0 is the only vertex of H [V � V (H 00)] occurring in Vs0 and l < j0, which means that
vertices of H 0 occur on the right side of Vs0 . But Vs0 does contain a vertex of H 00 or
vertex vm, as can be seen from Figure 30, which gives a contradiction. Hence only
cases 1 and 2 are possible.

We now have to prove that if l � j0, then H 00 occurs on the right side of H 0 and
j0 = j = m0. Suppose H 00 occurs on the left side of H 0. Then s � s0 < r � r0.
m < m0 � l, so vm occurs only on the left side of Vs. But no node of (Vs;:::; Vs0)
contains a vertex of H 0 or vm, which gives a contradiction. Hence H 00 occurs on the
right side of H 0. Suppose j0 > m0, see also Figure 31. Then vm0 only occurs on the
left side of Vr0 . But Vr0 does not contain a vertex of H 00, which gives a contradiction.
Hence j = j0 = m0. 2
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Proof. 1. Follows from the fact that there is no node in PD which contains a vertex
of H 0 and a vertex of H 00 and Lemma 4.16.

2. Follows from Lemma 4.16. 2

vj vj0 vm

H0

P vl vl0

H 00

Figure 28: Example of a partial one-path H 0 that is connected to a vertex vm of the
path P , and another partial one-path H 00 that is connected to P . H 0 uses [j; j0], H 00

uses [l; l0].

Corollary 4.3. Let H be a three-colored tree of pathwidth two, PD = (V1;:::; Vt) a
nice proper path decomposition of H with nice path P = (v1;:::; vq). Let vm 2 V (P ),
H1;:::; Hnr the partial one-paths connected to vm. For each i, 1 � i � nr, suppose Hi

uses [ji; j
0
i]. (See e.g. Figure 29).

1. There is at most one i, 1 � i � nr, for which j0i > m and there is at most one i0,
1 � i0 � nr, for which ji < m, and all others have ji = j0i = m.

2. If there is an i such that ji < m and j0i > m, then nr = 1.

3. If nr � 2, then PD can be transformed into nice proper path decomposition with
the same nice path, such that for each Hi, 1 � i � nr, which contains no vertices
of color c(vm), ji = j0i = m.

Proof. 1. Follows from Lemma 2.6.

2. Follows from Lemma 4.12.

3. Follows from Corollary 4.1. 2

For each partial one-path H 0 connected to P , the local information denotes certain
possible intervals [j; j 0] for which H 0 can use [j; j0].

In the next lemmas, we further bound the number of possible values for the intervals
[j; j0] that a partial one-path can use.

Lemma 4.17. Let H be a three-colored tree of pathwidth two, PD = (V1;:::; Vt) a nice
proper path decomposition of H with nice path P = (v1;:::; vq). Let vm; vm0 2 V (P ),
m0 > m, and let H 0 be a partial one-path connected to vm, H

00 a partial one-path
connected to vm0. Suppose H 0 uses [j; j0], m0 � j � j0 � q and H 00 uses [l; l0], 1 � l �
l0 � q. Then the following holds.
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vertex of a stick or a partial one-path connected to vi is an element of Vp for some p,
1 � p < j _ j0 < p � t. So all vertices and edges on the path from vl to vl0 occur
within (Vj;:::; Vj0). Suppose there is a partial one-path H 00 6= H 0 which is connected to
vi for some i, l < i < l0. Then H 00 must occur within (Vj;:::; Vj0). But each node in
(Vj;:::; Vj0) contains a vertex of P and a vertex of H 0. This gives a contradiction. 2

Definition 4.4. Let H be a three-colored tree of pathwidth two, PD a nice proper path
decomposition of H with nice path P = (v1;:::; vq), vm 2 V (P ), H 0 partial one-path
connected to vm, H

0 occurs in (Vj;:::; Vj0). Let vl be the leftmost vertex on P which
occurs in (Vj;:::; Vj0), and vl0 the rightmost. We say that H 0 uses the interval [l; l0].

Figure 27 shows an example of a partial one-path H 0 that uses [l; l].

u
u0

w
w0

vl vl0 vm

vl vl0

w

vm

w

w0

u

u0

Vj Vj0

P

H0

P1(H
0)

H

PD

Figure 27: Example of a partial one-path H 0 that is connected to a vertex vm of the
path P in a tree H of pathwidth two. P1(H 0) is the path from u to w. In the occurrence
(Vj;:::; Vj0) of H 0 in the path decomposition PD of width two, vl, u and a stick u0 of
u occur in Vj , and vl0 , w and a stick w0 of w occur in Vj . Hence H 0 uses [l; l0], which
is shown by the dashed lines in the graph (note that the dashed lines are edges of the
interval completion of PD). All vertices vi, l < i < l0, and sticks adjacent to vi occur
only within (Vj ;:::; Vj0).

In the following corollaries, we summarize some earlier lemmas in terms of intervals.

Corollary 4.2. Let H be a three-colored tree of pathwidth two, PD = (V1;:::; Vt) a nice
proper path decomposition of H with nice path P = (v1;:::; vq). Let vm 2 V (P ), H 0 a
partial one-path which is connected to vm. Let H 00 be another partial one-path which
is connected to P . Suppose H 0 uses [j; j0] and H 00 uses [l; l0]. See e.g. Figure 28. The
following holds.

1. Either j � l0 or l � j0.

2. Either l0 � m or l � m.
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Proof. For each v 2 V (P ) for which H [V �fvg] has four or more components, we can
transform PD into a path decomposition PD0 satisfying the stated conditions in the
same way as in the proof of Lemma 4.13. 2

Corollary 4.1 and Lemma 4.11 show that if a vertex v of the nice path has two
or more partial one-paths connected to it, then the algorithm has to do signi�cant
computations for at most two partial one-paths connected to v, since there are at most
two of these partial one-paths which have a vertex of color c(v).

We now concentrate on the kind of local information that has to be computed.

Lemma 4.15. Let H be a three-colored tree of pathwidth two, suppose PD = (V1;:::; Vt)
is a nice proper path decomposition of H with nice path P . There is a nice proper
path decomposition PD0 with the same nice path P in which no two partial one-paths
of H [V � V (P )] overlap, i.e. for each pair of distinct partial one-paths H 0 and H 00

connected to P , there is no node Vi containing a vertex of H 0 and a vertex of H 00.

Proof. Suppose there are two partial one-paths H 0 and H 00 connected to v 2 V (P )
and v0 2 V (P ), respectively, for which there is a node Vm containing vertices of H 0

and of H 00. Suppose the vertices of H 0 occur in (Vj;:::; Vj0) and the vertices of H 00

occur in (Vl;:::; Vl0). It is not possible that j � l � l0 � j0, since each Vi, j � i � j0,
contains a vertex of P and a vertex of H 0, but H 00 has pathwidth one. Similarly, it is
not possible that l � j � j0 � l0. Suppose w.l.o.g. that j � l � j0 � l0. Let i be such
that l � i � j0. Vi does not contain an edge of H 0 or an edge of H 00, since H 0 and
H 00 have no vertices in common. This means that Vj0 ;:::; Vl all contain the same vertex
of H 0, say w, the same vertex of H 00, say w0, and the same vertex of P , say v. Hence
j0 = l. But w and w0 are not adjacent, hence Vl can be split into V 0

l and V 00
l , with

V 0
l = fv; wg, and V 00

l = fv; w0g. Then PD0 = (V1;:::; Vl�1; V
0
l ; V

00
l ; Vl+1;:::; Vt) is also a

nice path decomposition of width two of H with nice path P . In this way, all overlaps
can be removed from PD, which results in a nice path decomposition with nice path
P , without overlapping partial one-paths. 2

From now on, if we have a nice proper path decomposition of H with nice path P ,
we assume that the partial one-paths connected to P do not overlap.

Lemma 4.16. Let H be a three-colored tree of pathwidth two, suppose PD is a nice
proper path decomposition of H with nice path P = (v1;:::; vq), let vm 2 V (P ), let H 0 be
a partial one-path connected to vm, and suppose H 0 occurs in (Vj ;:::; Vj0). Let vl 2 V (P )
be the leftmost vertex on P which occurs in (Vj ;:::; Vj0), and vl0 2 V (P ) the rightmost.
Then vl 2 Vj, vl0 2 Vj0, and for all i, l < i < l0, vi and sticks adjacent to vi occur only
within (Vj;:::; Vj0), and there is no partial one-path connected to vi, except H

0 possibly.

Proof. Node Vj contains a vertex on the path from v1 to vl. But Vj does not contain
any vertex vi with 1 � i < l. Hence vl 2 Vj , and vl0 2 Vj0 . Furthermore, Vj and
Vj0 both contain an edge of H 0. This means that Vj and Vj0 can not contain another
vertex of V (H)� V (H 0). Hence for each i, l < i < l0, it is not possible that vi or any

62



For each vertex v of the nice path, for each partial one-path H 0 connected to
v, Check Nice Path computes certain local information, which denotes whether there
is a locally correct nice proper path decomposition of H 0. This local information
is combined with previously computed global information, which, at the end of the
algorithm, denotes whether there is nice proper path decomposition of H with nice
path P . Hence, the function Check Nice Path(P ) has the following structure.

function Check Nice Path(P : Path): boolean;
fpre: P = (v1;:::; vq) is a nice path of H g
foutput: true if there is a proper path decomposition of H

with nice path P , false otherwise
g

for m := 1 to q
! for each partial one-path H 0 connected to vm

! compute certain values for H 0 (the local information)
rof;
Combine the computed values for vm and its partial one-paths (local info)

with previously processed part (global info).
rof;

if combination succeeded
! return true
2 else
! return false
�

end

In the remainder of this section, we �rst show what local information must be
computed and how this is done. After that we show how the local information of each
vertex on the nice path can be combined with the global information into the new
global information.

We �rst show that the number of partial one-paths that is connected to one vertex of
the nice path for which the algorithm has to compute a local proper path decomposition
is bounded.

Corollary 4.1. Let H be a three-colored tree of pathwidth two, suppose PD =
(V1;:::; Vt) is a nice proper path decomposition of H with nice path P . Then there
is a nice proper path decomposition PD0 of H with nice path P in which for each
v 2 V (P ) for which H [V �fvg] has at least four components which contain at least two
vertices, the following holds. For each partial one-path H 0 that is connected to v by a
vertex w 2 V (H 0), if H 0 does not contain vertices of color c(v), then H 0 occurs within
the occurrence of v in PD0.
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Lemma 4.14. Let H be a three-colored tree of pathwidth two such that there is a
v 2 V (H) for which H [V � fvg] has pathwidth one, and has at least two components
which have pathwidth one. Let P = (v1) 2 P2(H). Suppose there is a nice proper path
decomposition PD of H with nice path P = (u1;:::; uq) such that P contains v1. Then
the following holds.

1. If H [V �fv1g] has three or less components, then there are two partial one-paths
H 0 and H 00, H 0 6= H 00, connected to v1, such that u1 is an end point of some path
in P1(H

0), and uq is an end point of some path in P1(H
00).

2. If H [V � fv1g] has four or more components and there are two partial one-paths
connected to v1 which have a vertex of color c(v), then there are two partial one-
paths H 0 and H 00, H 0 6= H 00, connected to v1, such that H 0 and H 00 both contain
a vertex of color c(v1), and there is a nice proper path decomposition of H with
nice path (w1;:::; wr) such that w1 is an end point of some path in P1(H

0), and
wr is an end point of some path in P1(H

00).

3. If H [V � fv1g] has four or more components and exactly one partial one-path
H 0 connected to v1 has a vertex of color c(v), then for each partial one-path H 00

connected to v1, H
0 6= H 00, there is a nice proper path decomposition of H with

nice path (w1;:::; wr) such that w1 is an end point of some path in P1(H 0), and
wr is an end point of some path in P1(H

00).

4. If H [V � fv1g] has four or more components and no partial one-path connected
to v1 has a vertex of color c(v), then for each two partial one-paths H 0 and H 00

connected to v1, H 0 6= H 00, there is a nice proper path decomposition PD0 of H
with nice path (w1;:::; wr) such that w1 is an end point of some path in P1(H

0),
and wr is an end point of some path in P1(H 00).

Proof. Similar to the proof of Lemma 4.13. 2

Let H be a three-colored tree of pathwidth two. It now follows that the number
of nice paths that have to be tried to �nd out whether there is a nice proper path
decomposition of H is bounded by a constant. If there is no vertex v 2 V (H) such that
H [V �fvg] has pathwidth one, in case 1 of Lemma 4.13, we have at most 6 possible left
end points for a nice path. In case 2, there are at most two partial one-paths connected
to v1 which have a vertex of color c(v1), because of Lemma 4.12, which also gives at
most 6 possible end points for a nice path. In case 3 there is only one possibility. Hence
there are at most 6 �6 = 36 possible nice paths that have to be checked in the algorithm.
If there is a v 2 V (H) such that H [V �fvg] has pathwidth one, then jP2(H)j � 7, and
for each P 0 2 P2(H), there are at most 8 possible left end points for the nice path, and
at most 6 for the right end point. This gives a total number of at most 7 � 8 � 6=2 = 168
possible nice paths that have to be checked in the algorithm. A more precise analysis
will give a smaller constant.

Now that we have shown that the number of possible nice paths to try is constant,
we construct function Check Nice Path(P ), which checks for a given nice path whether
there is a nice proper path decomposition of H with this nice path.
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3. If H [V � fv1g] has four or more components, no partial one-path H 0 connected
to v1 has a vertex of color c(v), then for all partial one-paths H 0 connected to v1,
there is a nice proper path decomposition of H with nice path (w1;:::; wr), such
that wr = uq and w1 is end point of some path in P1(H

0).

The analog for vs also holds.

Proof. Let PD = (V1;:::; Vt).
1. If H [V � fv1g] has three of less components, then clearly case 1 holds.

2. If H [V � fv1g] has four or more components, and at least one of these components
has a vertex of color c(v1), then PD is transformed as follows. Let H 0 be the partial
one-path connected to v1 for which u1 2 V (H 0). If H 0 contains a vertex of color c(v1),
then no transformation is performed. Otherwise, �rst the transformation of the proof
in Lemma 4.12 with v = v1 is done. Note that the resulting PD = (V1;:::; Vt) is still
a nice path decomposition with nice path P . Suppose v1 occurs in (Vj;:::; Vj0), let Vl,
j � l � j0, be a node of PD for which Vl = fv1g. For each partial one-path H 00

connected to v1 that has an edge occurring on the left side of Vj and that has no
vertex of color c(v), do the following. Make a proper path decomposition of width
one of H 00 and add v1 to each node. The result is a proper path decomposition PD0 of
H [V (H 00)[fv1g]. Delete all vertices of H 00 from all nodes of PD, and add PD0 between
Vl and Vl+1 in PD. Let PD denote the obtained path decomposition of H , and suppose
again that v1 occurs in (Vj;:::; Vj0). If there is no partial one-path connected to v1 of
which an edge occurs on the left side of Vj , let H 00 denote a partial one-path connected
to v1 which does contain a vertex of color c(v). H 00 occurs within (Vj ;:::; Vt). Note that
v1 2 V1. Let PD0 = rev(PD[V (H 00)[ fv1g]) ++PD[V � V (H 00)]. Now use unfolding as
in the proof of Lemma 4.9 to make sure that PD is a nice proper path decomposition
and that the end point of the nice path is an end point of a path P 00 2 P1(H

00). Case
2 now holds.

3. If H [V � fv1g] has four or more components, but no partial one-path connected
to v1 has a vertex of color c(v), then PD can be transformed as follows. First apply
the transformations as in the proof of Lemma 4.12 with v = v1. Let Vl denote a node
of PD for which Vl = fv1g. Next, for each partial one-path H 0 that is connected to
v1, delete all vertices of H 0 from PD, make a proper path decomposition of width one
of H 0, add v1 to each node of this path decomposition, and put the obtained proper
path decomposition of H [V (H 0) [ fv1g] between Vl and Vl+1. Delete all empty nodes
from PD. Note that V1 contains v1 now. For each partial one-path H 0 connected to
v1 and for each end point w of a path P 0 2 P1(H 0), we can now make a nice proper
path decomposition of H with nice path P = (u1;:::; uq), such that u1 = w as follows.
Make a proper path decomposition PD0 = (W1;:::;Wr) of width one of H 0, such that
w 2 W1. Let w0 2 V (H 0) such that fv1; w

0g 2 E(H). Let m, 1 � m � r, be such that
Wm is the rightmost node which contains w0. If m = 1, then let PD0 be revPD0, and
let m = r. Add v1 to each Wi, i � m. Let PD0 denote this path decomposition. Then
PD0 ++PD[V �V (H 0)] is a nice proper path decomposition that satis�es the condition.

2
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of P , such that v1 2 V (H 0) and vq 2 V (H 00). There is an edge of H 0 which occurs on
the left side of (Vj;:::; Vj0), and there is an edge of H 00 which occurs on the right side
of (Vj;:::; Vj0). Hence it follows directly from Lemma 2.6 that there are at most two
partial one-paths connected to v which may have a vertex of color c(v). 2

Lemma 4.12. Let H be a three-colored partial two-path, suppose there is a proper path
decomposition of H. There is a proper path decomposition PD of H in which for each
v 2 V (H) such that H [V � fvg] has at least four components which contain an edge,
PD contains a node fvg.

Proof. Let PD = (V1;:::; Vt) be a proper path decomposition of H . For each v 2
V for which H [V � fvg] contains four or more components which contain an edge,
transform PD as follows. Suppose v occurs in (Vj;:::; Vj0). Let H1 be the induced
connected subgraph of H containing v and all components of H [V � fvg] of which
there is an edge occurring on the left side of Vj , and let H2 be the induced subgraph
containing v and all components of H [V � fvg] of which there is an edge occurring
on the right side of Vj0 . Note that V (H1) \ V (H2) = fvg, since no component of
H [V � fvg] can have edges occurring on the left side of Vj and edges occurring on the
right side of Vj0 . Furthermore, let H3 be the induced subgraph of H containing v and
all components of H [V � fvg] which are not in H1 or H2. Then H = H1 [ H2 [ H3.
If there are vertices of H1 which occur on the right side of Vj0 , then they can be
deleted, since there are no edges containing these vertices occurring on the right side
of Vj0 . Similarly for H2 on the left side of Vj , and for H3 on the right side of Vj0 and
on the left side of Vj. Let PD0 be the path decomposition PD after deleting these
vertices. Then PD00 = PD[V (H1)] ++ (fvg) ++PD[V (H3)] ++ (fvg) ++PD[V (H2)] is a
proper path decomposition of H , since the rightmost node of PD[V (H1)] contains v,
the leftmost node of PD[V (H2)] contains v, and all nodes of PD[V (H3)] contain v. 2

The following lemmas are important to bound the number of nice paths that has
to be tried during the algorithm.

Lemma 4.13. Let H be a three-colored tree of pathwidth two. Suppose there is no
vertex v 2 V (H) for which H [V � fvg] has pathwidth one. Let P2(H) = (v1;:::; vs),
and suppose there is a proper path decomposition of H. Let PD be a nice proper path
decomposition of H with nice path P = (u1;:::; uq). The following holds.

1. If H [V � fv1g] has three or less components, then there is a partial one-path H 0

which is connected to v1, and u1 is an end point of some P 00 2 P1(H 0).

2. If H [V � fv1g] has four or more components, and there is a partial one-path
connected to v1 which has a vertex of color c(v), then there is a partial one-
path H 0 which is connected to v1 and which contains a vertex of color c(v1),
such that there is a nice proper path decomposition PD0 of H with nice path
P 0 = (w1;:::; wr), such that wr = uq and w1 is end point of some P 00 2 P1(H 0).
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1. If H 0 is of type II, then there is an i, 1 � i � t, such that PD0 =
(V1;:::; Vi; fv; wg; Vi+1;:::; Vt) is a nice proper path decomposition of H.

2. If H 0 is of type III, then let w0 be the inner vertex of P1(H
0) that is adjacent to

w. Then there is an i, 1 � i � t, such that Vi = fvm; w; w
0g.

Proof. 1. Suppose H 0 occurs in (Vj ;:::; Vj0). Each node Vi, j � i � j 0, contains at
most two vertices of H 0. There is a node containing vm and w, since fv; wg 2 E(H).
First we prove the case that H 0 has type II. If there is a node Vi = fvm; wg, then we
are done. Suppose there is no such node. Suppose fvm; wg occurs in (Vl;:::; Vl0). Note
that edges of one component of H 0[V (H 0)� fwg] occur on the left side of Vl and edges
of another component of H 0[V (H 0)� fwg] occur on the right side of Vl0. Furthermore,
note that 1 < m < q, since v1 is an end point of a path P 0 2 P1(H

00) for some partial
one-path H 00 which is connected to an end point of a path of P2(H), and the same
holds for vq. Hence edges of one component of H [V � fvg] occur on the left side of Vl
and edges of another component of H [V �V (H 0)�fvmg] occur on the right side of Vl0.
No edges of H [V � fvm; wg] occur within (Vl;:::; Vl0), since each node already contains
vm and w. If vm =2 Vl�1, then there is a neighbor u of vm in one of the four components
with edges of H [V � fvm; wg] with u 2 Vl. If w =2 Vl�1, then there is a neighbor u
or w in one of the components of the four components with edges of H [V � fvm; wg].
Let u be the neighbor of vm or w which occurs in Vl. Similarly, let u0 be the neighbor
of vm or w which occurs in Vl0 . Note that u0 6= u, since u and u0 are in di�erent
components of H [V � fvm; w; g]. Hence Vl = fvm; w; ug and Vl0 = fvm; w; u

0g. This
implies that there must be a node Vi, l � i < l0, such that Vi \ Vi+1 = fvm; wg. Then
(V1;:::; Vi; fvm; wg; Vi+1;:::; Vt) is also a proper path decomposition of H .

2. Now suppose that H 0 has type III. Because of the structure of path decompositions
of width two, there is no node containing w but not w0, since w0 is an inner vertex of
P1(H), and w is a stick connected to w0. Hence there must be a node containing w, w0

and vm, since fw; vmg 2 E. 2

From this lemma, the following can be concluded immediately. For a three-colored
tree H of pathwidth two, and a given nice path P , the partial one-paths H 0 connected
to a vertex v 2 V (P ) of type III can be handled as a partial one-path of type II by
deleting the vertex w 2 V (H 0) which is adjacent to v, and adding edge fv; w0g, where
w0 2 V (H 0) is adjacent to w. If c(v) = c(w0), then the resulting graph is colored
improperly, and hence there exists no nice proper path decomposition of H with nice
path P .

Lemma 4.11. Let H be a three-colored tree of pathwidth two, PD = (V1;:::; Vt) a nice
proper path decomposition of H and P = (v1;:::; vq) the nice path of PD. Let v be an
inner vertex of P and let H1;:::; Hl be the partial one-paths connected to v. There are
at most two partial one-paths in H1;:::; Hl which have a vertex of color c(v).

Proof. Suppose v1 2 V1 and vq 2 Vt, and suppose v occurs in (Vj;:::; Vj0). Note that
1 < j � j0 < t. Let H 0 and H 00 be the components of H [V �fvg] which contain vertices
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two neighbors of v in P1(H
0) do not have degree one. Hence v is an end point of some

path P 2 P1(H
0) for some partial one-path H 0 that is connected to v1, which is exactly

what we need.
Now, we apply the following transformations on PD such that one of the previous

cases holds again after each transformation, until case 1 holds for both V1 and Vt. First
transform PD using the following rules until case 1 applies for V1, next transform PD
using the following rules, adapted for Vt, until case 1 applies for Vt.

If case 2 applies, delete V1.
If case 3 applies, let e 2 E(H1) such that e � V1, and add a node containing e only

on the left side of V1.
If case 4 applies, do the following. Suppose w.l.o.g. that the path from v to v1

contains v0. Consider the components of H [V � fvg] which consist of more than one
vertex. Note that one of these components is a subgraph of H1 which does not contain
v1 or v0, and hence Vt does not contain any vertex of this component. Let H 0 be
such a component. Now transform PD into rev(PD[V (H 0)[ fvg]) ++PD[V � V (H 0)],
and let H1 = H [V (H 0) [ fvg]. The new path decomposition is indeed a proper path
decomposition of H , since v is the only vertex that H [V (H 0)[ fvg] and H [V �V (H 0)]
have in common, and v occurs in the rightmost node of rev(PD[V (H 0) [ fvg]) and in
the leftmost node of PD[V �V (H 0)]. Furthermore, the new H1 is contains at least one
vertex less than the old H1, the leftmost node of the new PD contains only vertices of
the new H1 and the rightmost node of the new PD contains only vertices of H2.

Note that the number of transformations is �nite, since if the transformation of
case 4 is done, then H1 or H2 gets smaller, and after each time the transformation of
case 4 is done, the transformations of case 2 and 3 can only be done a �nite number of
times before case 4 holds again. 2

The total number of nice paths in a tree H of pathwidth two may be 
(n2), where
n = jV (H)j. The algorithm we construct has the following structure, in which function
Check Nice Path(P ) returns true if there is a nice proper path decomposition of H
with nice path P , and false otherwise.

b := false;
for certain possible nice paths P of H
! b := b _ Check Nice Path(P )
rof
fb, there is a proper path decomposition of H . g

The algorithm will run in O(n2) time, because the number of nice paths that is tried
is bounded by a constant, and function Check Nice Path runs in O(n2) time. In the
remainder of this section, we �rst show which nice paths have to be tried, and which
nice paths do not have to be tried. After that, we show how function Check Nice Path
works. First, we prove some lemmas.

Lemma 4.10. Let H be a three-colored tree of pathwidth two, PD = (V1;:::; Vt) a nice
proper path decomposition of H, P = (v1;:::; vq) the nice path of PD. Let vm 2 V (P )
and H 0 a partial one-path connected to v, let w 2 V (H 0) such that fvm; wg 2 E(H).
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contain a vertex u0 such that H [V � fu0g] has two or more components of pathwidth
one. 2

Lemma 4.9. Let H be a properly colored tree of pathwidth two. There is a proper path
decomposition of H if and only if there is a nice proper path decomposition of H.

Proof. The `if' part is trivially true.
For the `only if' part, suppose there is a proper path decomposition of H . If

jP2(H)j > 1, let PD = (V1;:::; Vt) be a proper path decomposition of H such that V1
and Vt contain an edge, and the shortest path containing these edges contains a vertex
v1 for which H [V � fv1g] has pathwidth one, and has two or three components of
pathwidth one. Furthermore, let P = (v1) (s = 1). If jP2(H)j = 1, let PD = (V1;:::; Vt)
be an arbitrary proper path decomposition of H , and let P = P2(H) = (v1;:::; vs).

We show how PD can be `unfolded' until it satis�es the described condition. Sup-
pose PD is not of the required form.

First suppose s > 1. Let H1 be the component of H [V (H)� fv2g] containing v1,
and let Hs be the component of H [V (H)� fvs�1g] containing vs. For each v 2 V1 and
v0 2 Vt, the path from v to v0 contains P , by Corollary 3.2. This means that v 2 V (H1)
and v0 2 V (H2) or vice versa. If the second case holds, transform PD into rev(PD).

Suppose s = 1. If jP2(H)j = 1, then for each v 2 V1 and each v0 2 Vt, the path from
v to v0 contains P , and hence V1 and Vt can not contain vertices of the same partial
one-path connected to v1. If jP2(H)j > 1, then P is chosen in such a way that V1 and
Vt do not contain vertices of the same partial one-path connected to v1. Let H1 denote
the induced subgraph of H consisting of vertex v1 and all components of H [V � fv1g]
of which V1 contains a vertex, and let H2 denote the induced subgraph of H consisting
of v1 and all components of H [V � fv1g] of which Vt contains a vertex. Note that V1
contains only vertices of H1, Vt contains only vertices of H2, and V (H1)\V (H2) = fv1g.

The following cases may occur for V1.

1. V1 = fv; v0g for some edge fv; v0g 2 E(H1) such that v and v0 both have at most
one neighbor which does not have degree one.

2. V1 contains no edge.

3. jV1j = 3 and V1 contains an edge.

4. V1 = fv; v0g for some edge fv; v0g 2 E(H1), but v or v0 has more than one
neighbor which does not have degree one.

For Vt, the possible cases are similar.
If case 1 holds for V1, then either v or v0 has degree one. Suppose v0 has degree one.

Note that v and v0 can not both have degree one, since then H has pathwidth one.
v 6= v1, since then v has at least two neighbors which do not have degree one, namely
one neighbor in a partial one-path connected to v1, and v2 if s > 1, or a neighbor in
another partial one-path connected to v1 if s = 1. Furthermore, v can not be an inner
vertex of P1(H

0) for some partial one-path H 0 which is connected to v1, since then the
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Figure 26: Example of a tree H of pathwidth two with P2H = (v1; v2; v3), and a nice
path decomposition of H of width two with nice path (u1; u2; u3; u4; u5; u6; u7; u8). The
leftmost node of the path decomposition contains u1 and stick w1 of u1, the rightmost
node contains u8 and stick w3 of u8. H1 is a partial one-path connected to v1, and u1
is an end vertex of the path P1(H1). H4 is a partial one-path connected to v3 and u8
is an end vertex of the path P1(H4).

e0, suppose w.l.o.g. that P = (v; v0;:::; w0; w). Note that e 6= e0, since if e = e0, then
each vertex of H is either adjacent to v or to v0, and H has pathwidth one. If there is
a u 2 V (P ) such that H [V �fug] has pathwidth one and has two or three components
of pathwidth one, then the lemma is proved.

Suppose there is no u 2 V (P ) such that H [V �fug] has two or more components of
pathwidth one. We show that H [V � V (P )] has exactly one component of pathwidth
one. If H [V � V (P )] has no components of pathwidth one, then H has pathwidth at
most one. If H [V � V (P )] has more than one component of pathwidth one, then there
is a vertex u 2 V (P ) such that H [V �fug] has more than one component of pathwidth
one, which gives a contradiction.

Let H 0 be the component of H [V � V (P )] which has pathwidth one, let u 2 V (P )
and u0 2 V (H 0) such that fu; u0g 2 E(H). H [V � fug] has exactly one component
of pathwidth one, namely H 0. This means that u = v0 = w0 and that v and w both
have degree one. Now transform PD as follows. Delete all neighbors of u which have
degree one from all nodes of PD, and for each such neighbor x, add a node fu; xg
on the left side of the leftmost node of PD. Furthermore, delete the rightmost node
from PD until it contains an edge. The resulting path decomposition is proper, and
it satis�es the appropriate conditions, since the leftmost node contains an edge fu; xg,
where x has degree one, while the rightmost node can not contain such an edge, and
hence contains another edge. Hence the shortest path containing these two edges must
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Figure 25: Example of a tree of pathwidth two which contains a path P with u1; u2; u3 2
V (P ), and a partial one-path H1 of type I connected to u1, a partial one-path H2 of
type II connected to u2, and a partial one-path H3 of type III connected to u3.

decomposition of H of width two if there are no two consecutive nodes which are equal,
V1 contains an edge fw;w0g 2 E and Vt contains an edge fx; x0g 2 E, such that there
is a P = (v1;:::; vs) 2 P2(H) for which there is a partial one-path H 0 that is connected
to v1 and a partial one-path H 00 that is connected to vs, H

0 6= H 00, w;w0 2 V (H 0), w is
an end point of some path P 0 2 P1(H 0), x; x0 2 V (H 00), and x is an end point of some
path P 00 2 P1(H

00). The path from w to x is called the nice path of PD.

Figure 26 shows an example of a tree H of pathwidth two and a nice path decom-
position of width two of H . We will show that for a given properly three-colored tree
H of pathwidth two, there is a proper path decomposition of H if and only if there is a
nice proper path decomposition of H . First we prove another lemma, which is needed
for the case that jP2(H)j > 1.

Lemma 4.8. Let H be a properly three-colored tree of pathwidth two, such that there
is a vertex v 2 V (H) for which H [V � fvg] has pathwidth one. Let PD = (V1;:::; Vt)
be a proper path decomposition of H, then there is a proper path decomposition PD0 =
(V 0

1;:::; V
0
q) of H such that V1 contains an edge e 2 E(H), Vt contains an edge e0 2

E(H), e 6= e0, and the shortest path P in H which contains e and e0, contains a
vertex v0 2 V (H) for which H [V � fv0g] has pathwidth one and there are two or three
components in H [V � fv0g] which have pathwidth one.

Proof. We transform PD into a proper path decomposition PD0 for which the condi-
tion holds. First delete the leftmost node of PD until it contains an edge, and do the
same for the rightmost node of PD. Now let e = fv; v0g 2 E(H) such that e � V1 and
e0 = fw;w0g 2 E(H) such that e0 � Vt. Let P be the shortest path containing e and
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ftold; ltold := ft; lt;

ft := (ftold^
Snp�1
j=0 PPW2(G1

p; fei�1g; j; j + 1):ft)

_ (ltold^
Snp�1
j=0 PPW2(G2

p; fei�1g; j; j + 1):ft);

lt := (ftold^
Snp�1
j=0 PPW2(G1

p; fei�1g; j; j + 1):lt)

_ (ltold^
Snp�1
j=0 PPW2(G2

p; fei�1g; j; j + 1):lt);

return ft _ lt

The algorithm is correct, as follows from the discussion above. Furthermore, it runs
in O(n2) time, where n = jV (G)j, because PPW2 has to be computed at most twice
for each chordless cycle Ci, and PPW2 can be computed in O(n2i ) time for each i.
Furthermore, PPW20 has to be computed twice for C1, and it can be computed in
O(n21) time. All other steps take O(n) time.

The algorithm can be modi�ed such that it returns an intervalization of G if there
exists one. This can be done in the same way as for biconnected components.

4.3 Trees

In this section, we �rst show that there is a proper path decomposition of a tree H which
is properly colored with three colors if and only if there is a proper path decomposition
which has some `nice' structure. After that, we show how to compute for a given
properly colored tree H of pathwidth two whether there is such a nice proper path
decomposition of H . First we distinguish di�erent types of partial one-paths connected
to a path, corresponding to the way they are connected to the path.

Definition 4.2. (Types of Partial One-Paths). Let H be a tree of pathwidth two,
P a path in H such that H [V � V (P )] has pathwidth one. Let v 2 V (P ), and H 0 a
component of H [V � V (P )] such that H 0 has pathwidth one and has a vertex which
is adjacent to v, i.e. H 0 is connected to v. Let w 2 V (H 0) be the vertex for which
fv; wg 2 E(H). Let P 0 2 P1(H 0). We say that H 0 is of type I if w is an end point of
P 0, or if w is adjacent to an end point of P 0 and w =2 V (P 0). H 0 is of type II if w is an
inner vertex of P 0. H 0 is of type III if w =2 V (P 0) and w is adjacent to an inner vertex
of P 0.

Figure 25 gives an example for each type of partial one-path. Note that the type
of a partial one-path H 0 connected to a vertex v of the path P does not depend on
the choice of the path P 0 2 P1(H

0), since if jP1(H
0)j > 1, then for each P 0 2 P1(H

0),
jV (P 0)j = 1, so P 0 does not have any inner vertices, and hence H 0 has type I.

From now on, by partial one-paths connected to a path P , we only mean the partial
one-paths of type I, II and III connected to P , and not the sticks connected to P .

We now give a de�nition of the kind of path decomposition that we want to use for
the algorithm.

Definition 4.3. (Nice Path Decomposition). Let H be a properly three-colored tree of
pathwidth two, PD = (V1;:::; Vt) a proper path decomposition of H. PD is a nice path
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Figure 23: Example of the cell completion �G of a graph G which consists of a chordless
cycle with sticks, and a path of chordless cycles (C;S) for the biconnected component
of �G.

Delete all sticks w of all vertices v that belong to more than one ei.

ft := PPW20(G1; V (C1); 1; 2):ft;
lt := PPW20(G1; V (C1); 1; 2):lt;
if :(ft _ lt) ! return false �;
for i := 2 to p� 1
! ftold := ft; ltold := lt;

ft := (ftold ^ PPW2(G1
i ; fei�1g; 1; 2):ft) _ (ltold ^ PPW2(G2

i ; fei�1g; 1; 2):ft);
lt := (ftold^ PPW2(G1

i ; fei�1g; 1; 2):lt) _ (ltold ^ PPW2(G2
i ; fei�1g; 1; 2):lt);

if 6= (ft _ lt) ! return false �;
rof;
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Figure 24: Example of the graphs G1
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2 for the graph G of Figure 23.
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sticks w of v of color c(u), we can add a node fv; u0; wg in PD0, and for all sticks w of
v of color c(u0), we can add a node fv; u; wg in PD0. The path decomposition which is
obtained by doing this for all sticks in W2 is a proper path decomposition of �G. 2

So we may further assume that for all ei = fv; v0g, v and v0 have no sticks with
color i, where i 2 f1; 2; 3g such that i 6= c(v) and i 6= c(v0). And furthermore we may
assume that for all j, 1 < j � p� 1, if ej�1 \ ej = fvg, then v has no sticks.

Let ej = fv; v0g, suppose v =2 ej�1 and v =2 ej+1. Suppose there is a stick w of v
which has color c(v0), then in each proper path decomposition of G, edge fv; wg must
occur in a node which contains v, either in the occurrence of Cj or in the occurrence
of Cj+1.

Lemma 4.7. Let G be a biconnected three-colored partial two-path which consists of a
biconnected component with sticks. Suppose �G is properly colored and let B denote the
biconnected component of �G, and let (C;S) be a correct path of chordless cycles for B,
with C = (C1;:::; Cp) and S = (e1;:::; ep�1). Let ej = fv; v0g, let v 2 V (G), and suppose
ej�1 \ ej = ej \ ej+1 = ;. Suppose there is a proper path decomposition PD of G. If v
has a stick of color c(v0) which occurs within the occurrence of Cj�1, then all sticks of
v0 of color c(v) occur within the occurrence of Cj.

Proof. Let PD = (V1;:::; Vt), suppose Cj occurs in (Vl;:::; Vl0), such that v; v0 2 Vl0.
Suppose v has a stick w of color c(v0) which occurs within the occurrence of Cj . Let
v00 2 V (Cj) and i, l � i � l0, be such that Vi is the rightmost node containing v and w

and Vi = fv; w; v00g. Then v00 6= v0 and all nodes of (Vi+1;:::; Vl0) contain v, hence if v0

has a stick w0 of color c(v), then edge fv0; w0g can not occur within the occurrence of
Cj , and hence fv0; w0g must occur within the occurrence of Cj+1. 2

Using these lemmas, we can derive an algorithm for computing whether there is
a proper path decomposition of a graph G that is a partial two-path consisting of a
biconnected component with sticks. Let (C;S) be a path of chordless cycles for the
biconnected component of �G, with C = (C1;:::; Cp) and S = (e1;:::; ep�1). For each
i, 1 � i � p, let ni = jV (Ci)j, and let V (Ci) = (vi0;:::; v

i
ni�1) such that E(Ci) =

fvij ; v
i
j+1g j 0 � j < nig and for each i, 1 � i < p, ei = fvi1; v

i
2g. For an example, see

Figure 23. Furthermore, for each i, 1 < i � p, let G1
i denote the induced subgraph of �G

consisting of Ci and all sticks adjacent to vertices of V (Ci)� fv
i�1
1 g. Similarly, let G2

i

denote the induced subgraph of G consisting of Ci and all sticks adjacent to vertices
of V (Ci) � fvi�12 g. For an example, see Figure 24. Furthermore, let G1 denote the
induced subgraph of �G consisting of C1 and all sticks connected to vertices of V (C1).
The algorithm is as follows.

Find the cell-completion �G of G and check if �G is properly colored.
Let B be the biconnected component of �G.

Check if B can be written as a correct path of chordless cycles.
If so, let (C;S) denote this path.

Delete all chordless cycles Ci, 1 < i < p, for which ei�1 = ei from (C;S).
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Lemma 4.5. Let G be a biconnected three-colored partial two-path which consists of
a biconnected component with sticks. Suppose �G is properly colored and let B denote
the biconnected component of �G, and let (C;S) be a correct path of chordless cycles
for B, with C = (C1;:::; Cp) and S = (e1;:::; ep�1). Let G0 = �G[V �W ], where W is
the set of vertices w 2 V (G) for which w 2 V (Ci) � ei for some i, 1 < i < p, and
ei�1 = ei. There is a proper path decomposition of �G if and only if there is a proper
path decomposition of �G[V �W ].

Proof. If PD is a proper path decomposition of �G, then PD[V �W ] is a proper path
decomposition of G0.

Suppose PD is a proper path decomposition of G0. For each ei = fv; v0g in �G,
1 < i < p, with ei�1 = ei, ei is a middle edge of G0, and hence we can add a node
containing fv; v0; wg for the vertex w 2 W \V (Ci), since c(w) 6= c(v) and c(w) 6= c(v0).

2

So we may further assume that there is no ei, 1 < i < p, such that ei�1 = ei.
Let j be such that 1 � j < p. The sticks that are adjacent to vertices v 2 V (Cj)
with v =2 ej�1 [ ej clearly must occur within the occurrence of Cj in any proper path
decomposition of G. Let ej = fv; v0g. We now consider the sticks adjacent to v and v0.

Lemma 4.6. Let G be a biconnected three-colored partial two-path which consists of
a biconnected component with sticks. Suppose �G is properly colored and let B denote
the biconnected component of �G, and let (C;S) be a correct path of chordless cycles for
B, with C = (C1;:::; Cp) and S = (e1;:::; ep�1). Suppose there is no i, 1 � i < p � 1,
such that ei = ei+1. Let W1;W2 � V (G)� V (B) be de�ned as follows.

W1 = fw 2 V (G)� V (B) j 9i;ei=fv;v0g fv; wg 2 E(G)^ c(w) 6= c(v0) g

W2 = fw 2 V (G)� V (B) j 9i;ei=fv;v0g v 2 ei+1 ^ fv; wg 2 E(G) g

There is a proper path decomposition of �G if and only if there is a proper path decom-
position of G0 = �G[V �W1 �W2].

Proof. If PD is a proper path decomposition of �G, then PD[V �W1�W2] is a proper
path decomposition of G0.

Let PD be a proper path decomposition of G0. Let 1 � j � p� 1 and ej = fv; v0g
such that fv; wg 2 E(G) and c(w) 6= c(v0). Since ej is a middle edge, in each proper
path decomposition of G, we can add a node fv; v0; wg for each stick w of v or v0 if
c(w) 6= c(v) and c(w) 6= c(v0). Let PD0 be the path decomposition obtained from PD

by doing this for all vertices of W1. PD
0 is a proper path decomposition of width two

of �G[V �W2].
Let j, 1 < j � p� 1, such that ej�1 \ ej = fvg. Suppose Cj occurs in (Vl;:::; Vl0) in

PD0. ej�1 and ej are end edges of Cj , which means that for all i, l � i � l0, v 2 Vi.
There are at least two vertices u; u0 2 V (Cj) � fvg for which fu; u0g 2 E(Cj), and
hence c(u) 6= c(u0). This means that there is a node in PD0 which contains v and u,
and there is a node which contains v and u0. Hence, according to Lemma 4.2, for all
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Let VS � V (C) be a set of starting vertices, let (j � l) mod n 6= 0.

PPW20(G; VS; j; l):ft =8>>><
>>>:

true if there is a proper path decomposition PD = (V1;:::; Vt)
of G(j; l)[ ffvj ; vg 2 E(G) j v 2 V (G)� V (C)g
^ vj ; vl 2 Vt ^ 9v2VS

v 2 V1

false otherwise

PPW20(G; VS; j; l):lt =8>>><
>>>:

true if there is a proper path decomposition PD = (V1;:::; Vt)
of G(j; l)[ ffvl; vg 2 E(G) j v 2 V (G)� V (C)g
^ vj ; vl 2 Vt ^ 9v2VS

v 2 V1

false otherwise

Because of Lemma 4.3, the recursive description of PPW20 is the same as the
recursive description of PPW2, but with a di�erent initialization.

PPW20(G; VS; j; l):ft =
8>>><
>>>:

(vj 2 VS) _ (vl 2 VS ^ :sc(vl)(vj)) if (j � l) mod n = 1

c(vj) 6= c(vl) ^
(PPW20(G; VS; j � 1; l):ft^ :sc(vl)(vj) _
PPW20(G; VS; j; l+ 1):lt ) if (j � l) mod n > 1

PPW20(G; VS; j; l):lt =
8>>><
>>>:

(vl 2 VS) _ (vj 2 VS ^ :sc(vj)(vl)) if (j � l) mod n = 1

c(vj) 6= c(vl) ^
(PPW20(G; VS; j � 1; l):ft _
PPW20(G; VS; j; l+ 1):lt ^ :sc(vj)(vl) ) if (j � l) mod n > 1

Using this description, there is a proper path decomposition of G in which one
of the vertices of VS occurs in the leftmost node, and one of the vertices of VE oc-
curs in the rightmost node, if and only if there is some j with vj 2 VE, such that
PPW20(G; VS; j; j + 1):ft is true and :sc(vj)(vj+1), or PPW20(G; VS; j; j + 1):lt is
true, or PPW20(G; VS; j � 1; j):ft is true, or PPW20(G; VS; j � 1; j):lt is true and
:sc(vj)(vj�1). Note that with these de�nitions, cases with starting vertices and ending
edges can be handled using PPW20, and cases with starting edges and ending vertices
can be handled with PPW2.

For a given partial two-path G which consists of a chordless cycle C with sticks
connected to it, we can compute PPW2 and PPW20 in O(n2), where n = jV (G)j,
with a similar function as COMP PPW2 in Section 4.1.

Biconnected Components with Sticks

We now consider partial two-paths which consist of a biconnected component with
sticks connected to it.
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and vj and vl are in the rightmost node as follows. First add a node Vt+1 = fvj�1; vj; vlg
on the right side of Vt, next for each stick w of vj , add a node fvj ; vl; wg on the right side
of Vt+1. This is possible since c(w) 6= c(vl) for each stick w of vj . Then the constructed
path decomposition satis�es the conditions, hence PPW2(G;ES; j; l):ft holds.

Next suppose PPW2(G;ES; j; l + 1):lt holds. Let PD = (V1;:::; Vt) be a proper
path decomposition of G(j; l + 1) and the sticks of vl+1 such that e � V1, e 2 ES,
and vj ; vl+1 2 Vt. Then we can make a proper path decomposition of G0 as follows.
Note that each stick of vj either has color c(vl) or c(vl+1). First, for each stick w of
vj of color c(vl), add a node fvj ; vl+1; wg on the right side of Vt. Next, add a node
fvj ; vl+1; vlg on the right side of these nodes. After that, add a node fvj ; vl; wg for each
stick w of vj which has color c(vl+1). This gives the desired path decomposition, and
hence PPW2(G;ES; j; l):ft holds.

For the `only if' part, suppose PPW2(G;ES; j; l):ft is true. Again, let G0 be the
supergraph of G(j; l) which consists of G(j; l) and all sticks of vj . Let PD = (V1;:::; Vt)
be a proper path decomposition of G0 such that e � V1 for some e 2 ES and vj ; vl 2 Vt.
Then clearly c(vj) 6= c(vl). Let Vm and Vm0 , 1 � m;m0 � t, be the rightmost nodes
containing edge fvj�1; vjg and fvl; vl+1g, respectively. First suppose m0 � m. Then
PPW2(G;ES; j � 1; l):ft holds, since (V1;:::; Vm) is a proper path decomposition of
G(j � 1; l) and the sticks of vj�1, and vj�1; vl 2 Vm. Furthermore, the sticks in G0

adjacent to vj must occur on the right side of Vm, since vj and its sticks are not in
C(j � 1; l), and hence can not occur within its occurrence. But all nodes Vi, m + 1 �
i � t, contain only vj and vl of C(j; l), hence all sticks of vj can not have color c(vl).
Hence :sc(vl)(vj). In the same way we can show that for the case that m � m0,
PPW2(G;ES; j; l+ 1):lt must hold. 2

Let G be a partial two-path consisting of a chordless cycle C with sticks. If we want
to know whether there is a proper path decomposition of G in which the leftmost node
contains one of the edges in ES for some ES � E(C), and the rightmost node contains
one of the edges in EE, for some EE � E(C), then we can use the de�nition of PPW2
in the form as it is given: this proper path decomposition exists if and only if for some
j such that fvj ; vj+1g 2 EE, PPW2(G; feg; j; j+ 1):ft is true and vj+1 has only sticks
of color i 2 f1; 2; 3g with i 6= c(vj), or PPW2(G; feg; j; j+ 1):lt is true and vj has only
sticks of color i 2 f1; 2; 3g with i 6= c(vj+1). However, it is also possible that we want
to know whether there exists any proper path decomposition of G. In that case, we can
not use the de�nition of PPW2 in the form in which it is given above. According to
Lemma 4.3, there is a proper path decomposition of G if and only if there is a proper
path decomposition of G in which sticks of at most one vertex of C occur on the left
side of the occurrence of C, and sticks of at most one vertex of C occur on the right
side of the occurrence of C. In that case, we can consider the problem for a given set
VS � V (C) of starting vertices and a set VE � V (C) of ending vertices, whether there
exists a proper path decomposition of G in which a vertex of VS occurs in the leftmost
node, and a vertex of VE occurs in the rightmost node. We can use a modi�ed version
of PPW2, which we call PPW20. It is de�ned as follows.
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8>>><
>>>:

true if there is a proper path decomposition PD = (V1;:::; Vt)
of G(j; l)[ ffvj ; wg 2 E(G) j w 2 V (G)� V (C)g
^ vj ; vl 2 Vt ^ 9e2ES

e � V1

false otherwise

PPW2(G;ES; j; l):lt =8>>><
>>>:

true if there is a proper path decomposition PD = (V1;:::; Vt)
of G(j; l)[ ffvl; wg 2 E(G) j w 2 V (G)� V (C)g
^ vj ; vl 2 Vt ^ 9e2ES

e � V1

false otherwise

We say that, for given j and l, the sticks of vj are processed if PPW2(G;ES; j; l):ft
is true, and the sticks of vl are processed if PPW2(G;ES; j; l):lt is true. Note that,
because of Lemma 4.3, there is a proper path decomposition PD = (V1;:::; Vt) of G such
that e � V1 for some e 2 ES if and only if there is a j for which PPW2(G;ES; j; j +
1):ft_PPW2(G;ES; j; j+1):lt. We are also interested in some other cases, which will
be given later. First we show how PPW2 can be described recursively.

Lemma 4.4. Let G be a properly three-colored partial two-path consisting of a chordless
cycle with sticks. Let (j � l) mod n 6= 0, and let ES � E(C) be a set of starting edges.
Then PPW2(G;ES; j; l) can be de�ned recursively as follows.

PPW2(G;ES; j; l):ft =
8>>><
>>>:

:sc(vl)(vj) ^ fvj ; vlg 2 ES if (j � l) mod n = 1

c(vj) 6= c(vl) ^
(PPW2(G;ES; j � 1; l):ft^ :sc(vl)(vj) _
PPW2(G;ES; j; l+ 1):lt ) if (j � l) mod n > 1

PPW2(G;ES; j; l):lt =8>>><
>>>:

:sc(vj)(vl) ^ fvj ; vlg 2 ES if (j � l) mod n = 1

c(vj) 6= c(vl) ^
(PPW2(G;ES; j � 1; l):ft _
PPW2(G;ES; j; l+ 1):lt ^ :sc(vj)(vl) ) if (j � l) mod n > 1

Proof. We only prove the lemma for PPW2(G;ES; j; l):ft. The proof for
PPW2(G;ES; j; l):lt is similar. If (j � l) mod n = 1, then there is a proper path
decomposition of G(j; l) with the sticks of vj with vj and vl in the leftmost and the
rightmost node if and only if fvj ; vlg 2 ES, and no stick of vj has color c(vl). Now
suppose (j � l) mod n 6= 1.

For the `if' part, �rst suppose PPW2(G;ES; j � 1; l):ft ^ :sc(vl)(vj) holds. Let
PD = (V1;:::; Vt) be a proper path decomposition of G(j � 1; l) and the sticks of vj�1
such that e � V1, e 2 ES, and vj�1; vl 2 Vt. Let G0 be the supergraph of G(j; l) which
consists of G(j; l) and all sticks of vj , i.e. G0 = G(j; l)[ f sticks of vj g. Then we can
transform PD into a proper path decomposition of G0 such that e is in the leftmost node
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leftmost node of PD containing u0 and a stick of u0. Delete u and all sticks of u from all
nodes in (V1;:::; Vl�1), and delete u0 and all sticks of u0 from all nodes in (V1;:::; Vl0�1).
Note that the obtained path decomposition is still a proper path decomposition of G.
Suppose w.l.o.g. that l < l0. Vl0 contains u, u0 and a stick w of u0, but Vl0�1 does not
contain w. Hence we can transform PD as follows. Delete u00 from all nodes, and add
a node fu; u0; u00g between Vl0�1 and Vl0 . The obtained path decomposition is indeed a
proper path decomposition of G, and there is at most one vertex u for which a stick of
u occurs on the left side of the occurrence of C. In the same way, we can transform PD

such that there is at most one node u for which a stick of u occurs on the right side of
the occurrence of C. Now select v and v0 as follows. Let (Vj;:::; Vj0) again denote the
occurrence of C in (possibly transformed) PD. If j = 1, let v be an arbitrary vertex
of V1 \ V (C). If j > 1, let v 2 Vj \ V (C) such that there is a stick w of v such that
fv; wg occurs on the left side of Vj . Similarly for v0 and Vt. Let W be the set of sticks
adjacent to v and v0. Then PD[V �W ] is a proper path decomposition of G[V �W ]
in which v occurs in the leftmost node and v0 in the rightmost node. 2

For each j; l, j 6= l, let G(j; l) denote the graph consisting of C(j; l), and the sticks
adjacent to all vertices in I(j; l)� fvj ; vlg, i.e.

V (G(j; l)) = V (C(j; l))[ fw 2 V (G)� V (C) j 9v2V (C(j;l))�fvj;vlg fv; wg 2 E(G) g;

E(G(j; l)) = ffvj ; vlgg [ f fv; wg 2 E(G) j v; w 2 V (G(j; l))g g:

For an example, see Figure 22.
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Figure 22: A graph G which consists of a chordless cycle with sticks, and the graph
C(2; 10). Note that G is not equal to G(j; j + 1) if vjor vj+1 has sticks.

We now extend PPW2 as follows. Let ES be a set of starting edges of C. Then
for each j; l, j 6= l, PPW2(G;ES; j; l) is a record with �elds ft and lt, that are de�ned
as follows.

PPW2(G;ES; j; l):ft =
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Figure 21: Part I shows a three-colored chordless cycle C, V (C) = fv1;:::; v8g, with
a proper path decomposition of C and the corresponding interval completion. Each
vertex vi 2 V (C) has a color in f1; 2; 3g, which is given with the vertex. In the path
decomposition, edge fv7; v8g occurs in the leftmost node and edge fv2; v3g occurs in the
rightmost node. with a proper path decomposition of C. In Part II, the chordless cycle
C is extended with three sticks w1, w2 and w3, and the proper path decomposition of
C is extended into a proper path decomposition for C and its sticks, with edge fv7; v8g
in the leftmost node and edge fv2; v3g in the rightmost node. The extension is done as
is shown in the proof of Lemma 4.2. Note that if, e.g. v5 would have a stick of color 3,
then the proper path decomposition of part I could not have been extended.
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e in the leftmost node, and e0 in the rightmost node by doing the following for each
vertex v 2 V (C), each j 2 f1; 2; 3g, and each stick w of v with color j. In Figure 21,
an example of this transformation is given. Suppose w.l.o.g. that v 2 V (P1). There
is a node Vi, 1 < i < t, and a vertex v0 2 V (P2) with c(v0) 6= j and fv; v0g =2 E(C)
such that Vi contains v and v0. Let C0 be the graph obtained from C by adding edge
fv; v0g. PD is also a proper path decomposition of C0. Furthermore, C0 consists of
two chordless cycles which have edge fv; v0g in common. Lemma 3.3 shows that edge
fv; v0g is a middle edge of C0. Hence either there is a node fv; v0g in PD or we can add
such a node to PD. Furthermore, we can add stick w to this node. This completes the
proof of the `if' part.

For the `only if' part, suppose PD = (V1;:::; Vt) is a proper path decomposition of
G with e � V1, e

0 � Vt. We show that PD0 = PD[V (C)] = (V 0
1;:::; V

0
r) is a proper

path decomposition of C which satis�es the conditions stated in the lemma. Each node
Vi contains at least one vertex of P1 and at least one vertex of P2. Let v 2 V (P1),
j 2 f1; 2; 3g, and suppose sj(v) is true. Let w be a stick of v of color j. Then there is
a v0 2 V (P2) and a node Vi, 1 � i � t, such that Vi = fv; v0; wg. Hence there is a node
V 0
i0 in PD0 such that 1 � i0 � r and V 0

i0 contains v and v0. This completes the proof of
the `only if' part. 2

Lemma 4.3. Let G be a properly colored partial two-path consisting of a chordless
cycle C with sticks. There is a proper path decomposition of G if and only if there are
vertices v; v0 2 V (C) such that there is a proper path decomposition PD = (V1;:::; Vt)
of the graph G0 = G[V �W ], where W is the set of sticks of v and v0 in G, and V1 and
Vt contain an edge of C, v 2 V1 and v0 2 Vt.

Proof. For the `if' part, suppose there are v and v0 such that there is a proper path
decomposition of G0 = G[V �W ], where W is the set of sticks adjacent to v and v0,
such that v is in the leftmost node and v0 is in the rightmost node, and the leftmost and
rightmost node contain an edge of C. Then we can make a proper path decomposition
of G as follows. For each stick w adjacent to v, add a node fv; wg in front of the
leftmost node. If v0 6= v, do the same for v0 on the right side of the rightmost node.

For the `only if' part, suppose there is a proper path decomposition PD = (V1;:::; Vt)
of G. Suppose w.l.o.g. that V1 and Vt contain an edge. Suppose C occurs in (Vj;:::; Vj0),
1 � j � j0 � t. We transform PD in such a way that there is at most one v 2 C which
has a stick w such that fv; wg occurs on the left side of Vj , and similar for the right
side of Vj0 . If j = 1, then there is no stick occurring on the left side of Vj . Suppose
j > 1. Then there is a u 2 V1 and w 2 V1 such that u 2 V (C), w =2 V (C) and
fu; wg 2 E(G). There is at most one other u0 2 V (C) for which there is a stick w0 of u0

such that fw0; u0g occurs within (V1;:::; Vj�1), since otherwise there would be a node Vi,
1 � i < j for which jVij > 3. Suppose there is such a vertex u0. Then Vj contains u and
u0, but since Vj�1 also contains u and u0, fu; u0g =2 E(G), hence there is a u00 2 V (C)
such that Vj = fu; u0; u00g and fu; u00g 2 E(C) and fu0; u00g 2 E(C). There can be no
sticks adjacent to u00, hence we can transform PD as follows: let l and l0 be such that
1 � l; l0 < j, Vl is the leftmost node of PD containing u and a stick of u, and Vl0 is the
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4.2 Biconnected Partial Two-Paths with Sticks

Before giving an algorithm for trees, we �rst give an algorithm for partial two-paths
which consist of a biconnected component with sticks connected to it. A biconnected
component with sticks is a connected graph G = (V;E) which contains one biconnected
component B, and all vertices in the set W = V � V (B) are adjacent to exactly
one vertex, which is in V (B). The vertices in W are the sticks. The algorithm for
biconnected components with sticks will be used for the tree algorithm, and for the
algorithm for general partial two-paths.

The algorithm for biconnected components with sticks is derived from the algorithm
for biconnected components. Therefore, we �rst consider chordless cycles with sticks.

Cycles with Sticks

Let G be a properly colored graph, which consists of a cycle C and sticks connected
to the vertices of C. Let v 2 V (C) and i such that 1 � i � 3. We show that it
is not important how many sticks of color i are connected to vertex v, but we only
need to know whether v has sticks of color i. Suppose v has a stick w of color i,
and there is a proper path decomposition PD of C in which there is a node Vl with
fv; wg � Vl. Let G0 be the graph obtained from G by adding a stick w0 of color i which
is connected to v. We can make a proper path decomposition PD0 of G0 as follows.
Remove w from all nodes Vj with j 6= l, and add a node W between Vl and Vl+1 with
W = Vl[fw0g�fwg. So there is a proper path decomposition of G if and only if there
is a proper path decomposition of G0.

Definition 4.1. Let G be a properly colored graph, which consists of a cycle C and
sticks connected to C. For each v 2 V (C) and each i, 1 � i � 3,

si(v) = true , v has a stick of color i

The following lemmas shows the conditions which must hold for three-colored par-
tial two-paths which consist of a chordless cycle with sticks, to have a proper path
decomposition.

Lemma 4.2. Let G be a colored partial two-path consisting of a chordless cycle C with
sticks, let e = fx; yg 2 E(C) and e0 = fx0; y0g 2 E(C). Suppose there is path from x

to x0 which does not contain y or y0, and let P1 denote this path. Let P2 denote the
path from y to y0 which does not contain x or x0. There is a proper path decomposition
PD = (V1;:::; Vt) of G such that e � V1 and e

0 � Vt if and only if there is a proper path
decomposition PD0 = (V 0

1;:::; V
0
r) of C such that e � V 0

1 and e0 � V 0
r and PD0 contains

no two subsequent nodes which are the same, and for each vertex v 2 V (Pi), i 2 f1; 2g,

8j2f1;2;3g ( sj(v) ) 91�l�r 9v02V (P2�i) c(v
0) 6= j ^ v 2 V 0

l ^ v
0 2 V 0

l ): (1)

Proof. For the `if' part, suppose PD = (V1;:::; Vt) is a proper path decomposition
of C, such that e � V1, e0 � Vt, and for all v 2 V (C), the conditions stated in the
lemma are satis�ed. We transform PD into a proper path decomposition of G with
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for k := 2 to n � 1
! for j := 0 to n � 1

! P (j; k) := c(vj) 6= c(vj�k) ^
(P ((j � 1) mod n; k� 1)_ P (j; k� 1) )

rof

rof;
for all fvj ; vj+1g 2 EE

if P (j; n� 1) ! return true
2 :P (j; n� 1) ! skip
�

rof;
return false

end

Let G be a biconnected partial two-path, (C;S) a path of chordless cycles of G with
C = (C1;:::; Cp). There is a proper path decomposition of G if and only if for each i,
1 � i � p, there is a proper path decomposition of Ci with set of starting edges feig if
i > 1, E(Ci) otherwise, and set of ending edges fei+1g if i < p, E(Ci) otherwise.

For a given three-colored biconnected graph G, the algorithm is now as follows.

1. Find the cell completion �G of G and check if �G is properly three-colored. If not,
stop, the answer is no.
2. Check if �G can be written as a path of chordless cycles. If so, construct such a path
(C;S) with C = (C1;:::; Cp) and S = (e1;:::; ep�1). If not, stop, the answer is no.
3. For each chordless cycle Ci in the path, let m = jV (Ci)j, let ES = fei�1g if i > 1,
otherwise ES = E(Ci), and let EE = fei+1g if i < p, EE = E(Ci) otherwise. Compute
COMP PPW2(Ci; m; c; ES; E). If the computed value is true for each Ci, the answer
is yes, otherwise it is no.

Step 1 and 2 run in O(n) time, step 3 runs in O(n2) time, where n = jV (G)j.
The algorithm can be made constructive, in the sense that if there exists an in-

tervalization, then the algorithm outputs one, as follows. In function COMP PPW2,
construct an array PP of pointers, such that PP (j; k) contains the nil pointer if k = 1
or if P (j; k) is false, and if P (j; k) is true and k > 1, then PP (j; k) contains a pointer
to PP (j; k � 1) or to PP ((j � 1) mod n; k � 1). It contains a pointer to P (j; k � 1) if
P ((j�1) mod n; k�1) is false, and a pointer to P ((j�1) mod n; k�1) if P (j; k�1) is
false, and arbitrarily to P (j; k� 1) or P ((j� 1) mod n; k� 1) if P ((j� 1) mod n; k� 1)
and P (j; k � 1) are both true. The computation of PP can be done during the com-
putation of P . Afterwards, if there is an intervalization, then one can be constructed
as follows. Start with a j, 0 � j < n for which fvj ; vj+1g 2 EE and P (j; n � 1)
is true. Then follow the pointers from PP (j; n � 1) until the nil pointer is reached,
and add edge fvi; vi�kg for each i and k for which PP (i; k) is passed. Note that the
nil pointer is reached if the previous pointer pointed to PP (i; 1) for some i such that
fvi; v(i�1)modng 2 ES.
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path decomposition of Ci. If i = 1, then any edge of Ci may occur in the leftmost
end node. The set of edges of which one must occur in the leftmost end node of the
proper path decomposition of Ci is called the set of starting edges, and is denoted by
ES. So if i > 1, then ES = feig, and if i = 1, then ES = fE(Ci). In the same way we
de�ne the set of ending edges EE, which is the set of edges of which one must occur
in the rightmost end node of the proper path decomposition of Ci. So if i < p, then
EE = fei�1g, and if i = p, then EE = E(Cp). Note that if p = 1, then the set of
starting edges and the set of ending edges for C1 both consist of E(C1).

If jV (Ci)j = 3, then there is a proper path decomposition if and only if Ci is properly
colored, and this path decomposition can consists of one node, namely (V (Ci)).

We de�ne PPW2 as follows. Let ES � E(C) be a set of starting edges, let (j �
l) mod n 6= 0.

PPW2(C;ES; j; l) =8><
>:

true if 9PD=(V1;:::;Vt) PD is a proper path decomposition
of C(j; l) ^ vj ; vl 2 Vt ^ 9e2ES

e � V1

false otherwise

Let C be a three-colored chordless cycle which is properly colored, ES � E(C).
From the de�nition we can see that PPW2(C;ES; j; j � 1) is true if and only if edge
fvj ; vj�1g 2 ES. We use Lemma 4.1 to describe PPW2 recursively. Let ES � E(C),
(j � l) mod n 6= 0.

PPW2(C;ES; j; l) =8><
>:
fvj ; vlg 2 ES if j � l mod n = 1
c(vj) 6= c(vl) ^
(PPW2(C;ES; j � 1; l) _ PPW2(C;ES; j; l+ 1) ) if j � l mod n > 1

For a given properly three-colored cycle C, jV (C)j = n, and set of starting edges
ES � E(C), and ending edges EE � E(C), we can compute whether there is a proper
path decomposition of C with these starting and ending edges in O(n2) time using
dynamic programming with the following function as follows.

function COMP PPW2(C,n,c,ES,EE)
var i : int;

P : f0;:::; n� 1g � f1;:::; n� 1g ! ftrue; falseg;
fP denotes PPW2 as follows: P (j; k) � PPW2(C;ES; j; j � k) at the end g

n := jV (C)j;
for j := 0 to n� 1
! P (j; 1) := false;
rof;
for all fvj ; vj�1g 2 ES
! P (j; 1) := true;
rof;
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Figure 20: A chordless cycle C, and the cycles C(2; 1), C(10; 2) and C(2; 10). C is
equal to C(j; j + 1) for all j.

PD0 = (V 0
1;:::; V

0
r) of C(j; j + 2) such that fvl; vl+1g � V 0

1 and fvj ; vj+2g � V 0
r or

there is a proper path decomposition PD0 = (V 0
1;:::; V

0
r) of C(j � 1; j + 1) such that

fvl; vl+1g � V 0
1 and fvj�1; vj+1g � V 0

r .

Proof. For the `if' part, suppose there is a proper path decomposition PD0 =
(V 0

1;:::; V
0
r) of C(j; j + 2) with fvl; vl+1g � V 0

1 and fvj ; vj+2g � V 0
r . Then PD =

PD0 ++ (fvj ; vj+1; vj+2g) is a proper path decomposition of C which satis�es the ap-
propriate conditions. The other case is similar.

For the `only if' part, suppose there is a proper path decomposition PD = (V1;:::; Vt)
of C such that fvl; vl+1g � V1 and fvj ; vj+1g � Vt. Let Vm and Vm0 , 1 � m;m0 � t,
be the rightmost nodes containing edge fvj�1; vjg and fvj ; vj+1g, respectively. First
suppose m0 � m. Then Vm = fvj�1; vj; vj+1g. Furthermore, for each i, m < i � t,
Vi = fvj ; vj+1g, since if there is a Vi, m < i � t, such that v 2 Vi for some v 2
V (C) � fvj ; vj+1g, then v 2 Vm, which gives a contradiction. Let PD0 be the path
decomposition obtained from (V1;:::; Vm) by deleting vj from all nodes containing it.
Then PD0 is a proper path decomposition of C(j � 1; j + 1) with edge fvj�1; vj+1g in
the rightmost node and edge fvl; vl+1g in the leftmost node. For the case that m � m0,
we get a path decomposition for C(j; j + 2) in the same way. 2

Let G be a biconnected partial two-path, (C;S) a path of chordless cycles of �G with
C = (C1;:::; Cp) and S = (e1;:::; ep�1). Let 1 � i � p. We try to make a proper path
decomposition PD of G such that the chordless cycles of C occur in the same order in
PD as in C. If i > 1, then we want edge ei to occur in the leftmost node of the proper
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4 Algorithm for Intervalizing Three-Colored Graphs

In this section, we give an algorithm for determining whether there is an intervalization
of a given three-colored graph. The main algorithm has the following form: �rst the
structure of G is determined, as described in Section 3, and then the algorithms of this
section are used.

We �rst give an algorithm for biconnected graphs. After that, we give an algorithm
for partial two-paths which consist of a biconnected component with sticks, i.e. each
vertex v of the biconnected component has state N or state S. The algorithm for
graphs of this kind is used for the tree algorithm, which is given thereafter. In the
last subsection, we construct an algorithm for general graphs, by combining the other
algorithms.

4.1 Biconnected Graphs

To make a proper path decomposition of a properly three-colored biconnected partial
two-path G, we can make proper path decompositions of the chordless cycles of �G,
thereby taking into account which edges of each chordless cycle are shared with other
chordless cycles: these are the end edges of the chordless cycle. The proper path decom-
positions of the chordless cycles can then be concatenated in the order in which they
occur in the path of chordless cycles of G, and this gives a proper path decomposition
of G.

Hence we concentrate now on checking whether there exists a proper path decom-
position of a chordless cycle C. Let C be a three-colored chordless cycle. We �rst give
some notations. We denote the vertices and edges of C by V (C) = fv0; v1;:::; vn�1g,
and E(C) = f fvi; v(i+1)modng j 0 � i < n g. For each j, by vj we denote vertex vjmodn.
For each j; l, (j � l) mod n 6= 0, let I(j; l) denote the set of vertices of V (C) between
vl and vj , to be precise, those seen when going from vj to vl in negative direction, i.e.,

I(j; l) = f vi j (j mod n > l mod n ^ l � i � j)

_ (j mod n < l mod n ^ (l � i < n _ 0 � i � j)) g;

Furthermore, let C(j; l) denote the cycle with

V (C(j; l)) = I(j; l)

E(C(j; l)) = ffvj ; vlgg [ f fvi; vi+1g j vi 2 I(j; l)� fvjg g

Figure 20 shows an example of a chordless cycle C and some examples of C(j; l). Note
that if (j � l) mod n = 1 then by de�nition C(j; l) is a cycle consisting of two edges
between two vertices. The following lemma is used to obtain a dynamic programming
algorithm for our problem.

Lemma 4.1. Let C be a properly three-colored cycle, suppose jV (C)j � 3. Let j and
l be integers. There is a proper path decomposition PD = (V1;:::; Vt) of C such that
fvl; vl+1g � V1 and fvj ; vj+1g � Vt if and only if there is a proper path decomposition
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2. v =2 V (PG) and there is a connecting biconnected component B of G such that v
is in the component of G[V � V (PG)] which contains vertices of B. (recall that
a connecting biconnected component is a biconnected component which contains
two vertices of PG.)

First suppose case 1 holds. Let v0 2 V (PG) such that either v = v0 or v is in a
component of G[V � fv0g] which does not contain vertices of PG. Let G0 and G00

denote the components of G[V � fv0g] which contain vertices of PG. G0 and G00 have
pathwidth two, hence there are nodes Vj and Vj0 in PD such that Vj contains three
vertices of G0 and Vj0 contains three vertices of H2. Suppose w.l.o.g. that j < j0. Then
Vj contains a vertex of G[V � V (G0)], since V1 contains v, and Vj0 contains vertices of
G00. Contradiction.

Next suppose case 2 holds. Let B be the biconnected component of G for which v
is in the component of G[V � V (PG)] which contains a vertex of B. Let i, 1 � i � s,
be such that vi; vi+1 2 V (B). Let G0 be the subgraph of G induced by vi and the
component of G[V � fvig] containing G1. Similarly, let G00 be the subgraph of G
induced by vi+1 and the subgraph of G[V �fvi+1g] containing G2. In the same way as
for case 1, we can derive a contradiction.

We next show that V1 and Vt can not both contain a vertex of G1, unless s = 1.
Suppose s > 1 and v 2 V1, v

0 2 Vt such that v; v0 2 V (G1). G2 has pathwidth two,
which means that there is a node Vj, 1 � j � t, such that Vj contains three vertices
of G2. But Vj also contains a vertex of G1, which is a contradiction. In the same way,
we can prove that if s = 1, then V1 and Vt can not both contain a vertex of the same
component of G[V � fv1g]. 2
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vertex with state I2, at most two vertices with state E2, and if it has a vertex with state
I2, then it has no vertices with state E2. This means that we can give the following
de�nition.

Definition 3.10. Let G be a connected partial two-path which is not a tree. Let H be
the set of all components of GT which contain a vertex w of a biconnected component
which has state I2 or E2, let B be the set of biconnected components of G. The path
PG of G is a graph which is de�ned as follows.

V (PG) =
[

H2H

V (PH)

E(PG) = f e 2 E(G) j 9H2H e 2 E(PH) g [

f fv; v0g j 9H;H 02H;B2B H 6= H 0 ^ v 2 V (PH) ^ v0 2 V (PH) ^ v; v0 2 V (B) g

Note that PG is unique if G is not a tree, since if G is not a tree, then each component H
of GT has at least one vertex in a biconnected component, and hence jPH j = 1. V (PG)
may be empty in the case that G contains only one biconnected component. Note
furthermore that PG is in fact a concatenation of all paths PH of trees H 2 H, in such
a way that two paths which have an end point in a common biconnected component are
directly concatenated in PG. PG is not a real path of G, but it is the largest common
subsequence of all paths in G between the two end points of PG. The biconnected
components of G which contain two vertices of PG are called connecting biconnected
components. All other biconnected components are called non-connecting biconnected
components.

In each path decomposition PD = (V1;:::; Vt) of width two of G, the occurrences
of the paths PH , H 2 H, do not overlap, since they have no vertices in common.
Furthermore, they occur in the same order as in PG or in reversed order, because they
are connected to each other by biconnected components, which have pathwidth two.

We show the analog of Corollary 3.2 for general partial two-paths.

Lemma 3.20. Let G be a connected partial two-path, not a tree. Let PG = (v1;:::; vs).
Let PD = (V1;:::; Vt) be a path decomposition of width two of G. For each v 2 V1,
v0 2 Vt, the path from v to v0 contains PG as a subsequence.

Proof. If jV (PG)j = 0, the result clearly holds. Suppose jV (PG)j � 1. Let G1 be the
subgraph of G induced by vertex v1 and the components of G[V � fv1g] which do not
contain vertices of PG. Similarly, let G2 be the subgraph of G induced by vs and the
components of G[V � fvsg] which do not contain vertices of PG. We prove the lemma
by proving that V1 � V (G1) and Vs � V (G2) or vice versa, and if s = 1, then V1 and
Vt do not contain vertices of the same component of G[V � fv1g].

Suppose V1 contains a vertex v =2 V (G1) [ V (G2). We distinguish two cases.

1. v 2 V (PG)� fv1; vsg or there is an inner vertex v0 of PG such that v is a vertex
of a component of G[V � fv0g] which does not contain vertices of PG.
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v1

v2 v3

v4

u1

B1

B2

H1

H2

GB1
v1

v3

H2 v4 v4

v3

B2 u1

GH

H1v1 v3 GHu1

Figure 19: Example of the construction of a path decomposition of width two of a
partial two-path G, after the path decompositions of all components of GT and all
biconnected components, including their sticks, are constructed as in the proof of The-
orem 3.2.
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PDH is a path decomposition of width two of the graph GH . Furthermore, the
leftmost node of PDH contains u1, the rightmost node contains up. There are at most
two components of G[V � V (PH)] which have pathwidth two, and if p > 1, then at
most one of these components is connected to u1, and at most one to up.

Now consider the biconnected components which are not contained in some GH for
H a component of GT. For each biconnected component B of �G for which this holds, let
(C;S) be a correct path of chordless cycles with C = (C1;:::; Cp) and S = (e1;:::; ep�1).
Let v1;:::; vs denote the vertices of B which have one of the states in fE2; I1;E1g. Note
that B has no vertices with state I2, since then B would be in some graph GH , where
H is a component of GT. Let GB denote the subgraph of G which contains B and all
sticks of B which are adjacent to vertices with state S.

If s = 0, then make a path decomposition of width two of GB as follows. First make
a path decomposition PDB of width two of B, as is shown in the proof of Theorem 3.1,
but add one node on the left side which contains one of the edges in the former leftmost
node, and add one node on the right side which contains one of the edges in the former
rightmost node. For each v 2 V (B) which has state S, do the following. If B consists
of more than three vertices, then it can be seen that there are two nodes Vi and Vi+1,
such that Vi \ Vi+1 = fv; ug for some u 6= v. See e.g. Figure 3. For each stick w
adjacent to v, we add a node fw; v; ug between Vi and Vi+1. If B has three vertices,
let V (B) = fw1; w2; w3g. Then PDB = (fw1; w2; w3g). Then we can make a path
decomposition of width two of GB by adding on the left side for each stick w of w1 or
w2 a node fw1; w2; wg, and on the right side for each stick w of w3 a node fw3; wg.

If s > 1, then make a path decomposition of GB in the same way as for s = 0,
but with the appropriate vertices of fv1;:::; vsg occurring in the leftmost and rightmost
node. It can be derived from the pictures of all conditions (see Figures 13, 14, 15, and 16
which vertex must occur on which side; e.g. if v1 2 V (C1) and the component H of GT

which contains v1 is drawn on the left side of the biconnected componentin the picture
representing this case, then v1 must occur in the leftmost node, but if st(v1) = I1,
v1 2 V (C1)\V (Cp) and part of H is drawn on left side of the biconnected component,
and the other part is drawn on the right side, then v1 must occur in both end nodes
of the path decomposition. Note that this is well possible, since in the conditions, the
distance between two vertices vi and vj of which the components must occur on the
same side must be small enough.

If all these path decompositions are made, then they can be combined rather
straightforwardly into a path decomposition of width two of G. In Figure 19, an
example is given of how the combination is done. 2

For a given graph G, conditions 1, 2, 3, 4 and 5 can be checked in linear time:
conditions 1 and 3 can be checked in linear time in the way that is shown in Section 3.1
and Section 3.2. All other conditions can straightforwardly be checked in linear time.

Let G be a connected three-colored partial two-path, which is not a tree. We now
extend the de�nition of the path PH for all components H of GT to the path PG.
Consider the set H of all components of GT which contain a vertex w of a biconnected
component which has state I2 or E2. Each biconnected component has at most one
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contain edges of H , such that the leftmost node of PDH contains vertices of H1 and the
rightmost node contains vertices of H2. Let PD1

H = PD[V (H1)[fv1g[fsticks of v1g],
and PD2

H = PD[V (H2) [ fv1g]. Note that v1 is in the rightmost node of PD1
H and in

the leftmost node of PD2
H . Furthermore, make a path decomposition PD0

H of width
two of H , which is similar to PDH , but with vertex v1 added to each node.

In the �nal path decomposition of G, PD0
H is used if component H may occur

completely on the same side of the biconnected component which contains v1, and
PD1

H and PD2
H are used if two parts of H must occur on di�erent sides. In this case,

PD1
H occurs on the left side and PD2

H on the right side.
If p > 1, or p = 1 and st(u1) � E2, then do the following. Let GH denote

the induced subgraph of G which contains H and all components of G[V � V (PH)]
which have pathwidth zero or one. For each ui, each component of GH [V (GH) �
V (PH)] which is connected to ui, make a path decomposition of width zero or one,
and add ui to each node of this path decomposition. For each ui, concatenate the
obtained path decompositions of all components which are connected to ui, and let PDi

denote this path decomposition. Now make the following path decomposition: PDH =
PD1 ++ (fu1; u2g) ++PD2 ++ � � � ++ (fup�1; upg) ++PDp. See for example Figure 18.

u1 u2 u3
u4

H2

H3H1

H4

H5

w

u1

w

u1

u2

u2 u2

u3H1

u3

u4

u3

H3H2

u4

H5H4

GH

PDH

Figure 18: Example of the construction of PDH if the path PH has more than one
vertex. In the picture, H is the component of GT which contains u1, and H1;:::; H5 are
the components of GH which have pathwidth one.
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Theorem 3.2. Let G be a graph. G is a partial two-path if and only if the following
holds.

1. Each component H of GT has pathwidth at most two, and there is a path in H

which contains all vertices that are in a biconnected component of G and a path
of P2(H).

2. Each biconnected component B of �G contains only vertices which have one of the
states I2, E2, I1, E1, S and N, and at most four vertices of B do not have state
S or N.

3. Each biconnected component of �G can be written as a correct path of chordless
cycles.

4. Each biconnected component B of �G has one of the states in SI2 [ SE2 [ SI1 [
SE1 [ f () g and satis�es cond(st(B)).

5. Let H be a component of GT, suppose G 6= H, let PH = (u1;:::; up). If p > 1
and u1 is a vertex of a biconnected component and st(u1) = E2, then at most one
of the biconnected components which contain u1 does not satisfy cond1(st(B)).
Similar for up.

If p = 1, u1 is a vertex of a biconnected component and st(u1) = E2, then at most
two biconnected components containing u1 do not satisfy cond1(st(B)).

Proof. We �rst prove the `if' part. Suppose G is a partial two-path, then it follows
directly from Lemmas 3.13, 3.16, and 3.19 that 1, 2, 3 and 4 hold.

We now prove that 5 holds. Let H be a component of GT, suppose G 6= H , let
PH = (u1;:::; up). Suppose u1 2 V (B) for some biconnected component of G, and
st(u1) = E2. If p > 1 and u1 is a vertex of a biconnected component and st(u1) = E2,
then at most one of the biconnected components which contain u1 does not satisfy
cond1(st(B)). Similar for up. If p > 1, then, according to Lemma 3.14, there may
be at most one component in G0 = G[V (G) � V (PH)] which has pathwidth two and
which is adjacent to u1 in G. This means that at most one biconnected component
B containing u1 is allowed not to satisfy cond1(st(B)), since cond1(st(B)) holds if the
component of G[V �fu1g] which contains V (B)�fu1g has pathwidth one, as is shown
in the proof of Lemma 3.19. If p = 1, then in the same way, we can show that at most
two biconnected components B containing u1 are allowed not to satisfy cond1(st(B)).

Now we prove the `only if' part. Suppose G is a connected graph, which satis�es
conditions 1, 2, 3, 4 and 5. If G is a tree or G is biconnected, then G has pathwidth
two, as is shown in Theorem 3.1 and Lemma 3.7. Suppose GT is not empty and G
contains at least one biconnected component. We construct a path decomposition of
width two of G.

First consider GT. Let H be a component of GT. Let PH = (u1;:::; up). If p = 1
and st(u1) = E1, then make a path decomposition PDH of width one of H in which
u1 is in the rightmost node. If p = 1 and st(u1) = I1, then make a path decomposition
PDH of width one of H . Let H1 and H2 be the components of H [V � fv1g] which
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(E2)

W

(E2; I1)

(E2;E1)

(E2;E1;E1)

Figure 17: Symbollic representation of cond1(S) for possible biconnected component
state S = (st1;:::; sts) with st1 = E2. Cases that are symmetrical in C1 and Cp, or in
distinct vertices vi with the same state are given only once.
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(E2;E2;E1;E1) (E2; I1;E1;E1)

(E2;E1;E1;E1) (I1; I1;E1;E1)

(I1;E1;E1;E1) (E1;E1;E1;E1)

(I1;E1;E1)

W

(E1;E1;E1)

Figure 16: Symbollic representation of cond(S) for some possible biconnected compo-
nent state S for s = 3 and all possible states for s = 4. Cases that are symmetrical in
C1 and Cp, or in distinct vertices vi with the same state are given only once.
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s = 4

st(B) cond(st(B))

(E2;E2;E1;E1) (dst1(v1; v3)^dstp(v2; v4)) _ (dstp(v1; v3)^dst1(v2; v4)) _
(dst1(v1; v4) ^ dstp(v2; v3)) _ (dstp(v1; v4) ^ dst1(v2; v3))

(E2; I1;E1;E1) cond((E2;E2;E1;E1))

(E2;E1;E1;E1) (dst1(v1; v2)^dstp(v3; v4)) _ (dstp(v1; v2)^dst1(v3; v4)) _
(dst1(v1; v3)^dstp(v2; v4)) _ (dstp(v1; v3)^dst1(v2; v4)) _
(dst1(v1; v4) ^ dstp(v2; v3)) _ (dstp(v1; v4) ^ dst1(v2; v3))

(I1; I1;E1;E1) cond((E2;E2;E1;E1))

(I1;E1;E1;E1) cond((E2;E1;E1;E1))

(E1;E1;E1;E1) cond((E2;E1;E1;E1))

Let a 2 fI2;E2; I1;E1g. We denote by Sa the set of biconnected component states
for which s � 1 and st(v1) = a.

Note that all the biconnected component states are disjoint, i.e. each biconnected
component can have at most one state.

Lemma 3.19. Let G be a partial two-path. Each biconnected component B of �G has
one of the states in SI2 [ SE2 [ SI1 [ SE1, and satis�es cond(st(B)).

Proof. Let B be a biconnected component of �G, let (C;S) be a correct path of chordless
cycles of B with C = (u1;:::; up), S = (e1;:::; ep�1). Furthermore, let v1;:::; vs denote the
vertices of B which have one of the states in fI2;E2; I1;E1g, such that st(v1) � st(v2) �
� � � � st(vs). Then clearly s � 4. We have to show that (st(v1);:::; ; st(vs)) 2 Sst(v1)
and that cond((st(v1);:::; st(vs))) holds. If s = 0, then this is clear.

Suppose s > 0, let H be the component of GT which contains v1. If st(v1) = I2,
then v1 is an inner vertex of the path PH , and it follows from Lemma 3.14 that the
component of G[V � fv1g] which contains vertices of B must have pathwidth one. It
can easily be checked that if this is the case, then st(B) 2 SI2 and cond(st(B)) holds.

Suppose st(v1) 2 fE2; I1;E1g. Vertex v1 is end point of PH = (u1;:::; up).
Lemma 3.18 shows that st(B) 2 Sst(v1) and that cond(st(B)) holds. 2

Definition 3.9. Let G be a partial two-path, B a biconnected component of �G, and
(C;S) a correct path of chordless cycles for B, C = (C1;:::; Cp), S = (e1;:::; ep�1). Let
v1;:::; vs denote the vertices of B which do not have state N or S, such that st(vi) �
st(vi+1) for each i, 1 � i < s, suppose s � 1 and st(v1) = E2. Let G0 be the component
of G[V � fv1g] which contains V (B)� fv1g. cond1(st(B)) is de�ned as follows.

cond1(st(B)) , cond((I2; st(v2);:::; st(vs)))

Note that if st(v1) = E2 and cond1(st(B)) holds, then also cond(st(B)) holds. In
Figure 17, pictures are given of cond1(st(B)) for all values of st(B).
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(I2;E1;E1) (E2;E2; I1)

(E2; I1; I1)(E2;E2;E1)

(E2;E1;E1)

W

(I1; I1; I1)

(E2; I1;E1)

W

(I1; I1;E1)

Figure 15: Symbollic representation of cond(S) for some possible biconnected compo-
nent state S for s = 3. Cases that are symmetrical in C1 and Cp, or in distinct vertices
vi with the same state are given only once.
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W

(I2; I1)

(I2;E1) (E2;E2)

(E2; I1) (I1; I1)

(E2;E1)

W

(I1;E1)

W

(E1;E1)

W

Figure 14: Symbollic representation of cond(S) for each possible biconnected compo-
nent state S for s = 2. For state (I2; I1), the biconnected component is represented
in its normal way. Cases that are symmetrical in C1 and Cp, or in distinct vertices vi
with the same state are given only once.
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s = 2

st(B) cond(st(B))

(I2; I1) ( (81�i<p v1 2 ei ^ v2 2 ei) ^ jV (C1)j = jV (Cp)j = 3 ^
dst1(v1; v2) ^ dstp(v1; v2) ) _
( p = 1 ^ V (C1) = fv1; v2; u; wg ^
E(C1) = ffv1; ug; fv2; ugg; fv1; wg; fv2; wg^ p = 1^ st(u) =
st(w) = N )

(I2;E1) (81�i<p v1 2 ei) ^ (dst1(v1; v2) _ dstp(v1; v2))

(E2;E2) (v1 2 C1 ^ v2 2 Cp) _ (v1 2 Cp ^ v2 2 C1)

(E2; I1) cond((E2;E2))

(E2;E1) ((v1 2 C1 ^ v2 2 Cp) _ (v1 2 Cp ^ v2 2 C1) _
dst1(v1; v2) _ dstp(v1; v2))

(I1; I1) cond((E2;E2))

(I1;E1) cond((E2;E1))

(E1;E1) cond((E2;E1))

s = 3

st(B) cond(st(B))

(I2;E1;E1) (dst1(v1; v2) ^ dstp(v1; v3)) _ (dstp(v1; v2) ^ dst1(v1; v3))

(E2;E2; I1) (dst1(v1; v3) ^ dstp(v2; v3)) _ (dstp(v1; v3) ^ dst1(v2; v3))

(E2;E2;E1) (v1 2 V (C1)^dstp(v2; v3)) _ (v1 2 V (Cp)^dst1(v2; v3)) _
(v2 2 V (C1) ^ dstp(v1; v3)) _ (v2 2 V (Cp)^ dst1(v1; v3))

(E2; I1; I1) (dst1(v1; v3)^dstp(v2; v3)) _ (dstp(v1; v3)^dst1(v2; v3)) _
(dst1(v1; v2))^ dstp(v3; v2)) _ (dstp(v1; v2)^ dst1(v3; v2))

(E2; I1;E1) cond((E2;E2;E1))

(E2;E1;E1) ((v1 2 V (C1)^dstp(v2; v3))_ (v1 2 V (Cp)^dst1(v2; v3))_
(v2 2 V (C1)^dstp(v1; v3)) _ (v2 2 V (Cp)^dst1(v1; v3)) _
(v3 2 V (C1)^ dstp(v1; v2)) _ (v3 2 V (Cp)^ dst1(v1; v2)))

(I1; I1; I1) (dst1(v1; v3)^dstp(v2; v3)) _ (dstp(v1; v3)^dst1(v2; v3)) _
(dst1(v1; v2)^dstp(v3; v2)) _ (dstp(v1; v2)^dst1(v3; v2)) _
(dst1(v2; v1) ^ dstp(v3; v1)) _ (dstp(v2; v1) ^ dst1(v3; v1))

(I1; I1;E1) cond((E2;E2;E1))

(I1;E1;E1) cond((E2;E1;E1))

(E1;E1;E1) cond((E2;E1;E1))
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v1

v2
v3

v4

Figure 12: Legend for Figures 13, 14, 15, 16 and 17. A path of chordless cycles (C;S)
is represented by an ellipsis in which the vertical lines denote the common edges of
the chordless cycles. The leftmost chordless cycle represents C1, the rightmost one
represents Cp. The vertices that have one of the states in fI2;E2; I1;E1g are represented
by a dot. All other vertices are not drawn. A vertex that has state I2 is represented
as vertex v1, a vertex with state E2 is represented as vertex v2, a vertex with state
I1 is represented as vertex v3, a vertex that has state E1 is represented as vertex v4.
If dst1(u; v) holds for two vertices, then the vertices are both drawn in the leftmost
chordless cycle, and they are connected by a fat edge. If dstp(u; v) holds, then u and
v are both in the rightmost cycle, and they are connected by a fat edge. In the �gure,
dst1(v2; v4) holds.

(I2) (E2)

(I1) (E1)

()

Figure 13: Symbollic representation of cond(S) for each possible biconnected compo-
nent state S for s = 0 and s = 1. Cases that are symmetrical in C1 and Cp are given
only once.
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e1

C1 C2

v1

v2
v3

v4

Figure 11: Example for the de�nition of dst1(vi; vj). The picture shows a path of
chordless cycles (C;S) with C = (C1; C2), S = (e1). dst2(v2; v3) and dst2(v3; v4) hold.
dst1(v2; v4) and dst2(v2; v4) do not hold, since the edge between v2 and v4 is edge e1.
dst1(v1; v4) does not hold, since the common neighbor of v1 and v3 has state S.

Definition 3.8. (Biconnected Component States). Let G be a partial two-path, B
a biconnected component of �G, and (C;S) a correct path of chordless cycles for B,
C = (C1;:::; Cp), S = (e1;:::; ep�1). Let v1;:::; vs denote the vertices of B which do not
have state N or S, such that st(vi) � st(vi+1) for each i, 1 � i < s. The state of B
is denoted by st(B), and is de�ned as st(B) = (st(v1); st(v2);:::; st(vs)). Because G is
a partial two-path, the vertices v1;:::; vs satisfy a number of conditions. For each value
of st(B), we denote these conditions by cond(st(B)). The conditions will be de�ned in
the following tables.

s = 0: cond(()) = true.
s = 1

st(B) cond(st(B))

(I2) 81�i<p v1 2 ei
(E2) v1 2 V (C1) [ V (Cp)
(I1) v1 2 V (C1) [ V (Cp)
(E1) v1 2 V (C1) [ V (Cp)
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x

y

X

e1

Y

X00

C1 C2

C1 C2e1 e1
x

y

X
Y

x

y

x x X00

I

II

Figure 10: Part I is a partial two-path G which contains a path with chordless cycles
(C;S) with C = (C1; C2), S = (e1). Vertices x; y 2 V (C1) both have state E2. Part
II shows the order of the occurrences of C1, C2, X , Y and X 00 in a possible path
decomposition of width two of G, as it is used for the proof of Lemma 3.18.

dst1(u; v) , u; v 2 V (C1) ^

(fu; vg 2 E(C1)_

9w2V (C1) fu; wg; fv;wg 2 E(C1) ^ st(w) = N)

If p > 1 then

dst1(u; v) , u; v 2 V (C1) ^

(fu; vg 2 E(C1)� fe1g _

9w2V (C1) fu; wg; fv;wg 2 E(C1)� fe1g ^ st(w) = N)

dstp(u; v) , u; v 2 V (Cp) ^

(fu; vg 2 E(Cp)� fep�1g _

9w2V (Cp) fu; wg; fv; wg 2 E(Cp)� fep�1g ^ st(w) = N)

In Figure 11, an example is given of dst for a path of chordless cycles with two chordless
cycles.

In the following de�nition, the state of a biconnected component is de�ned. Fur-
thermore, for each state a de�nition is given of a condition which must hold for the
biconnected component of that state, such that the graph can be a partial two-path.
In Figures 13, 14, 15, and 16 there is a picture of the condition for each state. The
pictures are symbolically. In Figure 12 the legend is given.
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Similarly, let Y and Y 0 be de�ned for y (see for example Figure 10). Then x; y 2 V (C1),
and

1. either fx; yg 2 E(C1) � fe1g or there is a vertex z 2 V (B) such that fx; zg 2
E(C1)� fe1g and fz; yg 2 E(C1)� fe1g and st(z) = N and

2. either X is a partial one-path such that x is not an inner vertex of P1(X) but
there is a path containing P1(X) and x, or Y is a partial one-path such that y is
not an inner vertex of P1(Y ) but there is a path containing P1(Y ) and y.

Proof. 1. Both x and y occur in Vj , so x; y 2 V (C1). There is a neighbor of x
in Vj and a neighbor of y in Vj. This means that, according to Lemma 3.17, either
fx; yg 2 E(C1) or there is a z 2 V (C1) such that fx; zg 2 E(C1) and fy; zg 2 E(C1).
If fx; yg = e1, then fx; yg is a double end edge of C1, hence jV (C1)j = 3, so there is a
z 2 V (C1) such that fx; zg; fy; zg 2 E(C1) � fe1g. If there is a z 2 V (C1) such that
fx; zg 2 E(C1) and fy; zg = e1, then e1 also is a double end vertex, hence jV (C1)j = 3,
and fx; yg 2 E(C1)� fe1g.

Suppose fx; yg =2 E(C1)� fe1g, and let z be the common neighbor of x and y such
that Vj = fx; y; zg. Let Vi, i < j, be the rightmost node containing an edge of X 0 or
Y 0. Then Vi = fx; y; z0g for some z0 2 V (X 0) [ V (Y 0). This means that there can be
no edge incident with z which occurs on the left side of Vj. In the same way, we can
prove that there can be no edge incident with z which occurs on the right side of Vj .

2. Suppose X occurs in (Vl;:::; Vl0), 1 � l � l0 � j, and Y occurs in (Vm;:::; Vm0),
1 � m � m0 � j, and suppose that m < l. See also part II of Figure 10. It is clear
that x 2 Vl0 and y 2 Vm0 , and that X has pathwidth one. Furthermore, the rightmost
node containing an edge of X contains an end point v of the path P1(X) and a stick
v0 adjacent to it. This means that x 2 fv; v0g, hence x is either an end point of P1(X)
or a stick adjacent to an end point of P1(X). 2

From this lemma, we can derive the following corollary.

Corollary 3.4. Let G be a partial two-path, B a biconnected component of �G,
(C;S) a correct path of chordless cycles of B. Let x1;:::; xs 2 V (B) such that
st(xi) 2 fI2;E2; I1g. Then s � 3. Furthermore, if s = 3, there is a j, 1 � j � 3,
such that st(xj) = I1 and xj is a double end vertex of B, which implies that xj 2 ei for
each i.

To be able to give the possible states for the biconnected components in a partial
two-path, we �rst give a de�nition.

Definition 3.7. (Distance). Let G be a partial two-path, B a bicon-
nected component of �G and (C;S) a correct path of chordless cycles for B,
C = (C1;:::; Cp), S = (e1;:::; ep�1). For each u; v 2 V (B), dst1(u; v) 2
ftrue; falseg and dstp(u; v) 2 ftrue; falseg are de�ned as follows. If p = 1, then
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order. Let C = (C1;:::; Cp) denote this order. Let S = (e1;:::; ep�1) be the sequence of
edges of B for which ei = V (Ci) \ V (Ci+1) for each i, 1 � i < p. Clearly, (C;S) is a
path of chordless cycles of B.

Let Ci be such that ei�1 = ei, let v 2 V (Ci)�ei. Then st(v) = N, since ei is double
end edge of Ci, and hence any edge adjacent to v could not occur within the occurrence
of Ci, and not within the occurrence of any other Cj.

Finally, we prove that all vertices of the component which are not in V (C1) or
V (Cp) may not be adjacent to something else than sticks. Suppose there is a v 2
V (B)� (V (C1) [ V (Cp)) which does not have state N or S. Let C be the cycle in B
with V (C) the set of vertices of V (B) except all v 2 V (B) for which v 2 V (Ci)� ei for
some i, 1 < i < p, for which ei�1 = ei, and E(C) the set of edges in B[V (C)] except
the edges ei, 1 � i < p. Then v is an end vertex of C. C occurs within (Vj;:::; Vj0),
and Vj and Vj0 can not contain any vertices of B which are not in C1 or Cp, which is
a contradiction. 2

From Lemma 2.6, we can derive that there may be at most four vertices of B which
have state E1, I1, E2 or I2. Furthermore, if (C;S) is a correct path of chordless cycles,
and then V (C1)� V (Cp) and V (Cp)�V (C1) may each have at most two vertices with
state in fE1;I1;E2;I2g.

Let G be a partial two-path, B a biconnected component of �G, x 2 V (B) and
st(x) 2 fI2;E2; I1;E1g. Let X be a component of G[V � V (B)] which is connected
to x in G such that jV (X)j > 1, and let X 0 denote G[V (X) [ fxg]. Then in each
path decomposition of width two of G, all edges of X 0 occur on the same side of
the occurrence of B, since suppose there are two edges e; e0 2 E(X 0) which occur on
di�erent sides of the occurrence of B. There is a path between e and e0 which does
not contain x, hence each node in the occurrence of B contains a vertex of this path,
which is not possible since B has pathwidth two.

Lemma 3.17. Let G be a partial two-path, C a cycle of �G. Let PD = (V1;:::; Vt) be
a path decomposition of width two of G, suppose C occurs in (Vj ;:::; Vj0). Let v 2 Vj
such that v 2 V (C). Vj also contains a neighbor of v.

Proof. Let fx; yg 2 E(C) be such that x; y 2 Vj. Let Vm, j � m � j0, be the leftmost
node which contains another edge of C. Then Vm contains x, y and a neighbor z of x
or y in C. Then either m = j and v = z or v 2 fx; yg. 2

In the next lemmas, we show that the vertices which have state E1, I1, E2 or I2
must have a `small distance' to each other.

Lemma 3.18. Let G be a partial two-path, B a biconnected component of �G. Let PD be
a path decomposition of width two of G, such that B occurs in (Vj;:::; Vj0), let (C;S) be a
path of chordless cycles of B, such that the order in which the chordless cycles of B occur
in PD corresponds with C. Let x; y 2 V (B), suppose st(x); st(y) 2 fI2;E2; I1;E1g. Let
X 0 be the graph consisting of all components of G[V � V (B)] which are connected to x
in G, and which occur on the left side of (Vj ;:::; Vj0), and let X denote G[V (X 0)[fxg].
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Figure 9: Examples of all vertex states. st(v1) = N, st(v2) = S, st(v3) = E1, st(v4) =
I1, st(v5) = st(v6) = st(v7) = E2 and st(v8) = I2. For each i, let Hi denote the
component of GT which contains vi. H1 and H5 consist of one single vertex. Vertices
v5, v6 and v7 give an example for each possibility with state E2. Combinations of
these possibilities are also possible. For i 2 f3; 4; 6g, the fat edges in Hi form the
path P1(Hi). For i 2 f7; 8g, the fat edges in Hi form the path PHi

. For i 2 f1;:::; 6g,
PHi

= (vi).

We can now show that, for a biconnected component B of the cell completion of
a partial two-path G, there is a path of chordless cycles (C;S) with C = (C1;:::; Cp)
in which all vertices of B which have state E1, I1, E2 or I2, are in C1 or Cp, and all
vertices v which are in some Ci with 1 < i < p and with ei = ei+1 and v =2 ei have
state N.

Definition 3.6. (Correct Path of Chordless Cycles). Let G be a partial two-path, B
a biconnected component of �G, and let (C;S) be a path of chordless cycles of B with
C = (C1;:::; Cp) and S = (e1;:::; ep�1). If (C;S) satis�es the following condition, then
(C;S) is called a correct path of chordless cycles.

8v2V (B) v =2 V (C1)[ V (Cp) ) st(v) 2 fN; Sg ^

81�i<p�1;v2V (Ci+1) ei = ei+1 ^ v =2 ei ) st(v) = N

Lemma 3.16. Let G be a partial two-path. Each biconnected component B of �G can
be represented by a correct path of chordless cycles.

Proof. Let PD = (V1;:::; Vt) be a path decomposition of width two of G, suppose
B occurs in (Vj ;:::; Vj0). According to Lemma 3.3, the chordless cycles occur in some
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Definition 3.5. (Vertex States). Let G be a partial two-path, B a biconnected
component of G. Let v 2 V (B), and let H denote the component of GT containing v.
The (vertex) state of v is denoted by st(v), and is de�ned as follows.

st(v) = N if v has no neighbors outside of B.

st(v) = S if v has only neighbors of degree one outside of B: only sticks are connected
to v.

st(v) = E1 if H has pathwidth one, PH = (v), v is adjacent to exactly one vertex
w =2 B which does not have degree one and w 2 V (H), and either v or w is end
point of P1(H).

In other words, B is the only biconnected component containing v, H has path-
width one and contains at least one edge which is not incident with v (hence
jP1(H)j = 1), PH = (v), and v is not an inner vertex of P1(H), but there is a
path in H containing v and P1(H).

st(v) = I1 if B is the only biconnected component containing v, H has pathwidth one
and contains at least one edge which is not incident with v, PH = (v), and v is
an inner vertex of P1(H).

st(v) = E2 if there is another biconnected component containing v, or H has pathwidth
one, PH = (v) and there is no path in H containing v and a path of P1(H), or
H has pathwidth at most two and PH 6= (v) but v is an end point of PH.

st(v) = I2 if H has pathwidth at most two and v is an inner vertex of PH .

The states are ordered in the following way. I2 � E2 � I1 � E1 � S � N.

Note that all possibilities are covered for v, and that all states are disjoint. In the
remainder of this section, we derive what combinations of states are possible for all
vertices of a biconnected component.

Lemma 3.15. Let G be a partial two-path, C a cycle in G. Let v 2 V (C), G0

be a component of G[V � V (C)] for which there is a vertex v0 2 V (G0) such that
fv; v0g 2 E(G). If G0 contains at least one edge, then v is an end vertex of C.

Proof. Let PD = (V1;:::; Vt) be a path decomposition of width two of G, suppose C

occurs in (Vj;:::; Vj0), and let fx; yg 2 E(C) such that x; y 2 Vj . Suppose E(G0) 6= ;,
let fu; wg 2 E(G0) such that fu; vg 2 E. Edge fu; wg can not occur in (Vj;:::; Vj0), so
suppose fu; wg occurs in Vl, l < j. Then either v 2 Vj or u 2 Vj . Suppose u 2 Vj,
and let Vp, j � p � j0, be the leftmost node containing v. Then each node in Vj ;:::; Vp
contains u. Furthermore, there is a node containing x, y, and another vertex of C
(Lemma 3.2), which means that x; y 2 Vp. This is only possible if v = x or v = y,
which means that v is an end vertex. 2
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if there is at least one vertex of H which is contained in a biconnected component of
G.

In Figure 8, a partial two-path G is given in which GT has one component H , with
P2(H) = (v3; v4; v5) and PH = (v1;:::; v5).

v1 v2 v3 v4 v5

Figure 8: A partial two-path G with one component H in GT. P2(H) = (v3; v4; v5)
and PH = (v1; v2; v3; v4; v5).

From the proof of Lemma 3.13 it can be seen that an analog of Corollary 3.2 also
holds for PH .

Corollary 3.3. Let G be a partial two-path, G not a tree, H a component of GT.
Let PD = (V1;:::; Vt) be a path decomposition of width two of G, suppose H occurs in
(Vj;:::; Vj0). There is a v 2 Vj \ V (H) and a v0 2 Vj0 \ V (H) such that the path from v

to v0 contains PH .

The following lemma shows some conditions for the structure of biconnected com-
ponents of a partial two-path G which contain a vertex of a component H of GT.

Lemma 3.14. Let G be a connected partial two-path which is not a tree, H a component
of GT, PH = (v1:::; vs) the path of H. Let G0 = G[V �V (PH)]. At most two components
of G0 may have pathwidth two. For each component G00 of G0 of pathwidth two, there
must be a v 2 V (G0) such that either fv; v1g 2 E(G) or fv; vsg 2 E(G), i.e. G00 is
connected to v1 or vs. If s > 1, then at most one component of pathwidth two may be
connected to v1, and at most one to vs.

Proof. Because of Lemma 2.5, at most two components of G0 may have pathwidth two.
If there is a component of width two adjacent to vi, 1 < i < s, then vi is a vertex which
separates G into three or more components of width two, and hence G has pathwidth
three. If s 6= 1 and there are two or more components of width two adjacent to v1, or
if s = 1 and there are three or more components of width two adjacent to v1, then v1
separates G into three components of width two, and hence G has pathwidth three. 2

For the vertices of each biconnected component of a partial two-path, we de�ne
states, which re
ect the structure of the subgraphs which are connected to them. In
Figure 9, an example is given for all possible states.
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3.3 Partial Two-Paths

A partial two-path consists of a number of biconnected components, and a number of
trees of pathwidth two, which are connected to each other in a certain way.

Definition 3.3. Let G be a partial two-path. The subgraph GT is the graph obtained
from G by deleting all edges of biconnected components of G.

Let G be a partial two-path. Clearly, the cell completion of each biconnected
component of G, can be written as a path of chordless cycles, and each component
of GT consists of a path with partial one-paths and sticks connected to it. Note that
the cell completion of G is equal to the graph obtained by making a cell completion of
each biconnected component of G. The number of possible ways in which biconnected
components and components of GT can be connected to each other is large. In this
section, we give a complete description of this structure. First we show that for each
component H of GT, the vertices of H which are contained in a biconnected component
of G all lie on one path, which also contains a path of P2(H). After that, we give for
each biconnected component of �G all possible interconnections with other biconnected
components of �G and components of GT.

Lemma 3.13. Let G be a partial two-path, H a component of GT. Let V
0 � V (H) be

the set of vertices which are vertices of biconnected components of �G. There is a path
in H which contains all vertices of V 0 and a path of P2(H).

Proof. Let PD = (V1;:::; Vt) be a path decomposition of G, suppose the vertices of H
occur in (Vj;:::; Vj0). Select v 2 Vj and v0 2 Vj0 such that v; v0 2 V (H). Let P denote
the path from v to v0. All vertices of V 0 are on P , since for each w 2 V 0, there is a
cycle C which contains w, hence there is a node Vi, j � i � j0, such that Vi contains
w and two other vertices of C, so Vi \ V (H) = fwg. Furthermore, if H has pathwidth
two, then there is a path in P2(H) which is a sub-path of P . 2

Definition 3.4. Let G be a partial two-path and H a component of GT. Let V 0 � V (H)
be the set of all vertices of H which are contained in a biconnected component of G.
PH denotes the set of all paths P in H for which there is a path in P2(H) which is
a sub-path of P 0, V 0 � V (P ) and there is no strict sub-path P 0 of P for which there
is a path in P2(H) which is a sub-path of P 0 and V 0 � V (P 0). If jPH j = 1, then PH
denotes the unique element of PH, and PH is called the path of H.

Let G be a partial two-path and H a component of GT. If jP2(H)j = 1, then clearly
jPH j = 1. If jP2(H)j > 1, then all elements of P2(H) are paths consisting of one vertex,
and all these vertices form a connected subgraph H 0 of H . This means that if there is
one vertex v 2 V (H) for which v is contained in a biconnected component, then there
is a unique shortest path containing v and a path from P2(H), since one of the vertices
of H 0 is closer to v than the others. If there are two of more vertices of H which are
contained in a biconnected component, then a similar argument holds. Hence jPH j = 1
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s � 3, then either for each i, 1 � i < s � 1, f(fvi; vi+1g) < f(fvi+1; vi+2g), or for
each i, f(fvi; vi+1g) > f(fvi+1; vi+2g). Suppose the �rst case holds. Then for each i,
1 � i � s, and each w 2 V (H) such that fvi; wg 2 E(H), the following holds. If i < s,
then f(fvi; wg) < f(fvi; vi+1), and if i > 1, then f(fvi; wg) > f(fvi�1; vi).

Proof. Follows straightforwardly from the de�nition of path decomposition. 2

In Figure 7, a path decomposition of the partial one-path of Figure 4 is given.

2

1 3
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6 7
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1 3 3 3 3

10 101010

11 12

13
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1615

14

Figure 7: A path decomposition of width one of the partial one-path of Figure 4.

The following lemma is used in the next sections.

Lemma 3.12. Let H be a tree of pathwidth two such that there is a v 2 V (H) for
which H [V � fvg] has pathwidth one. For each path P in H for which H [V � V (P )]
has pathwidth one, there is a v 2 V (P ) such that H [V � fvg] has pathwidth one.

Proof. Let P be a path in H for which H [V �V (P )] has pathwidth one. Let v 2 V (H)
be such that H [V � fvg] has pathwidth one. Suppose v =2 V (P ). Let H 0 denote the
component of H [V � V (P )] containing v. Let v0 2 V (P ) be such that there is a
w 2 V (H 0) such that fv0; wg 2 E(H). We show that H [V � fv0g] has pathwidth one.
The components that do not contain a vertex of P have pathwidth one because they
are components of H [V �V (P )]. All other components are subgraphs of the component
of H [V �fvg] which contains P . Hence these components also have pathwidth one. 2

The lemma implies that if jP2(H)j = 1, then the element of P2(H) is the intersection
of all paths P for which H [V � V (P )] has pathwidth one. Furthermore, it implies the
following result, which will be frequently used in the next section.

Corollary 3.2. Let H be a tree of pathwidth two, PD = (V1;:::; Vt) a path decomposi-
tion of width two of H. Let v 2 V1 and v0 2 Vt. Then the path P from v to v0 contains
one of the paths in P2(H) as a sub-path.

The linear time algorithms in [EST94] or [M�oh90] to compute the pathwidth of a
tree can also be used to �nd the path P2(H) if it is unique, or to �nd all paths in P2(H)
otherwise.
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an inner vertex of P1(H
0), since H2 and H3 both have pathwidth one. In that case,

either V (H 0) = V (H2) [ V (H3) [ fvg or V (H 0) = V (H2) [ V (H3) [ fv; w
0g for some

w0 2 V (H1) with fv; wg 2 E(H). This means that there are at most two possibilities
for w 2 V (H1) such that H [V � fwg] has pathwidth one. The same holds for H2 and
H3, hence jW j � 7.

Now suppose W contains no vertex v 2 W such that H [V � fvg] has three com-
ponents of pathwidth one. Let v 2 W such that H [V � fvg] has two components of
pathwidth one. Let H1 and H2 be the components of H [V �fvg] which have pathwidth
one, and let w1 2 V (H1) and w2 2 V (H2) such that fv; w1g; fv; w2g 2 E(H). Then for
i = 1; 2, wi is either an inner vertex or a stick adjacent to an inner vertex of the path
P1(Hi), since otherwise either H does not have pathwidth two, or W contains a vertex
w such that H [V �fwg] has three components of pathwidth one. For each w 2 W with
w 6= v and w =2 V (H1)[V (H2), H [V �fwg] has pathwidth two. If w1 is inner vertex of
P1(H1) and v has degree two, then w2 is the only vertex in H2 for which H [V � fw2g]
has pathwidth one, otherwise, there is no such vertex in H2. Similar for w1. Hence
jW j � 3. This completes the proof. 2

Note that the bound jW j � 7 is sharp: in Figure 6, the tree H has pathwidth two
and for each vertex v 2 V (H) it holds that H [V � fvg] has pathwidth one.

Figure 6: A tree H = (V;E) with pathwidth two, such that for each vertex v 2 V ,
H [V � fvg] has pathwidth one.

Definition 3.2. Let H be a tree of pathwidth k, k � 1. Pk(H) denotes the set of
all paths P in H for which H [V � V (P )] is a partial one-path, and there is no strict
sub-path P 0 of P for which H [V � V (P 0)] is a partial one-path. If jPk(H)j = 1, then
Pk(H) denotes the unique element of Pk(H).

Note that if Pk(H) contains more than one element, then the elements are all paths
consisting of one vertex.

For a tree of pathwidth one, all path decompositions of width one of H are essentially
the same.

Lemma 3.11. Let H = (V;E) be a tree of pathwidth one and let PD = (V1;:::; Vt) be a
path decomposition of width one of H. Suppose jV (H)j > 2, and let P1(H) = (v1;:::; vs).
For each e 2 E(H), let f(e) be such that Vf(e) is the leftmost node containing e. If
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Lemma 3.10. Let H be a tree of pathwidth two, let W � V (H) be the set of vertices
which separate H in components of pathwidth at most one. Suppose jW j � 1. The
following holds.

1. H [W ] is a connected graph.

2. If there is a v 2W such that H [V�fvg] has four or more components of pathwidth
one, then jW j = 1.

3. There is a vertex v 2 W such that H [V � fvg] has two or more components of
pathwidth one.

4. jW j � 7.

Proof. 1. Suppose jW j � 2. Let v; v0 2 W be distinct vertices. Let w be a vertex on
the path from v to v0 in H . Then each component of H [V �fwg] does not contain v or
does not contain v0. Hence each component is a subgraph of a component of H [V �fvg]
or of H [V � fv0g], so w 2 W .

2. Let v 2 W , let Hi, 1 � i � s, be the components of H [V �fvg] which have pathwidth
one. Suppose s � 4. Let w 2 V (H) for some w 6= v, and let H 0 be the component
of H [V � fwg] containing v. If w 2 V (Hj) for some j, then H 0 contains all Hi with
i 6= j. Otherwise, H 0 contains all Hi. In both cases, H 0 has pathwidth two, according
to Lemma 2.5, since v separates H 0 in three or more components of pathwidth one.
Hence jW j = 1.

3. Suppose W does not contain a vertex v 2 W such that H [V � fvg] has two or more
components of pathwidth one. Let v 2 W . There is one component of H [V � fvg]
which has pathwidth one, otherwise, H has pathwidth one at most. Let H 0 be this
component, and let w 2 V (H 0) such that fv; wg 2 E(H). There are two possibilities
for w. Either w is an inner vertex of the path P1(H

0) of H 0, or w is a stick of an inner
vertex w0 of P1(H 0). In all other cases, H has pathwidth one. If w is inner vertex
of P1(H

0), then H [V � fwg] has at least two components of pathwidth one, namely
the two components which contain vertices of P1(H 0). Furthermore, all components of
H [V � fwg] have pathwidth one, since all neighbors of v except w have degree one.
Hence the component containing v has pathwidth one. If w is a stick of inner vertex
w0 of P1(H

0), then H [V � fw0g] has at least two components of pathwidth one for the
same reason, and all components of H [V � fw0g] have pathwidth one.

4. If W contains a vertex v for which H [V � fvg] has four or more components of
pathwidth one, then jW j = 1.

Consider the case that for all v 2 W , H [V � fvg] has at most three components
of pathwidth one. First suppose W contains a vertex v such that H [V � fvg] has
three components of pathwidth one. Let H1, H2 and H3 denote these components.
For all w 2 V such that w 6= v and w =2 V (H1) [ V (H2) [ V (H3), H [V � fwg] has
a component of pathwidth two, namely the component containing v. Let w 2 H1.
All components of H [V � fwg] which do not contain v have pathwidth one. Let H 0

be the component of H [V � fwg] containing v. If H 0 has pathwidth one then v is
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there are two distinct paths P and P 0, such that the components of G[V � V (P )] and
the components of G[V � V (P 0)] have pathwidth k � 1 at most. We �rst show that
V (P )\V (P 0) 6= ;. Suppose V (P )\V (P 0) = ;. Let H 0 be the component of H [V�V (P )]
which contains P 0, let H 00 be the component of H [V �V (P 0)] which contains P , and let
v 2 V (P ) be the vertex to which H 0 is connected, i.e. there is a w 2 V (H 0) such that
fv; wg 2 E(H). See Figure 5. Consider the components of H [V � fvg]. H 0 is one of
these components, and has pathwidth one. All other components contain no vertex of
P 0, and hence are subgraphs of H 00, which also has pathwidth one. Hence H [V � fvg]
has pathwidth one, which gives a contradiction.

Let P 00 be the intersection of P and P 0, which is again a (non-empty) path. The
components of G[V �V (P 00)] have at most pathwidth k�1, since each such component
contains no vertices of P or no vertices of P 0, hence is a component or a subgraph of
a component of either G[V � V (P )] or G[V � V (P 0)].

This means that the intersection P 0 of all paths P for which H [V � V (P )] has
pathwidth one also has the property that H [V � V (P 0)] has pathwidth one, and it is
unique and shorter than all other paths having this property. 2

P

P 0

H0

v

H00

w

Figure 5: Example of a tree of pathwidth two for proof of Lemma 3.8. The graphs
H [V � V (P )] and H [V � V (P 0)] have pathwidth one, which means that H [V � fvg]
also has pathwidth one.

Let H be a tree of pathwidth k. In the next two lemmas, we show that for k = 1
and k = 2, if there is a vertex v 2 V (H) such that H [V � fvg] has pathwidth k � 1,
then there are at most a constant number of vertices for which this holds.

Lemma 3.9. Let H be a tree of pathwidth one, let W � V (H) be the set of vertices
which separate H in components of pathwidth zero, suppose jW j � 1. Then jW j � 2,
and if jV (H)j > 2, then jW j = 1.

Proof. Let v 2 W . Then H [V � fvg] consists of single vertices. If jV j = 2, then G

consists of one edge, so jW j = 2. If jV j > 2, then all (at least two) edges of G are
incident with v. Hence for each w 2 V � fvg, H [V � fwg] contains at least one edge
incident with v, and does not have pathwidth zero. So if jV j > 2, then jW j = 1. 2
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3.2 Trees of Pathwidth Two

The following result, describing the structure of trees of pathwidth k, is similar to a
result in [EST94].

Lemma 3.7. Let H be a tree. H is a partial k-path, k � 1, if and only if there is
a path P = (v1;:::; vs) in H such that the connected components of H [V � V (P )] have
pathwidth k � 1 at most, i.e. H consists of a path with partial (k � 1)-paths connected
to it.

Proof. If G consists of a path P = (v1;:::; vs) with partial (k � 1)-paths connected to
it, then we can make a path decomposition of G, by making a path decomposition of
width k�1 for each connected component of G[V �V (P )], then adding the vertex vi to
each node of the path decomposition of the components connected to vi, then `gluing'
these path decompositions together in the following way. For all components that are
connected to the same vi, the path decompositions are concatenated in arbitrary order.
Two new path decompositions are glued to each other by a node containing vi and vi+1
if they are connected to vi and vi+1, respectively. This gives a path decomposition of
width k of G.

Suppose (V1;:::; Vt) is a path decomposition of G of width k. Select v; w 2 V such
that v 2 V1 and w 2 Vt. Let P be the path from v to w in G. Then each Vi, 1 � i � t,
contains a vertex of P . Hence each component of G[V � V (P )] has pathwidth k � 1.

2

Because graphs of pathwidth one do not contain cycles, a graph of pathwidth one is
a tree which consists of a path with `sticks', which are vertices of degree one adjacent
only to a vertex on the path (`caterpillars with hair length one'). For an example of a
partial one-path, see Figure 4.

1

2

3

4 5

6 7

8

9

10

11 12

14

13

15 16

Figure 4: Example of a partial one-path.

Lemma 3.8. Let H be a tree of pathwidth k, k � 1, suppose there is no vertex
v 2 V (H) such that H [V � fvg] has pathwidth k � 1 or less. Then there is a unique
path P in H such that the components of H [V � V (P )] have pathwidth k � 1 or less,
and P is shorter than and contained in all other paths having this property.

Proof. If P is a path in G such that the components of G[V � V (P )] are partial
(k� 1)-paths, then all the paths in G containing P have that same property. Suppose

12



Proof. If �G can be written as a path of chordless cycles, then we can make a path
decomposition of width two of G as follows. Let (C;S) be a path of chordless cycles for
�G, with C = (C1;:::; Cp) and S = (e1;:::; ep�1). Let e0 be an arbitrary edge in C1 with
e0 6= e1, and let ep be an arbitrary edge in Cp with ep 6= ep�1. For each i, 1 � i � s, we
make a path decomposition (V1;:::; Vt) of Ci as follows. If jV (Ci)j = 3, make one node
containing all vertices of Ci. Otherwise, do the following. Let ei�1 occur in V1, let ei
occur in Vt. Let ei = fx; yg and ei+1 = fx0; y0g such that there is a path from x to x0

which does not contain y or y0, Let P1 = (u1;:::; uq) denote the path in Ci from x to x0

which does not contain y or y0, and let P2 = (v1;:::; vr) denote the path in Ci from y to
y0 not containing x or x0. Then t = q + r� 2, for each i, 1 � i < q, Vi = fui; ui+1; v1g,
and for each i, 1 � i < r, Vi+q�1 = fuq; vi; vi+1g. The path decompositions for the
chordless cycles that are obtained in this way are concatenated in the order in which
the chordless cycles occur in (C;S).

In Figure 3, an example of a path decomposition of width two is given for the graph
of Figure 1. The path decomposition is constructed in the way that is given here, with
e0 = f1; 18g and ep = f9; 10g.

If G is a partial two-path, then it follows directly from Lemmas 3.1, 3.4, 3.5 and 3.6
that �G can be written as a path of chordless cycles. 2

2

1

3 4 6

7 8 9

10

1112131415

161718

19 20

2

18

3

18

4

18 17

4

16

4

16

4 54

16

5

16

6

16 15

6

14

6

13

6 7

13

8

13

9

13 12

9

11

9

1

2 3 4 5 6 7 8

9

10

1112131415161718

19 20

Figure 3: A path decomposition of width two for the graph of Figure 1 as constructed
in the proof of Theorem 3.1, and the corresponding interval completion. The dashed
edges are the edges that are added.

In the same way as in [BK93], we can check whether �G is a tree of chordless cycles,
and make a list of all chordless cycles in linear time. After that, we can check in linear
time whether the tree of chordless cycles is a path of chordless cycles.
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Lemma 3.4. Let G be a biconnected partial two-path, C a chordless cycle of �G which
has edges e1 and e2, e1 6= e2, in common with chordless cycles C1 and C2, respectively.
Then C1 and C2 do not have a common edge.

Proof. If C1 and C2 have an edge in common, then K4, the complete graph on four
vertices, is a minor of �G, and hence �G does not have pathwidth two. 2

Lemma 3.5. Let G be a biconnected partial two-path, C a chordless cycle in �G. If C
has two edges in common with two other chordless cycles C1 and C2 of �G, then C1 and
C2 can not both occur on the same side of the occurrence of C.

Proof. Let PD = (V1;:::; Vt) be a path decomposition of width two of G, suppose
C occurs in (Vj;:::; Vj0). Suppose e1 = fx1; y1g and e2 = fx2; y2g are the edges that
C has in common with C1 and C2, respectively, and C1 and C2 occur on the left side
of C. Then e1 and e2 occur in Vj . e1 and e2 must have a common vertex, otherwise
jVjj � 4, say y1 = x2. All vertices of C1 and C2 other than x1, x2 and y2 occur only on
the left side of Vj , since Vj contains x1, x2 and y2 (see proof of Lemma 3.3). Suppose
the leftmost edge of C1 occurs in Vl, the leftmost edge of C2 occurs in Vl0, and l � l0.
Then each Vi, l

0 � i � j, contains at least two vertices of C1 and there is a Vi which
contains three vertices of C2. Because of Lemma 3.4, C1 and C2 have only one vertex
in common, which means that jVij � 4. 2

The following corollary follows directly from Lemma 3.5.

Corollary 3.1. Let G be a biconnected partial two-path, C a chordless cycle in �G. C
has at most two edges in common with two other chordless cycles.

We have now shown that the chordless cycles of the cell completion of a biconnected
partial two-path form a sequence, such that each chordless cycle has exactly one edge
in common with the following chordless cycle in the sequence.

Lemma 3.6. Let G be a partial two-path, let e 2 E(G) such that e is an edge of
three or more chordless cycles of �G, then at most two of these cycles have four or more
vertices.

Proof. Suppose e is an edge of s � 3 chordless cycles Ci, 3 � i � s. Let PD be a
path decomposition of width two of G, and suppose w.l.o.g. that Ci occurs on the left
side of Cj for all i and j with i < j. Since C1 and Cs have x and y in common, x and
y occur in the �rst and the last Vj containing an edge of all Ci with 1 < i < s. Hence
jV (Ci)j = 3 for all i, 1 < i < s. 2

We can now prove the main result of this section.

Theorem 3.1. Let G be a biconnected graph. G is a partial two-path if and only if �G
can be written as a path of chordless cycles.
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Lemma 3.3. Let G be a biconnected partial two-path with cycles C and C0 which
have one edge fx; yg and no other vertices in common. Let PD = (V1;:::; Vt) be a path
decomposition of G of pathwidth two. Suppose C occurs in (Vj;:::; Vj0), C

0 occurs in
(Vl;:::; Vl0). Then the following holds.

1. j � l and j0 � l0 or j � l and j0 � l0. If j = l and j0 = l0, then jV (C)j =
jV (C0)j = 3.

2. If j � l, j0 � l0, then j0 � l, fx; yg is an end edge of C and of C0 and it occurs in
Vj0 and in Vl, and there is an i, l � i < j 0, such that V (C)\(Vi+1[:::[Vt) = fx; yg
and V (C0) \ (V1 [::: [ Vi) = fx; yg (or possibly vice versa, if j = l and j0 = l0),
so fx; yg is a middle edge of C [ C0, and an end edge of C and of C0.

Proof. 1. Suppose j < l and j0 > l0, then jV (C0)j = 3, say V (C0) = fx; y; zg, since
each of Vj ;:::; Vj0 contains two vertices of C. Let j < i < j 0, such that Vi = fx; y; zg.
Suppose fa; bg; fc; dg 2 E(C) and fa; bg � Vj , fc; dg � Vj0 , such that there is a path
from a to c not containing b or d. Let P1 denote this path, and P2 denote the path
from b to d not containing a and c. fa; bg 6= fx; yg and fc; dg 6= fx; yg, so suppose
fx; yg 2 E(P1). Vi contains a vertex of P2, which is not x, y or z. Hence jVij � 4,
which is a contradiction. So either j � l and j0 � l0 or j � l and j0 � l0. If j = l and
j0 = l0, then jV (C)j = jV (C 0)j = 3, since each Vi, j � i � j0, contains two vertices of C
and two vertices of C 0.

2. It is clear that j0 � l, since fx; yg is an edge of both C and C0. There are nodes Vm
and Vm0 such that Vm = fx; y; zg for some z 2 V (C) with z 6= x; y, and Vm0 = fx; y; z0g
for some z0 2 V (C0) with z0 6= x; y. Note that l � m;m0 � j0. Suppose �rst that
l � m < m0 � j0. We show that all vertices of V (C) � fx; yg occur only on the left
side of Vm0 . Suppose there is a vertex v 2 V (C)�fx; yg which occurs on the right side
of Vm0 . There is a path from v to z in C which does not contain x and y. Node Vm0

contains a vertex of this path. Hence jVm0 j � 4. This is a contradiction. Since each Vi,
m � i � m0, contains x and y, this means that there is an i, m � i < m0, such that all
vertices of V (C) � fx; yg occur only in (V1;:::; Vi), and the vertices of V (C0) � fx; yg
occur only in (Vi+1;:::; Vt). Furthermore, since i < j 0 and Vj0 contains an edge of C, Vj0

contains x and y. Similarly, Vl contains x and y.
Now suppose l � m0 < m � j0. In the same way as before, we can show that

the vertices of V (C) � fx; yg occur only on the right side of Vm0 , and the vertices of
V (C0) � fx; yg occur only on the left side of Vm. Hence there is an i, m0 � i < m,
such that all vertices of V (C) � fx; yg occur only in (Vi+1;:::; Vt) and all vertices of
V (C0) � fx; yg occur only in (V1;:::; Vi). Furthermore, Vl is the leftmost node which
contains an edge of C0, which means that j = l. In the same way, we can prove that
j0 = l0, and Vl and Vj0 both contain x and y. 2

Note that in part 2 of the lemma, the part (Vj;:::; Vi) of PD restricted to V (C) is a
path decomposition of C, and (Vi+1;:::; Vl) restricted to V (C0) is a path decomposition
of C0. We say that C occurs on the left side of C0. In other words, Lemma 3.3
says that, if there are two cycles which have one edge in common, then in each path
decomposition, one occurs on the left side of the other one.
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Figure 1: A path of chordless cycles (C;S) with C = (C1;:::; C6), S = (e1;:::; e5).
V (C1) = f1; 2; 3; 4; 16; 17; 18g, V (C2) = f4; 16; 19g, V (C3) = f4; 16; 20g, V (C4) =
f4; 5; 6; 13; 14; 15; 16g, V (C5) = f6; 7; 8; 13g and V (C6) = f8; 9; 10; 11; 12; 13g. Further-
more, e1 = e2 = e3 = f4; 16g, e4 = f6; 13g and e5 = f8; 13g.

2. Suppose w.l.o.g. that x and x0 are connected by a path in C which does not contain
y or y0. Denote this path by P1. Denote the path between y and y0 not containing x or
x0 by P2. See also Figure 2. The part of the path decomposition containing vertices of
P1 must be connected, according to Lemma 2.3, hence each Vi, j � i � j0, contains a
vertex of P1. Analogously, each Vi contains a vertex of P2. Since P1 and P2 are vertex
disjoint, jVi \ V (C)j � 2 for each i, j � i � j0. Suppose P1 contains at least one edge.
Let e be an edge of P1. Let Vl, j � l � j0 such that e � Vl. This Vl also contains a
vertex of P2, hence there is an i such that e � Vi and jVi\V (C)j � 3 for each edge e on
P1 and P2. Now consider edge fx; yg � Vj . If there is another vertex of C in Vj, then
the lemma holds for fx; yg. If Vj \ V (C) = fx; yg, then there must be an i, j � i � j0,
such that fx; yg � Vi and Vi contains a neighbor of x or y. Hence jVi \ V (C)j = 3.
Similar for edge fx0; y0g. 2

x

y

x0

y0

P1

P2

e

Vl Vj0Vj Vi

Figure 2: The occurrence of chordless cycle C as in part 2 of the proof of Lemma 3.2.

Let G be a biconnected partial two-path. The lemma implies that the occurrences
of two chordless cycles of �G which do not have a vertex in common can not overlap in
any path decomposition of width two of G. If two chordless cycles have one edge in
common, then the occurrences of these two cycles can only overlap in their common
edge, as we show in the next lemma.
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3 The Structure of Partial Two-Paths

In this section, we �rst give a characterization of biconnected partial two-paths. After
that, we give a characterization of trees of pathwidth two, and �nally of partial two-
paths in general.

3.1 Biconnected Partial Two-Paths

Given a graph G = (V;E), the graph �G which is obtained from G by adding all edges
fv; wg 62 E such that there are three disjoint paths from v to w in G is called the cell
completion of G. (Two paths from v to w are disjoint if they only have vertices v and w

in common.) The following lemma has been proved in [BK93] in the setting of partial
two-trees.

Lemma 3.1. Let G be a partial two-path. The cell-completion �G of G is a subgraph
of any intervalization of G of pathwidth at most two.

In terms of path decomposition, the lemma says that each path decomposition of
width two of a partial two-path G is a path decomposition of the cell-completion �G.
The cell completion of a partial two-path can be found in linear time [BK93]. In the
cell completion of a graph, each two distinct chordless cycles have at most one edge
in common. In [BK93], it has been shown, that the cell completion of a biconnected
partial two-tree is a tree of chordless cycles. We will show that the cell completion of
a biconnected partial two-path is a path of chordless cycles. Before we prove this, we
�rst give a de�nition and prove a number of lemmas.

Definition 3.1. (Path of Chordless Cycles). A path of chordless cycles is a pair
(C;S), where C is a sequence (C1;:::; Cp) of chordless cycles, p � 1, and S is a sequence
(e1;:::; ep�1) of edges, such that for each i, 1 � i < p, V (Ci) \ V (Ci+1) = ei, E(Ci) \
E(Ci+1) = feig and for each i, 1 � i < p� 1, if ei = ei+1, then jV (Ci+1)j = 3.

In Figure 1, an example of a path of chordless cycles is given with six chordless
cycles.

Lemma 3.2. Let G be a biconnected partial two-path, C a cycle of �G, and PD =
(V1;:::; Vt) a path decomposition of G of width two. Suppose C occurs in (Vj ;:::; Vj0),
and fx; yg is an edge of C occurring in Vj, fx0; y0g an edge occurring in Vj0. The
following holds.

1. If jV (C)j > 3, then fx; yg 6= fx0; y0g.

2. For each i, j � i � j 0, jVi \ V (C)j � 2 and for each edge e 2 E(C) there is an i,
j � i � j0, such that e � Vi and jVi \ V (C)j = 3.

Proof. 1. Suppose x = x0, y = y0. Because jV (C)j > 3, there is an edge fv; wg in C
with fv; wg \ fx; yg = ;. There must be a Vi, j � i � j0, with v; w; x; y 2 Vi, hence
jVij � 4.
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Lemma 2.4. (Clique Containment) Let G = (V;E) be a graph, PD = (V1;:::; Vt), a
path decomposition of G, suppose V 0 � V forms a clique in G. There is an i, 1 � i � t,
such that V 0 � Vi.

Proof. We prove this by induction on jV 0j. If jV 0j = 2, then there is a Vi containing V 0

by de�nition. Suppose jV 0j > 2. Let v 2 V 0. There is a node Vi, such that V 0�fvg � Vi.
Suppose v occurs in (Vj;:::; Vj0). Suppose w.l.o.g. that i � j0. If i � j, then clearly
V 0 � Vi. If i < j, then for each w 2 V 0, there is an l, j � l � j0, such that w 2 Vl.
Hence V 0 � Vj , which gives a contradiction. 2

Lemma 2.5. Let G be a connected partial k-path, k � 1, and V 0 � V such that G[V 0]
is connected. At most two of the connected components of G[V �V 0] have pathwidth k.

Proof. Suppose there are three components G1, G2 and G3 of G[V � V 0] which
have pathwidth k. Let PD = (V1;:::; Vt) be a path decomposition of G of width k.
Suppose Gi, i = 1; 2; 3, occurs in (Vji ;:::; Vli), and j1 � j2 � j3. Then l1 � l2, since
otherwise, each Vi, j2 � i � l2, contains a vertex of G1, which is not possible because
G2 has pathwidth k. Analogously, l2 � l3. However, G0 = G[V (G1) [ V (G3) [ V 0]
is a connected subgraph of G which has no vertices in common with G2. Hence each
Vi, j1 � i � l3, contains at least one vertex G0. But j1 � j2 � l2 � l3, and G2 has
pathwidth k, which gives a contradiction. 2

Lemma 2.6. Let G = (V;E) be a connected partial two-path, V 0 � V . Let PD =
(V1;:::; Vt) be a path decomposition of width two of G such that the vertices of V 0 occur
in (Vj;:::; Vj0). On each side of (Vj;:::; Vj0), edges of at most two components of G[V �V 0]
occur.

Proof. Suppose there are edges of at least three components of G[V � V 0] on the left
side of Vj . Let G1, G2, G3 be three of these components. Let Vl, 1 � l < j, be the
rightmost node on the left side of Vj containing an edge of one of the components G1,
G2 and G3, say G1. Vl contains a vertex of G2 and of G3. Hence jVlj = 4. 2
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Lemma 2.2. Let G = (V;E) be a graph, c : V ! f1;:::; kg a k-coloring of G. G has
an intervalization if and only if there is a proper path decomposition of G, which has
width k � 1 at most.

Proof. (See also [FHW93].) For the `if' part, suppose PD = (V1;:::; Vt) is a proper
path decomposition of G. Note that PD has width k�1. Then the interval completion
of G for PD is a properly k-colored interval graph.

For the `only if' part, suppose G0 = (V;E0) is an intervalization of G. Let � : V ! I
be a function for G0 such that for each v; w 2 V , v 6= w, fv; wg 2 E , �(v)\�(w) 6= ;.
Let (u1;:::; un), n = jV j, be an ordering of V in such a way that for all i; j with
1 � i < j � n, �(ui) starts on the left side of or at the same point as �(uj). For
each i let Vi = f v 2 V j �(v) \ �(ui) 6= ; g. Then PD = (V1;:::; Vn) is a proper
path decomposition of G0 and hence of G. Furthermore, each node contains at most
k vertices, since there are at most k vertices with di�erent colors. Hence PD has
pathwidth k � 1 at most. 2

Thus, the following problem is equivalent to ICG.

Instance: A graph G = (V;E), a k-coloring c : V ! f1;:::; kg
Question: Is there a proper path decomposition of G?

In this paper, we use both problems. Note that the proof of Lemma 2.2 also gives an
easy way to transform a solution for one problem into a solution for the other problem.

For the case that k = 2, the question whether there is a proper path decomposition
of G is equal to the question whether G is a properly colored partial one-path (see
also [FHW93]). This is because if G is properly colored, then we can transform each
path decomposition of width one of G into a proper path decomposition of width one
by simply deleting all nodes which contain no edge, and then adding a node at the
right side of the path decomposition for each isolated vertex containing this vertex
only. Checking whether a graph has pathwidth one can be done in linear time, and
checking whether it is properly colored also.

Theorem 2.1. For k = 2, ICG can be solved in linear time.

We now give some lemmas, which are frequently used in the remainder of this
report.

The following two lemmas are well-known.

Lemma 2.3. Let (V1;:::; Vr) be a path-decomposition of G = (V;E). Suppose i < j < k,
and suppose P is a path from v 2 V to w 2 V , v 2 Vi, w 2 Vk. Then Vj contains at
least one vertex from P .

Proof. Follows from the de�nition of path decompositions by induction on the length
of the path. 2

The following Lemma is proved in e.g. [BM93].
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width two of G, v (e) occurs in the left or right end node of the occurrence of G0. A
vertex v is a double end vertex of G0 if in each path decomposition of width two of G,
v occurs in both end nodes of the occurrence of G0. Similar for edges. A vertex v is a
middle vertex of G0 if in each path decomposition of G in which G0 occurs in (Vj;:::; Vj0),
either v 2 Vj or v 2 Vj0 or there is an i, j � i � j0, such that Vi \ V (G0) = fvg. An
edge e 2 E0 is a middle edge of G0 if in each path decomposition PD = (V1;:::; Vt) of
width two of G in which G0 occurs in (Vj ;:::; Vj0), either e � Vj or e � Vj0 or there is
an i, j � i � j0, such that either Vi \ V (G0) = e or PD0 = (V1;:::; Vi; Vi0; Vi+1;:::; Vt) is
a path decomposition of G and Vi0 \ V (G0) = e.

Let G be a graph, PD = (V1;:::; Vt) a path decomposition of G. Let 1 � j � t. We
say that a node Vi is on the left side of Vj if i < j, and on the right side of Vj if i > j.
Let G0 be a connected subgraph of G, suppose G0 occurs in (Vl;:::; Vl0). We say that G0

occurs on the left side of Vj if l0 < j, and on the right side of Vj if l > j. In the same
way, we speak about the left and right sides of a sequence (Vj;:::; Vj0), i.e. a node is on
the left side of (Vj ;:::; Vj0) if it is on the left side of Vj , and a node is on the right side
of (Vj;:::; Vj0) if it is on the right side of Vj0 .

Let G be a graph, PD = (V1;:::; Vt) a path decomposition of G, V 0 � V and
suppose G[V 0] occurs in (Vj ;:::; Vj0), 1 � j � j0 � t. The path decomposition of G[V 0]
induced by PD is denoted by PD[V 0] and is obtained from the sequence PD[V 0] =
(Vj \ V

0;:::; Vj0 \ V
0) by deleting all empty nodes and all nodes Vi \ V

0, j � i < j 0, for
which Vi \ V

0 = Vi+1 \ V
0.

The reversed path decomposition of PD is denoted as rev(PD) and is de�ned as
follows.

rev(PD) = (Vt; Vt�1;:::; V1)

Let PD0 = (W1;:::;Wt0) be another path decomposition. The concatenation of PD
and PD0 is denoted by PD++PD0 and is de�ned as follows.

PD++PD0 = (V1;:::; Vt;W1;:::;Wt0)

Lemma 2.1. Let G = (V;E) be a graph, PD = (V1;:::; Vt) a path decomposition of
G. Let G0 = (V;E0) be a supergraph of G with

E0 = f fv; v0g j 91�i�t v; v
0 2 Vi g:

The graph G0 is an interval graph.

Proof. Let � : V ! f1;:::; ng be de�ned as follows. For each v 2 V , if v occurs in
nodes (Vj;:::; Vl), then �(v) = [j; l]. Then fv; v0g 2 E0 if and only if �(v) and �(v0)
overlap. 2

The graph G0 is called the interval completion of G for PD.
A path decomposition PD = (V1;:::; Vt) of a graph G which is k-colored is called a

proper path decomposition if for each node Vi and each pair v; w 2 Vi, if v 6= w then
c(v) 6= c(w).

4



2 Preliminaries

A graph G is a pair (V;E), where V is the set of vertices, and E is the set of edges.
An edge is a set of two distinct vertices. The vertices and edges of a graph G are also
denoted by V (G) and E(G), respectively.

Let G be a graph, V 0 � V (G). The subgraph of G induced by V 0 is denoted by
G[V 0] and is de�ned as follows. V (G[V 0]) = V 0 and E(G[V 0]) = f e 2 E(G) j e � V 0 g.

A path P in G is a sequence (v1;:::; vs) of distinct vertices of G, such that there
exists an edge between each pair of consecutive vertices. Vertices v1 and vs are the end
points of P , vertices vi, 1 < i < s, are the inner vertices of P .

A cycle is a graph C which consists of a path P containing all vertices of C, and
an edge between the �rst and the last vertex of the path.

A chordless cycle C in G is a subgraph of G which is a cycle in which each two
vertices which are not adjacent in C are also not adjacent in G.

A biconnected graph is a graph which remains connected if an arbitrary vertex is
removed. A biconnected component B of a graph G is an induced subgraph of G which
is biconnected and which is not a proper subgraph of another induced subgraph of G for
which this holds. We only consider biconnected graphs and biconnected components
which are non-trivial, i.e. which have at least three vertices.

A tree is a connected graph which contains no cycles. We usually denote trees by
H instead of G.

An interval graph is a graph G = (V;E) for which there is a function � : V ! I,
where I is the set of all intervals on the real line, such that for each pair v; w 2 V ,
�(v) \ �(w) 6= ; , fv; wg 2 E. A k-coloring of a graph G = (V;E) is a surjection
c : V ! f1;:::; kg. A proper k-coloring is a k-coloring c such that for each edge
fv; wg 2 E, c(v) 6= c(w). An intervalization of a graph G = (V;E) with a k-coloring c,
is a supergraph G0 = (V;E0) (E � E0) of G which is an interval graph and is properly
colored by c.

A path decomposition PD of a graph G = (V;E) is a sequence (V1;:::; Vt), in which
for all i, Vi � V and Vi is non-empty, and the following conditions are satis�ed:
1. For each v 2 V , there is an i such that v 2 Vi.
2. For each e 2 E, there is an i such that e � Vi.
3. For each i � j � l, Vi \ Vl � Vj .

The sets Vi are called the nodes of the path decomposition. The width of PD is
maxi jVij � 1. A graph G has pathwidth k if there is path decomposition of width k

of G, but there is no path decomposition of width k � 1 of G. A graph G is called a
partial k-path if it has pathwidth at most k.

Let G be a graph, PD = (V1;:::; Vt) a path decomposition of G. Let G0 be a
subgraph of G. The occurrence of G0 in PD is a subsequence (Vj;:::; Vj0) of PD in
which Vj and Vj0 contain an edge of G0, and no node Vi, with i < j or i > j0 contains
an edge of G0, i.e. (Vj ;:::; Vj0) is the shortest subsequence of PD that contains all nodes
of PD which contain an edge of G0. We say that G0 occurs in (Vj;:::; Vj0). The vertices
of G0 occur in (Vl;:::; Vl0) if these are the only nodes in PD containing vertices of G0.
A vertex v (edge e) is an end vertex (end edge) of G0 if in each path decomposition of

3



cycles can be triangulated without adding edges between vertices of the same color, for
ICG on three-colored simple cycles, such a simple characterization does not exist, and
even this case seems to require an O(n2) algorithm, based on dynamic programming.
Additionally, TCG with three colors is `�nite state', while ICG with three colors is not.

Another closely related problem is Colored Proper Interval Graph Comple-

tion, which asks whether a given colored graph is a subgraph of a properly colored
unit interval graph. In [KS93, KST94], it is shown that this problem is NP-complete,
polynomial for a �xed number of colors, and hard for W [1].

A necessary condition for a three-colored graph G to be `intervalizable' is that the
pathwidth of G is at most two [FHW93]. Our algorithm exploits the precise structure of
graphs of pathwidth two (partial two-paths). For parts of the input graphs, a dynamic
programming approach is used to compute whether these parts can be intervalized, and
some more information. Then, a careful case analysis is necessary to see whether all the
di�erent parts can be put together to an intervalization of the entire input graph. In
Section 3 we analyze the structure of partial two-paths. We do this �rst for biconnected
partial two-paths, after that for trees of pathwidth two, and �nally for general partial
two-paths. In Section 4 we consider the algorithms, again �rst for biconnected graphs,
then for trees, and �nally, we discuss how information for biconnected and tree-parts of
the graph can be pieced together. In Section 5 we discuss our NP-completeness result.

2



1 Introduction

In this paper, we consider the following problem.

Intervalizing Colored Graphs [ICG]
Instance: A graph G = (V;E), a coloring c : V ! f1;:::; kg
Question: Is there a properly colored supergraph G0 = (V;E0) of G which

is an interval graph?

The problem models a problem arising in sequence reconstruction, which appears
in some investigations in molecular biology (such as protein sequencing, nucleotide
sequencing and gene sequencing (see [FHW93]). A sequence X (usually a large piece
of DNA) is fragmented (or k copies of the sequence X are fragmented). For each
fragment, a set of characteristics (its `�ngerprint' or `signature') is determined, and
based on respective �ngerprints, an `overlap' measure is computed. Using this overlap
information, the fragments are assembled into islands of contiguous fragments (contigs).
Instances of ICG model the situation where k copies of X are fragmented, and some
fragments (clones) are known to overlap. Fragments of the same copy of X will not
overlap. Now each vertex in V represents one fragment; the color of a vertex represents
to which copy of X the fragment belongs. It can be seen that ICG helps here to predict
other overlaps and to work towards reconstruction of the sequence X .

It is known that ICG for an arbitrary number of colors is NP-complete [FHW93].
However, from the application it appears that the cases where the number of colors k
(= the number of copies of X that are fragmented) is some small given constant are of
interest. In this paper, we resolve the complexity of this problem for all constant values
k. We observe that the case k = 2 is easy to resolve in linear time. We show that the
case k = 3 is solvable in O(n2) time. Finally, we show that ICG is NP-complete for
four colors (and hence, for any �xed number of colors � 4.)

In [FHW93], Fellows et al. consider ICG with a bounded number of colors. They
show that, although for �xed k � 3, yes-instances have bounded pathwidth (and hence
bounded treewidth), standard methods for graphs with bounded treewidth will be
insu�cient to solve ICG, as the problem is `not �nite state'. Also, they show ICG to
be hard for the complexity class W [1], (which was strengthened in [BFH94] to hardness
for all classes W [t], t 2 N). This result implies that it is unlikely that there exists a c,
such that for any �xed number of colors k, ICG is solvable in time O(f(k)nc). Clearly,
our NP-completeness result implies the �xed parameter intractability results, but is
much stronger.

ICG is closely related to Triangulating Colored Graphs (TCG) where we
look for a properly colored triangulated supergraph G0 of a k-colored input graph G
(i.e., G0 does not contain a chordless cycle of length at least four). This problem is
known to be NP-complete [BFW92], solvable in O(nk+1) time for �xed k [MWW94],
and solvable in linear time for the cases k = 2 and k = 3 [BK93, IS93, KW92, NON94].
Despite the close relationship between ICG and TCG, it appears that ICG poses some
additional di�culties which require more complex and time consuming algorithms. For
instance, while there is an easy characterization which assures that three-colored simple

1



Intervalizing k-Colored Graphs�

Hans L. Bodlaendery Babette de Fluiterz

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

The problem to determine whether a given k-colored graph is a subgraph of
a properly k-colored interval graph is shown to be solvable in O(n) time when
k = 2, solvable in O(n2) time when k = 3, and to be NP-complete for any �xed
k � 4. This problem has an application in DNA physical mapping. Our algorithm
for k = 3 is based on an extensive analysis of the precise structure of graphs of
pathwidth two, dynamic programming on certain parts of the input graph, and a
careful combination of the results for the di�erent parts.

�This research was partially supported by the Foundation for Computer Science (S.I.O.N) of the
Netherlands Organization for Scienti�c Research (N.W.O.) and partially by the ESPRIT Basic Research
Actions of the EC under contract 7141 (project ALCOM II).

yEmail: hansb@cs.ruu.nl
zEmail: babette@cs.ruu.nl


