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6 Conclusions

In this paper, we have given an O(n?) time algorithm to determine whether we can
add edges to a given three-colored graph such that it becomes a properly colored
interval graph. The algorithm can be modified such that it outputs an intervalization,
if existing, and still uses quadratic time. To get a faster algorithm for the problem
considered in this paper might well be a hard problem. It seems that even the simplest
cases, e.g., when G is a simple cycle, need O(n?) time to resolve, and might well already
capture the main difficulties for speed-up.

We have shown that this problem is NP-complete for four or more colors. We feel
however that the graphs, arising in the reduction of this proof, will not be typical for
the type of colored graphs, arising in the sequence reconstruction application. It may
well be that special cases of ICG, which capture characteristics of the application data,
have efficient algorithms. Further research could perhaps give new meaningful results
here.
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Now, suppose Sy, 52,..., 9, is a partition of {1,...,3m}, such that for all j, 1 <
J < m, Yies; si = Q. We will give a path decomposition (V1,..., Vi) of G = (V, E),
such that no V; contains two vertices of the same color. We leave most of the easy
verification that the given path decomposition fulfills the requirements to the reader.

Take t = 48Q), r = mt + 1.

Take Vi = A, V, = B.

For each vertex ¢; ; € C, put ¢; ; in set Viyq.

For each vertex d;; € D, put d; j in sets Vy;_1yy95_1, Viim1)42j> and Vi_1)42541-
(Identified vertices are just put in every set, indicated by their ‘different names’; one
easily observes that these are consecutive sets.)

For each 7, 1 <4 < m, suppose S; = {l1,l2,l3}. Put vertex e, 1 in set Vy;_1)4o.
For all j, 2 < j < 24s;, &2, put vertex e ; in sets Vt(Z 1)42j-2> Vi(i=1)42j—15
Viti—1)42j- For all j, 1 < j < 24s;, <2, put vertex e, ; in sets Vi 1) 44851, +2j-2>
V- 1)+485,, +2j—15 V- 1)4485,, +2; - For all 7,1 < j < 24s;, <2, put vertex e, ; in sets
‘/t(z 1)+48s;, +4857, +2j—-2> V(z 1)+48s;, +485, +25—1> ‘/t(z 1)+48s;, +4857, +25

Finally, put f in all sets V3,..., V,_4.

A straightforward, but somewhat tedious verification shows that the resulting path
decomposition is indeed a path decomposition of &, and that no set V; contains two
different vertices with the same color.

O

As 3-partition is strongly NP-complete and our transformation is polynomial in ¢ and
m, the claimed theorem now follows. a

Note that we even proved a slightly stronger result:

Corollary 5.1. ICG is NP-complete for four-colored graphs G, with the property that
there is one color that is only given to three vertices of GG.
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Jm = 7. As there is a path from d; ; to d;, 24 in G that does not contain vertices with
color 4 or vertices in F ., it follows that each set V; contains at least one vertex in C'U D
with color 1, 2 or 3.

For each i, 1 < i < m, call the interval [j;_y + 1, j; & 1] the ith valley. Fach vertex
d; ; must be in one or more successive nodes V,, with a in the ith valley. It can not
be in another valley, since that gives a color conflict. Note that there are exactly 8¢
vertices d; ; (for fixed ¢) with color 2. For a 2-colored vertex d; ;, we call the interval
{a|d;; € V,} a 2-range. Note that all 2-ranges are disjoint, otherwise we have a color
conflict. So, in each valley, we have exactly 8¢ 2-ranges.

For each [, 1 <1 < 3m, look at the vertices F;. Note that all vertices in £; must be
contained in nodes V,, with all a’s in the same valley. Otherwise, the path induced by
FE; will cross a middle clique, and we have a color conflict between a vertex in F; and a
vertex in C'. Write 5; = {l | vertices in £ are in sets V,, with a in the ith valley}. We
show that Sy,..., 5, is a partition of {1,...,3m} such that for each j, ZZ»GS] s; = Q.

For each edge {e;;, €41} with e ; of color 3 (and hence, €; ;41 has color 1), there
must be a node o with {e;;,e;;41} C V,. a must be in a 2-range, as otherwise V,
contains a l-colored or 3-colored vertex from C' U D, and we have a color conflict. If
there exists an o with {e;;, e 41,d; 7} C Vo, with d; ;» of color 2, then we say that the
2-range of d; j; contains the 1-3-E-edge {e;;, €141}

Claim 5.2. No 2-range contains two or more 1-3-E-edges.

Proof.  Suppose {ey, ;. e ,+1) and {ey, j,, €1, 5,+1} are distinct 1-3-E-edges, and
there is a d; j» such that {ey, j,, e 41, dij} C Vo, {€n5, €15 541, di js} C V. Suppose
w.l.o.g. that a < 3. Note that both v = ¢, ;, and w = ¢, ;,4+1 are adjacent to a
2-colored vertex. Let [y,d] be the 2-range of d; ;;. Note that vy <a < 3 < 4. If V4
contains a 1-colored vertex from C'U D, then consider the 1-colored vertex w. It cannot
belong to V,_; and it cannot belong to V3. So, if w € V., then v < ¢ < 4. Hence, there
cannot be a set V, that contains w and its 2-colored neighbor e, ; 12, contradiction. If
V,—1 does not contain a 1-colored vertex from C'U D, then it contains a 3-colored vertex
from C'U D, and by considering v and using a similar argument, also a contradiction
arises. a

Let 1 < ¢ < m. Suppose S; = {l1,ls,...,1;}. Note that Fy, U---U Ej, induces
8s;, &1+ 8s, @14 ---4 85, &1 1-3-E-edges. As there are 8() 2-ranges in a valley, we
must have

8(s1, + 51, + - - s1,) <t < 8Q)

By noting that each s; > Q/4 + 1/4, it follows that 8(Q) /4 + 1/4)t &t < 8(), sot < 3,
and that hence also, by integrality,

8(sy, + 81, +---51,) <8Q

So, we have a partition of {1,...,3m} into sets S1,..., S,,, such that for all j,1 < j < m,
2ies, 8 S Q- As 3L Y ies, si = mAQ, it follows that for all j, 1 < j <m, 3 icq si =
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@® vertex of color 1
O vertex of color 2
O vertex of color 3
® vertex of color 4

a3

Oi _ — = _ — = _ — =
dig dip digs di249-1 di24Q d21 dm-124Q dm, dm,

= a1 = = — b
== 03
N €13 €11 Cm—1,3 Cm—1,1 b4

b1

Figure 70: The constructed graph G' = (V, £).

Number representing paths Take vertices £ ={¢;; |1 <1 <3m, 1<j <245 &
2}. Color each vertex e;; € IV with color 2 if j mod 3 = 1, with color 3 if j mod 3 = 2,
and with color 1 if j mod 3 = 0. For each [, the vertices £; = {e;; | 1 < j < 245, &2}
form a path: add edges {e;;,e;;41} forall l, j, 1 <1 <3m, 1< j<24s; &3,

Attachment vertex Take one vertex f. Color f with color 4. Take edges {f, a1}
{f,bs}, and for all [, 1 <1< 3m, edge {f,e11}.

The four-colored graph, resulting from this construction, is the graph G = (V, F).
Note that the transformation can be done in polynomial time in ¢ and m.

Claim 5.1. There exists a partition of the set {1,...,3m} into sets 51,..., 9, such that
Zz’esj s; = ) for each j if and only if there is an intervalization of .

Proof.  Suppose that G is a subgraph of a properly colored interval graph. So, we
have a proper path decomposition (V1,...,V,) of G. We may assume that there are no
Vi, Vigr with V; C Vi or Viyq C V. (Otherwise, we may omit the smaller of these two
sets from the path decomposition and still have a path decomposition of G.)

Note that, by the clique containment lemma (Lemma 2.4), there exist ig with
Vi, = A, and ¢y with V;; = B. Without loss of generality suppose ig < #1. If 79 # 1,
then there exists a v € V;,_; with v ¢ A. Note that such a vertex v has a path to a
vertex in B that avoids A. It follows that V;, must contain a vertex from this path, but
this will yield a color conflict with a vertex in A, contradiction. So, ¢ = 1. A similar
argument shows that ¢y = 7.

Also, from Lemma 2.4 it follows that for each 7, 1 < 1 < m <1, there is a j;,
2 <j <r<&lwith ¢; C V. We must have j; < jp < j3 < -++ < jp—1, otherwise a
color conflict will arise between a track vertex and a vertex in a set C;. Write jo = 1,
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5 Imtervalizing Four-Colored Graphs

For some time, it has been an open problem whether there existed polynomial time
algorithms for ICG for a constant number of colors, k& > 4. Older results showed fixed
parameter intractability [FHW93, BEFH94], but did not resolve the question. Our NP-
completeness result resolves this open problem in a negative way (assuming P # N P).

Theorem 5.1. [CG is NP-complete for four-colored graphs.

Proof. Clearly, ICG € NP.
To prove NP-hardness, we transform from 3-partition, which is strongly NP-
complete [GJT9].

3-PARTITION
Instance: Integers m € N and () € N, a sequence sq,..., 53, € N such
that

3m
° Z‘Si = m(), and

=1
1 1
o Vicicam 7@ < a; < 3Q.

Question: Can the set {1,...,3m} be partitioned into m disjoint sets

S1,e..y O such that
Vicj<m ) 8i=Q

i€5s;

Suppose input m, ), s1, S2,..., Sz, € N is given. Now, we define a graph G' = (V, F),
which consists of the following parts (see Figure 70):

Start clique Take vertices A = {aq,az,as,a4}. Color vertex a; with color 7 (¢ =
1,2,3,4). Add edges between every two vertices in A.

End clique Take vertices B = {by,b3,b3,b4}. Color vertex b; with color ¢ (¢ =
1,2,3,4). Add edges between every two vertices in B.

Middle cliques Take vertices C' = {¢;; | 1 <i < m<&1, 1 < j < 3} Color each
vertex ¢; ; € C' with color j. Make each set C; = {¢;1,¢.2,¢; 3} into a clique.

Tracks Take vertices D = {d;; | 1 <17 < m, 1 < j < 24Q)}. Color each vertex
d; ; € D with color 1if j mod 3 =1, with 2 if j mod 3 = 2 and with 3 if j mod 3 = 0.
Identify vertex a; with dy 1, vertex bs with d,;, 240, and, for all 7, 1 <14 < m <1, identify
d; 249 with ¢; 3, and d;4q1 with ¢; ;1. These track vertices form m paths: take edges
{di7]‘,di7]‘+1} forall 7, 7,1 <i<m, 1 <j<24Q <1.
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in.r  bi].ew q
° °
in.r p[l].lv  b[il.ev=gq
p[1].llr.v
out.l.ly

111

bli].e.v =¢q

= out.l.rp

Figure 69: Cases for v, in the algorithm.
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Figure 68: Cases in the algorithm in which out is computed, v,,.bc.ok holds, and
Vp.nr > 1. In parts I and 11, v,,.p[3 <i].H is not drawn.
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Figure 67: Cases in the algorithm in which out is computed, v,,.bc.ok holds, and
V.01 = 1.
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pli] llr.v

out’ 1.1,

I X
° * *—
m= m+1 pelrr, n
beldrl, =
p[3—drv=
out’ l.ry
p[z].{/{r.v m+ 1
out’ 1.1, o M[3—drrre n
o ~—
1I '
belllv =
out’ l.ry
P[l].l/lrr.v m 1
out’ 1.1, p Cop[3—dlrrlv n
P —
111 '

m“:
bellrv
out’ .l.ry

Figure 65: Cases in the algorithm in which ¢n is computed, v,,.bc.0k holds, v,,,.nr > 1
and out’.l is used. In part I, v,,.p[3 <i].H is not drawn.

nn
.

II

Figure 66: Cases in the algorithm in which out is computed, v,,.bc.ok holds, v,,.nr = 0
and in’ is used.
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L 4 *—
in’.r pli].lo m= m+1 belrr, n
beldr.l, =
p[3—d].rw
m+1 p[3 —id.rrrv n
! P *—
II |
° - ®
in'.r P[Z]~7U m—
belllv
m+41
7 p[3—idlerlv n
! ~—
11 i ‘
® )

i’ pl.lo

bellrv

Figure 64: Cases in the algorithm in which ¢n is computed, v,,.bc.0k holds, v,,.nr > 1
and in’ is used. In part I, v,,.p[3 <i].H is not drawn.
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': ' @ *—
in'.r be.dlr.l, m m+1 belrr, n
II ‘ J
e ® o—
in'.r p[l].lv m = m+1 belrr, n
belr.l,
m+1 p[l].rrrv n
. -~
IIT ‘
® ° °
in'r belllw
m+1 p[l]rrlv n
o -~
1A% : ‘
° ® °

i’ beldlr.w

Figure 62: Cases in the algorithm in which «n is computed, v,,.bc.ok holds, v,,.nr =0
(Part I) or v,,.nr = 1 and ¢n' is used (Part II, IIT and IV).

p[1].dlr.v
out’ A0y, | p

1
L 4 *—
m+1 pelrr, n
beldr.l, =
out’ .l.ry
p[1].1Uv
out’.r.ly
1I
L 4 o—
m+1 belrr, n
beldrl, =
out’ .r.ry

Figure 63: Cases in the algorithm in which ¢n is computed, v,,.bc.0k holds, v,,,.nr = 1

and out' is used.
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return false
end

Figure 61: Cases for vy in the algorithm. In part I, nrb = 1 and nr = 0. In part II,
nr 4+ nrb > 1, and only the ending biconnected component is shown.

Lemma 4.28. If suffices to keep track of two pairs (out.l.l;, out.l.r;), and two pairs
(out.r.d;, out.r.r;).

Proof. Consider the computation of the new value of out.l at vertex v,, of the path. If
out.l.ok holds, then we want to keep track of all pairs ({;,7;) € 9, where S is as defined
in Definition 4.21.

If v,,.be.ok is false, then || < 1, as is shown in Lemma 4.19. If v,,.bc.ok is true and
there v,,.nr = 0, then |S] < 1, because the only possible pair is (in'.r, v,,.be.rrlv). If
vm.nr > 1, then |S| < 1, since for each possible pair ({;,7;), {; = m. If v,, = 1,|5] < 2,
since there is one possible pair ({;,7;) with I; = m, and one possible pair with [; = in’.r.

O

The main result of this section is as follows.

Theorem 4.2. The algorithm given in this section computes in O(n*) time whether
there is a proper path decomposition of a three-colored partial two-path G' (n = |V(G)]).

Proof. The correctness of the algorithm follows from previous lemmas. The total time
taken by the algorithm is O(n?), since the number of candidate nice paths is constant,
and for each nice path, the function Check_Nice_Path runs in O(n?) time, which can
be shown in the same way as in the proof of Theorem 4.1. a

This completes the description of the algorithm to check for a given three-colored
graph GG whether there is a proper path decomposition of G. The algorithm can be
made constructive in the sense that it returns an intervalization if there exists one in
the same way as the algorithm for trees.
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— return false

fi
rof

{handle v, }
if vynr+4vynrb=0
— {no ending biconnected component }
return in.ok
O wvgnr4+v,nrb=1
= {vgnr=0Av,nrb=1}
compute v,.b[1].€;
{see Figure 69, part I }
return (in.ok A vg.b[1].e.0k A vy.b[1].e.v > in.r)
vg.nr+vg.nrb > 1
— for ¢ :=1 to vy.nrb
— compute v,.b[7].e
rof;
nr’ .= nr+nrb — 1; {nr’ is # partial one-paths }
for ¢ := 1 to v,,.nrbd
— if  vg.b[i].e.ok Avg.bli].ev =g¢
— {this can happen at most three times }
add other biconnected components to array v,.p;
permute new array v,.p such that no v,.p[i]. H, 1 < i < vg.nr,
has a vertex of color ¢(v,);
if this is not possible, then return false

O

compute vg.p[1].0, vy.p[1].1l and v,.p[1].Ur;
{compute final result }
{try in }
if  in.ok Avg.p[l].lok A vg.p[l].lr > in.r
— {see Figure 68, part 1T }
return true
fi;
{try out.l }
if  out.lok Awvg.p[l].llr.ok
— forb:=1to2
— if out.lly < vy p[l].llrw
— {see Figure 68, part IIT }
return true
fi
rof
fi;
{try out.r }
if  out.r.ok A vg.p[l].l1Lok
— similar

fi

rof
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fi;
{compute out.r }
similar
if v, .berlok
— fori¢:=1to2
— {compute out.l }
if vy, .pli].l.ok A vp,.p[i].lv > in’.r A vy, .p[3 — i].rrlok
— {see Figure 68, part 1T }
out.l.ok := true;
out.l.ly == out.l.ly := m,;
out.l.ry := out.l.ry := min{out.l.ry, vy .p[3 — §.rriv}
fi;
{compute out.r }
similar
rof

ﬁ.

fi;
{try out’.l }
if out’.l.ok
— forb:=1to?2
— fori:=1to?2
— {compute out.l }
if vy berrlok A vy . pli]dlr.ok A
O A lrv > out’ 11y Avp,.p[3 — i].r.0k
— {see Figure 68, part IIT }
out.l.ok := true;
out.l.ly == out.l.ly := m,;
out.l.ry := out.l.re := min{out.l.ry, vy, .be.rrlv};

if vy .berl.ok A vy, pld]llr.ok A
U, pli]llrv > out’ L1y A
U, -p[3 — i].rrl.ok
— {see Figure 68, part IV }
out.l.ok := true;
out.l.ly == out.l.ly := m,;
out.l.ry ;= out.l.ry .=
min{out.l.ry, vy p[3 — il.rrlv};
fi
{compute out.r }
similar
rof
rof
fi
{try out’.r }
similar
fi
fi
fi;
if —in.ok A —out.l.ok A —out.r.ok
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O

fi;
{compute out.r }
similar
fi;
{try out’.l }
if out’.lok
— forb:=1to?2
— {compute out.l }
if vy p[1].UUr.ok A vy,.p[1].llrv > out’ Ll A
U, be.rrl.ok
— {see Figure 67, part IIT }
out.l.ok := true;
out.l.ly == m;
out.l.ry := min{out.l.ry, v, .berrl v}
fi;
{compute out.r }
similar
rof
fi;
{try out’.r }
similar

{make sure out.l and out.r are as defined in Definition 4.21 }
if out.lok
— if  out.l.ly <out.lly ANout.l.ry < out.l.ry
— out.l.ly := out.l.ly;
out.l.ry := out.l.ry;
O out.lls <out.lly Nout.lrs < out.lor
— out.l.ly ;= out.l.ls;
out.l.ry := out.l.rs;

fi;

fi;

if out.r.ok
— similar
fi;

U > 1
{try in’ }
if in'.ok

{compute out.l }

if v, .berrlok

— fori:=1to?2

— if vy, pli]Lok A vy,.pli] v > in' e A vy, p[3 —i].r.ok
— {see Figure 68, part T }

out.l.ok := true;
out.l.ly == out.l.ly := m,;
out.l.ry := out.l.rs := min{out.l.ry, vy, .berrlv}

rof
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if v, .bellr.ok
— fori¢:=1to2
— if vg.pli].Ur.ok A vp, pli]llre > out' Ll A
U, -p[3 — il.rrlok A vy p[3 —ilrrlo <n
— {see Figure 65, part IIT }
in.ok .= true;
in.r = min{in.r, v,.p[3 — i.rriv}

rof;
fi
rof
fi;
{try out’.r }
similar to out’.l

{compute out }
if vpp1.nr=0
— {no partial one-path connected to v,, can use [,j'], n < j <j <nn}
skip
O vpgprnr>1
— if v,nr=0
— {try in’ }
if in'.ok
— {compute out.l }
if v, .berrlok
— {see Figure 66, part T }
out.l.ok := true;
out.l.ly = out.lly == in’ .r;
out.l.ry := out.l.ry := vy, berrlv;
fi;
{compute out.r }
similar {see Figure 66, part IT }
fi

{out’ does not have to be tried since v,,.nr = 0}

O vy,.nr=1
— {try in’ }
if in'.ok
— {compute out.l }
if v be.rrl.ok A vy, p[1].l.ok A vy,.p[1].Lv > in’.r
— {see Figure 67, part T }
out.l.ok := true;
out.l.ly == m;
out.l.ry := vy, berrlv,

if vy .berl.ok A vy, p[l].rrlok
— {see Figure 67, part 1T }
out.l.ok := true;
out.lly = in'.r;
out.l.ry := vy, .p[l].rriv
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if

if

fi

rof
U be lll ok
fori:=1to 2

— if vy, pli]dok A vy, pli]lv > in' e A
U -p[3 — i].rrr.0k A vy .p[3 — rrrv <n
— {see Figure 64, part 1T }
in.ok .= true;
in.r := min{in.r, v,.p[3 — il.rrr.v}
fi

rof

Uy, be llr.ok
fori:=1to 2
— if vy, pli]dok A vy, pli]lv > in' e A
U, -p[3 — il.rrlok A vy p[3 —ilrrlo <n
— {see Figure 64, part III }
in.ok .= true;
in.r = min{in.r, vy.p[3 — i).rriv}
ﬁ.

)
rof

{try out’.l }
if out'.l.ok
— forb:=1to 2

_>

if v, .belr.ok
— fori¢:=1to2
— if vpy.pli].Ur.ok A vy, pli]llro > out’ Ll A vy, .p[3 — i].r.ok
— fora:=1to4
— {see Figure 65, part T }
in.ok .= true;
in.r := min{in.r, v,.bedr.r,}
rof
fi
rof;
if v,,.bclllok
— fori¢:=1to2
— if vg.pli].Ur.ok A vp, pli]llre > out' Ll A
U, -P[3 — i]l.rrr.ok A vg.p[3 — drrre <n
— {see Figure 65, part 1T }
in.ok .= true;
in.r = min{in.r, vpy.p[3 — {].rrr.w}

fi
rof;

bl
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O vy,.nr=1
— {try in’ }
if in'.ok
— if vy, bedr.ok A vy, p[1]0.0k A vy, .p[1].Lv > in.r
— fora:=1to4
— {see Figure 62, part 1T }
in.ok .= true;
in.r := min{in.r, v,.bedr.r,}
rof
fi;
if  wpy.bedll.ok A vy bedllv > in' v A vy, .p[l].rrr.ok
— {see Figure 62, part IIT }
in.ok .= true;
in.r := min{in.r, v,.p[1].rrr.o}
fi;
if vy .bedlr.ok A vy beldlrw > in' v A vy p[l].rrlok
— {see Figure 62, part IV }
in.ok .= true;
in.r := min{in.r, v,,.p[1].rrlv}
fi;
fi;
{try out’.l }
if  out’.l.ok
— forb:=1to 2
= if  vy,.p[1]lr.0k A vy, p[1].UUrwo > out’ 11y A vy, belr.ok
— fora:=1to4
— {see Figure 63, part T }
in.ok .= true;
in.r := min{in.r, v,.bedr.r,}
rof
fi;
rof;
fi;
{try out’.r }
similar to out’.l
{see Figure 63, part 1T }
O vy,.nr>1
— {try in’ }
if in'.ok

— 1f v,,.belr.ok
— fori¢:=1to2
— if vy, pli]dok A vy, pli]lv > in' e A
U, -p[3 — i].r.ok Avp.p[3 —ilrv=m
— fora:=1to4
— {see Figure 64, part T }
in.ok .= true;
in.r := min{in.r, v,.bedr.r,}
rof
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for j:=1tot
— in’ = in; out’ := out;
{initialize in and out }
tn.ok = false; in.r 1= ¢;
out.l.ok .= false; out.l.ly, out.l.ry, out.l.ly, out.l.ry :== q,q,q, q;
out.r.ok := false; out.r.ly, out.r.ry, out.r.ls, out.r.ry : = q,q,4q,q;

m = ij;

P = ijo1;

pp = -2
nI=dj41;

nn = ij4o;

Permute array v,,.p of partial one-paths such that no v, .p[i].H, 2 < i < v,,.07,
has a vertex of color ¢(vy,). If this is not possible, return false
for ¢ :=1 to v,,.nr
— if  vy,.p[i].H has vertex of color ¢(vp) or vy,.nr =1
—  Compute vy, .p[i].l, v .pli].7, vm.p[E]lr, Vg D[] UL, vy, pld]Ur, vy, .pli].rrl,
and vy, .p[é].rrr using PPW2 and PPW2/

O else

= Um.pli].l.ok ;= true;
Uy pli]Lv = m;
Uy -pli].7.0k := true;
Vg -pli].7v = my
Uy .pli] Ir.ok = false;
U -pli] Ul ok := false;
Uy -pli] Ur.ok .= false;
U -pli].rrl.ok = false;
U .pli].rrr.ok := false;

fi

rof;

if -w,,.bc.ok

— {No connecting biconnected component between vy, and vy,41 }
see Check_Nice_Path for trees

O w,,.bec.ok

— compute vy, .bedr, vy, belll, vy, bellr, vy, . berrl, vy, be.rrr and v, .bc.rl

{compute in }
if v, nr=0
— {try in’ }
if in'.ok A v, .beldr.ok
— fora:=1to4
— if wy.bedy >in'r
— {see Figure 62, part T }
in.ok .= true;
in.r := min{in.r, v,.bedr.r,}
fi
rof

ﬁ.

bl

{no need to try out’ }

132



rof;
return false
ﬁ.

bl

ta>1}

Let 41,...,¢; denote thosa vertices of P, except v; and v,, for which
vi;.nr > 0V v, be.ok, for all j, 1 < j <{,such that ¢; <iz <--- <14y
iOa i—la it-l—la it+2 = 1a 1a q4,9;

{initialize in and out on false }

tn.ok = false; in.r 1= ¢;

out.l.ok .= false; out.l.ly, out.l.ry, out.l.ly, out.l.ry :== q,q,q, q;
out.r.ok := false; out.r.ly, out.r.ry, out.r.ls, out.r.ry : = q,q,4q,q;

{handle v }
if vinr+ovinrb=0
— {no ending biconnected component }
in.ok := true; in.r := 1,
O wvi.nr+vi.nrb=1A —wy.be.ok
= {vymr=0Avinrb=1}
compute vy.b[1].e
if  vy.b[1].c.0k
— {see Figure 61, part T }
in.ok := true;
in.r = vy.b[1].e.v
O —wy.b[1].c.ok
— return false
fi
vi.nr =+ vy.nrb > 1V vy .be.ok
— nr’ :=nr+nrb— 1; {nr' is # partial one-paths }
for ¢ := 1 to v,,.nrbd
—  Compute vy.b[].e
if  vy.b[i].e.ok Avy.blil.ev=1
{this can happen at most three times }
— {see Figure 61, part 1T }
Handle biconnected components except v1.b[7].G as partial one-paths of type TV;
Compute local information for all partial one-paths, and for the connecting
biconnected component if vy.bc.ok holds;
in' .ok := true;

O

in'.ri=1;

out’.l := out’.r := false;

Compute ¢n and out in same way as for ¢;, 1 < j <t.

fi
rof

fi;
if  —in.ok A —out.l.ok A —out.r.ok
— return false

ﬁ.

bl

{handle v;,, for all j, 1 <j <t}
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U, and vy, and
if vy, .be.ok then v, .be.GG is graph G'g, where B is biconnected component which
connects vy, and V41 )
Vime{1,¢} (Um.nrb = # non-connecting biconnected components containing v,,, and
Vi<i<vn, nrb (Um.b[i].G is graph Gp for ith non-connecting biconnected component B,
and v, .b[i].t is type of v,,.b[i].G))
}
{ output: true if there is a proper path decomposition of G
with nice path P, false otherwise

1

{g=0}
if ¢=0
— let B be biconnected component of G
if B has vertices of state I1 or E1l
return false
O else
— use PPW?2' to compute whether there is a proper path
decomposition of G
return result of this computation

fi
fi;
{g=1}
if ¢g=1

= {vy.nrb>2}
for z:=1 to vy.nr
— if  wvy.p[é].H has vertex of color ¢(v1)
— return false
fi
rof;
for ¢ :=1 to vy.nrbd
— compute v1.b[i].e
rof;
for ¢ := 1 to v,,.nrbd
— if  vy.b[i].e.ok Avy.bli]l.ev =1
— {this is at most four times }
for j := 1 to vy.nrb
— if jEIiAvb[fleckAvib[jlo=1
— b :=true
for [ :=1 to vy.nrbd
= if L £EJALEIA
v1.p[{]. H has vertex of color ¢(v1)
— b:=false
fi
rof;

bl

if b — return true fi

rof
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(out.l.l,out.l.7), namely the case that v,,.nr = 1 and v,,.bc.ok is true. However, two
pairs suffice, as we will show after the algorithm.

Let ¢1,...,i; denote the vertices of P, except vy and vy, for which v;;.nr > 0Vv;;.bc.ok,
for all j, 1 < j < ¢, such that 44 < 23 < --- < ¢;. Furthermore, let ¢p = iy = 1 and
41 = U2 = 4.

Suppose the nice path is processed up to and including 7;, 0 < j < t. Let m = i;,
P = 1j—1, n = tj41 and nn = i;42. The global information that is kept is defined as
follows.

Definition 4.21. The global information consists of two records in and out, which are

defined as follows.
e n is a record with two fields ok and r, which are defined in Definition 4.11.

e out is a record with two fields | and r, which each have five fields: ok, 11, I3, rq
and ro. The ok field is as defined in Definition 4.11. If out.l.ok is true, then
out.l.l; and out.l.r;, 1 <1 <2, are such that

{(out.l.loutlr;) |1 <i<2} =5,
where S is defined as follows.

S = {7 p<j<mAn < j < nnA there is a ‘partial’ nice
proper path decomposition up to and including »,, and the partial
one-paths connected to v, and biconnected components containing
v, stch that it is possible that a partial one-path H' connected to
v, uses [[,1I'], 7 <1 <1 < m, the sticks of v,, which have color ¢(v,)
occur on the right side of the occurrence of {v,,,v,}, and all partial
one-paths connected to v;, i > n, except H’, can use j’ at least.
Furthermore, there is no pair (s,s'), j < s <m and m < s < j', for
which this also holds, but j < sor j' < . }

If out.r.ok holds, then out.r.l; and out.r.r;, 1 < 1 < 2, are such that the same
condition holds, but with the sticks of v, which have color ¢(v,) occurring on the
right side of the occurrence of {vy,,v,}.

We now show how variables in and out are initialized and adapted by giving a
complete description of function Check_Nice_Path. In Figures 61 up to 69, a symbolic
representation of all cases in the algorithm is given.

function Check_Nice_Path(P: Path): boolean;
{ pre:
P = (v1,...,v4) is a possible nice path for G.
Vi<m<q (vm.nr = # partial one-paths of type I, II, III, and if 1 < m < ¢, also
of type IV connected to v,,, and
Vi<i<vn.nr (Um.p[i].H is partial one-path ¢ and vy, .p[i].t is type of vy, .p[i].H), and
U, -be.ok 18 true iff there is a connecting biconnected component between
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o v,,.b[i].e stores the ending biconnected component info of Case 2:

U -bli].e has two fields: ok and v, which denote the following. v,,.bli].e.ok is true
of and only if 71 as defined in Definition 4.15 is defined and one of the following
conditions holds

— u.b[i).t = PW2,

— vp.nrb=1and g > 1,

— vp.nrb=2 and g =1,

— q > 1, there is no i with v,,.b[i'].t = PW2 and v,,.nrb 4+ v,,.nr < 2,
— q =1, there is no 7" with v,,.b[i'|.t = PW2 and v,,.nrb 4+ v,,.nr < 3,

— there is no i with v, .b[i'].t = PW2, and v,,.0[i].G <{v,,} has a vertex of
color ¢(v,,), or

— q > 1, there is no i' with vy, .b[i"].t = PW2 or for which v,,.b[i"].G &{v,,}
has a vertex of color ¢(v,,), vy.nrb+ vy .nr > 3, and v, .b[i].G is selected in
the sense of Case 2.

— q =1, there is no i' with vy, .b[i"].t = PW2 or for which v,,.b[i"].G &{v,,}
has a vertex of color ¢(v,,), vy.nrb+ vy .nr > 4, and v, .b[i].G is selected in
the sense of Case 2.

If v1.0]i].e.0k is true, then vi.b[i].e.v = j1 (j1 as defined in Definition 4.15).

o v,,.b[1].l, v,,.b[¢].r and v, .b[t].lr store the partial one-path info of Case 2. They
are defined in the same way as vy, .p[i).l, vy.plil.r and v,,.p[i].lr, except that
U, b[1].L.0k, v, .b[t].r.0k and v, .b[i].lr.ok can only be true if v, .b[i].t = PWI,
and v,,.b[{].nrb > 1.

We now show how the global information is computed. Therefore, we construct a
modified version of the function Check_Nice_Path for trees. We consider three cases,
namely the case that the nice path is empty, the case that the nice path consists of
one vertex, and the case that the nice path consists of two or more vertices. If the
nice path is empty, then G is a biconnected component with sticks, and we can check
whether there is a nice proper path decomposition of G with nice path P by simply
using PPW?2'.

If the nice path consists of one vertex, then there are two ending biconnected
components: one for each side. All partial one-paths of type I, II, III and IV may
not have a vertex of color ¢(vy).

Next consider the case that the nice path consists of more than one vertex. In
this case, the global information can be computed using a modified version of the
for-loop of the function Check Nice_Path for trees. We now show how the function
Check_Nice_Path for trees is adapted for general partial two-paths. We use the same
structure, and the same variable in. Only variable out has to be modified, since there
is one case in which it does not suffice to have one pair (out.l.l,out.l.r) and one pair
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o v,,.be.rl stores the local information for Case 3.1:

v berl has a field ok which is true if and only if there is a nice proper path
decomposition of v,,.be.G such that vy, and v,,4+1 are in all nodes (v,,.be.rl.ok = b,
where b is as defined in Definition 4.16).

o v,,.belll and vy, .bellr store the local information for Case 3.2:

— vp.belll has two fields: ok and v which denote the following. v,,.be.lll.ok
1s true if and only if j1 as defined in Definition 4.17 is defined. If not
vy bedll.ok, then vy, .belll.v = p, otherwise, vy, .belllv = 5.

— vp.bellr has two fields: ok and v which denote the following. wv,,.bc.llr.ok
1s true if and only if jo as defined in Definition 4.17 is defined. If not
vy bedlr.ok, then v, bellr.v = p, otherwise, vy,.bellr.v = js.

o v, .berrl and v, berrr store the local information for Case 3.3:

— vp.berrl has two fields: ok and v which denote the following. v,,.be.rril.ok
1s true if and only if j1 as defined in Definition 4.18 is defined. If not
v berrl.ok, then v, berrlv = n, otherwise, v, .berrlo = j1.

— vp.be.rrr has two fields: ok and v which denote the following. v, .be.rrr.ok
15 true if and only if jo as defined in Definition 4.18 is defined. If not
vy berrr.ok, then vy, be.rrr.v = n, otherwise, vy, .be.rrr.v = jo.

o v,,.be.lr stores the local information for Case 3.4:

vy bedr has nine fields: ok and for a, 1 < a < 4, l, and r,, which denote
the following. wv,,.bedr.ok is a boolean which is true if and only the set () as
defined in Definition 4.19 is non-empty. If v,.belr.ok is true, then vy,.belr.l,
and vy,.bedr.r,, 1 < a <4, are such that

Q =A{ (vp.beldrily, vy belrr,) |1 <a<4}.

Furthermore, for m = 1 and m = q, v, is a record with fields nr, p, bc, nrb and b,
which are defined as follows. Fields v,,.nr, v,.p and v,,.bc are as defined before, but
Uy mr and v,.p are only defined for partial one-paths of type 1, 11 and III. v,,.nrb
denotes the number of non-connecting biconnected components which contain v,,. v,,.b
is an array of v,.nrb records with fields G, t, e, I, r and lr, which are defined as
follows. For each i, 1 <t < v,,.nrb:

e v,,.b[i].G denotes the graph G, where B is the ith non-connecting biconnected
component which contains v,,.

o v,,.b[i].t is the type of v,,.b[i].G, i.e. v,,.b[i].t € {PWI1,PW2}, where type PW1
denotes that v, .b[i].G <{v,,} has pathwidth one, and type PW2 denotes that
0, B[1].G &{ v, } has pathwidth two.
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in the rightmost node, or there is a proper path decomposition of G¥ _, with {v,,_1,u}
in the leftmost node and {v,,_1,w} in the rightmost node, and j = 1. If G7 is not
defined, or there is no such j, let [ be undefined.

Let I§ be the largest value of j, p < 7 < m &1, for which there is a proper path
decomposition of G U {sticks of w} with {v;,u} in the leftmost node and {v;,_1,w}
in the rightmost node. If G7 is not defined, or there is no such j, let /5 be undefined.

Let 7‘%/ be the smallest value of j/, m < 7' < n, for which there is a proper path
decomposition of G}‘,/ U {sticks of w} with {v,,_1,w} in the leftmost node and {v;, v’}
in the rightmost node. If G}‘,/ is not defined, or there is no such j, let 7} be undefined.

Let r%l be the smallest value of j/, m < j' < n, for which there is a proper path de-
composition of G}‘,/ U {sticks of v,,—1} with {v,,,_1,w} in the leftmost node and {v;/, v’}
in the rightmost node. If G}‘,/ is not defined, or there is no such j, let r§ be undefined.

Let li‘/, %/, r{ and r§ be defined analogously.
Let Q' be defined as follows.

Q"= {3, (e, (1))
Claim 4.23. If Wg = {w, w'}, then
Q=1{(4,j) €@ |jand j" are defined A=Fyeq (j<I<I'<jvi<i<l<j)}
Proof. Can be shown in the same way as Claim 4.5 in Case 2 for trees. a

The computation of I and 1§ can be done in O(n?) time, where n = |[V(GY¥) U
{ sticks of v,,,_1 and w }|, using PPW2. Analogously for 7‘}‘/, 7‘12‘/, li‘/, l%/, ry, and rj.

This completes the description of the case that Wp = {w,w’}. All other cases are
similar.

Case 4. v, € V(P), m € {1,q}, and there is a connecting biconnected
component containing v,,.
This case a straightforward combination of cases 2 and 3.

This completes the description of the four cases. During the algorithm, we use the
following record to store all local information for each vertex of the path.

Definition 4.20. Let G be a three-colored partial two-path, P = (v1,...,v4) a possible
nice path for G. For each m, 1 < m < q, v, is a record with fields nr, p and be. The
fields v, .nr and v,,.p are as defined in Definition 4.10. The field v,,.bc has eight fields,
namely ok, G, rl, U, llr, rrl, rrr, and lr, which are defined as follows. v,,.bc.ok is a
boolean which is true if and only if there is a connecting biconnected component between
U, and vy41. If vy,.bc.0k is true, then the other fields are defined as follows (let B
denote the connecting biconnected component between v, and vy,41).

o v,,.be.G denotes the graph Gp.
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Wp = {w,w'}, w # w'. If Wg = {w,w'}, then st(w) = st(w’') = E1. Let H,
and H,: be the components of Gr which contain w and w’, respectively, let H] =
GV (H,) < {sticks of w}], and let H!, = G[V(H,s) < {sticks of w'}]. Let (C,S) be
a path of chordless cycles for B, with € = (C4,...,C}), such that v,,_; € V(C}) and
vy € V(C,). Let u be the end point of Py(H ) such that the path from u to w contains
Py(H},). Similarly, let ' be the end point of P;(H/,) such that the path from v’ to w’
contains Py (H/,). See Figure 60 for an example.

If dsty(vpm -1, w) and dsty(vy,, w’) hold, then for each j, p < j < m<1, let G¥ be the
subgraph of G obtained by deleting G <{v,,_1} <H,,, vertices {vq,..., 0,1, Vpyyeee, Uy}
and all sticks, partial one-paths and biconnected components except B which are con-
nected to vertices {vq,..., v}, V..., v}, and by adding edges {v,,_1,w} and {v;,u}. See
e.g. Figure 60. Furthermore, for each j', m < j' < n, let G}‘,/ be the subgraph of G
obtained by deleting H,, <{w}, vertices {v1,..., vy_2, Vjr41,..., 4}, and all sticks, par-
tial one-paths and biconnected components except B which are connected to vertices
{15000y V1,015, 04}, and by adding edges {v,,—1, w} and {vjy, v’} If dsty(vy,—1, w)
or dsty(vy,, w') does not hold, then G% and G}‘,/ are undefined for all 5, 7/, p < j < m&l
and m < j' < n. See e.g. Figure 60.

For all 7, p < j < m<1, and all j/, m < j' < n, let G}‘/ and G% be defined

analogously (if dsty(v,,—1,w") or dst,(v,,, w) does not hold, G}‘/ and (7% are undefined).

Figure 60: Example of a connecting biconnected component B with Wg = {w, w’}, and
graphs G/ and G}‘,/. Note that in B, dsty(v,—1,w) and dst,(v,, w’) hold (if (C,S) is a
path of chordless cycles for B with v,,—y € V(Cy) and v, € V(C5)), but dst,(v,, w)
and dsty(v,,—1,w’) do not hold, which means that G}‘/ and G}‘, are undefined.

Let [ be the largest value of j, p < j < m <1, for which there is a proper path
decomposition of G U {sticks of v,,_1 } with {v;, u} in the leftmost node and {v, 1, w}
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Figure 59: Examples for the different cases in values of Wg, and the different occur-
rences of Gg.

124



Claim 4.22. If G occurs in (V},...,Vjs), [ is the smallest integer, 1 <[ < m &1, for
which v; € V; and !’ is the largest integer, m < I’ < ¢, for which vy € Vjy, then a partial
one-path H” connected to v,,/, can use [a,a'] with ¢/ <[if m' < m &1, and a > I'if
m' > m.

Proof. Corollary 4.4 shows that ¢’ <[ if m’ < m &1, and a > ' if m' > m.
In the same way as for Claim 4.1, Case 1 for trees, we can show that it is possible
that ' =l of a = 1. O

Let p be the largest integer, p < m <1, for which there is a partial one-path or
biconnected component (except B) connected to v,. Let n be the smallest integer,
n > m, for which there is a partial one-path or biconnected component (except B)
connected to v,. Claim 4.22 implies that we only need all values of (j,7'),p <j<m <
j' < m, for which partial one-paths connected to v,,, can use 7 at most if m’ < m <1,
and can use j' at least if m’ > m, and there is no pair (/,{’) for which this also holds
and j <I<lU'<jand j<lorl' <j.

Definition 4.19. The local information for B for the case that all partial one-paths
connected to v,_1 occur on the left side of the occurrence of G and all partial one-
paths connected to v, occur on the right side of the occurrence of Gp is the set

Q = {7 p<j<m<j <n A there is a proper path decomposition of
G U {vj,...,vj} U{sticks of vji1,...,vp_1} with v in the leftmost node
and v; in the rightmost node
A-Tpr (<l<m<<U<jvi<li<m<U <) A there is a
proper path decomposition of G U {v,...,vp} U {sticks of vj41,...,vp_1}

with vy in the leftmost node and vy in the rightmost node }

We now briefly show how @ can be computed and that |Q| < 4. Let Wg be the set
of vertices of B which have state I1 or E1. We consider four cases, namely

L Wp ={w,v'}, w £ v,

2. Wp ={w} and st(w) = 11,

3. Wp ={w} and st(w) = E1, and
4. Wg =10.

Figure 59 gives an example for each case.
We only show how to compute @) for the first case. All other cases are similar.
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of {v—1,vm }. If they occur on the left side, then the sticks of v, with color ¢(v,,—1)
occur on the right side, and vice versa (see also Case 3 for trees, Page 84). This means
that we can define the local information for this case as follows.

Definition 4.17. The local information for B for the case that there is a partial one-
path H' connected to v,,—1 which uses [7,7'], 7 > m, is the pair (j1,72), p < J1,J2 <
m <1, where

o 71 is the largest value of 7, p < j < m &1, for which there is a proper path
decomposition of GgU{v;,..., vm_1} U{sticks of vj41,...,0m—_1} with v,_1 and v,
in the rightmost node and v; in the leftmost node (j1 is undefined if there is no
such j), and

o jo is the largest value of 7, p < j < m &1, for which there is a proper path
decomposition of GpU{v;,..., vy 1} U{sticks of vj41,..., Um_2, U } with v, and
vy, in the rightmost node and v; in the leftmost node (jy is undefined if there is
no such j).

Note that B has at most one vertex of state E1, and no vertices of state I1, since
edges of Gg < B can only occur on the left side of the occurrence of B.

The computation of j; and j; can be done with PPW?2 in O(n?) time, where
n = |V(Gp)U{v;,...,v5m_1} U {sticks of v;11,...,v,,}|. This can be shown in the same
way as for Case 2 for trees.
Case 3.3 All partial one-paths connected to v,,_; occur on the left side of
Vj, a partial one-path connected to v,, occurs on the left side of V;
According to Lemma 4.23, v,y and v, both occur in the leftmost node of the oc-
currence of G'g. This case is similar to Case 3.2. If there are two or more partial
one-paths connected to v,,, let » = m, otherwise let n be the smallest integer n > m
for which there is a partial one-path or biconnected component connected to v,. The
local information is defined as follows.

Definition 4.18. The local information for B for the case that there is a partial one-
path H' connected to v, which uses [j,j'], j' < m&l, is the pair (j1,72), m < ji,j2 < n,
where

o ji is the smallest value of j, m < j < n, for which there is a proper path decom-
position of GpU{vy,,...,v;} U{sticks of vi,_1, V1., Vj_1} with v,,_1 and vy, in
the leftmost node and v; in the rightmost node (j; is undefined if there is no such

j), and

e jo is the smallest value of j, m < 7 < n, for which there is a proper path de-
composition of GgpU{vy,,...,v;} U{sticks of vy,,...,v;_1} with v,_y and vy, in the
leftmost node and v; in the rightmost node (jy is undefined if there is no such j).

Case 3.4 All partial one-paths connected to v,,_; occur on the left side of
Vj;, all partial one-paths connected to v,, occur on the right side of Vj
In this case, v,,_1 and v, do not have to occur in an end node of the occurrence of

Gg.
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Figure 57: Example of the case that a partial one-path connected to v,,_1 uses [[,1'],
[ > m, and a partial one-path connected to v, uses [J, 7], j < m < 1. In this example,
there is one partial one-path connected to »,,_1, and one connected to v,,.

Case 3.2 A partial one-path connected to v,,—; occurs on the right side of
Vjs, all partial one-paths connected to v,, occur on the right side of Vj
According to Lemma 4.23, v,,_1 and v, both occur in the rightmost node of the
occurrence of G'g. For example, see Figure 58.

Figure 58: Example of the case that a partial one-path H’ connected to v,,_1 uses
., 5 = m.

Claim 4.21. If Gp occurs in (V},..., V1), vy_1, vy € Vir, and [ is the smallest integer,
[ < m &1, for which v; € V;, then a partial one-path H’ connected to v, 1 <m/ <g,
can use [a,d’], where ¢/ <1if m' <m&l,a>mif m'>m,and ¢ <lora>mif

m' =m&l.

Proof. Tt is clear that ¢/ < [if m’ < m <1, that @/ <lora>1U"if m = m<1, and
a > m if m" > m (Corollary 4.4, Lemmas 4.23 and 4.24). Showing that ¢’ = [ and
a = m are possible can be done in the same way as in the proof of Claim 4.1, Case 1
for trees. a

If there are two or more partial one-paths connected to v,_q1, let p = m <1,
otherwise let p be the largest integer p < m <1 for which there is a partial one-path
or biconnected component connected to v,. It follows from the claim that for a partial
one-path H’ which occurs on the left side of the occurrence of G, we only need the
largest [, p < | < m <1, for which H' can use [ at most. For a partial one-path H’
connected to v,y which uses [j, '], j > m, we need more information about the sticks
of v,,_1 and v,,, since there is a node containing v,,_1 and »v,,, and the sticks of v,, 1
which have color ¢(v,,) occur either on the left side or on the right side of the occurrence
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Claim 4.14 in Case 3 for trees also hold.

If there is no connecting biconnected component between v, and v,,41, then the
local information for the case that H' uses [j,j], n < j < j' < mn is the same as in
Case 1. If there is a connecting biconnected component then the local information for
the case that H' uses [j,7'], n < j < j' < nn is similar to the local information for the
case that H' uses [[,I'], pp <1 <1 < p.

Local information for biconnected component B connecting v,,—1 and v,,.
We first analyze the structure of a nice proper path decomposition PD = (Vi,...,V;) of
G with nice path P in which G uses (V;,...,V}s). Consider the different possibilities
in PD for partial one-paths connected to v,,_1 and »,,. There are four different cases.

3.1 One partial one-path connected to v,,_; occurs on the right side of V;; and one
partial one-path connected to v, occurs on the left side of V.

3.2 One partial one-path connected to v,,_; occurs on the right side of V;; and all
partial one-paths connected to v,, occur on the right side of V.

3.3 All partial one-paths connected to v,,_; occur on the left side of V; and one partial
one-path connected to v, occurs on the left side of V.

3.4 All partial one-paths connected to v,,,_1 occur on the left side of V; and all partial
one-paths connected to v, occur on the right side of V.

For each of these cases we have to compute local information which shows whether
this case is possible w.r.t. G'g.

Case 3.1 A partial one-path connected to v,,—; occurs on the right side of
Vjs, a partial one-path connected to v,, occurs on the left side of V;
According to Lemma 4.23, v, and v,, are both in V; and in Vji. See e.g. Figure 57.
This means that G'g is a biconnected component with sticks, and there is a proper path
decomposition of G with v,,_1 and v, in the leftmost and rightmost end node. The
sticks of v,,_1 which have color ¢(v,,), and the sticks of v,,, which have color ¢(v,,_1)
must occur either on the right side or on the left side of the occurrence of Gg. The
sticks of v, which do not have color ¢(v,,—1) and the sticks of v,,_; which do not
have color ¢(v,,) can always be made to occur within the occurrence of Gg, because
edge {v;,—1, v} is a middle edge. Hence this gives the following definition of the local
information for this case.

Definition 4.16. The local information for B for the case that there is a partial one-
path connected to v,,_1 which may occur on the right side of the occurrence of Gp,
and there is a partial one-path connected to v, which may occur on the left side of
the occurrence of Gpg is a boolean b which is true if and only if there is a proper path
decomposition of Gp with v, _1 and vy, in the leftmost and in the rightmost end node.

Note that b can be computed in O(n?) using PPW?2, where n = |[V(Gg)|, since Gp
is a biconnected component with sticks.
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biconnected component containing v;. If there is no such j, then pp = 1. Furthermore,
the ending biconnected component info for a biconnected component B; containing v,
consists of value j, which is the largest j, p < j < ¢, for which there is a proper path
decomposition of G; U {v;,..., v} U {sticks of v;41,..., v,} with vertex v; in the leftmost
node.

The case that m = ¢ = 1 is also similar to the case that m = 1 and ¢ > 1, except
that pp = p = m = n = nn = 1. The ending biconnected component info and the
partial one-path info are the same as for the case that ¢ > 1, but there may be more
biconnected components for which the ending biconnected component info is computed.
It is not shown here for which ending biconnected components the ending biconnected
component info must be computed, but it can be shown in the same way as for the
case that ¢ > 1, and the number of biconnected components for which it must be done
is still at most four.

Case 3 v,, € V(P), 1 < m < q, and there is a connecting biconnected
component containing v,,.
First suppose there is a connecting biconnected component B which connects v,,,_; and
V-

We first consider the local information for partial one-paths connected to v,,. After
that, we consider the local information for biconnected component B.

Local information for partial one-paths connected to v,,. Let pp, p, n and
nn be defined as follows. p = m, pp = m < 1. If there is a connecting biconnected
component between v,, and v, 41, then n = m and nn = m + 1, otherwise, n is the
smallest j > m such that there is a connecting biconnected component containing v;, or
a partial one-path connected to v;. If there is no such j, n = ¢. Furthermore, if there is
a connecting biconnected component between v, and v,_1, then nn = n, otherwise nn
is the smallest 7 > n such that there is a connecting biconnected component containing
vj, or a partial one-path connected to v;. If there is no such j, nn = ¢. Note that
pp, p, n and nn are well-defined, since partial one-paths of type IL, IIl and IV can use
[7,7], with p < j < j' < n only, and partial one-paths of type I can use [j, '] with
p<j<j <n,n<j<j <nn orpp<j <j <p(see Lemma 4.23).

For partial one-paths of type II, III and IV, the local information for this case is the
same as for the case that v, does not contain a connecting biconnected component,
because of Corollary 4.4 and Lemmas 4.23 and 4.24. Now consider a partial one-path
H' of type T which is connected to v,,. For the case that H' uses [j,j'] for some
p<j<iy<mm<j<j <norp<j<j <n, the local information is the same
as for the case that there is no connecting biconnected component containing v,,. For
the case that H' uses [,j'], n < 7 < j' < nn, and there is no connecting biconnected
component between v, and v,,11, the local information is also the same.

Consider the case that H' uses [j,5'], pp < j < j' < p. This case is similar to Case
3 for trees (see Page 84). The analogs of Claim 4.11 and Claim 4.12 in Case 3 for trees
also hold for H’, because of Lemma 4.23. This means that we can use Definition 4.9
for the local information for H' if it uses [j,j'], pp < j < j’ < p, and Claim 4.13 and
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Suppose there is no such proper path decomposition, but j; is defined. Suppose
71> L let PD = (V4,...,V;) be a proper path decomposition of G[V(G'g, )U{vs,..., vj }U
{sticks adjacent to vq,...,v;,—1 }] with v;, € V;. Suppose B, occurs in (V},...,Vjs). Then
there must be a vertex w € V(B) of which a stick occurs on the right side of the
occurrence of B, in PD. There can be at most one w for which this holds, and
furthermore, w € Vs, and dsty(vy, w) or dst,(vy, w) must hold. Hence V}» contains vy
and w, and w € V;. This means that c¢(w) # ¢(v2), ¢(v1) # ¢(v2) and ¢(v1) # e(w),
so the sticks of w have color ¢(v1) or color ¢(vg). Furthermore, all sticks of v of color
¢(w) must occur on the left side of Vjs, since each V;, i > j’, contains w.

Let PD' be the proper path decomposition of Gg, U{sticks of v} which is obtained
from PD as follows. Delete Viiyq,...,V;, add a node {vy, w, w’} on the right side of V}s
for each stick w’ of w which has color ¢(v3), then add a node {vy, vy, w} on the right
side, then add a node {vy, w,w'} on the right side for each stick w’ of w with color
¢(v1). vy is in the rightmost node of this proper path decomposition, hence j; = 2.
Contradiction. a

Claim 4.19. If B, has no vertices of state E2, then j; can be computed in O(n?) time,
where n is the number of vertices of G'g, U {sticks of v }.

Proof. The computations can be done using PPW2 and PPW?2': there are at most
two candidates for vertex w, and PPW?2 has to be used twice, PPW?2 once. a

This completes the description of the ending biconnected component info.

Partial one-path info. Let H’ be a partial one-path connected to vy, i.e. either
H' = H; for some 1, 1 < i < nr, or H' = G, for some i, 1 < ¢ < nr’ for which the
partial one-path info must be computed.

Claim 4.20. If the ending biconnected component info j; > 1 for some bicon-
nected component B;, then there is no proper path decomposition of G; U {vy,...,v;, } U
{ sticks of vy,...,v;,_1 } with vy in rightmost node.

Proof. Suppose there is a proper path decomposition PD = (Vi,...,V}) of G; U
{v1,..., v, } U { sticks of v1,...,v;,_1 } with vy in rightmost node. Then PD[V(G!)]is a
proper path decomposition of G} with vy in the rightmost node. Hence j; = 1. a

The claim implies that the partial one-path info can be computed in the same way as
in Case 1, for partial one-paths connected to v,,, 1 < m < ¢ in which no non-connecting
biconnected component contains v, (note that pp = p = 1). This completes the case
that m =1 and ¢ > 1.

The case that m = ¢ and ¢ > 1 is similar, except that n = nn = ¢, p is the largest
J,J < g, for which there is a partial one-path connected to v;, or there is a biconnected
component containing v;. If there is no such j, then p = 1. Furthermore, pp = p if
there is a connecting biconnected component between v,_; and v,, otherwise pp is the
largest j, j < p, for which there is a partial one-path connected to v;, or there is a

118



N TV

R o 4§

Figure 56: Examples of G’ and G; for the case that B, has a vertex w of state E1.

Let [5 be the smallest j, 1 < j < n, for which there is a proper path decomposition
of G’ U {sticks of w} with edge {vi,w} in the rightmost node, and either there is a
proper path decomposition of G; U {sticks of v;} with edge {v;,w} in the leftmost
node and edge {w,,v;} in the rightmost node, or j = 1, and there is a proper path
decomposition of Gy with edge {w,, v} in the rightmost node. If there is no such j,
then /3 is undefined.

Claim 4.16. Suppose B, has a vertex w of state E1, and suppose j; is defined. Then
jl = min{ll, 12}

Proof. This can be shown in the same way as Claim 4.2, Case 1 for trees. a

Claim 4.17. If B, has a vertex of state E2, then j; can be computed in O(n?) time,
where n is the number of vertices of G, U {vy,..., v, } U {sticks adjacent to vy...,v,_1}.

Proof. The computations can be done using PPW?2: PPW?2 has to be used twice for
G’ and twice for G,,. a

Suppose B, has no vertices of state E2. We now show how to compute j; for this
case. Let (C,S) be a correct path of chordless cycles for B,.

Claim 4.18. Suppose B, has no vertices of state E1. j; = 1 if there is a proper
path decomposition of G'g, with v; in the rightmost node. j; = 2 if there is no proper
path decomposition of G, with v in the rightmost node, but there is a proper path
decomposition of Gp, <{sticks of w} U {sticks of v;} with w and vy in the rightmost
node, where w € V(B,) and dsty(vy, w) or dst,(v1, w) holds. Otherwise, j; is undefined.

Proof. Clearly, there is a proper path decomposition of (Gp, with vy in the rightmost
node if and only if j; = 1.
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Ending biconnected component info. Let r, 1 < r < nr’, be such that ending
biconnected component info must be computed for B,.. If B, has two or more vertices
of state E1, or one vertex of state I1, then the ending biconnected component info for
B, is false. Suppose B, has at most one vertex of state E1, and no vertices of state
I1. We first analyze the structure of a nice proper path decomposition with nice path
P = (v1,...,vy) in which G'g, occurs in (Vi,..., V}), and the rightmost vertex of P which
occurs in Vi is vy.

Claim 4.15. If G, occurs in (Vy,...,V}s), and the rightmost vertex of P which occurs
in Vs is vy, then a partial one-path H' of type I, II, III or IV connected to v/, m’ > 1,
can use [a,a’], with a > m/.

Proof. 1t follows from Corollary 4.5 that @ > m’. Showing that it is possible that
a = m’ can be done in the same way as for in the proof of Claim 4.1, Case 1 for trees.
O

It follows from the claim that we only need the smallest value of [, 1 < [ < n,
for which it is possible that »; is the rightmost vertex of P which occurs within the
occurrence of Gg, .

Definition 4.15. The ending biconnected component info for B, is j1, 1 < j; < n,
which is the smallest value of I for which G, can occur in (Vi,...,Vy), and vy is the
rightmost vertex of P which occurs in Vj.

We now show how to compute j;. Therefore, we consider two cases, namely the
case that B, has a vertex of state E1, and the case that B, has no vertices of state E1.

Suppose B, has a vertex w of state E1. Let H,, be the component of G which
contains w. Note that Py(H,) is unique. Let P’ = (wy,...,w,) be the shortest path
containing w and Py(H,), such that wy = w. Let H/ be the graph obtained by deleting
all sticks of w of H,,.

It must be the case that v; and w are in the same chordless cycle of B,, and that
either {vy,w} € F(B;), or v; and w have a common neighbor which has no sticks.

Let G’ be the graph obtained from G by adding edge {vy,w} if it is not present,
and deleting vy,...,v4, and all sticks, partial one-paths and biconnected components
connected to these vertices, H,, <{w,}, and all partial one-paths and sticks connected
to v1. Note that G’ is a biconnected component with sticks. See for example Figure 56.

For each j, 1 < j < n, let G; be the graph obtained from & by adding edge {v, w}
if it is not present, adding edge {w,,v;}, and deleting G; <{w}, all sticks and partial
one-paths connected to vy, all vertices v;41,...,v, and all sticks, partial one-paths and
biconnected components connected to vertices v;,...,v,. Note that G; is a cycle with
sticks. See for example Figure 56.

Let [1 be the smallest 7, 1 < j < n, for which there is a proper path decomposition
of G'U {sticks of v} with edge {vy,w} in the rightmost node, and there is a proper
path decomposition of G; U {sticks of w} with edge {v;, w} in the leftmost node and
edge {w,, v;} in the rightmost node. If there is no such j, then /4 is undefined.
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The local information for the case that a biconnected component is handled as
ending biconnected component is called ending biconnected component info, and the
local information for the case that a biconnected component is handled as a partial
one-path of type IV is called partial one-path info. Lemma 4.21 and Lemma 4.26 show
that for a given biconnected component B;, the following local information must be
computed (assumed that there are at most three i, 1 < i < nr/, for which G; has a
vertex of color ¢(v1)).

1. There is an ¢ for which cond;(st(B;)) does not hold.

(a) If i’ # ¢, then the partial one-path info is computed.

(b) If i' = ¢, then the ending biconnected component info is computed.
2. For all ¢, condy(st(B;)) holds.

(a) If n#’' 4+ nr = 1, then the ending biconnected component info is computed.

(b) If nr’ + nr = 2, then the ending biconnected component info and the partial
one-path info are computed.

(c) nr'+nr > 3 and G; has a vertex of color ¢(v;), then the ending biconnected
component info is computed.

(d) nr' 4+ nr > 3 and G; has no vertex of color ¢(vy), but there is an ¢’ # ¢ for
which G has a vertex of color ¢(v1), or there is a j, 1 < j < nr, for which
H; has a vertex of color ¢(vy), then the partial one-path info is computed.

(e) nr' 4+ nr > 3 and there is no ¢/, 1 <4 < nr’ for which G has a vertex of
color ¢(vy), and there is no j, 1 < j < nr, for which H; has a vertex of color
¢(v1), and B; is selected to be ending biconnected component(in the sense
of Lemma 4.21), then the ending biconnected component info is computed.

(f) nr’+ nr > 3 and there is no ¢/, 1 < i’ < nr', for which G has a vertex of
color ¢(vy), there is no j, 1 < j < nr, for which H; has a vertex of color
¢(v1), and B; is not selected to be ending biconnected component, then the
partial one-path info is computed.

Note that if for all 7, 1 <1 < nr’, condy(st(B;)) holds, nr’ 4+ nr > 3 and there is no
i, 1 < ¢ < nr' for which G; has a vertex of color ¢(v1), and there is no j, 1 < j < nr,
for which H; has a vertex of color ¢(vy), then at most one B; is selected to be ending
biconnected component, because of Lemma 4.21.

Note furthermore that if for all i, 1 < ¢ < n#/, condy(st(B;)) does not holds, and
B; has two or more vertices of state E1, or one vertex of state E2, then we do not have
to compute the ending biconnected component info for B;, because of Lemma 4.26.

For partial one-paths of type I, II or III, also the partial one-path information is
computed.

We now show what the ending biconnected component info and the partial one-path
info consist of, and how they are computed.
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Let 7}’ be the smallest value of j/, m < j' < n, for which there is a proper path
decomposition of G U{ sticks of v, } with edge {v;,, v} in the leftmost node and edge
{vj7,u} in the rightmost node. If there is no such j’, then r{" is undefined.

Let I§ be the largest value of j, p < j < m, for which there is a proper path
decomposition of G U { sticks of v, } with edge {v,,,v} in the rightmost node and
{v;,u} in the leftmost node. If there is no such j, [§ is undefined.

Let ry be the smallest value of j/, m < j* < n, for which there is a proper path
decomposition of G¥ U{ sticks of v, } with edge {vp, v} in the leftmost node and edge
{v;/,u} in the rightmost node, or j = m and there is a proper path decomposition of

% with edge {v, v, } in the leftmost node and edge {w, v,,} in the rightmost node. If
there is no such a j’, then r¥ is undefined.

Define [{, 7}, [§ and r§ similarly.

Let @} be defined as follows.

Qv ={(7.J") € Lt ry"), (15, ), (17, ry), (1Y, 1)} | j and j" are not undefined }

Claim 4.5 also holds for @}, which can be shown in the same way as for Claim 4.5.
The values of I¥, r¥, etc. can be computed in O(n?) time in the same way as for Case
2.1 for trees.

Field [r is now computed as follows. If there are two or more partial one-paths
connected to v,,, then [r.ok is false, If H’ is the only partial one-path connected to v,,,
then Ir.ok is true if and only if ()1 is not empty. In this case, the values of Ir.l, and
Ir.ry, 1 <a <8, are such that

Q1 =1 (vp.pli]dride, vy.plildrr,) |1 <a <8}

If Ir.ok is false, then Ir., = p and lr.r, = n, for all a, 1 < a < 8. This completes the
description of Case 1.

Case 2 v, € V(P), m € {1,q}, and there is no connecting biconnected
component containing v,,.
First consider the case that m = 1 and ¢ > 1. Suppose there is no connecting bi-
connected component between v; and vy. If there is no biconnected component at all
which contains v{, then there is no partial one-path connected to vy, because of the
choice of nice paths, and there is no local information to compute. Suppose there is
a non-connecting biconnected component containing »;. Let pp = p = 1, let v, be
the leftmost vertex of P on the right side of »; which is contained in a biconnected
component or to which a partial one-path is connected, if there is no such vertex then
n = q. If there is a connecting biconnected component between v, and v,41, then
let »n = n, otherwise let v,, be the leftmost vertex on the right side of v, which is
contained in a biconnected component or to which a partial one-path is connected. If
there is no such vertex then let nn = ¢. Let Hy,..., H,. be the partial one-paths of
type I, II and III which are connected to vy. Let Bi,..., B, be the (non-connecting)
biconnected components which contain v;. For each 7, let G; = G[V(Gp,) {1 }].
First consider the local information for biconnected components which contain ;.

114



v" of v in H' for which {v',v,,} € E(G). Let v, € V(P') be the vertex with smallest
distance to u, such that {v,,v,} € E(G’), and let v,, € V(P’) be the vertex with
smallest distance to w, such that {v,,v,} € E(G"). (Note that v, = v and v, = w
are possible.)

For each j, p < j < m, let G} denote the graph obtained from G’ as follows (see
e.g. Figure 57). Add edge {u,v;}. Delete vertices {vi,...,0;_1, Vpt1,..., v}, and all
sticks and partial one-paths connected to {vy,...,v;, vp,..., v}, except H'. Delete all
components of G[V(H')<{v, }] which do not contain u. Note that the remaining graph
G7 is a chordless cycle with sticks.

For each 3/, m < j' < n, let G4 be the graph obtained from G" as follows. Add edge
{w,v;:}. Delete vertices {vq,..., Vp—1,Vj141,..., v}, and all sticks and partial one-paths
connected to {v1,..., U, vjr,..., g}, except H'. Delete the component of G[V(H')&{v,}]
which contains u.

Similarly, for each j, p < j < m, let G¥ be the graph obtained from G' as fol-
lows. Add edge {w,v;}. Delete vertices {v1,...,v;_1, Um+1,..., vy}, and all sticks and
partial one-paths connected to {vi,...,v;, vym,..., v, }, except H’. Delete all components
of GI[V(H') <{v,}] which do not contain w.

Furthermore, for each 5/, m < j' < n, let G}, denote the graph obtained from G as
follows. Delete vertices {vi,...,vm—1,vji41,..., v}, and all sticks and partial one-paths
connected to {v1,..., vy, vjr,..., 04}, except H'. Delete the components of G[V(H') &
{vy}] which contains w.

Figure 55: Example of G and G;U,, for a given partial one-path H’ of type IV, which
is connected to v,,, and with p < j <m and m < j' < n.

Let l§ be the largest value of j, p < j < m, for which there is a proper path
decomposition of G U { sticks of v, } with edge {v;,,v} in the rightmost node, edge
{v;,u} in the leftmost node, or j = m and there is a proper path decomposition of
GY with edge {u,v,,} in the leftmost node and edge {v,v,,} in the rightmost node. If
there is no such j, then [{ is undefined.
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to v,,. Define G in the same way for each j, p < j < m. Note that G and G} are
biconnected components with sticks.

H/

TNTINT

Figure 54: Example of G for a given partial one-path H' of type IV which is connected
to v, .

Let [ be the largest j, p < j < m, for which there is a proper path decomposition
of G} with vertex v,, in the rightmost node and edge {v;,u} in the leftmost node,
undefined if there is no such proper path decomposition. Let [; be the largest j,
p < j < m, for which there is a proper path decomposition of G¥ with end vertex vy,
and end edge {v;, w}, undefined if there is no such proper path decomposition.

Claim 4.2 of Case 1 for trees now holds for /1 and [, which can be shown in the
same way as for Claim 4.2. The values of /; and /3 can be computed in O(n?) time
with use of PPW?2 and PPW?2', in the same way as in Case 1 for trees.

Hence field [ can be computed as follows. If H’ has no vertex of color ¢(v,,), then
l.ok is true and l.v = m. If H' has vertices of color ¢(v,,), then j; is computed. If j; is
defined, then [.ok is true, and [.v = ji, otherwise, [.ok is false and [l.v = p.

This completes the description of the local information for the case that p < j <
j" < m. The case that m < j < j' < n can be done in the same way.

Case 1.3 H' is the only partial one-path connected tov,, and p<j<j' <mn
This case corresponds to Case 2 for trees of pathwidth two (see page 75). In fact,
it corresponds to case 2.1, since the graph G[V(H') U {v,,}] contains a biconnected
component of which v, is double end point. This means that there is an edge e € E(H')
for which there is a node in the path decomposition which contains v, and e, so
j<m<

Claim 4.4 of Case 2.1 for trees also holds for H’, hence Definition 4.6 defines the
local information for H’', which consists of the set (;.

We now show how to compute the set @1 for H', and that |@4] < 4.

Let P" € Py(H'), let w and w be the two end points of P'. Let G’ be the graph
obtained from G by adding all edges {v,v,,}, for which v € V(P’) and there is a stick
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Vp41, then nn = n, otherwise, v, is the leftmost vertex on the right side of v, which
is contained in a biconnected component or to which a partial one-path is connected,
nn = q if there is no such vertex.

Note that this definition is correct, e.g. if there is a connecting biconnected compo-
nent between v,_; and v,, then partial one-paths connected to v, can not use any j,
J < p, because of Corollary 4.4.

First consider the local information for partial one-paths of type I, II or III which
are connected to v,. For these partial one-paths, we compute the same information
as for trees of pathwidth two, i.e. if there is more then one partial one-path connected
to v, then the fields [, r, lll, llr, rrl and rrr are computed for all partial one-paths
which have a vertex of color ¢(vy,), and only fields [ and r are computed for all partial
one-paths which have no vertex of color ¢(v,,). If there is only one partial one-path
connected to v,,, then fields Ir, lll, llr, rrl and rrr are computed for this partial one-
path. This information can be computed in the same way as for trees of pathwidth
two.

Now consider the partial one-paths of type IV which are connected to v,,,. We use
the same local information for these partial one-paths, i.e. we compute fields [, r, Ir,
Ul Ulr, rrl and rrr, as is shown here. Let H' be a partial one-path of type IV which
is connected to v,,. Let PD be a nice proper path decomposition of G with nice path
P, suppose H' uses [j,j']. We consider three different cases.

1.1 pp<j<j <porn<j<j <nn

1.2 There are two or more partial one-paths connected to v,,, and p < j < 7/ < m or
m<j<i<n.

1.3 H’is the only partial one-path connected to v,, and p < 7 < j' < n.

Case 1.1 pp<j<j <porn<j<j <nn

It is not possible that j > n, and there is a partial one-path H” connected to v, which
uses [[,I], p <1 <U' < m, because of Lemma 4.18. Hence p < j < j' < n. This means
that the fields lll.ok, llr.ok, rrl.ok and rrr.ok are false.

Case 1.2 There are two or more partial one-paths connected to v,,, and
p<i<i<morm<j<j <n

This case corresponds to Cases 1 and 4 for trees of pathwidth two (see page 112).
Claim 4.1 in Case 1 for trees holds for H', so we can use Definition 4.5 for the local
information for this case, which means that the local information is an integer ji,
p<j1 <m.

We now show how to compute j;.

Let P € Py(H'), let u and w be the two end points of P’. For each j, p < j < m,
let G¥ denote the graph obtained from G as follows (see e.g. Figure 54). Add edge
{u,v;}, and edge {w, v, }. For each stick v' of some v € V(P’) for which {v/,v,,} € G,
add edge {v,,,v}. Furthermore, delete vertices {vq,...,0;_1, Vp41,..., v} and all sticks
and partial one-paths adjacent to these vertices, all sticks adjacent to v; and v,,, all
partial one-paths adjacent to v; and all partial one-paths except H' that are adjacent

111



Um—1 Um Um+4l

3 - — - -

Um, Um+1

Figure 53: Examples of possible kinds of vertices in nice path P = (v1,...,v,). In
case 1, 1 < m < ¢, and there is no connecting biconnected component between v, 1
and v, or between v,, and v,4+1. In case 2, m = 1, and there is no connecting
biconnected component between vy and vy. In case 3, 1 < m < ¢ and there is a
connecting biconnected component between v, and v,,4+1. In case 4, m = 1, and there
is a connecting biconnected component between vy and v,.

4 is a combination of cases 2 and 3. All other information remains the same, although
it must be computed slightly different.

Case 1 v,, € V(P), 1 < m < q, and no connecting biconnected component
contalns v,,

Let v, € V(P) such that 1 < m < ¢, there is no connecting biconnected component
containing v,,, and there is at least one partial one-path connected to v,,. Let pp, p, n
and nn, pp < p < m <n < nn, be defined as follows. Vertex v, is the rightmost vertex
on the left side of v»,, which is contained in a biconnected component or to which a
partial one-path is connected, or p = 1 if there is no such vertex, and v, is the leftmost
vertex on the right side of v, which is contained in a biconnected component or to
which a partial one-path is connected, or n = ¢ if there is no such vertex. If there
is a connecting biconnected component between v,_; and v,, then pp = p, otherwise,
vpp is the rightmost vertex on the left side of v, which is contained in a biconnected
component or to which a partial one-path is connected, pp = 1 if there is no such
vertex. Analogously, if there is a connecting biconnected component between v, and
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stick of wy in the leftmost node, and w, in the rightmost node, such that there is a node
W, which contains w,_q only. Note that a < b. For each ¢, ¢ < ¢ < b add vertex z to
W;. Note that ¢(w,_1) # ¢(w,) so all sticks of 2 have color ¢(w,_1) or color ¢(w,). For
each stick 2" of & with ¢(2”) = ¢(w,), add a node {z,2”,w,_1} between V, and V4.
For each stick z” of @ with ¢(2”) = ¢(w,_1), add a node {z, 2", w,} on the right side of
Wy. Let PDq again denote this proper path decomposition. Let PDs denote that path
decomposition obtained from PD by deleting (V4,...,V;_1). Then PD' = PDy 4 PD;
is the desired nice proper path decomposition of G. a

The following lemma gives the analog of Lemma 4.26 for the case that the nice path
is empty. The proof of this lemma is the same as for Lemma 4.26.

Lemma 4.27. Let GG be a three-colored partial two-path, suppose there is a nice proper
path decomposition PD = (V1,...,V}) of G with nice path P = (). Let B be the bicon-
nected component of G. If there is an edge e with e N V(B) = 0, and e occurs on the
left side of the occurrence of B, then there is a nice proper path decomposition of G
with nice path P' = (wy,...,w,), where w, € V(B), st(w,) € {E1,11}, and wy is end
point of a path P1(H'), where H' is the component of Gt which contains w,.

The analogs of Lemma 4.26 and Lemma 4.27 also hold for the right side of the path
decomposition. Hence Lemma 4.27 implies that an empty nice path has to be tried
only if (G is a biconnected component with sticks.

We show what local information is computed, and how it is computed for all vertices
of the nice path P = (vy,...,v,) to which a partial one-path is connected, or which
contains a biconnected component. We distinguish four different kinds of vertices of
P. Suppose g > 1,let 1 < m < ¢, such that there is a partial one-path connected to
vy, or there is a biconnected component which contains v,,. The following cases are
distinguished for v,,.

1. 1 < m < ¢, and there is no connecting biconnected component between v,, 1 and
Uy OT between v, and v,,41,

2. m € {1,q}, and there is no connecting biconnected component between v, and
Vm+1, OF between v,,_1 and v,,,

3. 1 < m < ¢, and there is a connecting biconnected component between v,, 1 and
Vpm, OF between v, and v,,41, and

4. m € {1,q}, and there is connecting biconnected component between v, and
Vm+1, O between v,,_1 and v,,.

Figure 53 gives an example for each case.

For case 1, the local information that is computed for each partial one-path con-
nected to v, is the same as for trees of pathwidth two. For case 2, we have to compute
information if there is a biconnected component which contains v,,. For case 3, we
have to compute extra information for the connecting biconnected components. Case
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side of Vi or on the right side of V;. If it occurs on the right side of V;, then v € V},
since V; can not contain any vertex which is not in G'g or {uv}. O

Lemma 4.25 implies the following corollary.

Corollary 4.5. Let G be a three-colored partial two-path, suppose there is a nice
proper path decomposition of G with nice path P = (v1,...,v,), such that v; € V(B),
B is ending biconnected component. Let v; be the rightmost vertex on P which occurs
within the occurrence of Gg. Let H' be a partial one-path which is connected to v,,
1<n<yq. Ifn>1, then H' can at least use v;. If n = 1, then H' occurs on the left
side of the occurrence of B, or H' can at least use v;.

In the following lemma, the number of possibilities for ending biconnected compo-
nents are bounded.

Lemma 4.26. Let GG be a three-colored partial two-path, suppose there is a nice proper
path decomposition PD = (V1,..., Vi) of G with nice path P = (v1,...,v,) with ending
biconnected component B. If there is an edge e with eNV(B) = 0, and e occurs on the
left side of the occurrence of B, then there is a nice proper path decomposition of G' with
nice path P' = (wy,...,w,, v1,...,v,), where w, € V(B), and either {w,,v1} € E(G) and
there is a partial one-path H' connected to vy such that w; € V(H') for all i, 1 <1 <r,
and wy is end point of a path in Py(H'), or w, € V(B), st(w,) € {E1,11}, and wy is
end point of the path Py(H'), where H' is the component of G'v which contains w,.

Proof.  Suppose B occurs in (Vj,...,V;r). Note that V; does not contain an edge of
B, since then each V;, ¢ < j, contains two vertices of B and can not contain e. Let
x € V(B), and 2’ a stick adjacent to z such that z,2’ € V5. Note that 2 € V.

For all ¢, 1 <i < j, V; can not contain vertices from the component of G[V <{v; }]
which contains vy, if ¢ > 1. Furthermore, V; contains a vertex of B, or a stick of
a vertex of B, which means that there is no biconnected component B’ # B which
occurs on the left side of V;. Hence there is a partial one-path H’ with e C E(H'), and
either [’ is connected to vy, or there is w € V(B) with st(w) € {I1,E1}, and H' is the
component of Gv which contains w. If H' is connected to vy, let w = vy. Let H, be
the component of G[V <{w}] which contains e. Let H. be G[V(H.)U W], where W
contains w and all sticks of w which occur on the left side of V;. Note that H] occurs
completely on the left side of V;, and w € V;. Furthermore, note that w is an end point
of Pi(H!) or a stick adjacent to this end point, since each V;, 1 <17 < j, contains z.

Suppose H! occurs in (Vj,...,Vi), 1 < [ < I’ < j. There are no edges ¢ with
e ¢ E(H]), and € occurs on the left side of V;, except edges {z,2"}, where 2" is a
stick of z, since each V;, 1 < i < j, contains z and at least one vertex of H., and there
is at least one node V;, I < < j, which contains z and two vertices of H.!. No vertex
of H! has color ¢(x). Let (wy,...,w,) be the shortest path in H/ which contains Py(H))
and w, such that w = w,.

We now transform PD into a nice proper path decomposition of G' with nice path
(W1, Wp—1, V140, V) if w = 01, and nice path (wy,..., w,, v1,...,v,) otherwise. Let
PDy = (Wy,..., Ws) be a proper path decomposition of width two of H! with wy and a
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incident with v,,41 which are in B. But then |Vj| > 4, hence v, € V. Suppose
Vmt1 ¢ Vjr. Then V) contains v,,, a vertex of vy,42,..., 04, and an edge of G'g, which
cannot contain v,,. But then |Vj/| > 4, hence vy,44 € V.

We now show that H' has type I. Suppose H' occurs in (Vj,..., Vir). Then v, € V},
and each node V;, b < ¢ </, contains a vertex of v,,41,..., v, hence only an end point
of a path in Py(H'), or a stick adjacent to such an end point can be adjacent to vy,.

Each node V;, j* < i < b, contains v,, and a vertex of the path v,,41,..., v,, which
means that there can be no partial one-path which uses [n,n'], m + 1 < n <n’ <.
Furthermore, there can be no partial one-path connected to v, which uses [n,n'],n > U,
since it is not possible that v, € Vj. a

The following Lemma gives conditions for the case that a partial one-path connected
to v, occurs on the left side of the occurrence of Gg.

Lemma 4.24. Let G be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (vy,...,v,). Let B be a connecting bicon-
nected component which connects v, and vy41, 1 < m < q. Suppose Gg occurs in
(Viyeers Vi), Let H' be a partial one-path which is connected to v,,, suppose H' uses
[[,I], | <m. Then v, € V,.

Proof. Suppose v, ¢ V;. Then V; contains a vertex of the path vq,...,v,,_1, a vertex
of H', and an edge of G'g. This means that |V;| > 4, hence v,, € V;. o

Consider the local information for ending biconnected components.
We now prove the analog of Lemma 4.22 for ending biconnected components.

Lemma 4.25. Let GG be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (vy,...,v,), such that vy € V(B), B is ending
biconnected component. Suppose G occurs in (V1,...,V;). Let vy be the rightmost vertex
on P which occurs in (V1,...,V;). Then vy € V;, and for all i, 1 < i <1, v; and all sticks
adjacent to v; occur within (V1,...,V;), and there is no partial one-path connected to v;,
or a connecting biconnected component B' # B containing v;. Furthermore, there is
no partial one-path connected to vy, or vi € V;, or a partial one-path connected to vy
occurs on the left side of the occurrence of B.

Proof. Node V; contains a vertex of the path from v; to v,, but it does not contain
any vertex v; with ¢ > [, hence v; € V. Furthermore, V; contains an edge of G'g, which
means that V; contains no vertices of {v,..., vj_1}, or any other vertices which are not in
Gp or {v;}. Hence all sticks, partial one-paths, and connecting biconnected components
which are connected to some v;, 1 < ¢ < [, occur within (V4,...,V;). Suppose B occurs
in (Vs,..,Vy), 1 < s < < j. For each a, s < a < &, each node V, contains two
vertices of B. For each a, s < a < j', V, contains a vertex of P and a vertex of
V(GB) < {v1}. Furthermore, partial one-paths connected to v;, 1 < ¢ < [, can not
occur on the left side of the occurrence of V,. Hence it is not possible that there is a
partial one-path or a connecting biconnected component which is connected to any v;,
1 < ¢ < [. Furthermore, a partial one-path connected to vy either occurs on the left

107



within (Vj,..., V1), and there is no partial one-path connected to v;, or a connecting
biconnected component B' £ B containing v;, and there is no partial one-path which
uses [a,a], withl < a <! orl<d <.

Proof. Node V; contains a vertex of the path from v; to v,,. But V; does not contain
any vertex v; with 1 < ¢ < [, hence v; € V;, and [ < m. Similarly, vy € V;/ and
"> m+ 1. Furthermore, V; and Vs contain an edge of g, which means that V; and
Vj» contain no vertices of {vj41,..., V=1, Um42,..., Vy_1 }, OF any other vertices which are
not in V(Gg)U{wv;, vp}. Hence all sticks, partial one-paths, and connecting biconnected
components which are connected to some v;, [ < i < mor m+ 1< i</, occur with
(Voo Vir). Suppose B occurs in (Vi,...,Vy), j < s < s’ < j'. Foreach a, s <a <,
each node V, contains two vertices of B. Foreach b, j < b < s, or s < b < j,V;
contains a vertex of P and a vertex of V(G'g)<{ v, 41} Hence it is not possible that
there is a partial one-path or a connecting biconnected component which is connected
toany v;, [ <i<morm+1<i<l orapartial one-path which uses [a, a'], for some
I<a<lorl<d<[. m|

Lemma 4.22 implies the following corollary.

Corollary 4.4. Let G be a three-colored partial two-path, suppose there is a nice
proper path decomposition of G with nice path P = (v1,...,v,). Let B be a connecting
biconnected component which connects vy, and vy,41, 1 < m < q. Let vy be the leftmost
vertex on P which occurs within the occurrence of G'g and let vy be the rightmost vertex
on P which occurs within the occurrence of Gg. Let H' be a partial one-path which is
connected to v, 1 <m’ < q. If m" < m, then H' can at most use I, if m" > m + 1,
then H' can at least use l', and if m" = m or m’ = m + 1 then H' can use at most I,
or at least l'.

Let GG be a three-colored graph with pathwidth two, suppose there is a nice proper
path decomposition of G' with nice path P = (vy,...,v,), and there is a connecting
biconnected component B between v, and v,,41, 1 < m < ¢. Partial one-paths which
are connected to v, or v,4+1 can both occur on the left side and on the right side of
the occurrence of G'g. The following Lemma gives conditions for the case that a partial
one-path connected to v, occurs on the right side of the occurrence of G'g.

Lemma 4.23. Let GG be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (vy,...,v,). Let B be a connecting bicon-
nected component which connects v, and vy41, 1 < m < q. Suppose Gg occurs in
(Viyeou V). Let H' be a partial one-path which is connected to v,,, suppose H' uses
(LU, 1> m+1. Then vy, vmqyr € Vi, H' has type 1, there is no other partial one-path
connected to v, which uses [n,n'], m + 1 < n, and there is no partial one-path which
uses [n,n'], m+1<n<n <L

Proof. Suppose B occurs in (Vg,..., Vo). Clearly, j < a < a' < j and vy, Vi1 € Var.

Suppose v, ¢ V;. Then Vs contains a vertex of the path (vm,41,...,74), a vertex of
H', and an edge of Gp, which does not contain v,, 1 because Gg contains only edges
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It follows directly from Lemma 4.21 how the possible nice paths can be selected.

Next we concentrate on the computation of local information for each vertex of a
nice path of G. Let Pg = (uq,..., us), and let P = (vy,...,v,) be a possible nice path of
G.

Let v, € V(P), 1 < m < ¢, suppose there there is a non-connecting biconnected
component B which contains v,,. The component H' of G[V <{v,,}] which contains
V(B) <{vy} has pathwidth one (Lemma 3.14), hence it can be handled in the same
way as other partial one-paths connected to P. Therefore, we extend the types of
partial one-paths as follows.

Definition 4.13. (Types of Partial One-Paths). Let G be a tree of pathwidth two, P
a path in G. Let v € V(P), and H' a component of H[V <V (P)] such that H' has
pathwidth one and H' has only vertices which are adjacent to v, i.e. H' is connected
tov. Let W CV(H') be the set of vertices for which {v,w} € E(H). Let P' € Py(H').
If |[W]| = 1, then the type of H' is as defined in Definition 4.2. If |W| > 1, then H' has
type IV.

From now on, by partial one-paths connected to a path P, we do not only mean the
partial one-paths of type I, II and III connected to P, but also the partial one-paths of
type IV connected to P, unless stated otherwise.

In the same way as for trees of pathwidth two (Corollary 4.1 and Lemma 4.15),
we can show that if there is a proper path decomposition of G with nice path P,
then there is a proper path decomposition of G in which for each m, 1 < m < g,
for which G[V <{v,,}] has four or more components which contain at least one edge,
all components of G[V <{v,,}] which do not have a vertex of color ¢(v,,) and which
have pathwidth one, occur within the occurrence of v,,, and furthermore for each two
components H' and H” of G[V &V (P)] which have pathwidth one, such that H' # H",
PD contains no node which contains a vertex of H' and a vertex of H”. Hence the
notion of use can also be used for partial one-paths of type IV.

Definition 4.14. Let G be a three-colored partial two-path, P = (v1,...,v,) a possible
nice path for G. Let B be a biconnected component of G. If V(B)NV(P) = {v,}, then
G is the subgraph of G' induced by v, and the vertices of the component of G[V <{v,, }]
which contains V(B) <{v,}. If V(B)NV(P) = {vn, vmy1}, then Gp is the subgraph
of G induced by vy, vy,y1, and the vertices of the component of GV < {v,, vma1}]
which contains V(B) <{vm, vmi1}-

Now consider the local information for connecting biconnected components.

Lemma 4.22. Let GG be a three-colored partial two-path, suppose there is a nice proper
path decomposition of G with nice path P = (vy,...,v,). Let B be a connecting bicon-
nected component which connects v, and vy41, 1 < m < q. Suppose Gg occurs in
(Vj,.... Vir). Let vy be the leftmost vertex on P which occurs in (V;,..., V), and vy the
rightmost vertex on P which occurs in (V;,...,V;). Then vy € Vi, vp € Vi, I <m < U,
and for all i, l < i < morm+1 < i <!, v, and all sticks adjacent to v; occur
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(b) There is a non-connecting biconnected component B which contains vy, such
that the component of GV <{v; }] which contains V(B)<{v1} has a vertex
of color ¢(vy), there is nice proper path decomposition PD' with nice path
P' = (wq,...,w,) such that w, = u, and either wy = vy and B is ending
biconnected component, or there is a component H' of Gt which contains a
vertex w of B with st(w) € {I1,E1}, and wy is an end point of some path
n Pl(H/)

4. For each non-connecting biconnected component B which contains vy,
condy(st(V')) holds, and furthermore G[V <{v1}] has four or more components,
and there is no component H' of G|V <{v1}], vs ¢ V(H'), which has a vertex of
color ¢(vy). Then both of the following conditions holds.

(a) For all partial one-paths H' connected to vy, there is a nice proper path
decomposition PD' with nice path P' = (wy,...,w;), such that w, = u, and
wy is an end point of some path in P1(H').

(b) For all non-connecting biconnected components B which contain vy, there
is nice proper path decomposition PD'" with nice path P' = (w1,...,w,) such
that w, = u, and either B is ending biconnected component and wy = vy,
or there is a component H' of G which contains a vertex w of B with
st(w) € {I1,E1}, and wy is an end point of some path in Pi(H').

Proof. 1If there is a non-connecting biconnected component B which contains »; such
that cond(st(B)) does not hold, then the component G/ of G[V <{v;}] which contains
V(B) <{v1} has pathwidth two, which means that in each path decomposition of G,
V7 contains only vertices of the G’. Hence case 1 holds.

If for each non-connecting biconnected component B which contains wvq,
cond;(st(B)) holds, then each component of G[V < {v}] which does not contain v,
has pathwidth at most one. Hence cases 2, 3 and 4 can be proved in the same way as
Lemma 4.13. a

If [V(Pg)| = 1, then a similar lemma holds, which is omitted here, since the number
of cases is large (but constant).

If |V(Pg)| > 1, then there are at most three components of G[V <{vy}] which do
not contain a vertex of Py, which have a vertex of color ¢(vy). The partial one-paths
connected to vy which have a vertex of color ¢(v) each give two end points to try. The
biconnected components containing v, each give at most three end points to try, since
they have at most three vertices of state E1, or at most one vertex of state I1 and at
most one vertex of state E1. Hence there are at most nine end points to try, together
with end point vy, this gives at most ten end points to try on one side, and at most
ten on the other side, which gives at most 100 nice paths in total. If [V(Pg)| =1, a
similar calculation can be made.

This shows that the number of nice paths that has to be tried is constant, since if
|V(Pg)| = 0, then the number of vertices with state I1 or E1 is at most four, which
means that the number of choices for end points of possible nice paths is bounded.
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transformation of case 4 can only be done once per transformation of case 5. The trans-
formation of case 3 can only be done a finite number of times for each transformation
of case 5, since the length of the path decomposition remains finite.

This completes the proof for the case that s > 1. If s = 0, then the proof is similar,
so it is omitted here. a

Next we have to show that the number of nice paths that has to be tried is constant.
This is done in the same way as for trees of pathwidth two. Let G be a three-colored
partial two-path, P = (vy,...,v,) a nice path of (. The analog of Lemma 4.12 holds for
three-colored partial two-paths, i.e. if there is a proper path decomposition of GG, then
there is a proper path decomposition PD of G in which for each v € V, if G[V <{v}]
has four or more components, then there is a node {v} in PD. We can now state which
nice paths have to be tried and which do not have to be tried.

Lemma 4.21. Let G be a connected three-colored graph with pathwidth two which is
not a tree. Let Pg = (v1,...,vs), suppose q¢ > 1 and suppose there is a proper path
decomposition of G. Let PD be a nice proper path decomposition of G with nice path
P = (uy,...,uy). One of the following conditions holds.

1. There is a non-connecting biconnected component B which contains vy and for
which condy(st(B)) does not hold. Then one of the following conditions holds.

(a) There is a component H' of Gt which contains a vertex w of B, st(w) €
{I1,E1}, and uy is an end point of some path in P1(H').

(b) uy = vy and B is ending biconnected component.

2. For each non-connecting biconnected component B which contains vy,
condy (st(B)) holds, and furthermore G[V <{v1}] has three or less components.
Then one of the following conditions holds.

(a) There is a partial one-path H' connected to vy, and uy is an end point of
some path in Py(H').

(b) There is a non-connecting biconnected component B which contains vy, and
either B is ending biconnected component and uqy = vy, or there is a com-
ponent H' of G which contains a vertex w of B with st(w) € {I1,E1}, and
uy is an end point of some path in Py(H').

3. For each non-connecting biconnected component B which contains vy,
condy(st(B)) holds, and furthermore G[V <{v1}] has four or more components,
and there is a component H' of GV <{v1}], vy ¢ V(H'), which has a vertex of
color ¢(v1). Then one of the following conditions holds.

(a) There is a partial one-path H' connected to vy which has a vertex of color
¢(vy), and there is a nice proper path decomposition PD' with nice path
P’ = (wy,...,w,), such that w, = u, and wy is an end point of some path in

PiL(H').
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1. {v,v'} € E(H') for some partial one-path H’ connected to v; such that v is an
end point of some path P’ € Py(H'),

2. {v,v'} € E(H') for some component H’ of G'v containing a vertex w of state E1
or I1 of a biconnected component containing vy, such that » is an end point of
the path P’ containing a path of Py(H’) and w such that v # w if |V(P")] > 1,
or

3. v € V(B) for some biconnected component B which contains vy, st(v) = S, and
v’ is a stick adjacent to v.

(See also the proof of Lemma 4.9.)

Hence if case 1 or case 2 holds, then we are ready. Now, we apply the following
transformations on PD such that one of the previous cases holds again after each
transformation, until case 1 or case 2 holds for V;, and case 1 or case 2 holds for V;.
First transform PD using the following rules until case 1 or case 2 applies for V7, next
transform PD using the following rules, adapted for V4, until case 1 or case 2 applies
for V;. During the transformations, GG; and G5 are changed, in order to show that the
number of transformations is finite.

If case 3 holds, delete V5. Note that still V3 C V(Gh).

If case 4 holds, let e € F(G4) such that e C Vi, and add a node containing e only
on the left side of V3.

If case 5 holds, do the following. Consider the components of G[V <{v}] which
consist of more than one vertex. Note that at least one of these components is a
subgraph of G; which does not contain vy, and hence V; does not contain any vertex of
this component. If G[V <{v'}] does not have two or more components which contain
two or more vertices, then v' has degree one, otherwise case 2 would hold. This means
that in this case, there is a component of G[V <{v}] which has two or more vertices,
does not contain vertices of Py, and does not contain v’. In this case, let G be such a
component. Note that G’ is a subgraph of G1. If G[V <{v}] and G[V <{v'}] both have
two or more components which have two or more vertices, then either G[V <{v}] has a
component which contains v’ and vertices of Pg, or G[V <{v'}] has a component which
contains v and vertices of Pg. Suppose w.l.o.g. that the first one holds. In this case,
let G’ be a component of G[V <{v}] which has at least two vertices, and which does
not contain v’. Note again that G’ is a subgraph of GG;. Let G| be the subgraph of GG
induced by V(G’) and v, and note that G is a proper subgraph of G, and it contains
at least one edge. Now transform PD into rev(PD[V(G))]+ PD[V <V (G")], and let
(1 be equal to G'|. The new path decomposition is indeed a proper path decomposition
of G, since v is the only vertex that H[V(G4)] and H[V < V(G')] have in common,
and v occurs in the rightmost node of rev(PD[V(G1)]) and in the leftmost node of
PD[V <V(G")]. Furthermore, the leftmost node of the new PD contains only vertices
of G and the rightmost node of the new PD contains only vertices of Gs.

The total number of transformations that is done this way is finite, because of
the following. The transformation of case 5 can only be done for a finite number of
times, since each time this transformation is done, the size of Gy or G5 decreases. The
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! !
ay by
ay bl

1

Figure 52: Examples of possible values of v and v" as defined in Definition 4.12. In G4,
s =0, and in G, s > 1. If v and v’ are equal to ay and af, by and b} or ¢; and ¢/, then
case 1 holds. If v € V(By), and v’ is either a stick adjacent to v, or {v,v'} € F(B),
then case 2 holds. If v = by, and v’ is equal to b} or b, then case 3 holds. If v = ay
and v’ = a),, then case 4 holds, and if v € V(B3), and v’ is either a stick adjacent to v,
or {v,v'} € E(By), then case 5 holds.

PD = (Vi,...,V,) is a proper path decomposition of G. Let Gy be the subgraph of
G/ induced by v; and the components of G[V < {v;}] of which V; contains at least
one vertex (note that (G; contains no vertices of the component of G[V <{v;}] which
contains v,, because of Lemma 3.20). Similarly, let G5 be the subgraph of G induced
by v, and the components of G[V <{v,}] of which V; contains at least one vertex. Note
that, if s = 1 then V(G1) NV (G2) = {v1}).

We now show how PD can be transformed into a nice proper path decomposition
of G by ‘unfolding’ PD until it satisfies the described condition. The following cases
may occur for V.

1. Vi = {v,v'} for some edge {v,v'} € E(G;) such that v" has degree one and
G[V <{v}] has exactly one component which contains two or more vertices.

2. Vi = {v,v'} for some edge {v,v'} € FE(G}), such that there is a biconnected
component B in G4 for which v, v’ € V(B) and st(v) € {N, S}, and either v’ = vy
or st(v') € {N,S}.

3. Vi contains no edge.
4. |V1] = 3, but contains an edge.

5. Vi = {v,v'} for some edge {v,v'} € F(Gy), and G[V <{v}] has two or more
components which contain at least one edge, but 2 does not hold.

For V;, the possible cases are similar.
If case 1 holds for Vi, then there are three possibilities:
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proper path decomposition of G. Then PD is a nice path decomposition of G if there
are no two consecutive nodes which are equal, Vi contains an edge e = {v,v'} € E and
Vi contains an edge €' = {x,2'} € F, in such a way that x # v and the path from v
to x contains Pg. Furthermore, one of the following condition holds for Vi and e, and
analogously for V; and €.

1. s =0, B is the only biconnected component of G, e € E(H') for some component
H' of G1 containing a vertex w € V(B) of state E1 or 11, such that v is an end
point of the path P' containing Py(H') and w, and v # w.

2. s =0, B is the only biconnected component of G, e € E(G), v € V(B) and either
v’ is a stick adjacent to v, or v' € V(B).

3. s>1, e€ E(H') for some partial one-path H' connected to vy such that v is an
end point of some path P' € P1(H'),

4. s> 1, e€ E(H') for some component H' of G1 containing a vertex w of state
E1 or I1 of a biconnected component containing vy, such that v is an end point
of the path P’ containing Py(H') and w, and v # w.

5. s > 1, there is a biconnected component B containing vy such that v € V(B) &
{v1}, and either {v,v'} € E(B) or v’ is a stick adjacent to v.

The nice path P’ corresponding to nice path decomposition PD is defined as follows. If
s =0, then P’ is the empty path if condition 2 holds for both Vi and V. If condition 1
holds for Vi, and 2 for Vi, then P’ is the path from v to the vertex w € V(B) for which
v and w are in the same component of Gr. Analogously, if condition 1 holds for V; and
2 holds for V1, then P’ is the path from the vertex w € V(B) to x, such that w and z
are in the same component of Gv. If condition 1 holds for both Vi and V;, then P’ is
the largest common subsequence of all paths from v to x. If s > 1, then P’ is the largest
common subsequence of all paths from w to w' in G, where w = vy if condition 5 holds
for Vi, w = v otherwise, and w' = vy if condition 5 holds for Vi, w = x otherwise.

Figure 52 shows an example of all conditions in Definition 4.12.

Note that each nice path contains Pg. If there is a nice proper path decomposition
of G for which condition 5 of Definition 4.12 holds for vy or vy, then B is called the
ending biconnected component.

We now show that there is a nice proper path decomposition of G if and only if
there is a proper path decomposition of G.

Lemma 4.20. Let G be a connected three-colored graph with pathwidth two. There is
a proper path decomposition of G if and only if there is a nice proper path decomposition

of G

Proof. The ‘if’ part is clearly true.
The proof of the ‘only if” part is similar to the proof of Lemma 4.9. If G is a tree,
then it clearly holds, because of Lemma 4.9. Suppose G is not a tree, s > 1. Suppose
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Theorem 4.1. The algorithm given in this section computes in O(n?) time whether
there is a proper path decomposition of a three-colored tree H (n = |V(H)|).

Proof. The correctness of the algorithm follows from previous lemmas. We show that
the total time taken by the algorithm is O(n?). We only have to show that for a given
candidate nice path P, function Check_Nice_Path runs in O(n?) time, since the number
of candidate nice paths is constant.

To show that function Check_Nice_Path runs in O(n?), we only have to show that
the total time to compute all local information for all 7, 1 < i < ¢, is O(n?). Let
v, € V(P). For each partial one-path v,,.p[:].H connected to v,,, the number of
calls of PPW?2 and PPW?2' is constant, since for v,,.p[i].l, v,,.p[i].r, etc., PPW?2 and
PPW?2' are called a constant number of times, as is shown above.

If v,,.nr > 1, then for all ¢, 1 < ¢ < v,,.nr, for which v,,.p[i].H does not have any
vertex of color ¢(vy,,), PPW2 and PPW2' are not called at all, since v,,.p[i].l.ok and
U -pli].r.0k are both true, v,,.p[i].L.v = v,,.p[i].r.v = m, and all other ok-fields are false.
This means that each v € V(P) is involved in the computation of local information
of a constant number of partial one-paths connected to P, and hence v is involved in
a constant number of calls of PPW2 and PPW?2'. Hence each vertex v € V(H) is
involved in a constant number of calls of PPW?2 and PPW?2'.

Since PPW?2 and PPW?2' run in quadratic time, it follows that the computation
of local information takes O(n?) time. o

This completes the description of the algorithm to check for a given properly three-
colored tree H of pathwidth two, whether there is a proper path decomposition of H.
The algorithm can be made constructive in the sense that it returns an intervaliza-
tion if there exists one as follows. For each vertex v, of a nice path P, for each 1,
1 <i < wy.pli]onr, if v,.p[t].L.0k is true, keep a pointer to a list of edges that is present
in an intervalization corresponding to a partial path decomposition for this value of
Vp-p[E].L.v. Such alist can be made during the computation of PPW?2 or PPW?2', as is
shown in Section 4.2, Do the same for v,,.p[i].r, etc. Furthermore, in the main loop of
Check_Nice_Path, keep a pointer to a list of edges that is present in a partial interval-
ization of the processed part of H for variables in, out.l and out.r, which correspond
to the values found for these variables. The adaptation of these lists of edges is done
by adding the lists of edges pointed to by the variables that are combined.

4.4 General Graphs

In this section we give an algorithm to determine for a given three-colored partial
two-path GG whether there is a proper path decomposition of . This algorithm is an
extension of the algorithm for trees of pathwidth two. Therefore, we first extend the
notion of nice paths. After that, we show what extra local and global information has
to be computed, and how this extra information can be computed.

Definition 4.12. (Nice Path Decomposition). Let G' be a connected three-colored
graph with pathwidth two, G' not a tree, let P = (v1,...,vs), let PD = (V1,...,V}) be a
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Figure 51: Cases in the algorithm in which out is computed, and v,,.nr > 1.
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Figure 49: Cases in the algorithm in which ¢n is computed, and v,,.nr > 1.
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Figure 50: Cases in the algorithm in which out is computed, and v,,.nr = 1.
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fi
fi

rof

return in.ok
end

I
[ ] L ]
I I
—e * * *—
in'.r la m Ta n
out' l.r
1 :

o o
out' 1.l p[1).lrw p

111

out’.r.1 p[l].lLv p

Figure 48: Cases in the algorithm in which ¢n is computed, and v,,.nr = 1.

Lemma 4.19. If suffices to keep track of only one pair (out.l.l,out.l.r), and one pair
(out.r.d,out.r.r).

Proof. Consider the computation of the new value of out.l at vertex v,, of the path.
If out.l.ok holds, then we want to keep track of all pairs (/;,7;), p < I; < m and
n < r; < nn for which there is a partial proper path decomposition of the processed
part in which one partial one-path H’ connected to v,, uses [l,r;] for some [, n <1 <r;
and the sticks of v, of color ¢(v, ) occur on the right side of the occurrence of {v,,, v, },
and all other partial one-paths connected to some v;, ¢ < m, use [; at most, and
furthermore, there is no pair (/,r), for which this also holds, p <1 < l;; n <r <
and either [ < I; or r < r;. It seems that may be more than one pair (/;, ;) for which
this holds. However, if nr = 1, there is at most one such pair possible, namely the pair
(in’.ry vy p[1]rrle). If nr > 1, then I; = m for all possible pairs, which means that
there is only one such pair. Hence it suffices to keep track of only one pair (I,r) for
out.l, and similar for out.r. a

The main result of this section is as follows.
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out L.y := min{out.l.r, vy, .p[3 —i|.rrlv}
fi;
{compute out.r }
if  vp.p[3 — i.rrr.ok A vp,.pli].lok A vpy,.pl[i].lv > in’.r
— {see Figure b1, part 1T }

out.r.ok := true;

out.r.l .= m,;

out.r.r := min{out.r.r, v,.p[3 — il.rrr.v}

rof
fi;
{try out’.l }
it out'.l.ok Nout'.l.r=m
— fori¢:=1to2
— {compute out.l }
if  vy.p[3 — d.rrl.ok A vy pli]lr.ok A vy, pli] Ur.v > out’ .l
— {see Figure 51, part IIT }
out.l.ok := true;
out.l.l .= m;
out L.y := min{out.l.r, vy, .p[3 —i|.rrlv}
fi;
{compute out.r }
it vn.p[3 —d.rrr.ok A vy, pli)lr.ok A v, pld]llro > out’ 1.1
— {see Figure 51, part IV }
out.r.ok := true;
out.r.l .= m,;
out.r.r := min{out.r.r, v,.p[3 — il.rrr.v}

rof
fi;
{try out’.r }
if  out'.r.ok Aout'.rr=m
— fori¢:=1to2
— {compute out.l }
if vy.p[3 —i].rrlok A vy, .p[i] 1.0k A vy, .pli].lUlv > out’.r.l
— {see Figure b1, part V }
out.l.ok := true;
out.l.l .= m;
out L.y := min{out.l.r, vy, .p[3 —i|.rrlv}
fi;
{compute out.r }
if  vn.p[3 —d.rrr.ok A vy, pli]lllok A vy pli] v > out’
— {see Figure 51, part VI }
out.r.ok := true;
out.r.l .= m,;
out.r.r := min{out.r.r, v,.p[3 — il.rrr.v}

rof
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ﬁ.

bl

in.ok .= true;
in.r = min{in.r, vy.p[3 — {.r.v}
fi

rof

try out’.r
{try }

if
_>

fi
fi:

bl

out’.r.ok A oul’ .r.r = m
for ¢ :=1to 2
— if v, .pld].Ul.ok A vy, .p[3 — i].r.0k A vy, p[i] 1Ly > out’ .1l
— {see Figure 49, part IIT }
in.ok .= true;
in.r = min{in.r, vy.p[3 — {.r.v}

rof

{compute out }
if v, nr=1
— {try in’ }

if
_>

O

_>

fi

in’ .ok
{compute out.l }
it vy,.p[l].rrlok
— {see Figure 50, part T }
out.l.ok := true;
out.l.l:=in .r;
out.l.r := vy, p[l].rriv;
fi;
{compute out.r }
if vy, .p[l].rrr.ok
— {see Figure 50, part 1T }
out.r.ok := true;
out.r.l:=in'.r;
out.r.r := vy, .p[l].rrr.v;
fi;
else
{out’ does not have to be tried since v,,.nr = 1}

skip

O vy,.nr>1
— {try in’ }

if
_>

in'.ok
for ¢ :=1to 2
— {compute out.l }
if  vp,.p[3 — i].rrl.ok A vy pli].Lok A vy, pli].Lo > in'.r
— {see Figure 51, part T }
out.l.ok := true;
out.l.l .= m;
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rof

fi

{compute in }

if
_>

O

U =1
{try in’ }
if in'.ok A vy,.p[l].lr.ok
— fora:=1to8
— if vy p[l]lrd, > i’y
— {see Figure 48, part T }
in.ok .= true;
in.r := min{in.r, v,.p[1].lr.r.}

rof
fi;
{try out’.l }
if out'.l.ok
= if vy p[l].lr.ok A vy.p[1]llro > out’ 1
— {see Figure 48, part 1T }
in.ok .= true;
in.r := min{in.r, out’.l.r}
fi
fi;
{try out’.r }
if out'.r.ok
— if vy p[l].lL0k A vy p[1]0L > out’ .r.l
— {see Figure 48, part IIIT }
in.ok .= true;
in.r ;= min{in.r, out’.r.r}
fi;

fi

U > 1
{try in’ }
if in'.ok
— fori¢:=1to2
— if vy, .pli].Lok A vy, .p[3 —i].r.0k A vg,.pli].lv > in’r
— {see Figure 49, part T }
in.ok .= true;
in.r = min{in.r, vy.p[3 — {.r.v}

rof
fi;
{try out’.l }
if out'.lokAout'lr=m
— fori¢:=1to2
= if vpy.pli].Ur.ok A vp p[3 —d].r.0k A v, p[i]llro > out’ 1
— {see Figure 49, part 1T }
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e out is a record with two fields | and r, which each have three fields: ok, | and r,
which are defined as above.

We now show how variables in and out are initialized and adapted by giving a
complete description of function Check_Nice_Path. In Figures 48, 49, 50, and 51, a
symbolic representation of all cases in the algorithm is given.

function Check_Nice_Path(P: Path): boolean;
{ pre: P = (v1,...,v,) is a nice path of H.
Yi<m<t (vm.nr = # partial one-paths connected to vy, and
Vi<i<vn.nr (Um.p[i].H is partial one-path ¢ and v,,.p[i].t is type of v, .p[i].H))
}

{ output: true if there is a proper path decomposition of H
with nice path P, false otherwise

1

in.ok := true; in.r := 1,
out.l.ok .= false;
out.r.ok := false;
i1,...,7¢ denote vertices of P for which v;;.nr > 0,
for all j, 1 <j <, such that i1 <iy < --- < 1
G, i1, 841, 42 1= 1, 1,4, ¢
for j .=1tot
— in’ = in; out’ := out;
{initialize in and out }
in.ok 1= false; in.r := 4;41;
out.l.ok := false; out.l.l, out.l.r := q, q;
out.r.ok := false; out.r.l,out.r.r .= q, q;

m = ij;

P = ijo1;

pp = -2
nI=dj41;

nn = ij4o;

Permute partial one-paths such that no v, .p[i]. H, 2 < i < v,,.nr,
has a vertex of color ¢(vy,). If this is not possible, return false
for ¢ :=1 to v,,.nr
— if  vy,.p[i].H has vertex of color ¢(vp) or vy,.nr =1
—  Compute vy, .p[i].l, v .pli].7, vm.p[E]lr, Vg D[] UL, vy, pld]Ur, vy, .pli].rrl,
and vy, .p[é].rrr using PPW2 and PPW2/
O else

— U Pl
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Figure 47: If v,,.p[1].llr.v is combined, then there must be a partial nice proper path
decomposition in which a partial one-path connected to v, uses [[,I'], m <1 <1’ <
n, such that the sticks of v, which have color ¢(v,,) occur on the right side of the
occurrence of {v,, v, }. Furthermore, all other partial one-paths connected to v;, ¢ < m,
use [a,d’] with o' < wv,,.p[1].l{r.v at most. out.l.ok is true if there is a partial nice
proper path decomposition in which a partial one-path connected to v, uses [I,!],
m <1 <" <n,such that the sticks of v, which have color v,, occur on the right side
of the occurrence of {v,,v,,}. If out.l.ok is true, then the pair (out.l.l,out.l.r) is the
lexicographically smallest pair (j,1") for which I’ is as given above, and all other partial
one-paths connected to some v;, i < m, use [a,a’] with @’ < j at most.

combined with v,,.p[1].l{l. Both out.l and out.r have three fields ok, [ and r, which
denote the following. out.l.ok is true if and only if there is a ‘partial’ nice proper path
decomposition in which

e a partial one-path H' connected to v, uses [’,{], for some l and I', m < 1" <1 < n,

e it is possible that a partial one-path H” which is connected to v, uses [j, ;'] for
some j and j', pp < j < j' < p, and

o the sticks of v, which have color ¢(v,,) occur on the right side of the occurrence

of {v,, v, }.

If out.l.ok is true, then out.l.l and out.l.r are such that (out.l.l, out.l.r)is the lexico-
graphically smallest pair (j,1), m <! <nand pp < j < p, for which there is a ‘partial’
nice proper path decomposition in which a partial one-path H’ connected to v, uses
[I",1], m <1 <1, the sticks of v, which have color ¢(v,,) occur on the right side of the
occurrence of {v,,v,,}, and all partial one-paths connected to v;, ¢ < p, except H’, use
j at most. We show that one pair is sufficient after giving the algorithm.

The fields of out.r are defined in the same way, except that the sticks of v,, which
have color ¢(v,,) occur on the right side of the occurrence of {v,,,v,}.

The name out refers to the fact that the rightmost partial one-path connected to
vj, j < m, use vertices outside of [1, m].

Definition 4.11. The global information consists of two records in and out, which are

defined as follows.

e n is a record with two fields ok and r, which are defined as above.
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discuss which information is needed from the processed part to be able to process v,
and its partial one-trees.

First consider the case that we want to combine v,,.p[i].l or v,,.p[i].Ir for some i,
1 < i < vy.nr with the previously processed part. If, for example, v,,.p[i].l.ok holds,
and we want to combine v,,.p[¢].[.v with the processed part, then we need to know
whether there is a ‘partial’ path decomposition of the processed part of H in which
the processed partial one-paths connected to P do not use any v, { > v,,.p[1].l.v. See
e.g. Figure 46. Similarly for v,,.p[i].lr.0, for all i, 1 < i < v,.nr and all @, 1 < a < 8.

H/
\ /A
\ i Vo
\/ \/ \V/
e oo o— - - -
P Up n.r [M]lv Ym

U -p|1].1.

Figure 46: If v,,.p[l].l.v is combined, then there must be a partial nice proper path
decomposition in which partial one-paths connected to v;, ¢ < m, use v,,.p[1].L.v at
most. tn.ok is true if there is a 7, 7 < m, and a partial nice proper path decomposition
in which the partial one-paths connected to v;, i < m, use j at most, and if in.ok is
true, then the smallest value of j for which this is possible is in.r.

Therefore, it suffices to know the smallest 7, p < 72 < m, for which there is a partial
path-decomposition of the processed part, such that v; is the rightmost vertex of P
that is used by some processed partial one-path connected to vy,...,v,. We keep track
of this information by a variable in, which has a field ok which is true if there is such
an 7, false otherwise, and a field r denoting this smallest 7, if in.ok is true. The name
in refers to the fact that the partial one-paths connected to v;, j < m, only use vertices
within [1, m].

Next consider the case that we want to combine wv,,.p[i].l{l or v,,.p[i].llr for some
1, 1 < ¢ < vy,.nr with the previously processed part. Suppose for example that
U, .p[1].l{r.0k holds. We only have to show how to combine the values of v,,.p[1].llr.]
etc. with a partial path decomposition in which there is a partial one-path connected
to v, that uses vertices of v,,,..., v,. See e.g. Figure 47. Thus, we need to know if there
are partial path decompositions in which there is a partial one-path H’ connected to v,
which uses vertices of v,,,..., v, such that the sticks of v, which have color ¢(v,,) occur
on the right side of the occurrence of {v,, v, }, which vertices of v,,..., v, are used by a
partial one-path H'" which is connected to any v;, 7 < p, and which vertices of v, ,..., vy,
are used by H', since these vertices can not be used by partial one-paths connected to
Vpny Uy OF Uy It suffices to know all pairs (4,1), pp < j < p, m <1 < n, for which the
vertices of v;,...,v, and the vertices of vy,..., v, can be used for the partial one-paths of
Vm, U and v, and there is no such pair (j',1") for which this also holds, and either
(J'<jAlU<Dor(j/<jnl <l).

To keep track of this information, we use a variable out, which has two fields [
and r, where out.l is the one that can be combined with v,,.p[1].l{r, and out.r can be
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and the set () as defined in Definition 4.8 is not empty. If not v, .p[i].lr.ok, then
OV -pli]drdy = p and vy, .plildr.or, = n for each a, 1 < a < 8. If v,,.pli].lr.ok, then
O -pli]drdy and vy, .plildrr,, 1 < a <8, are such that

Q = A (vp.pli]lrdg, vy plildrr,) | 1 <a <8}

o v,,.pli]lll and v,,.pli].llr store the local information for Case 3.

— vp,.p[t].l has two fields: ok and v, which denote the following. v,,.p[i].lll.ok
is true if and only if 71 as defined in Definition 4.9 is defined, and
V. < 1 or vy, p[t].H has a vertex of color ¢(vy,). If not vy,.pli].lllok,
then v,,.pli].llLv = pp. If v,,.pli].lllok, then v, .p[i].lllv = j;.

— vp,.p[t].lr has two fields: ok and v, which denote the following. v, .p[i].llr.ok
s true if and only if jo as defined in Definition 4.9 is defined, and v,,.nr <
1 or vy.pli].H has a vertex of color ¢(vy,). If not v,,.p[i].llr.ok, then
O -pli]llrv = pp. If vy,.pli].llr.ok, then vy, .pli]llr.o = jo.

o v,,.pli].rrl and vy, .p[t).rrr stores the local information for Case 5.

— vp.plt].rrl has two fields: ok and v, which are defined in the same way as for
v -plE].lU, except that v, .p[i].H must use [j,j'] for some n < j < j' < nn,
and if v,,.p[i].rrl.ok then vy, .p[i].rrlv is the largest j' for which this holds.

— vp.p[t].rrr has two fields: ok and v, which are defined in the same way as for
O -pli].llr, except that v, .p[i].H must use [j,j’] for some n < j < j' < nn,
and if vy,.pli].rrl.ok then v, .p[i].rrlv is the largest j' for which this holds.

The local information that is computed for each vertex v € V(P) in function
Check_Nice_Path(P) consists of v.p[i].l, v.p[i].r, v.p[i].lr, v.p[i] .1, v.p[i].llr, v.p[i].rr,
and v.p[i].rrr, for all i, 1 <7 < v.nr.

Next we discuss which global information is computed in Check_Nice_Path, and
how it is computed. Let ¢q,...,%; denote the vertices of P for which vi;.nr > 1 for all
J, 1 <j <t and iy < i3 < --- < #. The main loop of Check_Nice_Path(P) has the
following structure.

initialize global information variables
for j:=1tot
- m =i
for 1 := 1 to v,,,.nr
— compute local information for v,
rof
adapt global information variables
rof

Suppose we have processed v;,...,v;,_,, for some j, 1 < j <t Let m = ij, p = ¢;1,
pp = tj_2, n = 1j41 and nn = i;49 (suppose jo = j_1 = 1, jiy1 = Jey2 = ¢). We now
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Claim 4.11 of this case (see also Figure 44). Note that G, is a subgraph of G. There
is a node which contains {v,,v,,}, hence we can modify PD in such a way that for
each stick w of v, which has color ¢(v,,), or w stick of v,, which has color ¢(v,), there
is a node {v,, vy, w}. Let (Vj,...,Vy) be the occurrence of {v,,v,} in the modified
path decomposition. The sticks of v, which have color ¢(v,,) occur on the left side of
V,, which means that G, <{ sticks of v, } occurs in (V,..., V), with edge {v;, u} in
the leftmost node and edge {v,,,v,} in the rightmost node. Hence [y is defined, and
Iy > 1.

In the same way we can prove that [y > js.

Showing that j; > [; and jy > [; can be done in the same way as in the proof of
Claim 4.2. a

Claim 4.14. j; and j, can be computed in O(n?) time, where n is the number of
vertices of G,p.

Proof. PPW2 can be used to compute j; and j,. The procedure to compute PPW2
must be called once for j;, and once for jz (see also proof of Claim 4.3). a

This completes the description of Cases 1, 2, and 3.
During the algorithm, we use the following record to store all local information for
each vertex of the path to which one or more partial one-paths are connected.

Definition 4.10. Let I be a three-colored partial two-path, P = (v1,...,v4) a possible
nice path for H. For each m, 1 < m < q, v,, is a record with fields nr and p.

The field v,,.nr denotes the number of partial one-paths connected to v,,, v,,.p is an
array of vy,.nr records with fields H, t, I, v, Ir, U, llr, rrl and rrr, which are defined
as follows. Let pp, p, n and nn be as defined before. For each v, 1 <1 < v,.nr,

o v,.pli].H denotes the ith partial one-path connected to v,,.
o v,,.pli].t denotes the type of v,,.pli].H, i.e. v,.p[i].t € {11, 111}.

o v,,.pli].l stores the local information for Case 1:

Vi -pli].l has two fields: ok and v which denote the following. wv,,.pli].l.ok is
a boolean which is true if and only if v,,.nr > 1 and j1 as defined in Defini-
tion 4.5 exists, false otherwise. If not v,,.p[i].l.ok, then v,,.pli].l.v = p, otherwise
Ve pli]Lov = J1.

o v,,.pli]l.r stores the local information for Case j:
U -pli].r has two fields: ok and v which are defined in the as for v,,.pli].l, but for
the case that v,,.p[i|. H uses [§,7], m < j < j' < n.

o v,,.pli].lr stores the local information for Case 2:

Ve -pli].lr has 17 fields: ok, and for all a, 1 < a <8, fieldsl, and r,, which denote
the following. wvy,.plildr.ok is a boolean which is true if and only if v,.nr = 1
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e jy is the largest value of j, pp < j < p, for which H' can use [j,j'] for some
J < j' < p, and the sticks of v, which have color ¢(v,,) occur on the left side of
the occurrence of {v,, vy} (j1 is undefined if there is no such j) and

e jy is the largest value of j, pp < j < p, for which H' can use [j,j’] for some
J < j' < p, and the sticks of v,, which have color ¢(v,) occur on the left side of
the occurrence of {v,, vy} (jo is undefined if there is no such j).

We now show how to compute j; and js.

Let P" € Py(H'), let u be the end point of P’ for which the path from u to v,
contains P’. For each j, pp < j < p, let G; denote the graph obtained from H as
follows (see e.g. Figure 45). Take the graph induced by H’, v,,, {vj,...,v,} and the
sticks of vj11,...,v, and v,,. Add edge {u,v;} and if m = p+ 2, check if ¢(v,) # ¢(v),
add edge {v,, v, }, and delete v,11 and its incident edges. If m > p+2or ¢(v,) = ¢(vyy,),
then ¢ is undefined. Note that G is a biconnected component with sticks.

Figure 45: Example of (; for the case that m = p + 2.

Let [; be the largest value of j, pp < j < p, for which there is a proper path
decomposition of G; < { sticks of v,, } in which edge {v;,u} occurs in the leftmost
node and edge {v,,v,,} occurs in the rightmost node. If there is no such proper path
decomposition, then [y is undefined.

Let [; be the largest value of j, pp < j < p, for which there is a proper path
decomposition of G; < { sticks of v, } in which edge {v;,u} occurs in the leftmost
node and edge {v,,v,,} occurs in the rightmost node. If there is no such proper path
decomposition, then [, is undefined.

Claim 4.13. jl = ll and jz = 12.

Proof. We first show that j; <[y and j, < [5.

Suppose 71 is defined, and suppose there is a nice proper path decomposition PD =
(Viyeer, Vi) of H with nice path P such that H' uses [y, '] for some j' with j; < j' < p,
there is a partial one-path H” connected to v, which uses [, ] for some m <[ <!’ <n,
and sticks of v, which have color ¢(v,,) occur on the left side of the occurrence of
{vp, v}

Suppose H' occurs in (V,,...,V,s) and H” occurs in (Vi,...,Vy). Let P" € Py(H')
be as defined above, such that uw € Vi, let P’ € Pi(H") and let w € V(H") be the
end point of P” for which w € Vy. Let ¢, C; and (y be as defined in the proof of
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Figure 44: Example of the graph G as defined in the proof of Claim 4.12, and a part of
a proper path decomposition of G. ¢(v,,) = 1, ¢(v,) = 2, wy and wy are sticks of v,,,
wsz and wy are sticks of vy, with ¢(wq) = 2, ¢(wy) = ¢(wy) = 3, and ¢(ws) = 1. Sticks
wy and wyg occur within the occurrence of {v,, v, }.

sticks of v, of color ¢(v,) can not occur within the occurrence of Cy (see Lemma 4.7).
Furthermore, they can not occur on the left side of V,, since v, does not occur there.
Hence the sticks of v, of color ¢(v,) occur on the right side of V.

We now prove 4. If v, has sticks of color ¢(v,,), and these sticks occur on the right
side of Vs, then they must occur within the occurrence of (5, since v, does not occur
on the right side of V. Then the sticks of v,, which have color ¢(v,) can not occur
within the occurrence of Cy (Lemma 4.7). Furthermore, I” > m, because if I' = m,
then each node of the occurrence of Cy contains v,,, which means that the sticks of
v, which have color ¢(v,,) can not occur within this occurrence. Because I’ > m, it is
not possible that the sticks of v, which have color ¢(v,) occur on the right side of V.
Hence they must occur on the left side of V. a

The claim implies that if H' uses [j, '], pp < j < j' < p, then either the sticks of
v, which have color ¢(v,,) occur on the left side of the occurrence of {v,,v,,}, or the
sticks of v,,, which have color ¢(v,) occur on the left side of the occurrence of {v,, vy, },
but not both. Therefore, the local information is defined as follows.

Definition 4.9. The local information for H' for the case that H' uses [j,7'], pp <
Jj < j' < p, and there may be a partial one-path H" connected to v, which uses [l,1],

pp <1 <" <p, is the pair (ji, j2), pp < j1,J2 < p, where
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Proof. 1t is clear that ' < jif m' < m, and that @ > " if m’ > m (Lemma 4.17).
Showing that '’ = j and a = [’ are possible can be done in the same way as in the
proof of Claim 4.1. a

It follows from the claim that we only need all pairs (7,I'), pp < j < m <I' <mn,
for which there are j' and I, j < j' < m and m <1 <, such that H' can use [j, j']
and there is a partial one-path H" connected to v, which can use [[,], and there is no
pair (a,b’) for which this holds with j < a <V <l'orj<a <b <.

However, the local information for H’ consists only of information about H'. There-
fore, we first further analyze the occurrences of H' and H”, to show how H' and H”
can be handled independently.

Claim 4.12. Suppose there is a proper path decomposition PD = (V1,...,V;) of H
with nice path P, such that H' uses [7,7], pp < j < j' < p, and there is a partial
one-path H" connected to v, which uses [[,{'], m <1 <[’ <n. The following holds.

I.m=p+1lorm=p+2 and if m = p+ 2, then v, has degree two.
2. There is a node V; which contains vy, vp41 and v,,.

3. If the sticks of v, which have color ¢(vy,) occur on the left side of the occurrence
of {v,, v, }, then the sticks of v, which have color ¢(v,) occur on the right side
of the occurrence of {v,, v, }.

4. If the sticks of v, which have color ¢(v,,) occur on the right side of the occurrence
of {v,, v}, then the sticks of v,, which have color ¢(v,) occur on the left side of
the occurrence of {v,, v, }.

Proof. 1 and 2 are proven in Lemma 4.18, so we only prove 3 and 4. Suppose H’
occurs in (Vi,..., V,r) and H” occurs in (V,..., Vy). Note that 7’ < s (see Lemma 4.18).
Let P € Py(H') and P" € Py(H"), and let v € V(H') be the end point of P’ for
which u € V;, and let w € V(H") be the end point of P” for which w € V. Note that
the path from u to v, contains P’, and the same holds for H”. Let G be the graph
obtained from H by adding edges {u,v;} and {w,vp}, and if m = p + 1, adding edge
{vp, v, } and deleting vertex v,1; and its incident edges. See e.g. Figure 44. PD is a
proper path decomposition of . Let G’ be the subgraph of  induced by the vertices
of H', 0", {v;,...,vp} and the sticks of vertices {v;41,...,vp_1}. G’ is a biconnected
component with sticks, which has two chordless cycles which have edge {v,,v,,} in
common. Let (1 and Cy be the chordless cycles of G, such that (' contains vertices of
H’ and C; contains vertices of H”. Graph G’ occurs in (V,,..., Vi), edge {u, v;} occurs
in V, and {w, vy} occurs in Vy. Let (V,,..., Vy) be the occurrence of {v,, v,,}.

We first prove 3. If v, has sticks of color ¢(v,,), and these sticks occur on the left
side of V,, then either 7 = p and the sticks occur on the left side of V,, or the sticks
occur within the occurrence of Cy. In the first case, each node of the occurrence of Cy
contains vertex v,, and v, does not occur on the left side of V,, hence the sticks of
v, which have color ¢(v,) must occur on the right side of V,s. In the second case, the
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of the three chordless cycles must have three vertices, such that the third vertex of this
cycle has no sticks. This must be Cs, since C is the chordless cycle which occurs in
between C7 and Cs in PD (Theorem 3.1). Hence if ¢ < m <1, then i = m <2, and
-1 has no sticks, so G is a subgraph of G,

Consider the occurrence (Vj,..., By) of Cs (see Figure 43). Edge {v;,v,,} C V4, and
edge {v;, vy} C Vi, Since j' > m+1, this means that thereis anode V., b < ¢ < ¢, such
that v;, v,41 € Ve. This means that ¢(v,,) # ¢(v;) and ¢(vy41) # ¢(v;). Furthermore,
c(v) # ¢(vym41), which means that all sticks of v; either have color ¢(v,,) or color
¢(vm41). So we can modify PD in such a way that for each stick w of v; with color
¢(vy, ), there is a node {v;, v41, w} in PD, and for each stick w of color ¢(vy,41) of v,
there is a node {v;, v, w} in PD, and v; can be deleted from all nodes which contain
v4, d > m+ 1 (see Lemma 4.2). In this modified version of PD, the occurrence of G
contains edge {v;, u} in the leftmost node and edge {v;, v;,41} in the rightmost node.
Hence 3 is defined, and I3 > j, so (I3, m+ 1) € Q.

Showing that for all pairs (7, j') € Q%, there is a pair (I,I") € Q2 such that j <1<
" < j'is similar to part 2 of the proof of Claim 4.2.

a

Claim 4.10. @3 can be computed in time O(n?), where n is the number of vertices

of G; U {sticks of v, }.

Proof. The value of [; can be computed by using PPW?2', and the value of [3 can be
computed by using PPW2. Both have to be computed once (see proof of Claim 4.3).
O

Case 2.3 m<j<j3' <n
This case is similar to case 2.2. The local information consists of the set ()3, which
contains at most two pairs (j,j'), and if there are two, then one of them has j = m,
the other one has j = m < 1.

This results in the following local information for Case 2.

Definition 4.8. The local information for H' for the case that H' uses [j,j'], p < j <
j' < m, is the set

Q=1{0,7)€Q1UQ2UQ3| "I meguug, J <I<U<j'Vvi<i<l <y

Case 3pp<j <y <p

We first analyze the structure of a proper path decomposition in which H’ uses [j, j]
for some pp < j < j' < p. We assume that there is a partial one-path H” which is
connected to v, and which uses [{,!'] for some | > m, since otherwise, j = j' = p and
this case is considered in Case 1.

Claim 4.11. If H’ uses [, j'] for some j, j’ with pp < j < j' < p, and there is a partial
one-path H” connected to v, which uses [[,I'], m <1 <" < n, then a partial one-path
H'" connected to v,,,, H' # H" and H" # H'", can use [a,ad'], with ¢’ < jif m' <m
and a > U'if m’ > m.
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Suppose j° > m. Let ¢ < m such that there is a node containing v;,v; and a stick
of v;. Let G’ be the graph obtained from (' by adding edge {v;,,v;}, and deleting all
vertices vq,...,Vj_1, Vjit1,..., Vg, and all sticks adjacent to vertices vq,...,v;, vjr,..., v,
See for example Figure 42. Note that PD[V(G')] is a proper path decomposition of

Figure 42: Example of graph G’.

(', and note that G’ is a biconnected component with sticks. There are three disjoint
paths in G’ from v; to v,,, which means that there is a node containing v; and wv,,
(Lemma 3.1). Let G be the graph obtained from G by adding edge {v;, v, }. See for
example Figure 43. If i = m <1, then G consists of two chordless cycles which have
edge {v;,v,,} in common. If i < m &1, then G” contains three chordless cycles which

G//

Figure 43: Example of graph G, and the occurrence of G’. Chordless cycle C3 occurs
i (Viseeo, V).

have edge {v;, v, } in common (Theorem 3.1). Let Cy denote the chordless cycle which

contains v;, let (3 denote the chordless cycle which contains v;/, and if ¢ < m <1, let
(5 denote the chordless cycle which contains vertices v;,..., v, If 1 < m <1, then one
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H/

Figure 41: Example of graphs &; and G; for a partial one-path H’ connected to v,,,
where v,,_1 has no sticks.

undefined, otherwise, delete v,,_1 and its incident edges, and delete the sticks of v,,_s.
Note that the graph G; is also a chordless cycle with sticks.

Let I be the largest j, p < j < m, for which there is a proper path decomposition
of G; with vertex v, in the rightmost node and edge {u,v;} in the leftmost node. If
there is no such proper path decomposition, then /[y is undefined.

Let [; be the largest j, p < 7 < m, for which G; is defined and there is a proper
path decomposition of G with edge {u,v;} in the leftmost node and edge {v;—2, vy}
in the rightmost node if v,,_y is deleted, end edge {v,,_1,v,,} in the rightmost node
otherwise. If there is no such proper path decomposition, then /5 is undefined.

Let Q% be defined as follows.
Qb = {(lom), (lym + 1)}
Claim 4.9.
Q2= 1{(5.7) € Q| jis defined A=Fueq (j<I<I'<jVi<i<l<j)}

Proof.  We first show that for each pair (j,7’) € @2, there is a pair ([,I') € )2 with
ji<r<j.

Suppose there is a nice proper path decomposition PD = (Vi,..., V}) of H with nice
path P, such that H' uses [j,7"], p < j < j” < m, and other partial one-paths may use
(1,1, 1" <jorl > j for some j* > m. Suppose w.l.o.g. that (j, ;') € Q2.

Let P € P1(H') be as defined above, with end points u and w. Suppose w.l.o.g.
that v, is adjacent to w or a stick adjacent to w. Let G be the graph obtained from
H by adding edge {v;,u}. Note that PD is a proper path decomposition of &, and
that (; is a subgraph of G. Let (Vj,..., Vy) denote the occurrence of G in PD. Then
{u,v;} C Vs andif j' = m, then v,, € Vs, and hence there is an {, j <! < m, for which

(I,m) € Q.
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Un

Un

Figure 40: Example of a partial one-path H’ which uses [, ], p < j < j' < m, such
that the edge {v;, w} ‘uses’ 7, i > m, and the corresponding graphs G' and G,

Definition 4.7. The local information for H' for the case that H' uses [j,j'], p < j <

j' < m, is the set

Q = {U)Ip<j<sm<j <n
A H' can use [f,7"], 7 < j" < m,
A other partial one-paths can use [[,I'], ' < jorl>j’
AT (f<a<m<d <jvji<a<m<d <j)
A H' can use [a,d"], a < a”" < m,

A other partial one-paths can use [b,0], 0 < jorb>d')}

We now show how to compute the set @5, and that |Qo| < 2.

Let P" € Py(H'), let w and w be the two end points of P’, such that w or a
stick of w is adjacent to v,,. For each j, p < j < m, let G, denote the graph
obtained from H as follows (see e.g. Figure 41). Add edge {u,v;}. Furthermore,
delete vertices {vy,...,vj_1, Vpyg1,..., vy}, and all sticks and partial one-paths connected
to {v1,.00, 0, Uy yeee, 0}, except ', Note that the graph G is a chordless cycle with
sticks.

Farthermore, for each 7, p < j < m, let G; denote the graph obtained from H
as follows. Add edge {u,v;}. Furthermore, delete vertices {v1,...,v;_1, Vmi1,-es Vg }s
and all sticks and partial one-paths connected to {v1,...,v;, m41,..., v4}. If v,,_1 has
sticks, delete them. If v,,_1 does not have sticks, check if ¢(v,,—2) = ¢(vy,), if so, G; is
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vy, H'is a partial one-path of type I, and either w is adjacent to v,,, or a stick of w
is adjacent to v,,.

Proof.  Suppose H' occurs in (Vi,...,Vy). m > j’, which means that v,, occurs only
on the right side of V.. But w and some stick of w are the only vertices of H’ which
occur in Vi, hence w or this stick is adjacent to v,,. a

Claim 4.8. Suppose there is a nice proper path decomposition PD = (V,...,V}) of H
with nice path P in which H' uses [j,7'] for some j,j', p < j < j' < m. Let a be the
maximum of m and the largest value of ¢, ¢+ < n, for which there is a node V; in PD,
an integer ¢ < m, and a stick w of v;, such that Vj contains v; and edge {v;, w}. Then
a partial one-path H” with H' # H”, H" connected to v,,:, can use [[,'] with I’ < jif
m' <m,and [ > aif m’ > m.

Proof. Let H” be a partial one-path connected to v,,,, H” # H'  and suppose H"
uses [[,I"]. Clearly, if m’" < m, then I’ < j, and I’ = j is possible (see also proof of
Claim 4.1).

Consider the case that m’ > m. Clearly, [ > m. Suppose v, occurs in (V,,..., V)
and H' occurs in (Vj,...,Vy). Note that s’ < r. Let P’ € Py(H’), let uw € V(H') such
that u is end point of P’, and u € V. Let G be the graph obtained from H by adding
edge {u,v;} (see e.g. Figure 40). Note that PD is a proper path decomposition of G.
Let ' be the subgraph of ¢ induced by the vertices of H' and vertices v;,..., v, and
all sticks adjacent to vj41,...,v,—1. Note that G’ is a chordless cycle with sticks. Let
denote the chordless cycle in G'. Suppose G’ occurs in (Vy,..., Vo). Then a = s. Vertex
vy, occurs in the rightmost node of the occurrence of C', so if « < m, then v, € V,r. In
this case, all vertices of V(G’) <{v,,} may be deleted from all nodes on the right side
of Vs, and we can add a node {v,,} between Vs and V,;1, which means that [ = m is
possible.

Suppose ¢ > m. Let G” be the graph obtained from G by adding edge {w,v;}.
Note that PD is a proper path decomposition of G”. See for example Figure 40. Let
G"" be the subgraph of G induced by the vertices of H’, vertices vj,...,v;, and all
sticks adjacent to vertices v;yq,...,v;,-1. Note that G" is a biconnected component
with sticks, which contains two chordless cycles, and {u,v;} occurs in the leftmost
node of its occurrence, and vertex {v;} occurs in the rightmost node. Each node in
the occurrence of G contains at least two vertices of "/ which means that there is
no vertex v., m < ¢ < %, which has a partial one-path connected to it, and it is not
possible that [ < i. Furthermore, [ = i is possible, since we can add a node {v;} on the
right side of the occurrence of G. O

The claim implies that we only need all values of (j,j"), p < 7 <m < j' < n, for
which H' can use [j,j"], for some j < j” < m, and other partial one-paths can use
[[,l'], where I’ < j or [ > j', and there are no a,a’, j < a < m < a’ < j', such that H’
can use [a,a”] for some @ < @’ < m, and other partial one-paths can use [b,0], b’ < a
orb>d.
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Figure 39: Example of a partial one-path H’ which uses [7,7], p < j < m < j < n,
and the corresponding graph G’ with chordless cycles C and CS.

G’ contains two chordless cycles which have edge {v,,,v} in common. Let 'y and Cy
denote these chordless cycles, such that 'y contains edge {u,v;} and Cy contains edge
{w,v;r}, let b, a < b < a’, be such that no vertex of V(C7) <{v,,,v} occurs on the
right side of V4, and no vertex of V(Cy) < {v,,v} occurs on the left side of V} (this
is possible, see Lemma 3.3). Note that {v,,,v} C V4. The sticks of v,, which have
color ¢(v) occur either on the left side of the occurrence of Vj or on the right side of
the occurrence of Vj (it is not necessary that one of them occurs on the left side, and
another one on the right side, since they all have the same color), and the sticks of v
which have color ¢(v,,) occur either on the left side of V4 or on the right side. If v,, has
sticks of color ¢(v) and v has sticks of color ¢(v,, ), then the sticks of v and v,, do not
both occur on the same side of V;, (see Lemma 4.7). Delete all sticks of v,, which do
not have color ¢(v), and all sticks of v which do not have color ¢(v,,) from PD, and for
each of these sticks w, add a node {v,,, v, w} between V; and Vyq1. Let (Vi,..., Vo)
be the new occurrence of G”, and let (Vj,..., Vi) be the occurrence of all these sticks.
Suppose w.l.o.g. that the sticks of v,, of color ¢(v) occur on the left side of V4. Then
(Vase-r, Vir) is a proper path decomposition of G¥ U {sticks of v, } if j < m, and of G if
Jj = m, such that {u,v;} is in the leftmost node and {v,v,,} is in the rightmost node,
and (Vp,..., Vyn) is a proper path decomposition of G% U {sticks of v} with {v,v,} in
the leftmost node and {w,v;} in the rightmost node. Hence j <If and j" > r{’.
Showing that for all pairs (j,7’) € @, there is a pair (I,I') € )1 is similar to part
2 of the proof of Claim 4.2. a

Claim 4.6. ) can be computed in time O(n?), where n is the number of vertices of
Gy U Gy U {sticks of v, and v}.

Proof. The values of [}, r{’, etc. can be computed by using PPW1, which has to be
computed once for each of the four values (see proof of Claim 4.3). O

Case 22 p<j<j' <m
We first analyze the structure of a nice proper path decomposition with nice path P
in which H" uses [j,j], p<j<j <m.

Claim 4.7. Suppose H' uses [j,j'] for some 7,5, p < j < j' < m, and let w be the
end point of some path P’ € Py(H') such that there is a node which contains w and
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Let [§ be the largest value of j, p < j < m, for which G is defined, and there is a
proper path decomposition of G} U{ sticks of v,, } with edge {v,, v} in the rightmost
node, edge {v;, u} in the leftmost node, or j = m and there is a proper path decompo-
sition of Gt with edge {u,v,,} in the leftmost node and edge {v, v,,} in the rightmost
node. If there is no such 7, then [{ is undefined.

Let r{’ be the smallest value of j/, m < j* < n, for which G} is defined, and
there is a proper path decomposition of G U { sticks of v } with edge {v,, v} in the
leftmost node and edge {v;;, u} in the rightmost node. If there is no such j’, then r}’
is undefined.

Let Iy be the largest value of j, p < j < m, for which G is defined, and there is a
proper path decomposition of G'¥ U { sticks of v } with edge {v,,,v} in the rightmost
node and {v;,u} in the leftmost node. If there is no such j, [§ is undefined.

Let rY be the smallest value of j/, m < j' < n, for which G is defined, and there is
a proper path decomposition of G¥ U { sticks of v,, } with edge {v,,, v} in the leftmost
node and edge {vjs,u} in the rightmost node, of j/ = m and there is a proper path
decomposition of G%; with edge {v, v} in the leftmost node and edge {w,v,,} in the
rightmost node. If there is such a j’, then ry is undefined.

similarly, define {7, r{', I3 and 735.

Let )} be defined as follows.
Q1 = {1, i), (13, ), (1, r), (i)}
Claim 4.5.
Q1 ={(j.j) €@} |jand j" are defined A3 eq (J<I<U<jVvji<I<I <)}

Proof.  We first show that for each pair (j, ;') € Q1, there is a pair (I,I') € @}, such
that j <1 <1" < j'.

Let PD = (Vi,..., Vi) be a nice proper path decomposition of H with nice path P,
such that H' uses [j,j'] for some pair (j,j') € @1. Suppose v, occurs in (V,,..., V)
and H' occurs in (Vj,..., V). Let P’ € Py(H') as defined before, with end points u and
w, suppose w.l.o.g. that u € Vi and w € Vy. Let v',w’ € V(H') such that v’ € Vj,
w' € Vg, and u' is a stick adjacent to u, w’ is a stick adjacent to w. Let v € V(H’) such
that {v,v,,} € E(H). If v is a stick of u or w, then there is a node containing v,,, v
and u, or v,,, v and w, respectively, because of Lemma 3.11, and because j < m < j'.

Let G be the graph obtained from H by adding edges {u,v;} and {w,v;}, and if
v is a stick of u, add edge {u,v,,}, and delete v and its incident edges, similarly if v
is a stick of w. Let v denote the new vertex of H' for which {v,v,,} € E(H). Note
that PD is a proper path decomposition of G. Let G’ be the induced subgraph of ¢
obtained by deleting the vertices of {vq,...,v;_1,vj141,..., v4} and the sticks and partial
one-paths connected to vertices {vy,...,v;,vjs,...,v,}. See e.g. Figure 39. Then G’ is a
biconnected component with sticks, and G’ is the union of the graphs G and G;U,, and
the sticks of v, and v. Suppose G’ occurs in (V,,..., Vo). Clearly, a < s and o’ > 4.
In fact, s = @ and s = a/, since all vertices v;41,...,v;,_1 and sticks adjacent to these
vertices occur only within (Vj,...,Vy). Furthermore, {u,v;} C V,; and {w,v;} C Vy.
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Figure 38: Example of G} and G}, with p < j < m and m <! < n. In Part [, v is
a vertex of Py(H'). In Part II, v is a stick of u, which means that ¢(v,,) # ¢(u) must
hold, and v is deleted (u is the new vertex that is adjacent to vy, ).

77



21 p<j<m<j <,
2.2 p<j<j <m,and
23 m<j<j <n.

For each case, we show which local information must be computed, and how it is
computed.

Case 2.1 p<j<m<j' ' <n

We first analyze the structure of a nice proper path decomposition with nice path P
in which H" uses [j,j], p<j<m<j <n.

Claim 4.4. If H' uses [j,j'] for some j,j’, p < j < m < j' < n, then a partial one-path
H" connected to v, H # H", can use [[,I']| with I’ < jif m' < m, and [ > j'if
m’ > m.

Proof. Suppose there is a nice proper path decomposition PD = (Vi,..., V}) with nice
path P in which H’ uses [j, j'] for some j and j' with p < j <m < j' < n. Let H" be
a partial one-path connected to v,,,, H"” # H', and suppose H" uses [[,l’]. Clearly, if
m’ < m, then I’ < j, and if m’ > m then [ > j.

In the same way as for Claim 4.1, we can show that it is possible that I’ = j of
=7 O

The claim implies that we only need all values of (j,5'), p < j < m < j < n, for
which H' can use [j,j'], and there are no [,I’, 7 <1 < m <’ < j', such that H' can
use [[,l'l and j <lorl' < j'.

Definition 4.6. The local information for H' for the case that H' uses [j,j'], p < j <
m < j' < n, is the set

Q1 = {U.J)Ip<i<m<j <nAH can use[j,j']
A=Fp(G<Ii<m<U<jvi<i<m<U<j)yAnH can use[l,l}

We now show how to compute the set @)1, and that |Q¢| < 4.

Let P' € Py(H’),let v and w be the two end points of P’. Let v € V(H') such that
{v,v0,} € E(H). For each j, p < j < m, let G¥ denote the graph obtained from H as
follows (see e.g. Figure 38). Add edge {u,v;}. If v is a stick of u, check if ¢(u) # ¢(vy,),
and if so, add edge {u,v,,}, and delete v and its incident edges. Similarly, if v is a stick
of w, check if ¢(w) # ¢(v,,), and if so, add edge {w, v,,}, and delete v and its incident
edges. If ¢(w) = ¢(v,,), then G¥ is undefined. Let v again denote the vertex of H' for
which {v,v,,} is an edge. Furthermore, delete vertices {v1,..., v;_1, Umy1,..., ¥4}, and
all sticks and partial one-paths connected to {vq,..., v, vpy,..., vy}, except H'. Delete all
components of H'[V(H')<{v}] which do not contain u. Note that the remaining graph
G is a chordless cycle with sticks. In a similar way, define G for all j, m < i <,
and G for all j with p < j <m,orm <j <n.
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be the induced subgraph of H consisting of vertices v;, ,...,v; and all sticks adjacent to
vertices v, 11,...,v;. Note that Hs has pathwidth one at most. Let PD’ be a proper
path decomposition of H3 with v; in the leftmost node and v; in the rightmost node.
Let PD" be a proper path decomposition of G7 or G} with v, in the rightmost node
and {u,v;} in the leftmost node, or {w,v;} in the leftmost node, respectively. Then
PD[H{]+# PD'+ PD" 4 PD[H,] is a nice proper path decomposition of H with nice
path P, such that H' uses [j,] for some j <1 < m, hence j; > j. O

Claim 4.3. j; can be computed in O(n?) time, where n is the number of vertices of

G,

Proof. Forall j, p < j < m,GY is a biconnected component with sticks, hence we can
compute in O(n?) time whether there is a proper path decomposition of G with vy, in
the rightmost node and {u,v;} in the leftmost node. This can be done by computing
PPW?2' with v, as starting vertex and edge {u, v;} as end edge.

However, if this is done for all j, p < 7 < m, and both for » and w, then this may
result in an Q(n?) algorithm. Fortunately, we can use the structure of the algorithm
to compute PPW2’ to compute j; in such a way, that the algorithm has to be called
only twice: once for u and once for w.

Let p', p < p' < m, be such that p’ is as small as possible and ¢(u) # c(vy).
If v = w or v is a stick of w, then G contains one chordless cycle ¢'. Number
the vertices of C' in order as {ug,...,u,—1} in such a way that w; = v; for each j,
P < j < m, and hence u = u,_; (note that for all ¢, u; denotes u;modn). See for
example Figure 37. For each j, p’ < j < m, determine PPW2'(GL,, {va}, p' & 1,p'). ft
and PPW2'(G,{vy}, p’ & 1,p').0t. During this computation, PPW2'(G, {vn}, p’ &
L,j).ft and PPW?2'(G},{vm},p" <1, ).lt are computed for each j, p’ < j < m, and
hence we can determine the largest j, p’ < j < m, for which PPW2'(G},, {vn},p' &
1,7).ft holds, which is exactly the value we want. If v # w and v is not a stick of w,
then Gg, contains two chordless cycles, and we can do a similar thing.

H/

P e 6 e Vm

Figure 37: Example of G, and the numbering of the vertices in its chordless cycle.

In the same way this can be done for w. This gives (at most) two values for j. j;
is the largest of these two values, so it can be computed in O(n?) time. O

Case2nr=1land p<j3<3' <n

We consider three sub cases, namely
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Figure 36: Examples of H' if it uses [j1, '], j1 < j' < m, and of the occurrence of H'.

In part I, v, is adjacent to w. In part II, v,, is adjacent to an inner vertex v of P’
which means that ;' = m.
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Figure 35: Examples of G for the case that v,, is adjacent to w (I), and for the case
that v, is not adjacent to w or a stick of w, but v, is adjacent to a stick of u (1I).

this end point. Let P’ € Py(H’) as defined before, with end points w and w. Suppose
w.l.o.g. that w € Vi and w € V. Let v/, w’ € V(H') such that ' € Vi, w’ € Vi, and '
is a stick adjacent to u, w’ is a stick adjacent to w. For an example, see Figure 36. Let
v € V(H') be such that {v,v,,} € E(H). If v is an inner vertex of P’ (i.e. H' has type
I), orif v # w and v = u or v is a stick adjacent to u, then j' = m, since v occurs
only on the left side of Vs, and there is a V;, s < i < s, with v € V; and v,, € V;
(Lemma 3.11). Note also that, if v is a stick of u, then there is a node containing v,,,
v and u (also Lemma 3.11).

If v = w or v is a stick adjacent to w, let G be the graph obtained from H by adding
edge {u,v;, } only. Otherwise, let G be the graph obtained from H by adding edges
{u,v;, } and {w, vy} = {w, v}, and if v is a stick of u, add edge {u,v,,}, and delete v
and its incident edges. Note that PD is a proper path decomposition of GG, and that
G is a subgraph of G (see Figure 36). Suppose G’ occurs in (Vj,..., Viy). Clearly, b < s
and s’ < b < a. In fact, s = b, since all vertices v;, 11,..., v, and sticks adjacent to these
vertices occur on the right side of V; only. Furthermore, v,, € Vi and {v;,u} C V.
Hence there is a proper path decomposition of G with edge {u,v;} in the leftmost
node and vertex v, in the rightmost node, so j; <.

We now show that j; > max{ly,ls}.

Suppose there is a nice proper path decomposition PD = (Vi,...,V}) of H in which
P uses [j1,7], p < j < 7' < m. Let j = max{ly,l3}. We modify PD such that it is a
nice proper path decomposition with nice path P, and H’ uses [j,{] for some j <1 < m.

Let Hy be the induced subgraph of H consisting of vertices vy,...,v;,, and all sticks
and partial one-paths connected to these vertices. Let Hy be the induced subgraph
of H consisting of vertices v,,,..., vy, and all sticks and partial one-paths connected to
these vertices, except H’. Note that the rightmost node of PD[H;] contains v;, only,
and the leftmost node of PD[H;] contains v,,. We have shown that j; < j. Let Hj
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First consider v,,. Vertex v, separates H in four or more components which contain
an edge. Hence PD can be modified such that there is a node V, with V, = {v,,},
PD is still a nice proper path decomposition with nice path P, and H' uses [7,j'] (see
Lemma 4.12). Suppose H' occurs in (Vj,..., Vsr) and suppose v, occurs in (V,,..., V).
Note that s < a, since H' contains a vertex of color ¢(v,,), which means that j < m
and hence s < a.

Next consider v;. Suppose Vi = {v;, u, v}, for some u, v’ € V(H'). For all 7, i < s,
it is not necessary that thereis a v € V(H’) such that v € V;, since all edges containing
a vertex of H' occur within (Vj,..., V;). Furthermore, no V;, 7 < s, contains a vertex of
the path (v;41,..., v4) or a vertex of a stick or partial one-path that is connected to this
path. This means that we can delete all vertices of H' from nodes V;, i < s, and add a
node {v;} between V,_; and V. O

It follows from the claim that we only need the largest value of j, such that H’ can
use [j,j'] for some j', p < j < j < m.

Definition 4.5. The local information for H' for the case that H' uses [j,j'], p <
i< i <misji1, p<ji <m, which is the largest value of j for which there is a j',
Jj <j' <m, such that H' can use [j,j'].

We now show how to compute j;.

Let P’ € Pi(H'), let uw and w be the two end points of P’. Let v € V(H') such
that {v,v,,} € E(H). For each j, p < j < m, let G denote the graph obtained
from H as follows (see e.g. Figure 35). Add edge {u,v;}. If v # w and v is not a
stick of w, then also add edge {w,v,,}. If v is a stick of v and u # w, then also
add edge {u,v,,}. Furthermore, delete vertices {vy,...,v;_1, Vp41,..., v, } and all sticks
and partial one-paths adjacent to these vertices, all sticks adjacent to v; and v,,, all
partial one-paths adjacent to v; and all partial one-paths except H' that are adjacent
to v,,. Define G in the same way for each j, p < j < m. Note that G and G} are
biconnected components with sticks.

Let [ be the largest j, p < j < m, for which either there is a proper path decom-
position of G} with vertex v, in the rightmost node and edge {v;,u} in the leftmost
node, undefined if there is no such proper path decomposition.

Let I35 be the largest j, p < j < m, for which there is a proper path decomposition
of G¥ with vertex v, in the rightmost node and edge {v;, w} in the leftmost node,
undefined if there is no such proper path decomposition.

Claim 4.2. Suppose ji is defined, i.e. there is a nice proper path decomposition with
nice path P in which H' uses [j,j'], p < j < j' < m. Then j; = max{ly,ls}.

Proof. We first show that j; < max{ly,[3}.

Let PD = (V4,...,V}) be a nice proper path decomposition of H with nice path P
in which H' uses [j,j'] for some j’ with j; < j' < m. Suppose there is a node V, with
Vo = {vm}. Note that j; < m, since H’ has a vertex of color ¢(v,,). Note also that for
each P’ € Py(H'), Vs and Vi each contain an end point of P" and a stick adjacent to
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If nr > 1, then for all partial one-paths H; connected to v, which have no vertex
of color ¢(vy,), the local information consists of the interval [m,m] only. For all other
partial one-paths H;, the local information consists of certain intervals [, j/] which can
be used by H,, for the case that pp < 7 < j' < p, the case that p < j < 7/ < m, the
case that m < j < ' < n and the case that n < 7 < 7/ < nn. These values for different
partial one-paths connected to v,, can then be combined such that they satisfy one of
the four cases that are given above.

Let H' be a partial one-path that is connected to v,,. We distinguish five possibilities
for the interval that H’ can use in a nice proper path decomposition of H.

1. nr > 2 and there are j, 5, p < j < j' < m, such that H' uses [j,7].
2. nr = 1 and there are j,j', p < j < j' < n, such that H' uses [j, j'].
3. There are j7,j’, pp < j < j' < p, such that H' uses [, ’].
4. nr > 2 and there are 7,7, m < j < j' <mn, such that H' uses [, j’].
5. There are j,j', n < j < j' < nn, such that H' uses [, j].

We now describe what information is computed for cases 1, 2 and 3, and how it is
computed. Cases 4 and 5 are similar to cases 1 and 3. Suppose all partial one-paths
of type IlI are transformed into partial one-paths of type II. In each of the cases 1, 2
and 3, we first analyze how a proper path decomposition looks if this case holds, after
which we show what the local information is that has to be computed, and how this
information can be computed.

Caselnr>2and p<j3<3'<m

We first analyze the structure of a proper path decomposition in which H’ uses [j, j]
for some p < j < j' < m. We assume that there is no partial one-path H” which is
connected to v, and which uses [, '] for some [ > m, since in that case, j = j' = p,
and hence this case is considered in case 3. Furthermore, we assume that H’ contains
a vertex of color ¢(vy,).

Claim 4.1. If H' uses [j, j'] for some j, 7' with p < j < j' < m, then a partial one-path
H" connected to v,,,, H # H", can use [[,I], with ! < jif m' < m and [ > m if
m' > m.

Proof. Suppose there is a nice proper path decomposition PD = (Vi,...,V}) of H with
nice path P in which H' uses [j, j'] for some j and j' with p < j < j' < m. Let H" be a
partial one-path connected to P, H"” # H', which uses [[,I']. Clearly, I’ < j if m' < m,
and [ > m if m' > m.

We have to show that it is possible that I’ = j or [ = m. Therefore, we show that
we can modify PD slightly, such that there is a node {v;} in PD which occurs on the
left side of the occurrence of H’, and there is a node {v,,} in PD which occurs on the
right side of the occurrence of H'.
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Ujé

Figure 34: The four possible cases of the use [j;, j/] of partial one-paths H;, 1 < i <3,
with j{ < jp and 7} < ja,
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rightmost vertex on the left side of v, which has partial one-paths connected to it, or
pp = 1 if there is no such vertex, and v, is the left most vertex on the right side of v,
having partial one-paths connected to it, or nn = ¢ if there is no such vertex.

Suppose nr > 1. If nr = 1, then the following three cases are possible (see Fig-
ure 33).

1.

2.

p<h<ji<n
n<j1 <ji <nn
H,y
| /
Ly !
1 V!
—¢ o ° ° *
P Upp Uy, Ui Up Um Un Unn
° ®
P Upp Up
* °
P Upp Up

Figure 33: The three possible cases of the use [j1, ji] of a partial one-path H;.

If nr > 1, then the following four cases are possible (see Figure 34).

L. ppg]lS]{Sp,mgjrng;wSn,andfOI’aﬂl,1<’L<n7‘,]2:]2/:m

2. pp <1 <G <P < ur <l <y and forall i, 1< i < nr ,ji = jl = m.

3.p<jp<gi<m,m< jo, <jl, <n,and forall i, 1 <i<nr,j;=7j=m.

4. p<ji1 <j1<my,n < jpr < gl < mn,and forall 4, 1 < i < nr, j; = j' = m.

The local information that is computed by function Check_Nice_Path, consists of

certain values for each partial one-path connected to the nice path. If nr = 1, then for
partial one-path Hy, the local information consists certain intervals [j, j/] which can be
used by Hy for each of the three cases above.
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Figure 32: Example of the use of partial one-paths H' and H” in a tree H of path-
width two, a path decomposition PD of H, and the graph G’ as given in the proof of
Lemma 4.18.
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Lemma 4.18. Let H be a three-colored tree of pathwidth two, PD = (V1,...,V}) a nice
proper path decomposition of H with nice path P = (v1,...,v,). Let vy, v, € V(P),
m’ > m, and let H' be a partial one-path connected to v,,, H" a partial one-path
connected to v,,. Suppose H' uses [§,7], m' < j <j' < qand H" uses [[,I'], 1 <1<
I'<m. Thenm’ =m+1 orm' =m+2 and v,y has degree two; there is a node in
PD containing v,,, vmi1 and vy, and H and H" have type 1.

Proof.  Suppose H' occurs in (V,,...,V,s) and H"” occurs in (Vj,...,Vys). Then s" < r,
since I' < j. Let Viy = {vjr,u,u'}, u,u’ € V(H') and Vy = {v, w,w'}, w,w’ € V(H").
Suppose u is an end point of a path P’ € Py(H’) and w is an end point of a path
P" € Py(H"). See also Figure 32. Vertex v, does not occur in (V,...,V,s), hence
u and ' are not adjacent to v,,. Similarly, w and w’ are not adjacent to v,,,. Let
G =HU{{v,vp},{w' v}}. PD is also a path decomposition of G. We first prove
that m" = m + 1 or m’ = m + 2 and v,,41 has degree two and that there is a node
containing v, Vm41 and v,.

Suppose m’ > m+ 1. Then G contains three disjoint paths between v,, and v,,/, as
can be seen in Figure 32. According to Lemma 3.1, PD is a proper path decomposition
of the graph G’ which is obtained from G by adding edge {v,,, v,/ }. Graph G’ contains
three chordless cycles which have edge {v,;, v/} in common. At least one of these
chordless cycles, say C', must have three vertices, and the vertex v € V(') with v #
U, Uy has degree two, i.e. it is only adjacent to v, and v,:. Cycle C' can not be the
cycle containing vertices of H' or H”, since the path from v,, to v’ in H' contains at
least two edges, and the path from v,,, to w’ in H" also contains at least two edges.
Hence it must be the cycle consisting of v,,,..., v,,,. So either m’ = m+1orm' = m+2
and v,,41 has degree two. Furthermore, the two or three vertices v,,, v,,41 and v,
occur in one node, which also means that they must have different colors.

We now have to prove that H' and H” both have type I. Let C’ be the chordless
cycle of G’ which contains v; and let C” be the chordless cycle of G which contains v;s.
C" and C" have edge {vp,, v/} in common. All edges between vertices vy,..., v, edges
between vertices vj41,...,v5_1 and their adjacent vertices, and all edges of H" and H”
occur within (Vj,..., V,v). Suppose H' has type Il or 111, then let v € V(Py(H')) be such
that v is adjacent to v, if H' has type II, or v has distance two to v,, if H' has type
II. Then v € V(C’), and there is a vertex connected to v that does not have degree
one. This means that » should occur in the leftmost node containing an edge of C’.
This is node Vi, but V,» = {v;,u, v}, and o', u # v. Contradiction. O

Let H be a properly colored tree of pathwidth two, PD = (Vi,..., V}) a nice proper
path decomposition of H with nice path P = (vq,...,v4). Let v, € V(P),1 < m < g,
let Hy,..., H,, be the partial one-paths connected to v,,, nr > 1, foreach 7, 1 <1 < nr,
suppose H; uses [j;, j/] such that for all i, 1 < i < nr, j/ < ji41. Using Corollaries 4.2
and 4.3, and Lemma 4.18, we can derive what situations are possible for the intervals
[7i,j!]. Let pp, p, nand nn, 1 < pp < p < m < n < nn < ¢, be such that v, is the
rightmost vertex on the left side of v, which has partial one-paths connected to it, or
p = 1 if there is no such vertex, v, is the leftmost vertex on the right side of »,, which
has partial one-paths connected to it, or n = ¢ if there is no such vertex, v,, is the
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H/

Figure 30: Example of partial one-paths H' and H" as used in the proof of part 1 of
Lemma 4.17.

H/

. ¢ —o »
P Um Um! vy V51 ) /
L I
/ |
H//

Figure 31: Example of partial one-paths H’ and H” as used in the proof of part 2 of
Lemma 4.17.
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Figure 29: Example of partial one-paths Hi,..., H,,, which are connected to a vertex
v, of the path P. For each ¢, H; uses [j;,7!]. In Part I, nr = 3. In Part II, Hy uses
[71,71] with j3 < m < ji. Hence nr = 1.

o cither '’ <m orl> 74, and

/

o if | > j' then H" occurs on the right side of H' and j' = j = m’.
Proof. There are three possibilities for [[, '], namely

L1<i<l<m,

2. 7' <1<l <q,or

3. m <[ <!’ <jand neither case 1 nor case 2 holds.

We first show that case 3 is not possible. Suppose m <[ <[’ < j and case 1 and case
2 do not hold. Suppose H' occurs in (V,,...,V,s), H” occurs in (V,...,Vy). See also
Figure 30. Vertex v; is the only vertex of H[V <V (H")] occurring in Vy; and m < I',
which means that v, does not occur in Vs or on the right side of V. Furthermore,
vp is the only vertex of H[V < V(H")] occurring in Vy and [ < j’, which means that
vertices of H' occur on the right side of Vy. But Vy does contain a vertex of H” or
vertex v,,, as can be seen from Figure 30, which gives a contradiction. Hence only
cases 1 and 2 are possible.

We now have to prove that if [ > j’, then H" occurs on the right side of H’ and
j' = 7 = m'. Suppose H” occurs on the left side of H’. Then s < & < r < 7.
m < m' <1, so v, occurs only on the left side of V. But no node of (Vi,...,Vy)
contains a vertex of H' or v,,, which gives a contradiction. Hence H" occurs on the
right side of H'. Suppose j' > m/, see also Figure 31. Then v,, only occurs on the
left side of V... But V,, does not contain a vertex of H”, which gives a contradiction.
Hence j = 3/ = m/. O
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Proof. 1. Follows from the fact that there is no node in PD which contains a vertex
of H' and a vertex of H"” and Lemma 4.16.

2. Follows from Lemma 4.16. a

Figure 28: Example of a partial one-path H' that is connected to a vertex v, of the
path P, and another partial one-path H” that is connected to P. H' uses [j,j'], H"
uses [, l'].

Corollary 4.3. Let H be a three-colored tree of pathwidth two, PD = (Vi,...,V}) a
nice proper path decomposition of H with nice path P = (vq,...,vy). Let v, € V(P),
Hy....,H,, the partial one-paths connected to v,,. For each 1, 1 <1 < nr, suppose H;
uses (i, ji]. (See e.g. Figure 29).

1. There is at most one i, 1 <1 < nr, for which j. > m and there is at most one ',
1 <4 < nr, for which j; < m, and all others have j; = j' = m.

2. If there is an @ such that j; < m and j. > m, then nr = 1.

3. If nr > 2, then PD can be transformed into nice proper path decomposition with
the same nice path, such that for each H;, 1 <1 < nr, which contains no vertices
of color ¢(vy,), j; = ji = m.

Proof. 1. Follows from Lemma 2.6.
2. Follows from Lemma 4.12.

3. Follows from Corollary 4.1. a

For each partial one-path H' connected to P, the local information denotes certain
possible intervals [j, j/] for which H' can use [j, j'].

In the next lemmas, we further bound the number of possible values for the intervals
[7,7'] that a partial one-path can use.

Lemma 4.17. Let H be a three-colored tree of pathwidth two, PD = (V1,...,V}) a nice
proper path decomposition of H with nice path P = (vq,...,v,). Let vy, v, € V(P),
m’ > m, and let H' be a partial one-path connected to v,,, H" a partial one-path
connected to v,,1. Suppose H' uses [§,7'], m' < j <j < qand H" uses [[,I'], 1 <1 <
I < q. Then the following holds.
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vertex of a stick or a partial one-path connected to v; is an element of V), for some p,
1 <p<jVvyj <p<t Soall vertices and edges on the path from v; to vy occur
within (V,...,Vjr). Suppose there is a partial one-path H” # H’ which is connected to
v; for some i, I < i < !’. Then H” must occur within (V;,...,V;s). But each node in
(V,..., Vjr) contains a vertex of P and a vertex of H’. This gives a contradiction. O

Definition 4.4. Let H be a three-colored tree of pathwidth two, PD a nice proper path
decomposition of H with nice path P = (vq,...,v,), vy, € V(P), H' partial one-path
connected to vy, ' occurs in (Vj,...,Vj1). Let v be the leftmost vertex on P which
occurs in (Vj,...,Vyr), and vp the rightmost. We say that H' uses the interval [1,1'].

Figure 27 shows an example of a partial one-path H' that uses [I,1].

Figure 27: Example of a partial one-path H' that is connected to a vertex v, of the
path P in atree H of pathwidth two. Py(H’)is the path from u to w. In the occurrence
(V... Vi) of H' in the path decomposition PD of width two, v, v and a stick u’ of
w occur in V;, and vy, w and a stick w’ of w occur in V;. Hence H' uses [I,!'], which
is shown by the dashed lines in the graph (note that the dashed lines are edges of the
interval completion of PD). All vertices v;, [ < i < I, and sticks adjacent to v; occur

only within (V;,..., V).
In the following corollaries, we summarize some earlier lemmas in terms of intervals.

Corollary 4.2. Let H be a three-colored tree of pathwidth two, PD = (V1,...,V}) a nice
proper path decomposition of H with nice path P = (vy,...,v,). Let v, € V(P), ' a
partial one-path which is connected to v,,. Let H" be another partial one-path which
is connected to P. Suppose H' uses [j,j'] and H" uses [I,l']. See e.g. Figure 28. The
following holds.

1. Fither j > 1 orl > j'.

2. Fitherl'! <m orl > m.
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Proof. For each v € V(P) for which H[V <{v}] has four or more components, we can
transform PD into a path decomposition PD’ satisfying the stated conditions in the
same way as in the proof of Lemma 4.13. a

Corollary 4.1 and Lemma 4.11 show that if a vertex v of the nice path has two
or more partial one-paths connected to it, then the algorithm has to do significant
computations for at most two partial one-paths connected to v, since there are at most
two of these partial one-paths which have a vertex of color ¢(v).

We now concentrate on the kind of local information that has to be computed.

Lemma 4.15. Let H be a three-colored tree of pathwidth two, suppose PD = (Vi,...,V})
is a nice proper path decomposition of H with nice path P. There is a nice proper
path decomposition PD' with the same nice path P in which no two partial one-paths
of H|V & V(P)] overlap, i.e. for each pair of distinct partial one-paths H' and H"
connected to P, there is no node V; containing a vertex of H' and a vertex of H".

Proof.  Suppose there are two partial one-paths H' and H” connected to v € V(P)
and v € V(P), respectively, for which there is a node V,, containing vertices of H’'
and of H”. Suppose the vertices of H' occur in (V;,...,V}) and the vertices of H”
occur in (Vj,..., V). Tt is not possible that j <1 < 1" < j', since each Vi, j < i < j7,
contains a vertex of P and a vertex of H', but H” has pathwidth one. Similarly, it is
not possible that [ < j < 5/ < I’. Suppose w.l.o.g. that j <1 < 3’ <['. Let i be such
that [ < i < j'. V; does not contain an edge of H' or an edge of H”, since H' and
H" have no vertices in common. This means that V...,V all contain the same vertex
of H', say w, the same vertex of H”, say w’, and the same vertex of P, say v. Hence
j' = 1. But w and w’ are not adjacent, hence V; can be split into V/ and V/”, with
V) = {v,w}, and V}" = {v,w'}. Then PD" = (V1,...,Vi_1, V/, V', Vig1,..., V3) is also a
nice path decomposition of width two of H with nice path P. In this way, all overlaps
can be removed from PD, which results in a nice path decomposition with nice path
P, without overlapping partial one-paths. a

From now on, if we have a nice proper path decomposition of H with nice path P,
we assume that the partial one-paths connected to P do not overlap.

Lemma 4.16. Let H be a three-colored tree of pathwidth two, suppose PD is a nice
proper path decomposition of H with nice path P = (v1,...,v,), let v, € V(P), let H' be
a partial one-path connected to v,,, and suppose H' occurs in (V;,..., V). Let vy € V(P)
be the leftmost vertex on P which occurs in (V},..., V1), and vp € V(P) the rightmost.
Then vy € V;, vp € Vi, and for all i, 1 < i <U', v; and sticks adjacent to v; occur only
within (Vj,...,Vj1), and there is no partial one-path connected to v;, except H' possibly.

Proof. Node V; contains a vertex on the path from v, to v;. But V; does not contain
any vertex v; with 1 <4 < [. Hence v; € V;, and vy € V;. Furthermore, V; and
Vj» both contain an edge of H’. This means that V; and Vs can not contain another
vertex of V(H )< V(H'). Hence for each ¢, [ < ¢ < I’, it is not possible that v; or any
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For each vertex v of the nice path, for each partial one-path H' connected to
v, Check_Nice_Path computes certain local information, which denotes whether there
is a locally correct nice proper path decomposition of H’. This local information
is combined with previously computed global information, which, at the end of the
algorithm, denotes whether there is nice proper path decomposition of H with nice
path P. Hence, the function Check_Nice_Path(P) has the following structure.

function Check_Nice_Path(P: Path): boolean;

{pre: P = (v1,...,v,) is a nice path of H }

{output: true if there is a proper path decomposition of H
with nice path P, false otherwise

}

for m:=1toyg
— for each partial one-path H' connected to v,
— compute certain values for I’ (the local information)
rof;
Combine the computed values for v, and its partial one-paths (local info)
with previously processed part (global info).
rof;

combination succeeded
return true

else

return false

20| E

end

In the remainder of this section, we first show what local information must be
computed and how this is done. After that we show how the local information of each
vertex on the nice path can be combined with the global information into the new
global information.

We first show that the number of partial one-paths that is connected to one vertex of
the nice path for which the algorithm has to compute a local proper path decomposition
is bounded.

Corollary 4.1. Let H be a three-colored tree of pathwidth two, suppose PD =
(V1,..., Vi) is a nice proper path decomposition of H with nice path P. Then there
is a nice proper path decomposition PD' of H with nice path P in which for each
v € V(P) for which H[V <{v}] has at least four components which contain at least two
vertices, the following holds. For each partial one-path H' that is connected to v by a
vertex w € V(H'), if H' does not contain vertices of color ¢(v), then H' occurs within
the occurrence of v in PD'.

61



Lemma 4.14. Let H be a three-colored tree of pathwidth two such that there is a
v € V(H) for which HV <{v}] has pathwidth one, and has at least two components
which have pathwidth one. Let P = (vy) € P2(H ). Suppose there is a nice proper path
decomposition PD of H with nice path P = (uq,...,u,) such that P contains vy. Then
the following holds.

1. If H[V <{v1}] has three or less components, then there are two partial one-paths
H' and H", H' £ H", connected to vy, such that uy is an end point of some path
in P1(H'"), and uy is an end point of some path in Py(H").

2. If H[V <{v1}] has four or more components and there are two partial one-paths
connected to vy which have a vertex of color ¢(v), then there are two partial one-
paths H' and H", H' # H", connected to vy, such that H' and H" both contain
a vertex of color ¢(v1), and there is a nice proper path decomposition of H with
nice path (wq,...,w,) such that wy is an end point of some path in Pi(H'), and
w, is an end point of some path in P (H").

3. If H[V & {v1}] has four or more components and exactly one partial one-path
H' connected to vy has a vertex of color ¢(v), then for each partial one-path H"
connected to vy, H' # H", there is a nice proper path decomposition of H with
nice path (wq,...,w,) such that wy is an end point of some path in Pi(H'), and
w, is an end point of some path in P (H").

4. If H[V <{v1}] has four or more components and no partial one-path connected
to vy has a vertex of color ¢(v), then for each two partial one-paths H' and H"
connected to vy, H' # H", there is a nice proper path decomposition PD' of H
with nice path (wy,...,w,) such that wy is an end point of some path in Pi(H'),
and w, is an end point of some path in Py(H").

Proof. Similar to the proof of Lemma 4.13. a

Let H be a three-colored tree of pathwidth two. It now follows that the number
of nice paths that have to be tried to find out whether there is a nice proper path
decomposition of H is bounded by a constant. If there is no vertex v € V(H ) such that
H[V &{v}] has pathwidth one, in case 1 of Lemma 4.13, we have at most 6 possible left
end points for a nice path. In case 2, there are at most two partial one-paths connected
to vy which have a vertex of color ¢(vy), because of Lemma 4.12, which also gives at
most 6 possible end points for a nice path. In case 3 there is only one possibility. Hence
there are at most 6-6 = 36 possible nice paths that have to be checked in the algorithm.
If there is a v € V/(H ) such that H[V <{v}] has pathwidth one, then |Py(H)| < 7, and
for each P’ € Py( H), there are at most 8 possible left end points for the nice path, and
at most 6 for the right end point. This gives a total number of at most 7-8-6/2 = 168
possible nice paths that have to be checked in the algorithm. A more precise analysis
will give a smaller constant.

Now that we have shown that the number of possible nice paths to try is constant,
we construct function Check_Nice_Path(P), which checks for a given nice path whether
there is a nice proper path decomposition of H with this nice path.
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3. If H[V &{v1}] has four or more components, no partial one-path H' connected
to vy has a vertex of color ¢(v), then for all partial one-paths H' connected to vy,
there is a nice proper path decomposition of H with nice path (ws,...,w,), such
that w, = u, and wy is end point of some path in Py(H').

The analog for v, also holds.

Proof. Let PD = (V1,..., V4).
1. If H[V <{v1}] has three of less components, then clearly case 1 holds.

2. If H[V <{v1}] has four or more components, and at least one of these components
has a vertex of color ¢(vy), then PD is transformed as follows. Let H' be the partial
one-path connected to v for which uy € V(H’). If H' contains a vertex of color ¢(v),
then no transformation is performed. Otherwise, first the transformation of the proof
in Lemma 4.12 with v = vy is done. Note that the resulting PD = (Vi,..., V}) is still
a nice path decomposition with nice path P. Suppose v occurs in (V,..., V), let V,
j <1 <4, beanode of PD for which V; = {v;}. For each partial one-path H”
connected to v; that has an edge occurring on the left side of V; and that has no
vertex of color ¢(v), do the following. Make a proper path decomposition of width
one of H"” and add v; to each node. The result is a proper path decomposition PD’ of
H[V(H")U{v1}]. Delete all vertices of H” from all nodes of PD, and add PD’ between
Viand Vigq in PD. Let PD denote the obtained path decomposition of i/, and suppose
again that vy occurs in (Vj,...,V;s). If there is no partial one-path connected to vy of
which an edge occurs on the left side of V;, let H” denote a partial one-path connected
to v; which does contain a vertex of color ¢(v). H” occurs within (V},..., V;). Note that
v1 € V1. Let PD' =rev(PD[V(H")U {v1}]) # PD[V <V (H")]. Now use unfolding as
in the proof of Lemma 4.9 to make sure that PD is a nice proper path decomposition
and that the end point of the nice path is an end point of a path P” € Py(H"). Case
2 now holds.

3. If H[V <{v1}] has four or more components, but no partial one-path connected
to vy has a vertex of color ¢(v), then PD can be transformed as follows. First apply
the transformations as in the proof of Lemma 4.12 with » = v;. Let V; denote a node
of PD for which V; = {v;}. Next, for each partial one-path H’ that is connected to
vy, delete all vertices of H' from PD, make a proper path decomposition of width one
of H', add v to each node of this path decomposition, and put the obtained proper
path decomposition of H[V(H') U {v1}] between V; and Vi4q1. Delete all empty nodes
from PD. Note that Vi contains v; now. For each partial one-path H' connected to
vy and for each end point w of a path P’ € P;(H’), we can now make a nice proper
path decomposition of H with nice path P = (uq,...,u,), such that u; = w as follows.
Make a proper path decomposition PD’' = (W,..., W,) of width one of H’, such that
w € Wy. Let w’ € V(H') such that {v;,w'} € E(H). Let m, 1 < m < r, be such that
W,, is the rightmost node which contains w’. If m = 1, then let PD’ be revPD’, and
let m = r. Add v; to each W, i > m. Let PD’ denote this path decomposition. Then
PD"H# PD[V <V (H')] is anice proper path decomposition that satisfies the condition.

O
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of P, such that v; € V(H’) and v, € V(H"). There is an edge of H' which occurs on
the left side of (Vj,...,V}), and there is an edge of H” which occurs on the right side
of (Vj,...,Vjr). Hence it follows directly from Lemma 2.6 that there are at most two
partial one-paths connected to v which may have a vertex of color ¢(v). a

Lemma 4.12. Let H be a three-colored partial two-path, suppose there is a proper path
decomposition of H. There is a proper path decomposition PD of H in which for each
v € V(H) such that H[V <{v}] has at least four components which contain an edge,
PD contains a node {v}.

Proof. Let PD = (Vi,...,V4) be a proper path decomposition of H. For each v €
V for which H[V < {v}] contains four or more components which contain an edge,
transform PD as follows. Suppose v occurs in (Vj,...,V;). Let Hy be the induced
connected subgraph of H containing v and all components of H[V < {v}] of which
there is an edge occurring on the left side of V;, and let H, be the induced subgraph
containing » and all components of H[V <{v}] of which there is an edge occurring
on the right side of V. Note that V(H) N V(H;) = {v}, since no component of
H[V <{v}] can have edges occurring on the left side of V; and edges occurring on the
right side of Vj:. Furthermore, let H3 be the induced subgraph of H containing v and
all components of H[V <{v}] which are not in Hy or Hy. Then H = H; U Hy U Hs.
If there are vertices of H; which occur on the right side of Vj/, then they can be
deleted, since there are no edges containing these vertices occurring on the right side
of Vii. Similarly for Hy on the left side of V;, and for H3 on the right side of V}: and
on the left side of V;. Let PD’ be the path decomposition PD after deleting these
vertices. Then PD"” = PD[V(Hy)|# ({v}) # PD[V(Hs)]+ ({v})+ PD[V(H3)] is a
proper path decomposition of H, since the rightmost node of PD[V(Hy)] contains v,
the leftmost node of PD[V(Hj)] contains v, and all nodes of PD[V(H3)] contain v. O

The following lemmas are important to bound the number of nice paths that has
to be tried during the algorithm.

Lemma 4.13. Let H be a three-colored tree of pathwidth two. Suppose there is no
vertex v € V(H) for which HV <{v}] has pathwidth one. Let Py(H) = (v1,...,05),
and suppose there is a proper path decomposition of H. Let PD be a nice proper path
decomposition of H with nice path P = (uq,...,uy). The following holds.

1. If H[V <{v1}] has three or less components, then there is a partial one-path H'
which is connected to vy, and uy is an end point of some P" € Py(H').

2. If H[V <{v1}] has four or more components, and there is a partial one-path
connected to vy which has a vertex of color ¢(v), then there is a partial one-
path H' which is connected to vy and which contains a vertex of color c(vy),
such that there is a nice proper path decomposition PD' of H with nice path
P' = (wy,...,w,), such that w, = u, and wy is end point of some P" € P(H').
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1. If H' is of type 11, then there is an i, 1 < ¢ < &, such that PD' =
(Vi,eee, Vi {v, w}, Viga,..., Vi) is a nice proper path decomposition of H .

2. If H' is of type 111, then let w' be the inner vertex of Pi(H') that is adjacent to
w. Then there is an i, 1 < i <t, such that V; = {v,,, w,w'}.

Proof. 1. Suppose H' occurs in (V;,..., V). Each node V;, j < ¢ < 5, contains at
most two vertices of H'. There is a node containing v,, and w, since {v,w} € E(H).
First we prove the case that H’ has type II. If there is a node V; = {v,,, w}, then we
are done. Suppose there is no such node. Suppose {v,,, w} occurs in (V},..., V). Note
that edges of one component of H'[V(H’)<{w}] occur on the left side of V; and edges
of another component of H'[V(H') <{w}] occur on the right side of V. Furthermore,
note that 1 < m < ¢, since v is an end point of a path P’ € Pi(H") for some partial
one-path H” which is connected to an end point of a path of Py(H), and the same
holds for v,. Hence edges of one component of H[V <{v}] occur on the left side of V
and edges of another component of H[V <V (H') <{v,, }] occur on the right side of Vji.
No edges of H[V <{v,,, w}] occur within (V],..., V), since each node already contains
vy and w. If v, ¢ Vi_y, then there is a neighbor u of v, in one of the four components
with edges of H[V <{v,,w}] with v € V;. If w ¢ Vi1, then there is a neighbor u
or w in one of the components of the four components with edges of H[V &{v,,, w}].
Let u be the neighbor of v, or w which occurs in V. Similarly, let «’ be the neighbor
of v, or w which occurs in Vy. Note that v’ # u, since u and u' are in different
components of H[V &{v,,w,}]. Hence Vi = {v,,, w,u} and Vy = {v,,, w,u'}. This
implies that there must be a node V;, I < ¢ < ', such that V; N V41 = {v,, w}. Then
(Viyeees Vi {vm, w}, Viga,..., Vi) is also a proper path decomposition of H.

2. Now suppose that H' has type III. Because of the structure of path decompositions
of width two, there is no node containing w but not w’, since w’ is an inner vertex of
Pi(H),and w is a stick connected to w’. Hence there must be a node containing w, w’
and v,,, since {w,v,,} € F. O

From this lemma, the following can be concluded immediately. For a three-colored
tree H of pathwidth two, and a given nice path P, the partial one-paths H' connected
to a vertex v € V(P) of type Il can be handled as a partial one-path of type II by
deleting the vertex w € V(H’) which is adjacent to v, and adding edge {v,w'}, where
w' € V(H') is adjacent to w. If ¢(v) = ¢(w’), then the resulting graph is colored
improperly, and hence there exists no nice proper path decomposition of H with nice
path P.

Lemma 4.11. Let H be a three-colored tree of pathwidth two, PD = (V1,...,V}) a nice
proper path decomposition of H and P = (vq,...,v,) the nice path of PD. Let v be an
inner vertex of P and let Hq,..., H; be the partial one-paths connected to v. There are
at most two partial one-paths in H,..., H; which have a vertex of color ¢(v).

Proof. Suppose vy € Vi and v, € V4, and suppose v occurs in (Vj,...,V;r). Note that
1<j<j <t Let H and H"” be the components of H[V <{v}] which contain vertices
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two neighbors of v in Pi(H') do not have degree one. Hence v is an end point of some
path P € Py(H') for some partial one-path H’ that is connected to vy, which is exactly
what we need.

Now, we apply the following transformations on PD such that one of the previous
cases holds again after each transformation, until case 1 holds for both V; and V;. First
transform PD using the following rules until case 1 applies for V7, next transform PD
using the following rules, adapted for Vi, until case 1 applies for V.

If case 2 applies, delete V7.

If case 3 applies, let e € F(Hy) such that e C V4, and add a node containing e only
on the left side of V3.

If case 4 applies, do the following. Suppose w.l.o.g. that the path from v to v
contains v’. Consider the components of H[V <{v}] which consist of more than one
vertex. Note that one of these components is a subgraph of Hy which does not contain
v1 or v, and hence V; does not contain any vertex of this component. Let H’' be
such a component. Now transform PD into rev(PD[V(H'")U {v}]) # PD[V <V (H')],
and let Hy = H[V(H') U{v}]. The new path decomposition is indeed a proper path
decomposition of H, since v is the only vertex that H[V(H')U {v}] and H[V <V (H')]
have in common, and v occurs in the rightmost node of rev(PD[V(H') U{v}]) and in
the leftmost node of PD[V <V (H’)]. Furthermore, the new H; is contains at least one
vertex less than the old Hq, the leftmost node of the new PD contains only vertices of
the new Hy and the rightmost node of the new PD contains only vertices of Hs.

Note that the number of transformations is finite, since if the transformation of
case 4 is done, then Hy or H; gets smaller, and after each time the transformation of
case 4 is done, the transformations of case 2 and 3 can only be done a finite number of
times before case 4 holds again. a

The total number of nice paths in a tree H of pathwidth two may be Q(n?), where
n = |V(H)|. The algorithm we construct has the following structure, in which function
Check_Nice_Path(P) returns true if there is a nice proper path decomposition of H
with nice path P, and false otherwise.

b := false;

for certain possible nice paths P of H

— b :=bV Check_Nice_Path(P)

rof

{b & there is a proper path decomposition of H. }

The algorithm will run in O(n?) time, because the number of nice paths that is tried
is bounded by a constant, and function Check_Nice_Path runs in O(n?) time. In the
remainder of this section, we first show which nice paths have to be tried, and which
nice paths do not have to be tried. After that, we show how function Check_Nice_Path
works. First, we prove some lemmas.

Lemma 4.10. Let H be a three-colored tree of pathwidth two, PD = (V1,...,V}) a nice
proper path decomposition of H, P = (v1,...,v,) the nice path of PD. Let v,, € V(P)
and H' a partial one-path connected to v, let w € V(H') such that {v,,,w} € E(H).
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contain a vertex u’ such that H[V <{u'}] has two or more components of pathwidth
one. O

Lemma 4.9. Let H be a properly colored tree of pathwidth two. There is a proper path
decomposition of H if and only if there is a nice proper path decomposition of H.

Proof. The ‘if’ part is trivially true.

For the ‘only if’ part, suppose there is a proper path decomposition of H. If
|P2(H)| > 1, let PD = (Vq,...,V;) be a proper path decomposition of H such that V;
and V; contain an edge, and the shortest path containing these edges contains a vertex
vy for which H[V <{v1}] has pathwidth one, and has two or three components of
pathwidth one. Furthermore, let P = (v1) (s = 1). If |Po(H)| =1, let PD = (V1,..., V})
be an arbitrary proper path decomposition of H, and let P = Py(H) = (v1,..., vs).

We show how PD can be ‘unfolded’ until it satisfies the described condition. Sup-
pose PD is not of the required form.

First suppose s > 1. Let Hy be the component of H[V(H ) <{v;}]| containing vy,
and let Hy be the component of H[V(H ) <{vs_1}] containing vs. For each v € V4 and
v" € Vi, the path from v to v contains P, by Corollary 3.2. This means that v € V(Hy)
and v’ € V(H3) or vice versa. If the second case holds, transform PD into rev(PD).

Suppose s = 1. If |Po(H)| = 1, then for each v € V; and each v' € V;, the path from
v to v’ contains P, and hence V; and V; can not contain vertices of the same partial
one-path connected to vy. If [Po(H)| > 1, then P is chosen in such a way that V7 and
V; do not contain vertices of the same partial one-path connected to v;. Let Hy denote
the induced subgraph of H consisting of vertex v; and all components of H[V <{v;}]
of which V; contains a vertex, and let I, denote the induced subgraph of H consisting
of v; and all components of H[V <{v1}] of which V; contains a vertex. Note that V;
contains only vertices of Hy, V; contains only vertices of Hy, and V(H1)NV (Hz) = {v1}.

The following cases may occur for Vj.

1. V4 = {v,v'} for some edge {v,v'} € F(Hy) such that v and »" both have at most
one neighbor which does not have degree one.

2. V; contains no edge.
3. |Vi| = 3 and Vj contains an edge.

4. Vi = {v,v'} for some edge {v,v'} € E(H;), but v or v/ has more than one
neighbor which does not have degree one.

For V;, the possible cases are similar.

If case 1 holds for V7, then either v or v’ has degree one. Suppose v’ has degree one.
Note that v and v' can not both have degree one, since then H has pathwidth one.
v # vy, since then v has at least two neighbors which do not have degree one, namely
one neighbor in a partial one-path connected to vy, and v, if s > 1, or a neighbor in
another partial one-path connected to vy if s = 1. Furthermore, » can not be an inner
vertex of Py(H') for some partial one-path H’ which is connected to vy, since then the
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ur || wm Hj uz || uz || us o, Us Hs ur || ur || wa || ws

wy || U2 Uz Up || U4 || Us || us || Us || ug || ue || us || us || Us

Figure 26: Example of a tree H of pathwidth two with PoH = (v, vs,v3), and a nice
path decomposition of H of width two with nice path (uq,ug, us, ua, us, us, ur, us). The
leftmost node of the path decomposition contains u; and stick wy of uqy, the rightmost
node contains ug and stick ws of ug. Hy is a partial one-path connected to vy, and wuy
is an end vertex of the path Py(H;). Hy is a partial one-path connected to vs and ug
is an end vertex of the path Pj(Hy).

¢/, suppose w.l.o.g. that P = (v,v',...;w',w). Note that e # ¢, since if ¢ = ¢’, then
each vertex of H is either adjacent to v or to v’, and H has pathwidth one. If there is
awu € V(P)such that H[V <{u}] has pathwidth one and has two or three components
of pathwidth one, then the lemma is proved.

Suppose there is no u € V(P) such that H[V <{u}] has two or more components of
pathwidth one. We show that H[V <V(P)] has exactly one component of pathwidth
one. If H[V & V(P)] has no components of pathwidth one, then H has pathwidth at
most one. If H[V <V(P)] has more than one component of pathwidth one, then there
is a vertex u € V(P) such that H[V <{u}] has more than one component of pathwidth
one, which gives a contradiction.

Let H' be the component of H[V <V (P)] which has pathwidth one, let v € V(P)
and v’ € V(H') such that {u,u'} € E(H). H[V <{u}] has exactly one component
of pathwidth one, namely H’. This means that « = v = w’ and that v and w both
have degree one. Now transform PD as follows. Delete all neighbors of « which have
degree one from all nodes of PD, and for each such neighbor z, add a node {u,z}
on the left side of the leftmost node of PD. Furthermore, delete the rightmost node
from PD until it contains an edge. The resulting path decomposition is proper, and
it satisfies the appropriate conditions, since the leftmost node contains an edge {u, 2},
where z has degree one, while the rightmost node can not contain such an edge, and
hence contains another edge. Hence the shortest path containing these two edges must
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Figure 25: Example of a tree of pathwidth two which contains a path P with uy, ug, us €
V(P), and a partial one-path H; of type I connected to uy, a partial one-path Hy of
type 1I connected to uy, and a partial one-path Hs of type 1II connected to us.

decomposition of H of width two if there are no two consecutive nodes which are equal,
V1 contains an edge {w,w'} € E and V; contains an edge {x,2'} € E, such that there
is a P = (v1,...,v5) € Po(H) for which there is a partial one-path H' that is connected
to v1 and a partial one-path H" that is connected to vy, H' = H", w,w' € V(H'), w is
an end point of some path P € P1(H'), z,2' € V(H"), and x is an end point of some
path P" € Py(H"). The path from w to x is called the nice path of PD.

Figure 26 shows an example of a tree H of pathwidth two and a nice path decom-
position of width two of H. We will show that for a given properly three-colored tree
H of pathwidth two, there is a proper path decomposition of H if and only if there is a
nice proper path decomposition of H. First we prove another lemma, which is needed
for the case that |Py(H)| > 1.

Lemma 4.8. Let H be a properly three-colored tree of pathwidth two, such that there
is a vertex v € V(H) for which H[V <{v}] has pathwidth one. Let PD = (V1,..., V)
be a proper path decomposition of H, then there is a proper path decomposition PD' =
(Vi V) of H such that Vi contains an edge e € E(H), Vi contains an edge €' €
E(H), e # ¢, and the shortest path P in H which contains e and €', contains a
vertex v' € V(H) for which H[V <{v'}] has pathwidth one and there are two or three
components in H[V &{v'}] which have pathwidth one.

Proof. We transform PD into a proper path decomposition PD’ for which the condi-
tion holds. First delete the leftmost node of PD until it contains an edge, and do the
same for the rightmost node of PD. Now let e = {v,v'} € E(H ) such that e C V; and
¢ = {w,w'} € E(H) such that ¢’ C V,. Let P be the shortest path containing e and
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ftold, ltold := ft,lt;
ft:= (ftold A U”P‘1 PPW2(GL {ei_1},j.j+1).f1)
v (Itold A U”P‘1 PPW2(G2?, {ei—1},jj + 1).f);
(ftold A Ujpgl PPW2(G, {ei—1}, g, g+ 1).0¢)
vV (ltold NSy PPW2(G2, {ei1}, j.j + 1).04);
return ft Vv [t

The algorithm is correct, as follows from the discussion above. Furthermore, it runs
in O(n?) time, where n = |V(G)|, because PPW?2 has to be computed at most twice
for each chordless cycle C;, and PPW?2 can be computed in O(n?) time for each i.
Furthermore, PPW?2' has to be computed twice for Cy, and it can be computed in
O(n?) time. All other steps take O(n) time.

The algorithm can be modified such that it returns an intervalization of GG if there
exists one. This can be done in the same way as for biconnected components.

4.3 Trees

In this section, we first show that there is a proper path decomposition of a tree H which
is properly colored with three colors if and only if there is a proper path decomposition
which has some ‘nice’ structure. After that, we show how to compute for a given
properly colored tree H of pathwidth two whether there is such a nice proper path
decomposition of H. First we distinguish different types of partial one-paths connected
to a path, corresponding to the way they are connected to the path.

Definition 4.2. (Types of Partial One-Paths). Let H be a tree of pathwidth two,
P a path in H such that H[V <V (P)] has pathwidth one. Let v € V(P), and H' a
component of HV < V(P)]| such that H' has pathwidth one and has a vertex which
is adjacent to v, i.e. H' is connected to v. Let w € V(H') be the vertex for which
{v,w} € E(H). Let P' € P1(H'). We say that H' is of type 1 if w is an end point of
P’ or if w is adjacent to an end point of P' and w ¢ V(P'). H' is of type Il if w is an
inner vertex of P'. H' is of type 111 if w ¢ V(P') and w is adjacent to an inner vertex
of P'.

Figure 25 gives an example for each type of partial one-path. Note that the type
of a partial one-path H' connected to a vertex v of the path P does not depend on
the choice of the path P’ € Py(H’), since if |P1(H')| > 1, then for each P’ € Py(H’),
|[V(P")] =1, so P' does not have any inner vertices, and hence H' has type I.

From now on, by partial one-paths connected to a path P, we only mean the partial
one-paths of type I, II and III connected to P, and not the sticks connected to P.

We now give a definition of the kind of path decomposition that we want to use for
the algorithm.

Definition 4.3. (Nice Path Decomposition). Let H be a properly three-colored tree of
pathwidth two, PD = (Vi,...,V}) a proper path decomposition of H. PD is a nice path
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Figure 23: Example of the cell completion ¢ of a graph G which consists of a chordless

cycle with sticks, and a path of chordless cycles (C,S) for the biconnected component
of G.

Delete all sticks w of all vertices v that belong to more than one e;.

ft = PPWQ/(Gl,V(Cl), 1,2)ft7

lt:= PPWQ/(Gl,V(Cl), 1,2)”7

if —(ftVvit) — return false fi;

for::=2topel

= ftold := ft; ltold := It;
Jt:=(ftold N PPW2(G} {e;_1},1,2).ft) Vv (ltold N PPW2(G?,{e;_1},1,2).f1);
It := (ftold N PPW2(G}, {e;—1},1,2).0t) v (ltold N PPW2(G?, {e;_1},1,2).0t);
if # (ftVvIt) - return false fi;

rof;

v vy
Z 2 1_ .2 2
v =g @ Y1 v = Y L “
el G% [ €1 G% €2

Figure 24: Example of the graphs G} and G2 for the graph  of Figure 23.
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sticks w of v of color ¢(u), we can add a node {v, v, w} in PD’, and for all sticks w of
v of color ¢(u'), we can add a node {v,u,w} in PD’. The path decomposition which is
obtained by doing this for all sticks in W5 is a proper path decomposition of G. a

So we may further assume that for all e; = {v,v'}, v and v’ have no sticks with
color i, where i € {1,2,3} such that i # ¢(v) and i # ¢(v’). And furthermore we may
assume that for all j, 1 < j < p <1, if e;_1 Ne; = {v}, then v has no sticks.

Let e; = {v,v'}, suppose v ¢ e;_1 and v ¢ e;11. Suppose there is a stick w of v
which has color ¢(v'), then in each proper path decomposition of GG, edge {v, w} must
occur in a node which contains v, either in the occurrence of C'; or in the occurrence

of C]‘_|_1.

Lemma 4.7. Let G be a biconnected three-colored partial two-path which consists of a
biconnected component with sticks. Suppose G is properly colored and let B denote the
biconnected component of G, and let (C,8) be a correct path of chordless cycles for B,
with C = (Cy,...,Cp) and 8 = (e1,...,e,_1). Let e; = {v, v}, let v € V({), and suppose
e;_1Nej=e;Nejp = 0. Suppose there is a proper path decomposition PD of G'. If v
has a stick of color ¢(v") which occurs within the occurrence of C;j_q, then all sticks of
v’ of color ¢(v) occur within the occurrence of C;.

Proof.  Let PD = (V4,..., V), suppose C; occurs in (V},..., Vi), such that v,v" € V.
Suppose v has a stick w of color ¢(v") which occurs within the occurrence of C';. Let
v € V(C;)and ¢, 1 < i <!, be such that V; is the rightmost node containing » and w
and V; = {v,w,v”}. Then v" # v" and all nodes of (Viy1,..., Vi) contain v, hence if v’
has a stick w’ of color ¢(v), then edge {v',w’} can not occur within the occurrence of
C;, and hence {v', w’} must occur within the occurrence of C4q. O

Using these lemmas, we can derive an algorithm for computing whether there is
a proper path decomposition of a graph G that is a partial two-path consisting of a
biconnected component with sticks. Let (C,S) be a path of chordless cycles for the
biconnected component of &, with C = (Cy,...,C,) and S = (€1,...,e,—1). For each
i, 1 < i < p,let n; = |V(C))], and let V(C;) = (v§,...,v5 1) such that E(C;) =
{v;«,v;_l_l} |0 < j < n} and for each i, 1 < i < p, ; = {vi,v}}. For an example, see
Figure 23. Furthermore, for each 7, 1 < 7 < p, let G} denote the induced subgraph of
consisting of C; and all sticks adjacent to vertices of V(C;) <{v{"'}. Similarly, let G?
denote the induced subgraph of G consisting of C; and all sticks adjacent to vertices
of V(C;) < {vy™'}. For an example, see Figure 24. Furthermore, let G4 denote the
induced subgraph of ¢ consisting of C'; and all sticks connected to vertices of V(C1).
The algorithm is as follows.

Find the cell-completion & of ¢ and check if ¢ is properly colored.
Let B be the biconnected component of (.

Check if B can be written as a correct path of chordless cycles.
If so, let (C,S) denote this path.

Delete all chordless cycles C;, 1 < ¢ < p, for which e;_1 = €; from (C,S).
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Lemma 4.5. Let G be a biconnected three-colored partial two-path which consists of
a biconnected component with sticks. Suppose G is properly colored and let B denote
the biconnected component of G, and let (C,S) be a correct path of chordless cycles
for B, with C = (Cy,...,C,) and 8 = (e1,...,ep_1). Let G' = G[V &W)], where W is
the set of vertices w € V(G) for which w € V(C;) <e; for some i, 1 < i < p, and
ei_1 = €. There is a proper path decomposition of G if and only if there is a proper
path decomposition of G[V <W].

Proof. If PD is a proper path decomposition of i, then PD[V W] is a proper path
decomposition of G”.

Suppose PD is a proper path decomposition of G’. For each e; = {v,v'} in G,

1 < i< p, with ¢,_1 = €;, e; is a middle edge of ', and hence we can add a node

containing {v,v’, w} for the vertex w € WNV(C;), since c(w) # ¢(v) and e(w) # ¢(v').

O

So we may further assume that there is no e;, 1 < ¢ < p, such that e;_1 = ;.
Let j be such that 1 < j < p. The sticks that are adjacent to vertices v € V(C})
with v ¢ e;_1 U e; clearly must occur within the occurrence of C; in any proper path
decomposition of GG. Let e¢; = {v,v'}. We now consider the sticks adjacent to v and v'.

Lemma 4.6. Let G be a biconnected three-colored partial two-path which consists of
a biconnected component with sticks. Suppose G is properly colored and let B denote
the biconnected component of G, and let (C,8) be a correct path of chordless cycles for
B, with C = (C1,...,C,) and § = (eq,...,ep_1). Suppose there is no i, 1 < i < p&l1,
such that e; = e;41. Let W1, Wy C V(G) <V (B) be defined as follows.

Wi = {weV(G@)&V(B)| gz {v,w} € E(G)Ac(w) £ c(v') }
Wy = {weV(G)SV(B)|Jig=(vwy ¥ € eiq1 ANMv,w} € E(G) }

There is a proper path decomposition of G if and only if there is a proper path decom-

position of G' = G[V &W, &W,].

Proof. If PD is a proper path decomposition of G, then PD[V <W,; <W,] is a proper
path decomposition of G.

Let PD be a proper path decomposition of /. Let 1 < j < p&1 and e; = {v, 0’}
such that {v,w} € E(G) and ¢(w) # ¢(v). Since e; is a middle edge, in each proper
path decomposition of G, we can add a node {v,v’,w} for each stick w of v or v if
c(w) # ¢(v) and ¢(w) # ¢(v'). Let PD’" be the path decomposition obtained from PD
by doing this for all vertices of W;. PD’ is a proper path decomposition of width two
of G[V & W,].

Let j, 1 < j < p<&l,such that e;_; Ne; = {v}. Suppose C; occurs in (V},..., Vp) in
PD'. e;_y and e; are end edges of C;, which means that for all ¢, [ < <!, v € V,.
There are at least two vertices u, v’ € V(C;) <{v} for which {u,u'} € E(C;), and
hence ¢(u) # ¢(u'). This means that there is a node in PD’ which contains v and u,
and there is a node which contains v and u’. Hence, according to Lemma 4.2, for all
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Let Vg C V(C') be a set of starting vertices, let (j /) mod n # 0.

PPW2(G, Vg, j, ). ft =

true if there is a proper path decomposition PD = (Vi,...,V})
of G(7,)U{{v;,v} € E(G)|v e V(G)=V(C)}
Nvj, v € Vi A ElvEVS veEWV;

false otherwise

PPW2/(G, Vg, j, 1)1t =

true if there is a proper path decomposition PD = (Vi,...,V})
of G(j,H)U{{v,v} € E(G)|ve V(G)=V(C)}
Nvj, v € Vi A ElvEVS veEWV;

false otherwise

Because of Lemma 4.3, the recursive description of PPW?2' is the same as the
recursive description of PPW?2, but with a different initialization.

PPW2(G, Vs, j.1).ft =
(v; € V) V(v € Vg A =8.(0)(v5)) if (jel)modn=1

c(v;) # c(vr) A
(PPWQ/(G, Vs,] &1, l)ft A _'Sc(vl)(vj) vV

PPW2'(G, Vg, j,1+1).0t) if (jel)modn >1
PPW2/(G, Vg, j, 1)1t =
(01 € Vg) V (vj € Vg A =sc(0)) (1)) if (j<l)modn =1

c(v;) # c(vr) A
(PPW2(G, Vg, j<1,1).ftV
PPW2'(G, Vg, j, 1+ 1)1t A =sepy(v) ) if (1) mod n > 1

Using this description, there is a proper path decomposition of & in which one
of the vertices of Vg occurs in the leftmost node, and one of the vertices of Vj oc-
curs in the rightmost node, if and only if there is some j with v; € Vp, such that
PPW2'(G, Vg, j,j + 1).ft is true and =s.(y )(vj41), or PPW2'(G, Vg, j,j + 1).0t is
true, or PPW2'(G,Vg,j & 1,7).ft is true, or PPW2'(G, Vg, j < 1,5).0t is true and
_‘SC(UJ)(Uj—l)- Note that with these definitions, cases with starting vertices and ending
edges can be handled using PPW?2’ and cases with starting edges and ending vertices
can be handled with PPW?2.

For a given partial two-path G which consists of a chordless cycle €' with sticks
connected to it, we can compute PPW?2 and PPW?2' in O(n?), where n = |V (G)],
with a similar function as COMP_PPW2 in Section 4.1.

Biconnected Components with Sticks
We now consider partial two-paths which consist of a biconnected component with
sticks connected to it.
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and v; and v; are in the rightmost node as follows. First add a node Viyq = {v;_1,v;, v}
on the right side of V4, next for each stick w of v;, add a node {v;, v, w} on the right side
of Viyq. This is possible since ¢(w) # ¢(v;) for each stick w of v;. Then the constructed
path decomposition satisfies the conditions, hence PPW?2(G, Eg, j,1). ft holds.

Next suppose PPW2(G, Eg, j,1 + 1).0t holds. Let PD = (Vi,...,V};) be a proper
path decomposition of G(j,I+ 1) and the sticks of vy such that e C Vi, e € Eg,
and v;,vi41 € V;. Then we can make a proper path decomposition of G’ as follows.
Note that each stick of v; either has color ¢(v;) or ¢(v;41). First, for each stick w of
v; of color ¢(v;), add a node {v;,vi41, w} on the right side of V;. Next, add a node
{v;,vi41, v} on the right side of these nodes. After that, add a node {v;, v, w} for each
stick w of v; which has color ¢(v41). This gives the desired path decomposition, and
hence PPW?2(G, Eg, j,1).ft holds.

For the ‘only if* part, suppose PPW2(G, Eg, j,1).ft is true. Again, let G’ be the
supergraph of G/(j,1) which consists of G(j,() and all sticks of v;. Let PD = (Vi,...,V})
be a proper path decomposition of G such that ¢ C V; for some ¢ € Eq and v;, v € V;.
Then clearly ¢(v;) # ¢(v;). Let Vi, and V,,», 1 < m,m’ < ¢, be the rightmost nodes
containing edge {v;_1,v;} and {v;, v;41}, respectively. First suppose m’ < m. Then
PPW2(G, Eg, j < 1,1).ft holds, since (Vi,...,Vy,) is a proper path decomposition of
G(j <1,1) and the sticks of v;_q, and v;_1,v; € V,,. Furthermore, the sticks in G’
adjacent to v; must occur on the right side of V,,, since v; and its sticks are not in
C(j<1,1), and hence can not occur within its occurrence. But all nodes V;, m + 1 <
¢ < t, contain only v; and v; of C'(j,1), hence all sticks of v; can not have color ¢(v;).
Hence —s.,y(v;). In the same way we can show that for the case that m < m/,

PPW2(G, Eg, j, 14 1).1t must hold. O

Let G be a partial two-path consisting of a chordless cycle €' with sticks. If we want
to know whether there is a proper path decomposition of G in which the leftmost node
contains one of the edges in Fq for some F'q C £(C'), and the rightmost node contains
one of the edges in Ep, for some EFp C E(C'), then we can use the definition of PPW2
in the form as it is given: this proper path decomposition exists if and only if for some
Jj such that {v;,v;41} € Ep, PPW2(G,{e}, 7,7+ 1).ft is true and v;1; has only sticks
of color ¢ € {1,2,3} with ¢ # ¢(v;), or PPW2(G,{e},j,j+1).lt is true and v; has only
sticks of color ¢ € {1,2,3} with ¢ # ¢(vj4+1). However, it is also possible that we want
to know whether there exists any proper path decomposition of GG. In that case, we can
not use the definition of PPW2 in the form in which it is given above. According to
Lemma 4.3, there is a proper path decomposition of GG if and only if there is a proper
path decomposition of &' in which sticks of at most one vertex of €' occur on the left
side of the occurrence of €, and sticks of at most one vertex of (' occur on the right
side of the occurrence of C'. In that case, we can consider the problem for a given set
Vg C V(C) of starting vertices and a set V C V(C') of ending vertices, whether there
exists a proper path decomposition of G in which a vertex of Vg occurs in the leftmost
node, and a vertex of V occurs in the rightmost node. We can use a modified version
of PPW?2, which we call PPW?2'. Tt is defined as follows.
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true if there is a proper path decomposition PD = (Vi,...,V})
of G(7,D)U{{v;,w} € E(G)|we V(G)=V(C)}
ANvj,vp € Vi A E'eeES eCWy

false otherwise

PPW2(G, Eg, j,1).lt =

true if there is a proper path decomposition PD = (Vi,...,V})
of G(j,HH)U{{v,w} € E(G) |w e V(G)=V(C)}

ANvj,vp € Vi A E'eeES eCWy

false otherwise

We say that, for given j and [, the sticks of v; are processed if PPW?2(G, Eg, j,1).ft
is true, and the sticks of v; are processed if PPW2(G, Eq,j,1).lt is true. Note that,
because of Lemma 4.3, there is a proper path decomposition PD = (Vi,..., V}) of GG such
that e C V} for some e € Fq if and only if there is a j for which PPW2(G, Eg,j,j +
1).ftv PPW2(G, Eg, j,j+1).01t. We are also interested in some other cases, which will
be given later. First we show how PPW?2 can be described recursively.

Lemma 4.4. Let GG be a properly three-colored partial two-path consisting of a chordless
cycle with sticks. Let (j <) modn £ 0, and let Eg C E(C') be a set of starting edges.
Then PPW2(G, Eg,j,1) can be defined recursively as follows.

PPW2(G, Eg, j,1).ft =

=Se(uy(v) AMuj,u} € Eg if (je!)mod n =1

c(v;) # e(vr) A
(PPW2(G, Es,] <10 ftA _'Sc(vl)(vj) vV

PPW2(G,Egq, j,l+1).0t) if (j<l)modn > 1
PPW2(G, Eg, j,1).1t =
2Sc(w)(0) Ay, v} € Eg if (jel)modn =1

c(v;) # e(vr) A
(PPW2G,Eq jell).ftv
PPW2G, Eg, j, I+ 1).0t A28y (v)) if (j &) mod n > 1

Proof. We only prove the lemma for PPW2(G, Eg,j,l).ft.  The proof for
PPW2(G, Eg, j,1).0t is similar. If (j </)mod n = 1, then there is a proper path
decomposition of G(j,{) with the sticks of v; with v; and v; in the leftmost and the
rightmost node if and only if {v;,v;} € Eg, and no stick of v; has color ¢(v;). Now
suppose (j <) mod n £ 1.

For the “if” part, first suppose PPW2(G, Eg,j < 1,1).ft A =18(y,)(v;) holds. Let
PD = (V4,..., V;) be a proper path decomposition of G(j<1,[) and the sticks of v;_4
such that e C V1, e € Eq, and vj_y, v € V;. Let G’ be the supergraph of G/(j,1) which
consists of G/(j,1) and all sticks of v;, i.e. G' = G(j4,1) U {sticks of v; }. Then we can
transform PD into a proper path decomposition of G such that e is in the leftmost node
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leftmost node of PD containing «’ and a stick of u’. Delete u and all sticks of « from all
nodes in (Vi,...,Vi_1), and delete u’ and all sticks of «’ from all nodes in (Vi,..., Vii_y).
Note that the obtained path decomposition is still a proper path decomposition of G.
Suppose w.l.o.g. that [ < I'. Vi contains u, u’ and a stick w of ', but V;y_y does not
contain w. Hence we can transform PD as follows. Delete u” from all nodes, and add
a node {u,u’,u"} between Vji_y and Vji. The obtained path decomposition is indeed a
proper path decomposition of GG, and there is at most one vertex u for which a stick of
w occurs on the left side of the occurrence of C'. In the same way, we can transform PD
such that there is at most one node u for which a stick of « occurs on the right side of
the occurrence of C'. Now select v and v’ as follows. Let (V;,...,V,s) again denote the
occurrence of C' in (possibly transformed) PD. If j = 1, let v be an arbitrary vertex
of VinV(C). If j > 1,1let v € V; N V(C) such that there is a stick w of v such that
{v,w} occurs on the left side of V;. Similarly for o' and V;. Let W be the set of sticks
adjacent to v and v’. Then PD[V < W] is a proper path decomposition of G[V < W]
in which v occurs in the leftmost node and " in the rightmost node. a

For each j,l, j #1, let G(j,1) denote the graph consisting of C(j,[), and the sticks
adjacent to all vertices in I(j,1) <{v;, v}, i.e.

V(G(G,D) = V(CGD)U{w e V(G)<V(O) | JuevoG)-{vwm) 10w} € E(G) T,
E(G3GD) = Hrvj,vdtu{{v,w} € E(G) | v,we V(G(5,1))}}.

For an example, see Figure 22.

V14
V13

V12

Figure 22: A graph G which consists of a chordless cycle with sticks, and the graph
('(2,10). Note that G is not equal to G(j,7+ 1) if v;or v;41 has sticks.

We now extend PPW?2 as follows. Let Fq be a set of starting edges of C'. Then
for each j,1,j # 1, PPW2(G, Eg, j,1) is a record with fields ft and It, that are defined

as follows.

PPW2(G, Eg, j,1).ft =
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II

w3

2

Figure 21: Part I shows a three-colored chordless cycle C', V(C) = {vq,...,vs}, with
a proper path decomposition of €' and the corresponding interval completion. Each
vertex v; € V(C) has a color in {1,2,3}, which is given with the vertex. In the path
decomposition, edge {v7, vg} occurs in the leftmost node and edge {v2, v3} occurs in the
rightmost node. with a proper path decomposition of C'. In Part 11, the chordless cycle
(' is extended with three sticks wy, wy and ws, and the proper path decomposition of
C'is extended into a proper path decomposition for C' and its sticks, with edge {v7, vs}
in the leftmost node and edge {vq, v3} in the rightmost node. The extension is done as
is shown in the proof of Lemma 4.2. Note that if, e.g. v5 would have a stick of color 3,
then the proper path decomposition of part I could not have been extended.
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e in the leftmost node, and €’ in the rightmost node by doing the following for each
vertex v € V((C), each j € {1,2,3}, and each stick w of v with color 7. In Figure 21,
an example of this transformation is given. Suppose w.l.o.g. that v € V(P;). There
is a node V;, 1 < i < t, and a vertex v' € V(P;) with ¢(v') # j and {v,v'} ¢ E(C)
such that V; contains v and v’. Let C’ be the graph obtained from C by adding edge
{v,v'}. PD is also a proper path decomposition of C’. Furthermore, C’ consists of
two chordless cycles which have edge {v, v’} in common. Lemma 3.3 shows that edge
{v,v'} is a middle edge of C’. Hence either there is a node {v,v'} in PD or we can add
such a node to PD. Furthermore, we can add stick w to this node. This completes the
proof of the ‘if” part.

For the ‘only if’ part, suppose PD = (Vi,..., V4) is a proper path decomposition of
G with e C Vq, ¢ C Vi. We show that PD'" = PD[V(C)] = (V{,...,V]) is a proper
path decomposition of C' which satisfies the conditions stated in the lemma. Fach node
V; contains at least one vertex of Py and at least one vertex of Pp. Let v € V(Py),
J €41,2,3}, and suppose s;(v) is true. Let w be a stick of v of color j. Then there is
av' € V(Pz)and anode V;, 1 <i<t,such that V; = {v, v/, w}. Hence there is a node
V) in PD’ such that 1 <4 < r and V| contains v and »'. This completes the proof of
the ‘only if’ part. a

Lemma 4.3. Let GG be a properly colored partial two-path consisting of a chordless
cycle C' with sticks. There is a proper path decomposition of G if and only if there are
vertices v,v' € V(C') such that there is a proper path decomposition PD = (Vi,..., V)
of the graph G' = G[V &W], where W is the set of sticks of v and v’ in G, and Vi and
V; contain an edge of C', v € Vi and v' € V.

Proof. Tor the “if’ part, suppose there are v and v’ such that there is a proper path
decomposition of G' = G[V < W], where W is the set of sticks adjacent to v and v’,
such that v is in the leftmost node and v’ is in the rightmost node, and the leftmost and
rightmost node contain an edge of C'. Then we can make a proper path decomposition
of G as follows. For each stick w adjacent to v, add a node {v,w} in front of the
leftmost node. If v' # v, do the same for v" on the right side of the rightmost node.
For the ‘only if” part, suppose there is a proper path decomposition PD = (V1,..., V})
of G. Suppose w.l.o.g. that V4 and V; contain an edge. Suppose C' occurs in (V},..., V),
1 <j<j <t We transform PD in such a way that there is at most one v € C' which
has a stick w such that {v,w} occurs on the left side of V;, and similar for the right
side of V;y. If j = 1, then there is no stick occurring on the left side of V;. Suppose
j > 1. Then there is a v € V; and w € V; such that v € V(C), w ¢ V(C) and
{u,w} € E(G). There is at most one other ' € V(') for which there is a stick w’ of u’
such that {w’, v’} occurs within (V1,..., V;_1), since otherwise there would be a node V;,
1 < i < j for which |V;| > 3. Suppose there is such a vertex u/. Then V; contains « and
o', but since V;_q also contains w and o', {u,u'} ¢ E(G), hence there is a v” € V(C)
such that V; = {u, v/, v"} and {u,v"} € E(C) and {u',u"} € E(C). There can be no
sticks adjacent to u”, hence we can transform PD as follows: let [ and {’ be such that
1 <1,I'’ < j,V;is the leftmost node of PD containing u and a stick of u, and Vj is the
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4.2 Biconnected Partial Two-Paths with Sticks

Before giving an algorithm for trees, we first give an algorithm for partial two-paths
which consist of a biconnected component with sticks connected to it. A biconnected
component with sticks is a connected graph G = (V, ') which contains one biconnected
component B, and all vertices in the set W = V & V(B) are adjacent to exactly
one vertex, which is in V(B). The vertices in W are the sticks. The algorithm for
biconnected components with sticks will be used for the tree algorithm, and for the
algorithm for general partial two-paths.

The algorithm for biconnected components with sticks is derived from the algorithm
for biconnected components. Therefore, we first consider chordless cycles with sticks.

Cycles with Sticks

Let GG be a properly colored graph, which consists of a cycle €' and sticks connected
to the vertices of C. Let v € V(') and ¢ such that 1 < ¢ < 3. We show that it
is not important how many sticks of color ¢ are connected to vertex v, but we only
need to know whether » has sticks of color ¢. Suppose » has a stick w of color ¢,
and there is a proper path decomposition PD of €' in which there is a node V; with
{v,w} C V. Let G' be the graph obtained from G by adding a stick w’ of color ¢ which
is connected to v. We can make a proper path decomposition PD’ of G’ as follows.
Remove w from all nodes V; with j # [, and add a node W between V; and V4 with
W =Viu{w'} &{w}. So there is a proper path decomposition of G if and only if there
is a proper path decomposition of G.

Definition 4.1. Let G be a properly colored graph, which consists of a cycle C' and
sticks connected to C'. For each v € V(C') and each i, 1 < i <3,

si(v) = true < v has a stick of color i

The following lemmas shows the conditions which must hold for three-colored par-
tial two-paths which consist of a chordless cycle with sticks, to have a proper path
decomposition.

Lemma 4.2. Let G be a colored partial two-path consisting of a chordless cycle C' with
sticks, let e = {x,y} € E(C) and ¢’ = {z',y'} € E(C). Suppose there is path from x
to ' which does not contain y or y', and let P, denote this path. Let P, denote the
path from y to y' which does not contain v or x'. There is a proper path decomposition
PD = (Vi,..., V) of G such that e C Vi and ¢’ C V; if and only if there is a proper path
decomposition PD' = (V{,...,V]) of C such that e C V] and ¢’ C V] and PD’ contains
no two subsequent nodes which are the same, and for each vertex v € V(P;), ¢ € {1,2},

Vieqrzsy (5i(v) = Ficicr Fvevpoy V) Finv eV AV € V). (1)
Proof.  Yor the ‘if” part, suppose PD = (Vi,...,V}) is a proper path decomposition

of C, such that e C Vq, ¢ C V,, and for all v € V(C'), the conditions stated in the
lemma are satisfied. We transform PD into a proper path decomposition of G with
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for £ :=2ton &1

— for j:=0ton <l
— P(j,k) = c(v;) # e(vj—g) A

(P((j ©1) mod n,k 1)V P(j, k1))

rof

rof;

for all {v;,v;41} € g
if P(j,n<1) — return true
O =P(j,ne1) — skip
fi

rof;

return false

end

Let GG be a biconnected partial two-path, (C,S) a path of chordless cycles of G with
C = (C1,...,C,). There is a proper path decomposition of G if and only if for each ¢,
1 <i < p, there is a proper path decomposition of C; with set of starting edges {e;} if
i > 1, E(C;) otherwise, and set of ending edges {e;+1} if i < p, F(C;) otherwise.

For a given three-colored biconnected graph ¢, the algorithm is now as follows.

1. Find the cell completion G of G and check if G is properly three-colored. If not,
stop, the answer is no.

2. Check if G’ can be written as a path of chordless cycles. If so, construct such a path
(C,S8) with C = (C4,...,Cp) and S = (eq,...,e,_1). If not, stop, the answer is no.

3. For each chordless cycle C; in the path, let m = |[V(C;)|, let Eq = {e;_1} if i > 1,
otherwise Eg = E(C;), and let Ep = {e;41} if ¢ < p, Ep = E(C;) otherwise. Compute
COMP_PPW2(C;,m,c, Eg, I). If the computed value is true for each (7, the answer
is yes, otherwise it is no.

Step 1 and 2 run in O(n) time, step 3 runs in O(n?) time, where n = |V(G)).

The algorithm can be made constructive, in the sense that if there exists an in-
tervalization, then the algorithm outputs one, as follows. In function COMP_PPW2,
construct an array PP of pointers, such that PP(j, k) contains the nil pointer if k = 1
or if P(j, k) is false, and if P(j,k) is true and k > 1, then PP(j, k) contains a pointer
to PP(j,k<1)orto PP((j <1)mod n,k <1). It contains a pointer to P(j,k <1) if
P((j 1) mod n, k<1) is false, and a pointer to P((j<1) mod n, k<1)if P(j,k<1) is
false, and arbitrarily to P(j,k<1) or P((j 1) mod n, k1) if P((j<1) mod n,k <1)
and P(j,k <1) are both true. The computation of PP can be done during the com-
putation of P. Afterwards, if there is an intervalization, then one can be constructed
as follows. Start with a j, 0 < j < n for which {v;,v;41} € Ep and P(j,n 1)
is true. Then follow the pointers from PP(j,n < 1) until the nil pointer is reached,
and add edge {v;,v;_} for each 7 and k for which PP(i,k) is passed. Note that the
nil pointer is reached if the previous pointer pointed to PP(7, 1) for some 7 such that

{?JZ', v(i—l)modn} € ES :
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path decomposition of C;. If ¢+ = 1, then any edge of C; may occur in the leftmost
end node. The set of edges of which one must occur in the leftmost end node of the
proper path decomposition of C; is called the set of starting edges, and is denoted by
Eg. Soif i > 1, then Eg = {e;}, and if i = 1, then Fg = {F(C}). In the same way we
define the set of ending edges Ey, which is the set of edges of which one must occur
in the rightmost end node of the proper path decomposition of C;. So if ¢+ < p, then
Ep = {ei—1}, and if i = p, then B = E(C),). Note that if p = 1, then the set of
starting edges and the set of ending edges for C; both consist of E(C7).

If |V(C;)| = 3, then there is a proper path decomposition if and only if C; is properly
colored, and this path decomposition can consists of one node, namely (V(C};)).

We define PPW?2 as follows. Let Eg C E(C') be a set of starting edges, let (j <
[) mod n # 0.

PPW2(C, Eg,j,1) =
true if E|PD:(V1MVt) PD is a proper path decomposition
of C(],l) Nwj, v € Vi EleeES eCWVp

false otherwise

Let C' be a three-colored chordless cycle which is properly colored, Eq C E(C).
From the definition we can see that PPW2(C, Egq, j,j 1) is true if and only if edge
{vj,vj_1} € Eg. We use Lemma 4.1 to describe PPW2 recursively. Let Eg C E(C),
(j ©l)mod n # 0.

PPW2(C, Eg,j,1) =

{vj,n} € Eg if jelmodn =1

c(v;) # c(vr) A
(PPW2(C, Eg,j&1,0) v PPW2(C, Eg,j,l+ 1)) if j&lmodn > 1

For a given properly three-colored cycle C, |[V(C')| = n, and set of starting edges
Eg C E(C), and ending edges £, € E(C'), we can compute whether there is a proper
path decomposition of ' with these starting and ending edges in O(n?) time using
dynamic programming with the following function as follows.

function COMP_PPW2(C',n,c,Eq,Ey)
var ¢ : int;
P:{0,..,nel1} x{l,...,ns1} — {true, false};
{P denotes PPW?2 as follows: P(j,k) = PPW2(C, Eg,j,j k) at the end }

n:=[V(CO);

for j:=0ton &l

— P(j,1) := false;
rof;

for all {v;,v;_1} € Eq
= P(j,1) := true;
rof;
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Figure 20: A chordless cycle €', and the cycles C'(2,1), C(10,2) and C(2,10). C is
equal to C'(j,7+ 1) for all j.

PD" = (V{,...V]) of C(j,j + 2) such that {v,vi41} C V{ and {v;,v;42} C V] or
there is a proper path decomposition PD' = (V{,...,V]) of C(j 1,5 4+ 1) such that
{or, o1} © VL and {vj 1, 05413 C V.

Proof. For the ‘if’ part, suppose there is a proper path decomposition PD’ =
(V{,....V]) of C(j,7+ 2) with {v;, 011} C V] and {v;,v;42} C V). Then PD =
PD' 4 ({v;,v;41,v;42}) is a proper path decomposition of C' which satisfies the ap-
propriate conditions. The other case is similar.

For the ‘only if” part, suppose there is a proper path decomposition PD = (V1,..., V})
of C' such that {v;,v;11} C Vi and {v;,v;41} C V. Let V,,, and Vi, 1 < m,m' < t,
be the rightmost nodes containing edge {v;_1,v;} and {v;,v;41}, respectively. First
suppose m’ < m. Then V,, = {v;_1,v;,v;41}. Furthermore, for each i, m < i < t,
Vi = {vj,v;41}, since if there is a V;, m < ¢ < ¢, such that v € V; for some v €
V(C) <{vj,vj41}, then v € V,,,, which gives a contradiction. Let PD’ be the path
decomposition obtained from (Vi,...,V,;,) by deleting v; from all nodes containing it.
Then PD'is a proper path decomposition of C'(j <1, 5+ 1) with edge {vj_1,v;41} in
the rightmost node and edge {v;, v;41} in the leftmost node. For the case that m < m/,
we get a path decomposition for C'(j,7 4 2) in the same way. a

Let G be a biconnected partial two-path, (C,S) a path of chordless cycles of ¢ with
C=(C1,...,C,) and S = (eq,...,ep—1). Let 1 <7 < p. We try to make a proper path
decomposition PD of G such that the chordless cycles of C occur in the same order in
PD asin C. If i > 1, then we want edge ¢; to occur in the leftmost node of the proper
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4 Algorithm for Intervalizing Three-Colored Graphs

In this section, we give an algorithm for determining whether there is an intervalization
of a given three-colored graph. The main algorithm has the following form: first the
structure of GG is determined, as described in Section 3, and then the algorithms of this
section are used.

We first give an algorithm for biconnected graphs. After that, we give an algorithm
for partial two-paths which consist of a biconnected component with sticks, i.e. each
vertex v of the biconnected component has state N or state S. The algorithm for
graphs of this kind is used for the tree algorithm, which is given thereafter. In the
last subsection, we construct an algorithm for general graphs, by combining the other
algorithms.

4.1 Biconnected Graphs

To make a proper path decomposition of a properly three-colored biconnected partial
two-path G, we can make proper path decompositions of the chordless cycles of G,
thereby taking into account which edges of each chordless cycle are shared with other
chordless cycles: these are the end edges of the chordless cycle. The proper path decom-
positions of the chordless cycles can then be concatenated in the order in which they
occur in the path of chordless cycles of G, and this gives a proper path decomposition
of .

Hence we concentrate now on checking whether there exists a proper path decom-
position of a chordless cycle C'. Let €' be a three-colored chordless cycle. We first give
some notations. We denote the vertices and edges of C' by V(C) = {vg, v1,..., 01},
and F(C) = {{v, V(it1)modn} | 0 <7 < n}. For each j, by v; we denote vertex vjmodn-
For each 7,1, (j <) mod n # 0, let I(j,!) denote the set of vertices of V(C') between
vy and v;, to be precise, those seen when going from v; to v; in negative direction, i.e.,

I(5,) = {v|(fmodn>ImodnAl<i<j)
V(jmodn<limodnA(I<i<nv0<i<j))},

Furthermore, let C(4,1) denote the cycle with

V(C(,0))=1(4,1)
E(CG, D)= Hvj,vid} U {{vi, 001} | vi € 1(5,1) &{v;} }

Figure 20 shows an example of a chordless cycle C' and some examples of C'(j,1). Note
that if (j <) mod n = 1 then by definition C'(j,1) is a cycle consisting of two edges
between two vertices. The following lemma is used to obtain a dynamic programming
algorithm for our problem.

Lemma 4.1. Let C be a properly three-colored cycle, suppose |V(C')| > 3. Let j and
l be integers. There is a proper path decomposition PD = (Vi,...,V}) of C' such that
{vi,vi1} T Vi and {v;,v;41} C Vi if and only if there is a proper path decomposition
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2. v ¢ V(Pg) and there is a connecting biconnected component B of & such that v
is in the component of G[V <V(Pq)] which contains vertices of B. (recall that
a connecting biconnected component is a biconnected component which contains
two vertices of Pg.)

First suppose case 1 holds. Let v’ € V(Pg) such that either v = ' or v is in a
component of G[V < {v'}] which does not contain vertices of Pgz. Let G’ and G”
denote the components of G[V < {v'}] which contain vertices of Pg. G’ and G” have
pathwidth two, hence there are nodes V; and Vj» in PD such that V; contains three
vertices of G’ and Vj» contains three vertices of Hy. Suppose w.l.o.g. that j < j/. Then
V; contains a vertex of G[V &V (G')], since V7 contains v, and Vs contains vertices of
G". Contradiction.

Next suppose case 2 holds. Let B be the biconnected component of G for which v
is in the component of G[V <V (Pg)] which contains a vertex of B. Let i, 1 <1 <'s,
be such that v;,v;41 € V(B). Let G’ be the subgraph of G induced by v; and the
component of G[V < {v;}] containing G;. Similarly, let G"” be the subgraph of G
induced by v;41 and the subgraph of G[V <{v;41}] containing G3. In the same way as
for case 1, we can derive a contradiction.

We next show that V; and V; can not both contain a vertex of G, unless s = 1.
Suppose s > 1 and v € Vi, v' € V; such that v,v" € V(Gy). G2 has pathwidth two,
which means that there is a node V;, 1 < j < ¢, such that V; contains three vertices
of GG. But V; also contains a vertex of ;;, which is a contradiction. In the same way,
we can prove that if s = 1, then V; and V; can not both contain a vertex of the same
component of G[V <{v1}]. |

37



vertex with state 12, at most two vertices with state E2, and if it has a vertex with state
12, then it has no vertices with state E2. This means that we can give the following
definition.

Definition 3.10. Let G be a connected partial two-path which is not a tree. Let H be
the set of all components of Gv which contain a vertex w of a biconnected component
which has state 12 or B2, let B be the set of biconnected components of G. The path
Pg of G is a graph which is defined as follows.

V(Pg) = | V(Pw)
HeH
E(Pg) = {GEE(GHHHGHGEE(PH)} U

{{?],?]/} | HH,H’EH,BEB H 75 H ANv e V(PH) = V(PH) N ?],?]/ € V(B)}

Note that Pg is unique if G is not a tree, since if G is not a tree, then each component H
of G'7 has at least one vertex in a biconnected component, and hence |Py| = 1. V(FPg)
may be empty in the case that (G contains only one biconnected component. Note
furthermore that FPg is in fact a concatenation of all paths Py of trees H € H, in such
a way that two paths which have an end point in a common biconnected component are
directly concatenated in Pg. Pg is not a real path of G, but it is the largest common
subsequence of all paths in G between the two end points of FPr. The biconnected
components of G which contain two vertices of Pg are called connecting biconnected
components. All other biconnected components are called non-connecting biconnected
components.

In each path decomposition PD = (Vi,...,V}) of width two of G, the occurrences
of the paths Py, H € H, do not overlap, since they have no vertices in common.
Furthermore, they occur in the same order as in P or in reversed order, because they
are connected to each other by biconnected components, which have pathwidth two.

We show the analog of Corollary 3.2 for general partial two-paths.

Lemma 3.20. Let G be a connected partial two-path, not a tree. Let Pg = (vq,..., vs).
Let PD = (V4,...,V}) be a path decomposition of width two of G'. For each v € Vi,
v’ € Vy, the path from v to v’ contains Py as a subsequence.

Proof. 1f |V(Pg)| = 0, the result clearly holds. Suppose |V (Pg)| > 1. Let (i1 be the
subgraph of GG induced by vertex vy and the components of G[V <{v}] which do not
contain vertices of Pg. Similarly, let G5 be the subgraph of GG induced by v, and the
components of G[V <{v,}] which do not contain vertices of Pg. We prove the lemma
by proving that V3 C V(G4) and Vy C V(Gy) or vice versa, and if s = 1, then V; and
Vi do not contain vertices of the same component of G[V <{v}].

Suppose V; contains a vertex v ¢ V(G1) U V(Gy). We distinguish two cases.

1. v € V(Pg)<{v1,vs} or there is an inner vertex v’ of Pg such that v is a vertex
of a component of G[V & {v'}] which does not contain vertices of Pg.
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Hy vy,
Gp, v ||v1 Hy Vs Bs u||u1 Gy

U3 U3

Figure 19: Example of the construction of a path decomposition of width two of a
partial two-path G, after the path decompositions of all components of G and all
biconnected components, including their sticks, are constructed as in the proof of The-
orem 3.2.
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PDyp is a path decomposition of width two of the graph Gpy. Furthermore, the
leftmost node of PDy contains uq, the rightmost node contains u,. There are at most
two components of G[V <V (Py)] which have pathwidth two, and if p > 1, then at
most one of these components is connected to u;, and at most one to u,.

Now consider the biconnected components which are not contained in some Gy for
H a component of G-p. For each biconnected component B of  for which this holds, let
(C,S) be a correct path of chordless cycles with C = (Cq,...,C)p) and S = (e1,..., €p_1).
Let vy,..., vs denote the vertices of B which have one of the states in {E2,11,E1}. Note
that B has no vertices with state 12, since then B would be in some graph G'g, where
H is a component of G'r. Let G'p denote the subgraph of G which contains B and all
sticks of B which are adjacent to vertices with state S.

If s = 0, then make a path decomposition of width two of G'g as follows. First make
a path decomposition PDp of width two of B, as is shown in the proof of Theorem 3.1,
but add one node on the left side which contains one of the edges in the former leftmost
node, and add one node on the right side which contains one of the edges in the former
rightmost node. For each v € V(B) which has state S, do the following. If B consists
of more than three vertices, then it can be seen that there are two nodes V; and V44,
such that V; N Vi1 = {v,u} for some u # v. See e.g. Figure 3. For each stick w
adjacent to v, we add a node {w,v,u} between V; and V;1y. If B has three vertices,
let V(B) = {wy,ws,ws}. Then PDp = ({wq, w2, ws}). Then we can make a path
decomposition of width two of G'g by adding on the left side for each stick w of wy or
wy a node {wy, we, w}, and on the right side for each stick w of w3z a node {ws, w}.

If s > 1, then make a path decomposition of G g in the same way as for s = 0,
but with the appropriate vertices of {vy,..., v} occurring in the leftmost and rightmost
node. It can be derived from the pictures of all conditions (see Figures 13, 14, 15, and 16
which vertex must occur on which side; e.g. if v; € V(C7) and the component H of Gt
which contains v is drawn on the left side of the biconnected componentin the picture
representing this case, then vy must occur in the leftmost node, but if st(v1) = I1,
vy € V(Cy1)NV(C,) and part of H is drawn on left side of the biconnected component,
and the other part is drawn on the right side, then »; must occur in both end nodes
of the path decomposition. Note that this is well possible, since in the conditions, the
distance between two vertices v; and v; of which the components must occur on the
same side must be small enough.

If all these path decompositions are made, then they can be combined rather
straightforwardly into a path decomposition of width two of G. In Figure 19, an
example is given of how the combination is done. a

For a given graph G, conditions 1, 2, 3, 4 and 5 can be checked in linear time:
conditions 1 and 3 can be checked in linear time in the way that is shown in Section 3.1
and Section 3.2. All other conditions can straightforwardly be checked in linear time.

Let G be a connected three-colored partial two-path, which is not a tree. We now
extend the definition of the path Ppg for all components H of Gt to the path Pg.
Consider the set H of all components of G7 which contain a vertex w of a biconnected
component which has state I2 or E2. Each biconnected component has at most one
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contain edges of H, such that the leftmost node of P Dy contains vertices of Hy and the
rightmost node contains vertices of Hy. Let PD}, = PD[V(Hy)U{v1}U {sticks of v1}],
and PD% = PD[V(H;) U {v;}]. Note that vy is in the rightmost node of PD}, and in
the leftmost node of PD%. Furthermore, make a path decomposition P D’ of width
two of H, which is similar to PDpg, but with vertex v; added to each node.

In the final path decomposition of G, PD’; is used if component H may occur
completely on the same side of the biconnected component which contains vy, and
PD} and PD?% are used if two parts of H must occur on different sides. In this case,
PD}; occurs on the left side and P D% on the right side.

If p > 1,or p=1and st(uy) » E2, then do the following. Let G’y denote
the induced subgraph of ¢ which contains # and all components of G[V &V (Py)]
which have pathwidth zero or one. For each wu;, each component of Gy[V(Gy) &
V(Pp)] which is connected to u;, make a path decomposition of width zero or one,
and add u; to each node of this path decomposition. For each w;, concatenate the
obtained path decompositions of all components which are connected to u;, and let PD;
denote this path decomposition. Now make the following path decomposition: PDp =
PDyH ({ur,u2}) H PDyH -+ H ({up—1,u,}) # PD,. See for example Figure 18.

PDg

uy || wy ’ Uy ‘ Uy ’ Us ‘ Us ’ Uy ‘

Figure 18: Example of the construction of PDy if the path Py has more than one
vertex. In the picture, H is the component of G which contains uy, and Hy,..., Hs are
the components of Gy which have pathwidth one.
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Theorem 3.2. Let G be a graph. G is a partial two-path if and only if the following
holds.

1. Fach component H of Gt has pathwidth at most two, and there is a path in H
which contains all vertices that are in a biconnected component of G and a path

Of PQ(H)

2. Fach biconnected component B of G contains only vertices which have one of the
states 12, B2, 11, E1, S and N, and at most four vertices of B do not have state
S or N.

3. Each biconnected component of G can be written as a correct path of chordless
cycles.

4. Fach biconnected component B of G has one of the states in S19 U SS9 U ST U
SE1 Y1)} and satisfies cond(st(B)).

5. Let I be a component of G't, suppose G # H, let Pg = (uq,...,up). Ifp > 1
and uy is a vertex of a biconnected component and st(uq) = E2, then at most one
of the biconnected components which contain uy does not satisfy condy(st(B)).
Similar for u,.

If p=1, uy is a vertex of a biconnected component and st(uy) = E2, then at most
two biconnected components containing uy do not satisfy cond(st(B)).

Proof. We first prove the ‘if” part. Suppose G is a partial two-path, then it follows
directly from Lemmas 3.13, 3.16, and 3.19 that 1, 2, 3 and 4 hold.

We now prove that 5 holds. Let H be a component of G, suppose G # H, let
Py = (uq,...,u,). Suppose uy € V(B) for some biconnected component of &, and
st(uq) = E2. If p > 1 and u; is a vertex of a biconnected component and st(u;) = E2,
then at most one of the biconnected components which contain u; does not satisfy
condy(st(B)). Similar for u,. If p > 1, then, according to Lemma 3.14, there may
be at most one component in G' = G[V(G) < V(Pg)] which has pathwidth two and
which is adjacent to w; in . This means that at most one biconnected component
B containing u; is allowed not to satisfy cond;(st(B)), since condy(st(B)) holds if the
component of G[V <{uy}] which contains V(B)<{u;} has pathwidth one, as is shown
in the proof of Lemma 3.19. If p = 1, then in the same way, we can show that at most
two biconnected components B containing u; are allowed not to satisfy cond;(st(B)).

Now we prove the ‘only if” part. Suppose G is a connected graph, which satisfies
conditions 1, 2, 3, 4 and 5. If G is a tree or GG is biconnected, then G has pathwidth
two, as is shown in Theorem 3.1 and Lemma 3.7. Suppose G is not empty and G
contains at least one biconnected component. We construct a path decomposition of
width two of G.

First consider Grp. Let H be a component of Gr. Let Py = (uq,...,u,). If p =1
and st(uy) = E1, then make a path decomposition PDy of width one of H in which
uq is in the rightmost node. If p = 1 and st(uq) = I1, then make a path decomposition
PDy of width one of H. Let Hy; and Hy be the components of H[V < {v;}] which
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(E2) (E2,E1)
E 3\/\: AE\/\F
; (E2,Il)
(E2,E1,E1)

Figure 17: Symbollic representation of condy(5) for possible biconnected component
state 5 = (sty,..., st;) with sty = E2. Cases that are symmetrical in Cy and C), or in
distinct vertices »; with the same state are given only once.
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A D v T D

Il E1, El
T e
(E1,E1,E1)
WO O
(E2 E2,E1 El) E2 11, E1, El
O [t réé@ifi
E2 E1l, E1, El (Il 11, E1 El)
;ﬁ@i ee=qi s
(I1,E1,E1,E1) (E1,E1,E1, E1)

Figure 16: Symbollic representation of cond(.S') for some possible biconnected compo-
nent state S for s = 3 and all possible states for s = 4. Cases that are symmetrical in
C and (), or in distinct vertices v; with the same state are given only once.
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s=4

st(B) cond(st(B))
(E2,E2,E1,E1) | (dstq(vy, v3) Adsty(ve,v4)) V (dst,(vr, v3) Adstq(vg, v4)) V
(dsty(v1,v4) A dsty(ve,v3)) V (dsty(v1,vs) A dsty(ve, v3))
(E2,11,EL,E1) | cond((E2, E2, E1, E1))
(E2,E1,E1,E1) | (dstq(v1, v2) Adsty(vs, v4)) V (dst,(vr, ve) Adsty(vs, v4)) V
(dsty(v1,v3) Adst,(v2,v4)) V (dstp(v1, v3) Adsty(ve,v4)) V
(
(
(
(

(dsty(v1,v4) A dsty(ve,v3)) V (dsty(v1,vs) A dsty(ve, v3))
(I1,11,E1,E1) | cond((E2, E2, E1,E1))
(E2,E1,E1,E1))
(E2,E1,E1,E1))

(I1,E1,E1,E1) | cond
(E1,E1,E1,E1) | cond

Let a € {12,E2,11,E1}. We denote by S, the set of biconnected component states
for which s > 1 and st(vy) = a.

Note that all the biconnected component states are disjoint, i.e. each biconnected
component can have at most one state.

Lemma 3.19. Let GG be a partial two-path. Each biconnected component B of G has
one of the states in Sp9 U So U ST U SE1, and satisfies cond(st(B)).

Proof. Let B be a biconnected component of G, let (C,S) be a correct path of chordless
cycles of B with C = (uq,...,u,), S = (e1,..., €5—1). Furthermore, let vy,..., v, denote the
vertices of B which have one of the statesin {12, E2,11, E1}, such that st(vy) > st(ve) =
s = st(vg). Then clearly s < 4. We have to show that (st(v1),...,,st(vs)) € Ssp(uy)
and that cond((st(v1),..., st(v,))) holds. If s = 0, then this is clear.

Suppose s > 0, let H be the component of G'v which contains vy. If st(vy) = 12,
then vy is an inner vertex of the path Py, and it follows from Lemma 3.14 that the
component of G[V <{v1}] which contains vertices of B must have pathwidth one. It
can easily be checked that if this is the case, then st(B) € 579 and cond(st(B)) holds.

Suppose st(vy) € {E2,11,E1}. Vertex vy is end point of Pg = (u1,...,up).
Lemma 3.18 shows that st(B) € Sy (y,) and that cond(st(B5)) holds. 0

Definition 3.9. Let G be a partial two-path, B a biconnected component of G, and
(C,S) a correct path of chordless cycles for B, C = (C4,...,Cp), S = (€1,...,€p—1). Let
v1,..., Vs denote the vertices of B which do not have state N or S, such that st(v;) =
st(vig1) for each i, 1 <1< s, suppose s > 1 and st(vy) = E2. Let G’ be the component
of GV &{v1}] which contains V(B) <{v1}. condi(st(B)) is defined as follows.

cond(st(B)) < cond((12, st(vq),..., st(vs)))

Note that if st(v1) = E2 and condy(st(B)) holds, then also cond(st(B)) holds. In
Figure 17, pictures are given of cond;(st(B)) for all values of st(B).

29



O @) O%ﬁ §:

(12,E1,E1) (E2,E2,11)
(E2,E2,E1) (E2,11,11)
(E2,11,E1)
(E2,E1,E1)
(I1,11,11) (I1,11, E1)

Figure 15: Symbollic representation of cond(.S') for some possible biconnected compo-
nent state S for s = 3. Cases that are symmetrical in C'; and ), or in distinct vertices
v; with the same state are given only once.
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@ L

(12, 11)
(12, E1) (E2, E2)
(E2,11) (I1,11)
O [ v S 1D
(E2,E1)
(I1,E1)
(E1,E1)

Figure 14: Symbollic representation of cond(5) for each possible biconnected compo-
nent state S for s = 2. For state (12,11), the biconnected component is represented
in its normal way. Cases that are symmetrical in C'; and ), or in distinct vertices v;
with the same state are given only once.
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st(B) cond(st(B))
(I2,11) | ((Vicicp v1 € & A w2 € ;) A |V(Cy)| = [V(CY)] = 3 A
dsty(vy,ve) Adst,(vy,0v2) ) V
(p=1AV(Cy) = {v1,v2,u,w} A
(Cl) {{vlvu} {v%u}} {vlvw} {v%w}/\p— 1/\5t( )
st(w) =N)
(12,E1) | (Vi<icp v1 € &) A (dsty(vg,v) V dsty(vr,v2))
(EQ,EQ) (?Jl eCiNvy € Cp) vV (?Jl € Cp N vy € Cl)
(E2,11) | cond((E2,E2))
(EQ,El) ((?}1 eCi Ny € Cp) vV (?Jl € Cp N vy € Cl) vV
dsty(vy,ve) V dst,(v1,v2))
(I1,I1) | cond((E2,E2))
(I1,E1) | cond((E2,E1))
(E1,E1) | cond((E2,E1))
3
st(B) cond(st(B))
(12, EL,E1) | (dsty(vy,v2) Adst,(v1,v3)) V (dsty(v1,v2) A dsty(vy, v3))
(EQ, EQ, Il) (dStl(Ul, 3) A dst (?JQ, 3)) (dStp(?Jl, ?Jg) A dStl(?]Q, ?]3))
(E2,E2,E1) | (v € V(Cy)Adsty(ve,v3)) V (v1 € V(Cp) Adsty(va,v3)) V
(v2 € V(C1) Adsty(vr,v3)) V (v2 € V(Cyp) A dsty(vy, v3))
(E2,I1,11) | (dsty(vy, v3) Adsty(ve, v3)) V (dsty(v1, v3) Adsty(va, v3)) V
( )V (dsty(vr,v9) Adsty(vs, v))

(
dsty(v1,v2)) A dst,(vs, vg)
(

(E2,11,E1) | cond((E2,E2,E1))

(E2,E1, El

(I1,11,11)

(11,11, E1)

(I1,E1,E1) | cond
(E1,E1,E1) | cond

) ((?]1 € V(Cl)/\dstp(vg, ?]3)) vV (?Jl € V(C )/\dStl(UQ, ?]3)) vV
(?JQ € V(Cl)/\dstp(vl,vg)) vV (?JQ € V(C )/\dStl(Ul,Ug)) vV
(v3 € V(C1) Ndsty(v1,v2)) V (vs € V(C,) Adsty(v1,02)))
(dstq (w1, v3) Adst,(v2,v3)) V (dsty(v1, v3) Adsty(ve,v3)) V
(dstq (w1, v2) Adst,(vs,v2)) V (dsty(vr, v2) Adsty(vs, v2)) V
(dsty(ve, v1) Adsty(vs,v1)) V (dsty(ve, v1) A dsty(vs, v1))
cond((E2,E2,E1))

((E2,E1,E1))
((E2,E1,E1))
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o[ [ I

Figure 12: Legend for Figures 13, 14, 15, 16 and 17. A path of chordless cycles (C,S)
is represented by an ellipsis in which the vertical lines denote the common edges of
the chordless cycles. The leftmost chordless cycle represents (C'q, the rightmost one
represents C,. The vertices that have one of the states in {12, E2,I1, E1} are represented
by a dot. All other vertices are not drawn. A vertex that has state 12 is represented
as vertex vy, a vertex with state E2 is represented as vertex vy, a vertex with state
11 is represented as vertex wvs, a vertex that has state El is represented as vertex vy.
If dstq(u,v) holds for two vertices, then the vertices are both drawn in the leftmost
chordless cycle, and they are connected by a fat edge. If dst,(u,v) holds, then u and

v are both in the rightmost cycle, and they are connected by a fat edge. In the figure,
dsty(vg, v4) holds.

D

0

O @,
0T o111
(12) (E2)
TeD D
(11) (E1)

Figure 13: Symbollic representation of cond(5) for each possible biconnected compo-
nent state S for s = 0 and s = 1. Cases that are symmetrical in C'; and (', are given
only once.
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Figure 11: Example for the definition of dstq(v;,v;). The picture shows a path of
chordless cycles (C,S) with C = (C4,C3), § = (e1). dsta(vz,v3) and dsty(vs, v4) hold.
dsty(vg,v4) and dsty(vz,v4) do not hold, since the edge between vy and vy is edge e;.
dsty(v1, v4) does not hold, since the common neighbor of vy and vs has state S.

Definition 3.8. (Biconnected Component States). Let G be a partial two-path, B
a biconnected component of G, and (C,S) a correct path of chordless cycles for B,
C=(C1,.,Cp), S = (€1,0,6p-1). Let vy,...,v5 denote the vertices of B which do not
have state N or S, such that st(v;) = st(vi41) for each i, 1 < i < s. The state of B
is denoted by st(B), and is defined as st(B) = (st(vy), st(vg),..., st(v,)). Because G is
a partial two-path, the vertices vy,..., v satisfy a number of conditions. For each value
of st(B), we denote these conditions by cond(st(B)). The conditions will be defined in
the following tables.

s =0: cond(()) = true.

S =
i
12
E2) | v e V(C)UV(C,)
I1) vy € V(C)UV(C,)
El) | v e V(C)UV(C,)

B) | cond(st(B))
)| Vicicp v1 € €

—~ o~ |

24



11 Y Ch erfler  Ch zlle X"

Figure 10: Part I is a partial two-path G which contains a path with chordless cycles
(C,S) with C = (C4,C4), S = (e1). Vertices x,y € V(Cq) both have state E2. Part
IT shows the order of the occurrences of 7, Cy, X, Y and X” in a possible path
decomposition of width two of G, as it is used for the proof of Lemma 3.18.

dsty(u,v) & w,v e V(Cy) A
{u,v} € E(Cy)V
Jwev(ey {u, w}, {v,w} € E(Cy) A st(w) = N)

If p> 1 then

dsti(u,v) & w,v e V(Cy) A

{u,v} € E(Cy) {e1} Vv

Jwev(ey (v, wh,{v,w} € E(Cy) &{e1} Ast(w) = N)
dsty(u,v) & w,ve V(C,) A

({u,v} € E(Cy) &{ep—1} vV

Juev(cy) {u, v} {v,w} € E(C)) &{ep—1} A st(w) = N)

In Figure 11, an example is given of dst for a path of chordless cycles with two chordless
cycles.

In the following definition, the state of a biconnected component is defined. Fur-
thermore, for each state a definition is given of a condition which must hold for the
biconnected component of that state, such that the graph can be a partial two-path.
In Figures 13, 14, 15, and 16 there is a picture of the condition for each state. The
pictures are symbolically. In Figure 12 the legend is given.
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Similarly, letY and Y' be defined fory (see for example Figure 10). Thenz,y € V(Cy),
and

1. either {z,y} € E(C1) <{e1} or there is a vertex z € V(B) such that {z,z} €
E(Cy)<{er} and {z,y} € E(C1) <{e1} and st(z) = N and

2. either X is a partial one-path such that x is not an inner vertex of P1(X) but
there is a path containing Py(X) and z, or'Y is a partial one-path such that y is
not an inner vertex of Pi(Y') but there is a path containing Py(Y') and y.

Proof. 1. Both z and y occur in V;, so z,y € V(Cy). There is a neighbor of x
in V; and a neighbor of y in V;. This means that, according to Lemma 3.17, either
{z,y} € E(Cy) or there is a z € V(C) such that {z,2} € E(Cy) and {y, 2} € E(Cy).
If {z,y} = ey, then {x,y} is a double end edge of (1, hence |V(C1)| = 3, so there is a
z € V(Cy) such that {z,2},{y, 2z} € E(Cy) ©{e1}. If there is a z € V() such that
{z,z} € E(C7) and {y, z} = €1, then e; also is a double end vertex, hence |V(C1)| = 3,
and {z,y} € E(Cq) <{er}.

Suppose {z,y} ¢ E(C1)<{e1}, and let z be the common neighbor of z and y such
that V; = {,y,2}. Let Vi, i < j, be the rightmost node containing an edge of X’ or
Y'. Then V; = {z,y, 2’} for some 2/ € V(X')U V(Y’). This means that there can be
no edge incident with » which occurs on the left side of V;. In the same way, we can
prove that there can be no edge incident with » which occurs on the right side of V.
2. Suppose X occurs in (Vi,....,Vp), 1 <1 <" < j, and Y occurs in (Vp,eor, Vir),
1 <m < m’ < j, and suppose that m < [. See also part II of Figure 10. It is clear
that « € Vi and y € V,,,s, and that X has pathwidth one. Furthermore, the rightmost
node containing an edge of X contains an end point v of the path P;(X) and a stick
v" adjacent to it. This means that « € {v,v'}, hence x is either an end point of P;(X)
or a stick adjacent to an end point of Py(X). a

From this lemma, we can derive the following corollary.

Corollary 3.4. Let G be a partial two-path, B a biconnected component of G,
(C,8) a correct path of chordless cycles of B. Let z1,...,2s € V(B) such that
st(x;) € {12,E2,11}. Then s < 3. Furthermore, if s = 3, there is a j, 1 < j < 3,
such that st(x;) =11 and x; is a double end vertex of B, which implies that x; € e; for
each 1.

To be able to give the possible states for the biconnected components in a partial
two-path, we first give a definition.

Definition 3.7.  (Distance). Let G be a partial two-path, B a bicon-
nected component of G and (C,S) a correct path of chordless cycles for B,
C = (C1,...,Cp), § = (é1,.,6p-1). For each u,v € V(B), dsty(u,v) €
{true, false} and dst,(u,v) € {true,false} are defined as follows. If p = 1, then

22



order. Let C = (C4,...,C}) denote this order. Let § = (ey,...,€,_1) be the sequence of
edges of B for which ¢; = V(C;) N V(Ciyq) for each i, 1 < i < p. Clearly, (C,S) is a
path of chordless cycles of B.

Let C; be such that e;_; = e;, let v € V() <e;. Then st(v) = N, since ¢; is double
end edge of (;, and hence any edge adjacent to v could not occur within the occurrence
of (;, and not within the occurrence of any other C’;.

Finally, we prove that all vertices of the component which are not in V(Cy) or
V(C,) may not be adjacent to something else than sticks. Suppose there is a v €
V(B) < (V(Cy) U V(C)p)) which does not have state N or S. Let C' be the cycle in B
with V(') the set of vertices of V(B) except all v € V(B) for which v € V((;) e, for
some i, 1 < 1 < p, for which e;_1 = ¢;, and E(C') the set of edges in B[V ()] except
the edges e;, 1 < ¢ < p. Then v is an end vertex of C'. C' occurs within (V},...,V}s),
and V; and Vj» can not contain any vertices of B which are not in (' or €}, which is
a contradiction. a

From Lemma 2.6, we can derive that there may be at most four vertices of B which
have state E1, I1, E2 or I2. Furthermore, if (C,S) is a correct path of chordless cycles,
and then V(Cq) ©V(C)) and V(C,) <V (Cq) may each have at most two vertices with
state in {E1,11,E2,12}.

Let G be a partial two-path, B a biconnected component of G, z € V(B) and
st(z) € {12,E2,11,E1}. Let X be a component of G[V < V(B)] which is connected
to  in G such that |[V(X)| > 1, and let X’ denote G[V(X) U {x}]. Then in each
path decomposition of width two of G, all edges of X’ occur on the same side of
the occurrence of B, since suppose there are two edges e,¢’ € F(X') which occur on
different sides of the occurrence of B. There is a path between e¢ and ¢’ which does
not contain x, hence each node in the occurrence of B contains a vertex of this path,
which is not possible since B has pathwidth two.

Lemma 3.17. Let G be a partial two-path, C a cycle of G. Let PD = (Vi,...,V}) be
a path decomposition of width two of G, suppose C' occurs in (V;,...,Vy). Let v € V;
such that v € V(C'). V; also contains a neighbor of v.

Proof. Let {z,y} € E(C) be such that 2,y € V;. Let V,,,, j < m < j', be the leftmost
node which contains another edge of C'. Then V,,, contains x, y and a neighbor z of «
or y in C. Then either m = j and v = z or v € {2, y}. a

In the next lemmas, we show that the vertices which have state E1, I1, E2 or 12
must have a ‘small distance’ to each other.

Lemma 3.18. Let GG be a partial two-path, B a biconnected component of G. Let PD be
a path decomposition of width two of G, such that B occurs in (V;,...,V}1), let (C,S) be a
path of chordless cycles of B, such that the order in which the chordless cycles of B occur
in PD corresponds with C. Let x,y € V(B), suppose st(x), st(y) € {12, E2,11,E1}. Let
X" be the graph consisting of all components of G[V <V (B)] which are connected to x
in G, and which occur on the left side of (Vj,...,V}), and let X denote G[V(X')U{z}].
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Figure 9: Examples of all vertex states. st(vy) = N, st(vg) = S, st(vs) = E1, st(vq) =
I1, st(vs) = st(ve) = st(vr) = E2 and st(vs) = 2. For each ¢, let H; denote the
component of G which contains v;. Hy and Hj consist of one single vertex. Vertices
vs, vg and vy give an example for each possibility with state FE2. Combinations of
these possibilities are also possible. For ¢ € {3,4,6}, the fat edges in H; form the
path Pi(H;). Yor i € {7,8}, the fat edges in H; form the path Py,. For ¢ € {1,...,6},
Py, = (v;).

We can now show that, for a biconnected component B of the cell completion of
a partial two-path G, there is a path of chordless cycles (C,S) with C = (C4,...,C))
in which all vertices of B which have state E1, I1, E2 or 12, are in (' or (,, and all
vertices v which are in some C; with 1 < 7 < p and with ¢; = ¢;31 and v ¢ ¢; have
state N.

Definition 3.6. (Correct Path of Chordless Cycles). Let GG be a partial two-path, B
a biconnected component of G, and let (C,S) be a path of chordless cycles of B with
C =(C1,....,Cp) and § = (e1,...,ep1). If (C,S) satisfies the following condition, then
(C,S8) is called a correct path of chordless cycles.
Voev(py v &€ V(C1)UV(Cy) = st(v) € {N,S} A
v1§i<p—1,U€V(Ci+1) ei=¢€p1 Av g e = st(v)=N
Lemma 3.16. Let G be a partial two-path. Each biconnected component B of G can

be represented by a correct path of chordless cycles.

Proof. Let PD = (V1,...,V}) be a path decomposition of width two of ¢, suppose
B occurs in (Vj,..., V). According to Lemma 3.3, the chordless cycles occur in some
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Definition 3.5. (Vertex States).  Let G be a partial two-path, B a biconnected
component of G. Let v € V(B), and let H denote the component of G'v containing v.
The (vertex) state of v is denoted by st(v), and is defined as follows.

st(v) = N if v has no neighbors outside of B.

st(v) = S if v has only neighbors of degree one outside of B: only sticks are connected
tov.

st(v) = E1 if H has pathwidth one, Py = (v), v is adjacent to exactly one vertex
w ¢ B which does not have degree one and w € V(H), and either v or w is end
point of Py(H).
In other words, B is the only biconnected component containing v, H has path-
width one and contains at least one edge which is not incident with v (hence
|Pi(H)| = 1), Py = (v), and v is not an inner vertex of Py(H), but there is a
path in H containing v and Py(H ).

st(v) =11 if B is the only biconnected component containing v, H has pathwidth one
and contains at least one edge which is not incident with v, Py = (v), and v is
an inner vertex of Pi(H).

st(v) = E2 if there is another biconnected component containing v, or H has pathwidth
one, Py = (v) and there is no path in H containing v and a path of P1(H), or
H has pathwidth at most two and Py # (v) but v is an end point of Py.

st(v) =12 if H has pathwidth at most two and v is an inner vertex of Py.
The states are ordered in the following way. 12 > FE2 > 11 >~ E1 » S > N.

Note that all possibilities are covered for v, and that all states are disjoint. In the
remainder of this section, we derive what combinations of states are possible for all
vertices of a biconnected component.

Lemma 3.15.  Let G be a partial two-path, C' a cycle in G. Let v € V(C), G’
be a component of G[V <V (C)| for which there is a vertex v' € V(G') such that
{v,v'} € E(G). If G' contains at least one edge, then v is an end vertex of C.

Proof. Let PD = (Vq,...,V}) be a path decomposition of width two of &, suppose C'
occurs in (Vj,...,Vy), and let {z,y} € E(C) such that z,y € V,. Suppose E(G') £ 0,
let {u,w} € E(G’) such that {u,v} € E. Edge {u,w} can not occur in (Vj,...,Vjs), so
suppose {u,w} occurs in Vj, [ < j. Then either v € V; or uw € V;. Suppose u € V},
and let V,, j < p < j’, be the leftmost node containing v. Then each node in Vj,...,V,
contains u. Furthermore, there is a node containing z, y, and another vertex of ('
(Lemma 3.2), which means that z,y € V,. This is only possible if v = 2 or v = y,
which means that v is an end vertex. a

19



if there is at least one vertex of H which is contained in a biconnected component of
G.

In Figure 8, a partial two-path G is given in which G'r has one component H, with
Py(H) = (v3,v4,v5) and Py = (v1,...,05).

U1 Y2 U3 V4 U5

Figure 8: A partial two-path G with one component H in Gr. Py(H) = (v3,v4,05)
and Py = (v, vz, v3, 04, U5).

From the proof of Lemma 3.13 it can be seen that an analog of Corollary 3.2 also

holds for Py.

Corollary 3.3. Let G be a partial two-path, G not a tree, H a component of Gr.
Let PD = (V4,...,V}) be a path decomposition of width two of G, suppose H occurs in
(Viyeets Vi), Thereis av € V;NV(H) and a v' € Vi NV (H ) such that the path from v

to v’ contains Pyy.

The following lemma shows some conditions for the structure of biconnected com-
ponents of a partial two-path G which contain a vertex of a component H of G'r.

Lemma 3.14. Let GG be a connected partial two-path which is not a tree, H a component
of G, Pg = (v1...,vs) the path of H. Let G' = G[V &V (Pg)]. At most two components
of G' may have pathwidth two. For each component G of G' of pathwidth two, there
must be a v € V(G') such that either {v,v1} € E(G) or {v,vs} € E(G), i.e. G" is
connected to vy or vs. If s > 1, then at most one component of pathwidth two may be
connected to vy, and at most one to v,.

Proof. Because of Lemma 2.5, at most two components of G’ may have pathwidth two.
If there is a component of width two adjacent to v;, 1 < 2 < s, then v; is a vertex which
separates (G into three or more components of width two, and hence G has pathwidth
three. If s # 1 and there are two or more components of width two adjacent to vy, or
if s = 1 and there are three or more components of width two adjacent to v, then vy
separates G into three components of width two, and hence GG has pathwidth three. O

For the vertices of each biconnected component of a partial two-path, we define

states, which reflect the structure of the subgraphs which are connected to them. In
Figure 9, an example is given for all possible states.
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3.3 Partial Two-Paths

A partial two-path consists of a number of biconnected components, and a number of
trees of pathwidth two, which are connected to each other in a certain way.

Definition 3.3. Let G be a partial two-path. The subgraph Gt is the graph obtained
from G by deleting all edges of biconnected components of GG

Let G be a partial two-path. Clearly, the cell completion of each biconnected
component of G, can be written as a path of chordless cycles, and each component
of G'r consists of a path with partial one-paths and sticks connected to it. Note that
the cell completion of GG is equal to the graph obtained by making a cell completion of
each biconnected component of G. The number of possible ways in which biconnected
components and components of G7 can be connected to each other is large. In this
section, we give a complete description of this structure. First we show that for each
component H of G, the vertices of H which are contained in a biconnected component
of G all lie on one path, which also contains a path of Py(H). After that, we give for
each biconnected component of G all possible interconnections with other biconnected
components of G and components of G'r.

Lemma 3.13. Let G be a partial two-path, H a component of Gr. Let V! C V(H) be
the set of vertices which are vertices of biconnected components of G. There is a path
in H which contains all vertices of V' and a path of Po(H ).

Proof. Let PD = (Vi,...,V;) be a path decomposition of G, suppose the vertices of H
occur in (Vj,...,Vjr). Select v € V; and v’ € Vjs such that v,v" € V(H). Let P denote
the path from v to »’. All vertices of V' are on P, since for each w € V', there is a
cycle C' which contains w, hence there is a node V;, 7 < i < j/, such that V; contains
w and two other vertices of €', so V; N V(H) = {w}. Furthermore, if H has pathwidth
two, then there is a path in Pz(H ) which is a sub-path of P. O

Definition 3.4. Let GG be a partial two-path and H a component of Gr. Let V! C V(H)
be the set of all vertices of H which are contained in a biconnected component of G.
P denotes the set of all paths P in H for which there is a path in Py(H) which is
a sub-path of P', V' C V(P) and there is no strict sub-path P' of P for which there
is a path in P(H) which is a sub-path of P' and V' C V(P'). If |Pg| = 1, then Py
denotes the unique element of Prr, and Pr is called the path of H .

Let GG be a partial two-path and H a component of Grp. If |Po(H )| = 1, then clearly
|Pr| = 1. If [Po(H )| > 1, then all elements of Py(H ) are paths consisting of one vertex,
and all these vertices form a connected subgraph H’ of H. This means that if there is
one vertex v € V(H) for which v is contained in a biconnected component, then there
is a unique shortest path containing v and a path from Py( H ), since one of the vertices
of H' is closer to v than the others. If there are two of more vertices of H which are
contained in a biconnected component, then a similar argument holds. Hence |Pg| = 1
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s > 3, then either for each i, 1 < i < s<1, f({vi,vi1}) < f({vig1,viga}), or for
each i, f({vi,viy1}) > f({vig1,vi42}). Suppose the first case holds. Then for each 1,
1<i<s, and each w € V(H) such that {v;,w} € E(H), the following holds. Ifi < s,
then f({vi,w}) < f({vi,vi41), and if ¢ > 1, then f({v;,w}) > f({vie1,vi).

Proof. TFollows straightforwardly from the definition of path decomposition. O

In Figure 7, a path decomposition of the partial one-path of Figure 4 is given.

Figure 7: A path decomposition of width one of the partial one-path of Figure 4.
The following lemma is used in the next sections.

Lemma 3.12. Let H be a tree of pathwidth two such that there is a v € V(H) for
which H[V <{v}] has pathwidth one. For each path P in H for which H[V <V (P)]
has pathwidth one, there is a v € V(P) such that H[V <{v}] has pathwidth one.

Proof. Let P be a path in H for which H[V <V (P)] has pathwidth one. Let v € V/(H)
be such that H[V <{v}] has pathwidth one. Suppose v ¢ V(P). Let H' denote the
component of H[V < V(P)] containing v. Let v" € V(P) be such that there is a
w € V(H') such that {v/,w} € F(H). We show that H[V <{v'}] has pathwidth one.
The components that do not contain a vertex of P have pathwidth one because they
are components of H[V <V(P)]. All other components are subgraphs of the component
of H[V <{v}] which contains P. Hence these components also have pathwidth one. O

The lemma implies that if |Py(H )| = 1, then the element of Py(H ) is the intersection
of all paths P for which H[V <V (P)] has pathwidth one. Furthermore, it implies the
following result, which will be frequently used in the next section.

Corollary 3.2. Let H be a tree of pathwidth two, PD = (V1,...,V}) a path decomposi-
tion of width two of H. Let v € Vi and v’ € V;. Then the path P from v to v’ contains
one of the paths in Po(H ) as a sub-path.

The linear time algorithms in [EST94] or [M6h90] to compute the pathwidth of a
tree can also be used to find the path Py( H ) if it is unique, or to find all paths in Py(H )
otherwise.
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an inner vertex of Pi(H’), since Hy and Hsz both have pathwidth one. In that case,
either V(H') = V(Hz) UV (H3)U{v} or V(H') = V(H;) UV (H;3)U{v,w'} for some
w' € V(Hy) with {v,w} € E(H). This means that there are at most two possibilities
for w € V(Hy) such that H[V <{w}] has pathwidth one. The same holds for H; and
Hs, hence |W| < 7.

Now suppose W contains no vertex v € W such that H[V <{v}] has three com-
ponents of pathwidth one. Let v € W such that H[V <{v}] has two components of
pathwidth one. Let Hy and Hy be the components of H[V <{v}] which have pathwidth
one, and let wy € V(H) and wy € V(1H3) such that {v, w1}, {v, w2} € E(H). Then for
1 = 1,2, w; is either an inner vertex or a stick adjacent to an inner vertex of the path
Py(H;), since otherwise either H does not have pathwidth two, or W contains a vertex
w such that H[V <{w}] has three components of pathwidth one. For each w € W with
w#vand w ¢ V(H)UV(Hz), H[V &{w}] has pathwidth two. If wy is inner vertex of
Pi(Hy) and v has degree two, then wy is the only vertex in Hjy for which H[V &{w,}]
has pathwidth one, otherwise, there is no such vertex in H,. Similar for w;. Hence
|W| < 3. This completes the proof. O

Note that the bound |W| < 7 is sharp: in Figure 6, the tree H has pathwidth two
and for each vertex v € V(H ) it holds that H[V <{v}] has pathwidth one.

Figure 6: A tree H = (V, F) with pathwidth two, such that for each vertex v € V,
H[V <{v}] has pathwidth one.

Definition 3.2. Let H be a tree of pathwidth k, k > 1. Prp(H) denotes the set of
all paths P in H for which H[V <V (P)] is a partial one-path, and there is no strict
sub-path P' of P for which H[V <V (P")] is a partial one-path. If |Pr(H)| = 1, then
Pr(H) denotes the unique element of Pr(H).

Note that if Py(H ) contains more than one element, then the elements are all paths
consisting of one vertex.

For a tree of pathwidth one, all path decompositions of width one of H are essentially
the same.

Lemma 3.11. Let H = (V, F) be a tree of pathwidth one and let PD = (V1,..., V) be a
path decomposition of width one of H. Suppose |V(H)| > 2, and let Py(H) = (v1,..., vs).
For each e € E(H), let f(e) be such that Vi) is the leftmost node containing e. If
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Lemma 3.10. Let H be a tree of pathwidth two, let W C V(H) be the set of vertices
which separate H in components of pathwidth at most one. Suppose |W| > 1. The
following holds.

1. H[W] is a connected graph.

2. Ifthere is av € W such that H[V -<{v}] has four or more components of pathwidth
one, then |W| = 1.

3. There is a vertex v € W such that H[V <{v}] has two or more components of
pathwidth one.

Jo W<,

Proof. 1. Suppose |W| > 2. Let v,v' € W be distinct vertices. Let w be a vertex on
the path from » to »" in H. Then each component of H[V <{w}] does not contain v or
does not contain v’. Hence each component is a subgraph of a component of H[V <{v}]

or of H[V &{v'}], so w € W.

2. Let v e W,let H;, 1 <i < s, be the components of H[V <{v}] which have pathwidth
one. Suppose s > 4. Let w € V(H) for some w # v, and let H’ be the component
of H[V <{w}] containing v. If w € V(H;) for some j, then H' contains all H; with
i # j. Otherwise, H’ contains all H;. In both cases, H' has pathwidth two, according
to Lemma 2.5, since v separates H' in three or more components of pathwidth one.
Hence |W| = 1.

3. Suppose W does not contain a vertex v € W such that H[V <{v}] has two or more
components of pathwidth one. Let v € W. There is one component of H[V <{v}]
which has pathwidth one, otherwise, H has pathwidth one at most. Let H’ be this
component, and let w € V(H') such that {v,w} € FE(H). There are two possibilities
for w. Either w is an inner vertex of the path Py(H') of H', or w is a stick of an inner
vertex w’ of Pi(H’). In all other cases, H has pathwidth one. If w is inner vertex
of Py(H'), then H[V <{w}] has at least two components of pathwidth one, namely
the two components which contain vertices of Pi(H’). Furthermore, all components of
H[V <{w}] have pathwidth one, since all neighbors of v except w have degree one.
Hence the component containing v has pathwidth one. If w is a stick of inner vertex
w’ of Pi(H'), then H[V <{w'}] has at least two components of pathwidth one for the
same reason, and all components of H[V <{w'}] have pathwidth one.

4. If W contains a vertex v for which H[V <{v}] has four or more components of
pathwidth one, then |W| = 1.

Consider the case that for all v € W, H[V <{v}] has at most three components
of pathwidth one. First suppose W contains a vertex v such that H[V < {v}] has
three components of pathwidth one. Let Hy, Hy and Hs denote these components.
For all w € V such that w # v and w ¢ V(H;) U V(Hy) U V(H;3), H[V <{w}] has
a component of pathwidth two, namely the component containing v. Let w € Hj.
All components of H[V < {w}] which do not contain v have pathwidth one. Let H’'
be the component of H[V < {w}] containing v. If H' has pathwidth one then v is
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there are two distinct paths P and P’, such that the components of G[V <V(P)] and
the components of G[V <V (P’)] have pathwidth k <1 at most. We first show that
V(P)NV(P'") # 0. Suppose V(P)NV(P') = (. Let H' be the component of H[V &V (P)]
which contains P’,let H” be the component of H[V &V (P’)] which contains P, and let
v € V(P) be the vertex to which H’ is connected, i.e. there is a w € V(H') such that
{v,w} € E(H). See Figure 5. Consider the components of H[V <{v}]. H' is one of
these components, and has pathwidth one. All other components contain no vertex of
P’, and hence are subgraphs of H”, which also has pathwidth one. Hence H[V <{v}]
has pathwidth one, which gives a contradiction.

Let P" be the intersection of P and P’, which is again a (non-empty) path. The
components of G[V &V (P”)] have at most pathwidth k<1, since each such component
contains no vertices of P or no vertices of P’, hence is a component or a subgraph of
a component of either G[V <V(P)] or G[V <V (P')].

This means that the intersection P’ of all paths P for which H[V <V (P)] has
pathwidth one also has the property that H[V <V(P’)] has pathwidth one, and it is
unique and shorter than all other paths having this property. a

L

Figure 5: Example of a tree of pathwidth two for proof of Lemma 3.8. The graphs
H[V &V(P)] and H[V <V (P")] have pathwidth one, which means that H[V <{v}]
also has pathwidth one.

Let H be a tree of pathwidth k. In the next two lemmas, we show that for £k = 1

and k = 2, if there is a vertex v € V(H) such that H[V <{v}] has pathwidth k <1,
then there are at most a constant number of vertices for which this holds.

Lemma 3.9. Let H be a tree of pathwidth one, let W C V(H) be the set of vertices
which separate H in components of pathwidth zero, suppose |W| > 1. Then |W| < 2,
and if |V(H)| > 2, then |W| = 1.

Proof. Let v € W. Then H[V <{v}] consists of single vertices. If |V| = 2, then ¢
consists of one edge, so |[W| = 2. If |[V| > 2, then all (at least two) edges of G are
incident with ». Hence for each w € V &{v}, H[V <{w}] contains at least one edge
incident with v, and does not have pathwidth zero. So if |V| > 2, then |W| = 1. O
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3.2 Trees of Pathwidth Two

The following result, describing the structure of trees of pathwidth k, is similar to a
result in [EST94].

Lemma 3.7. Let H be a tree. H is a partial k-path, k > 1, if and only if there is
a path P = (vy,...,vs) in H such that the connected components of H[V <V (P)] have
pathwidth k<1 at most, i.e. H consists of a path with partial (k <1)-paths connected
to it.

Proof. If G consists of a path P = (v1,..., vs) with partial (k <1)-paths connected to
it, then we can make a path decomposition of G, by making a path decomposition of
width k<1 for each connected component of G[V <V (P)], then adding the vertex v; to
each node of the path decomposition of the components connected to v;, then ‘gluing’
these path decompositions together in the following way. For all components that are
connected to the same v;, the path decompositions are concatenated in arbitrary order.
Two new path decompositions are glued to each other by a node containing v; and v;41
if they are connected to v; and v;41, respectively. This gives a path decomposition of
width £ of G.

Suppose (Vi,..., V4) is a path decomposition of G of width k. Select v,w € V such
that v € V] and w € V;. Let P be the path from v to w in G. Then each V;, 1 <7 <,
contains a vertex of P. Hence each component of G[V <V (P)] has pathwidth k < 1.

O

Because graphs of pathwidth one do not contain cycles, a graph of pathwidth one is
a tree which consists of a path with ‘sticks’, which are vertices of degree one adjacent
only to a vertex on the path (‘caterpillars with hair length one’). For an example of a
partial one-path, see Figure 4.

2 4 5 9 11 12 15 16
1 §:3 8 \/10 14
6 7 13

Figure 4: Example of a partial one-path.

Lemma 3.8. Let H be a tree of pathwidth k, k > 1, suppose there is no vertex
v € V(H) such that H[V <{v}] has pathwidth k <1 or less. Then there is a unique
path P in H such that the components of H[V <V (P)] have pathwidth k <1 or less,
and P is shorter than and contained in all other paths having this property.

Proof. If P is a path in G such that the components of G[V <V (P)] are partial
(k <1)-paths, then all the paths in G containing P have that same property. Suppose
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Proof. If G can be written as a path of chordless cycles, then we can make a path
decomposition of width two of GG as follows. Let (C,S) be a path of chordless cycles for
G, with € = (Cq,...,C,) and S = (eq,...,€,1). Let eg be an arbitrary edge in €y with
eo # €1, and let e, be an arbitrary edge in €, with e, # e,_1. Foreachi,1 <1<, we
make a path decomposition (Vi,...,V;) of C; as follows. If |V(C;)| = 3, make one node
containing all vertices of C;. Otherwise, do the following. Let e;_1 occur in Vi, let e;
occur in V;. Let ¢; = {z,y} and e;11 = {2/, 9’} such that there is a path from z to 2’
which does not contain y or ¢/, Let P; = (uy,..., u,) denote the path in C; from z to 2’
which does not contain y or 3, and let P, = (vy,..., v,) denote the path in C; from y to
y' not containing z or 2’. Then t = ¢ + r &2, for each i, 1 <i < q, V; = {u;, wiz1,v1},
and for each i, 1 < ¢ < r, Viggo1 = {ug,v;,v41}. The path decompositions for the
chordless cycles that are obtained in this way are concatenated in the order in which
the chordless cycles occur in (C, S).

In Figure 3, an example of a path decomposition of width two is given for the graph
of Figure 1. The path decomposition is constructed in the way that is given here, with
eo = {1,18} and e, = {9,10}.

If GG is a partial two-path, then it follows directly from Lemmas 3.1, 3.4, 3.5 and 3.6
that G’ can be written as a path of chordless cycles. a

Figure 3: A path decomposition of width two for the graph of Figure 1 as constructed
in the proof of Theorem 3.1, and the corresponding interval completion. The dashed
edges are the edges that are added.

In the same way as in [BK93], we can check whether i is a tree of chordless cycles,
and make a list of all chordless cycles in linear time. After that, we can check in linear
time whether the tree of chordless cycles is a path of chordless cycles.
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Lemma 3.4. Let G be a biconnected partial two-path, C' a chordless cycle of G which
has edges e1 and ey, e1 # €3, in common with chordless cycles Cy and Cy, respectively.
Then C1 and Cy do not have a common edge.

Proof. 1f 'y and C3 have an edge in common, then K4, the complete graph on four
vertices, is a minor of G, and hence ' does not have pathwidth two. a

Lemma 3.5. Let G be a biconnected partial two-path, C a chordless cycle in G. If C
has two edges in common with two other chordless cycles C'y and Cy of G, then C1 and
Cy can not both occur on the same side of the occurrence of C'.

Proof. Let PD = (Vi,...,V}) be a path decomposition of width two of &, suppose
C occurs in (V;,...,Vjr). Suppose €1 = {z1,y1} and e; = {x3,y,} are the edges that
(' has in common with C'; and (s, respectively, and C; and C5 occur on the left side
of C'. Then e; and ey occur in V;. e; and ey must have a common vertex, otherwise
|Vi| > 4, say y1 = z3. All vertices of Cy and Cy other than 1, z2 and y; occur only on
the left side of V;, since V; contains 1, 23 and y, (see proof of Lemma 3.3). Suppose
the leftmost edge of C'; occurs in Vj, the leftmost edge of Cy occurs in Vi, and [ < I'.
Then each V;, I’ <1 < j, contains at least two vertices of C'; and there is a V; which
contains three vertices of C';. Because of Lemma 3.4, C| and (5 have only one vertex
in common, which means that |V;| > 4. O

The following corollary follows directly from Lemma 3.5.

Corollary 3.1. Let G be a biconnected partial two-path, C' a chordless cycle in G. C
has at most two edges in common with two other chordless cycles.

We have now shown that the chordless cycles of the cell completion of a biconnected
partial two-path form a sequence, such that each chordless cycle has exactly one edge
in common with the following chordless cycle in the sequence.

Lemma 3.6. Let G be a partial two-path, let e € E(G) such that e is an edge of
three or more chordless cycles of G, then at most two of these cycles have four or more
vertices.

Proof. Suppose e is an edge of s > 3 chordless cycles C;, 3 < ¢ < s. Let PD be a
path decomposition of width two of GG, and suppose w.l.o.g. that C; occurs on the left
side of C'; for all 7 and j with ¢ < j. Since (' and C, have  and y in common, z and
y occur in the first and the last V; containing an edge of all C; with 1 < ¢ < s. Hence
[V(Ci)|=3foralli, 1 <i<s. 0

We can now prove the main result of this section.

Theorem 3.1. Let G be a biconnected graph. G is a partial two-path if and only if G
can be written as a path of chordless cycles.
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Lemma 3.3. Let G be a biconnected partial two-path with cycles C' and C' which
have one edge {x,y} and no other vertices in common. Let PD = (V1,...,V}) be a path
decomposition of G of pathwidth two. Suppose C' occurs in (Vj,..., V1), C" occurs in
(Viyeeo, V). Then the following holds.

1.j<landj <Uorj>landj >1U. Ifj=1andj =1, then |V(C)| =
V(CT)] = 3.

2. Ifj <1, 7 <U, then j' > 1, {x,y} is an end edge of C and of C' and it occurs in
Vi and in'Vy, and there is ani, | <i < j', such that V(C)N (Vi1 U...UVy) = {2, y}
and V(C')N (V1 U...UV;) = {a,y} (or possibly vice versa, if j =1 and j' =1'),
so {x,y} is a middle edge of C'UC’, and an end edge of C and of C'.

Proof. 1. Suppose j <l and j' > ', then |V(C")| = 3, say V(C") = {x,y, z}, since
each of Vj,...,Vjs contains two vertices of C'. Let j < i < j’, such that V; = {z,y, z}.
Suppose {a,b},{c,d} € E(C) and {a,b} C V;, {c,d} C Vs, such that there is a path
from a to ¢ not containing b or d. Let P; denote this path, and P, denote the path
from b to d not containing a and ¢. {a,b} # {z,y} and {¢,d} # {z,y}, so suppose
{z,y} € E(Py). V; contains a vertex of P, which is not x, y or z. Hence |V;| > 4,
which is a contradiction. So either j <land 7' <! orj>1land j/ >1I'. If j = [ and
j' =1, then |V(C)| = |V(C")| = 3, since each V;, j < i < j', contains two vertices of '
and two vertices of C".

2. Tt is clear that j' > [, since {z,y} is an edge of both ' and C’. There are nodes V,,
and Vs such that V,,, = {z,y, 2} for some z € V(C') with z # z,y,and V,,, = {2,y, '}
for some 2’ € V(C') with 2/ # ,y. Note that I < m,m’ < j'. Suppose first that
I <m < m < j. We show that all vertices of V(C') <{z,y} occur only on the left
side of V,,,». Suppose there is a vertex v € V(C') <{z, y} which occurs on the right side
of V,,». There is a path from v to z in €' which does not contain z and y. Node Vs
contains a vertex of this path. Hence |V,,/| > 4. This is a contradiction. Since each V;,
m < i < m’, contains z and y, this means that there is an 7, m < i < m/, such that all
vertices of V(C') &{z,y} occur only in (V,..., V), and the vertices of V(C") <{x,y}
occur only in (Vig1,..., V3). Furthermore, since 7 < 7 and Vs contains an edge of C', Vs
contains z and y. Similarly, V; contains x and y.

Now suppose [ < m’ < m < j'. In the same way as before, we can show that
the vertices of V(C') <{x,y} occur only on the right side of V,,,/, and the vertices of
V(C") <{x,y} occur only on the left side of V,,,. Hence there is an i, m’ < i < m,
such that all vertices of V(C') <{z,y} occur only in (V;41,..., V}) and all vertices of
V(C") <{x,y} occur only in (Vi,...,V;). Furthermore, V; is the leftmost node which
contains an edge of C’, which means that j = [. In the same way, we can prove that
j'=1,and V; and Vs both contain z and y. O

Note that in part 2 of the lemma, the part (V},...,V;) of PD restricted to V(C') is a
path decomposition of C', and (Vi11,..., V) restricted to V(C”) is a path decomposition
of C'. We say that C' occurs on the left side of C’. In other words, Lemma 3.3
says that, if there are two cycles which have one edge in common, then in each path
decomposition, one occurs on the left side of the other one.
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Figure 1: A path of chordless cycles (C,S) with ¢ = (C1,...,Cs), S = (e1,...,€5).
V(Cl) = {1727374716717718}7 V(CZ) = {47 16719}7 V(CB) = {47 16720}7 V(C4) =
{4,5,6,13,14,15,16}, V(C5) = {6,7,8,13} and V(Cs) = {8,9,10,11,12,13}. Further-
more, €1 = e3 = e3 = {4,16}, e4 = {6,13} and e5 = {8, 13}.

2. Suppose w.l.o.g. that  and 2z’ are connected by a path in €' which does not contain
y or y'. Denote this path by P;. Denote the path between y and ¢y’ not containing x or
2’ by P,. See also Figure 2. The part of the path decomposition containing vertices of
Py must be connected, according to Lemma 2.3, hence each V;, 7 < i < j/, contains a
vertex of P;. Analogously, each V; contains a vertex of P,. Since Py and P; are vertex
disjoint, |V; N V(C)| > 2 for each 7, j < i < j'. Suppose Py contains at least one edge.
Let e be an edge of P;. Let Vj, j <[ < j’ such that e C V;. This V; also contains a
vertex of Py, hence there is an ¢ such that e C V; and |V;NV(C')| > 3 for each edge e on
Py and P,. Now consider edge {z,y} C V. If there is another vertex of C'in V;, then
the lemma holds for {z,y}. If V; NV (C) = {z,y}, then there must be an 4, j <17 < j/,
such that {z,y} C V; and V; contains a neighbor of z or y. Hence |V; N V(C)| = 3.
Similar for edge {2/, y'}. O

Figure 2: The occurrence of chordless cycle C' as in part 2 of the proof of Lemma 3.2.

Let G be a biconnected partial two-path. The lemma implies that the occurrences
of two chordless cycles of G which do not have a vertex in common can not overlap in
any path decomposition of width two of G. If two chordless cycles have one edge in
common, then the occurrences of these two cycles can only overlap in their common
edge, as we show in the next lemma.



3 The Structure of Partial Two-Paths

In this section, we first give a characterization of biconnected partial two-paths. After
that, we give a characterization of trees of pathwidth two, and finally of partial two-
paths in general.

3.1 Biconnected Partial Two-Paths

Given a graph GG = (V, I), the graph G which is obtained from G by adding all edges
{v,w} ¢ F such that there are three disjoint paths from v to w in G is called the cell
completion of GG. (Two paths from v to w are disjoint if they only have vertices v and w
in common.) The following lemma has been proved in [BK93] in the setting of partial
two-trees.

Lemma 3.1. Let G be a partial two-path. The cell-completion G of G is a subgraph
of any intervalization of G of pathwidth at most two.

In terms of path decomposition, the lemma says that each path decomposition of
width two of a partial two-path ( is a path decomposition of the cell-completion G.
The cell completion of a partial two-path can be found in linear time [BK93]. In the
cell completion of a graph, each two distinct chordless cycles have at most one edge
in common. In [BK93], it has been shown, that the cell completion of a biconnected
partial two-tree is a tree of chordless cycles. We will show that the cell completion of
a biconnected partial two-path is a path of chordless cycles. Before we prove this, we
first give a definition and prove a number of lemmas.

Definition 3.1. (Path of Chordless Cycles). A path of chordless cycles is a pair
(C,S), where C is a sequence (Ch,...,C)) of chordless cycles, p > 1, and S is a sequence
(€1,...,ep—1) of edges, such that for each i, 1 < i < p, V(C;)NV(Cip1) = e, E(C;)N
E(Cit1) =A{ei} and for each i, 1 <i< pel, if e; = ejqq, then |V(Ciyq1)| = 3.

In Figure 1, an example of a path of chordless cycles is given with six chordless
cycles.

Lemma 3.2. Let GG be a biconnected partial two-path, C a cycle of G, and PD =
(Vi,.., Vi) @ path decomposition of G of width two. Suppose C occurs in (V;,..., V),
and {x,y} is an edge of C' occurring in V;, {2',y'} an edge occurring in V. The
following holds.

1AfV(O)] > 3, then {x, y} # {2, y'}.
2. Foreach i, j <i<j, |V;nV(C)| > 2 and for each edge e € E(C') there is an i,
J <1<y, such that e CV; and |V, NV (C)| = 3.

Proof. 1. Suppose x = 2, y = y'. Because |V(C)| > 3, there is an edge {v,w} in C
with {v,w} N {z,y} = 0. There must be a V;, j < ¢ < j/, with v,w,z,y € V;, hence
Vil > 4.



Lemma 2.4. (Clique Containment) Let G = (V, F) be a graph, PD = (V1,...,V}), a
path decomposition of G, suppose V! CV forms a clique in G. There is ani, 1 <1 < t,
such that V' C V.

Proof. 'We prove this by induction on [V'|. If |V'| = 2, then there is a V; containing V"’
by definition. Suppose |V'| > 2. Let v € V'. There is anode V;, such that V/<{v} C V.
Suppose v occurs in (Vj,..., V). Suppose w.l.o.g. that ¢« < j°. If ¢ > j, then clearly
V' C V. If i < j, then for each w € V', thereis an [, 7 <[ < j', such that w € V.
Hence V' C V;, which gives a contradiction. a

Lemma 2.5. Let G be a connected partial k-path, k > 1, and V' CV such that G[V']
is connected. At most two of the connected components of G[V <V'] have pathwidth k.

Proof.  Suppose there are three components Gy, Gy and G35 of G[V < V'] which
have pathwidth k. Let PD = (Vi,...,V}) be a path decomposition of G of width k.
Suppose G, ¢ = 1,2,3, occurs in (Vj,,..., V), and j; < jo < j3. Then l; < Iy, since
otherwise, each V;, jo < ¢ <[5, contains a vertex of 7, which is not possible because
(/2 has pathwidth k. Analogously, l; < Is. However, G' = G[V(G1)U V(Gs) U V]
is a connected subgraph of ¢ which has no vertices in common with G5. Hence each
Vi, j1 <1 < I3, contains at least one vertex G'. But 71 < j, < Iy < I3, and (5 has
pathwidth k, which gives a contradiction. a

Lemma 2.6. Let G = (V, E) be a connected partial two-path, V! C V. Let PD =
(V1,..., Vi) be a path decomposition of width two of G such that the vertices of V' occur
in (Vi,...,Vy). On each side of (Vj,..., V1), edges of at most two components of G|V &V
occur.

Proof. Suppose there are edges of at least three components of G[V < V'] on the left
side of V;. Let Gy, G2, G'3 be three of these components. Let V;, 1 <[ < j, be the
rightmost node on the left side of V; containing an edge of one of the components G/,
G4 and G, say G1. Vi contains a vertex of Gy and of G5. Hence |Vj| = 4. a



Lemma 2.2. Let G = (V, F) be a graph, ¢ : V — {1,....k} a k-coloring of G. G has
an intervalization if and only if there is a proper path decomposition of G, which has
width k <1 at most.

Proof.  (See also [FHW93].) For the ‘if’ part, suppose PD = (Vi,...,V;) is a proper
path decomposition of G. Note that PD has width k<1. Then the interval completion
of G for PD is a properly k-colored interval graph.

For the ‘only if” part, suppose G' = (V, E’) is an intervalization of G. Let ® : V — 7
be a function for G’ such that for each v,w € V, v # w, {v,w} € £ & ®(v)N®(w) £ 0.
Let (u1,...,up), n = |V]|, be an ordering of V in such a way that for all ¢, with
1 <i<j<n, &(u) starts on the left side of or at the same point as ®(u;). For
each ilet V; = {v € V | ®(v) N ®(u;) # 0}. Then PD = (V4,...,V,) is a proper
path decomposition of G and hence of G. Furthermore, each node contains at most
k vertices, since there are at most k vertices with different colors. Hence PD has
pathwidth £ <1 at most. a

Thus, the following problem is equivalent to ICG.

Instance: A graph G'= (V, F), a k-coloring ¢ : V — {1,....k}
Question: [s there a proper path decomposition of G?

In this paper, we use both problems. Note that the proof of Lemma 2.2 also gives an
easy way to transform a solution for one problem into a solution for the other problem.

For the case that & = 2, the question whether there is a proper path decomposition
of G is equal to the question whether GG is a properly colored partial one-path (see
also [FHWO3]). This is because if ¢ is properly colored, then we can transform each
path decomposition of width one of GG into a proper path decomposition of width one
by simply deleting all nodes which contain no edge, and then adding a node at the
right side of the path decomposition for each isolated vertex containing this vertex
only. Checking whether a graph has pathwidth one can be done in linear time, and
checking whether it is properly colored also.

Theorem 2.1. For k =2, ICG can be solved in linear time.

We now give some lemmas, which are frequently used in the remainder of this
report.
The following two lemmas are well-known.

Lemma 2.3. Let (V1,...,V,) be a path-decomposition of G = (V, E). Suppose i < j < k,
and suppose P is a path from v € V tow € V, v € Vi, w € V. Then V; contains at
least one vertex from P.

Proof. TFollows from the definition of path decompositions by induction on the length
of the path. a

The following Lemma is proved in e.g. [BM93].



width two of G, v (e) occurs in the left or right end node of the occurrence of G'. A
vertex v is a double end vertex of G’ if in each path decomposition of width two of &,
v occurs in both end nodes of the occurrence of G’. Similar for edges. A vertex v is a
middle vertex of G if in each path decomposition of G in which G’ occurs in (Vj,..., Vjr),
either v € V; or v € Vjr or there is an 7, j < ¢ < j/, such that V; N V(G’) = {v}. An
edge e € E'is a middle edge of G' if in each path decomposition PD = (Vi,...,V;) of
width two of G in which G’ occurs in (Vj,...,Vjs), either € C V; or e C Vs or there is
an ¢, j <1< j', such that either V;NV(G')=eor PD' = (V1,..., Vi, Vir, Vig1,..., Vi) is
a path decomposition of G and Vi NV(G') = e.

Let G be a graph, PD = (Vq,...,V;) a path decomposition of GG. Let 1 < j <. We
say that a node V; is on the left side of V; if + < j, and on the right side of V; if 1 > j.
Let G’ be a connected subgraph of (&, suppose G’ occurs in (V},..., Vp). We say that G’
occurs on the left side of V; if I’ < j, and on the right side of V; if { > j. In the same
way, we speak about the left and right sides of a sequence (V,...,Vy), i.e. a node is on
the left side of (V;,..., V}s) if it is on the left side of V;, and a node is on the right side
of (Vj,...,Vjr) if it is on the right side of V).

Let G be a graph, PD = (Vi,...,V;) a path decomposition of G, V' C V and
suppose G[V'] occurs in (V},..., V), 1 < j < j’ <t. The path decomposition of G[V]
induced by PD is denoted by PD[V'] and is obtained from the sequence PD[V'] =
(V;nV'..,V;nV’) by deleting all empty nodes and all nodes V; N'V’, j < i < j', for
which V; N V' =V, nV'.

The reversed path decomposition of PD is denoted as rev(PD) and is defined as
follows.

rev(PD) = (V, Viz1,..., V1)

Let PD" = (Wq,..., Wy) be another path decomposition. The concatenation of PD
and PD' is denoted by PD H PD' and is defined as follows.

PD 4 PD' = Vi, Vi, Wy, ..., W)

Lemma 2.1. Let G = (V, F) be a graph, PD = (V1,...,V}) a path decomposition of
G. Let G' = (V, E') be a supergraph of G with

E'={{v,v"} | Jicict v,0" € Vi }.
The graph G' is an interval graph.

Proof. Let ® : V — {1,...,n} be defined as follows. For each v € V, if v occurs in
nodes (Vj,...,V}), then ®(v) = [j,{]. Then {v,v'} € £’ if and only if ®(v) and ®(v')

overlap. a

The graph G’ is called the interval completion of G for PD.
A path decomposition PD = (Vi,...,V;) of a graph G which is k-colored is called a
proper path decomposition if for each node V; and each pair v,w € V;, if v # w then

c(v) £ c(w).



2 Preliminaries

A graph G is a pair (V, F), where V is the set of vertices, and £ is the set of edges.
An edge is a set of two distinct vertices. The vertices and edges of a graph G are also
denoted by V(G) and E(G), respectively.

Let G be a graph, V' C V(G). The subgraph of G induced by V' is denoted by
G[V'] and is defined as follows. V(G[V']) = V' and E(G[V']) ={e€ E(G)|e CV'}.

A path P in G is a sequence (vq,...,v,) of distinct vertices of GG, such that there
exists an edge between each pair of consecutive vertices. Vertices v; and v, are the end
points of P, vertices v;, 1 < ¢ < s, are the inner vertices of P.

A cycle is a graph €' which consists of a path P containing all vertices of C', and
an edge between the first and the last vertex of the path.

A chordless cycle C' in G is a subgraph of G which is a cycle in which each two
vertices which are not adjacent in ' are also not adjacent in G.

A biconnected graph is a graph which remains connected if an arbitrary vertex is
removed. A biconnected component B of a graph G is an induced subgraph of G’ which
is biconnected and which is not a proper subgraph of another induced subgraph of G for
which this holds. We only consider biconnected graphs and biconnected components
which are non-trivial, i.e. which have at least three vertices.

A tree is a connected graph which contains no cycles. We usually denote trees by
H instead of G.

An interval graph is a graph G = (V, F') for which there is a function ® : V — 7,
where 7 is the set of all intervals on the real line, such that for each pair v,w € V,
P(v)NO(w) # 0 & {v,w} € E. A k-coloring of a graph G = (V, F) is a surjection
¢V = {l,..,k}. A proper k-coloring is a k-coloring ¢ such that for each edge
{v,w} € E, ¢(v) # c(w). An intervalization of a graph G = (V, E') with a k-coloring c,
is a supergraph G’ = (V, E') (E C E’) of G which is an interval graph and is properly
colored by c.

A path decomposition PD of a graph G = (V, F) is a sequence (Vq,...,V;), in which
for all 7, V; C V and V; is non-empty, and the following conditions are satisfied:

1. For each v € V', there is an ¢ such that v € V.
2. For each e € F, there is an ¢ such that e C V.
3. Foreach i < j <[, V;NnV, C V.

The sets V; are called the nodes of the path decomposition. The width of PD is
max; |V;| < 1. A graph G has pathwidth k if there is path decomposition of width &
of GG, but there is no path decomposition of width k& <1 of G. A graph G is called a
partial k-path if it has pathwidth at most k.

Let G be a graph, PD = (Vi,...,V%) a path decomposition of G. Let G’ be a
subgraph of . The occurrence of G' in PD is a subsequence (V;,...,Vys) of PD in
which V; and Vs contain an edge of G/, and no node V;, with ¢ < j or ¢ > j’ contains
an edge of G',i.e. (V;,...,V}s) is the shortest subsequence of PD that contains all nodes
of PD which contain an edge of G’. We say that G occurs in (V;,...,Vyy). The vertices
of G’ occur in (V,..., V) if these are the only nodes in PD containing vertices of G'.
A vertex v (edge €) is an end vertex (end edge) of G if in each path decomposition of



cycles can be triangulated without adding edges between vertices of the same color, for
ICG on three-colored simple cycles, such a simple characterization does not exist, and
even this case seems to require an O(n?) algorithm, based on dynamic programming.
Additionally, TCG with three colors is ‘finite state’, while ICG with three colors is not.

Another closely related problem is COLORED PROPER INTERVAL GRAPH COMPLE-
TION, which asks whether a given colored graph is a subgraph of a properly colored
unit interval graph. In [KS93, KST94], it is shown that this problem is NP-complete,
polynomial for a fixed number of colors, and hard for W[1].

A necessary condition for a three-colored graph G to be ‘intervalizable’ is that the
pathwidth of G is at most two [FHW93]. Our algorithm exploits the precise structure of
graphs of pathwidth two (partial two-paths). For parts of the input graphs, a dynamic
programming approach is used to compute whether these parts can be intervalized, and
some more information. Then, a careful case analysis is necessary to see whether all the
different parts can be put together to an intervalization of the entire input graph. In
Section 3 we analyze the structure of partial two-paths. We do this first for biconnected
partial two-paths, after that for trees of pathwidth two, and finally for general partial
two-paths. In Section 4 we consider the algorithms, again first for biconnected graphs,
then for trees, and finally, we discuss how information for biconnected and tree-parts of
the graph can be pieced together. In Section 5 we discuss our NP-completeness result.



1 Introduction
In this paper, we consider the following problem.

INTERVALIZING COLORED GRAPHS [ICG]

Instance: A graph G'= (V, F), a coloring ¢: V — {1,....k}

Question: Is there a properly colored supergraph G’ = (V, E’) of G which
is an interval graph?

The problem models a problem arising in sequence reconstruction, which appears
in some investigations in molecular biology (such as protein sequencing, nucleotide
sequencing and gene sequencing (see [FHW93]). A sequence X (usually a large piece
of DNA) is fragmented (or k copies of the sequence X are fragmented). For each
fragment, a set of characteristics (its ‘fingerprint’ or ‘signature’) is determined, and
based on respective fingerprints, an ‘overlap’ measure is computed. Using this overlap
information, the fragments are assembled into islands of contiguous fragments (contigs).
Instances of ICG model the situation where k copies of X are fragmented, and some
fragments (clones) are known to overlap. Fragments of the same copy of X will not
overlap. Now each vertex in V represents one fragment; the color of a vertex represents
to which copy of X the fragment belongs. It can be seen that ICG helps here to predict
other overlaps and to work towards reconstruction of the sequence X.

It is known that ICG for an arbitrary number of colors is NP-complete [FHW93].
However, from the application it appears that the cases where the number of colors k
(= the number of copies of X that are fragmented) is some small given constant are of
interest. In this paper, we resolve the complexity of this problem for all constant values
k. We observe that the case k = 2 is easy to resolve in linear time. We show that the
case k = 3 is solvable in O(n?) time. Finally, we show that ICG is NP-complete for
four colors (and hence, for any fixed number of colors > 4.)

In [FHW93], Fellows et al. consider ICG with a bounded number of colors. They
show that, although for fixed k > 3, yes-instances have bounded pathwidth (and hence
bounded treewidth), standard methods for graphs with bounded treewidth will be
insufficient to solve ICG, as the problem is ‘not finite state’. Also, they show ICG to
be hard for the complexity class W/[1], (which was strengthened in [BFH94] to hardness
for all classes W([t], ¢ € N). This result implies that it is unlikely that there exists a ¢,
such that for any fixed number of colors k, ICG is solvable in time O( f(k)n¢). Clearly,
our NP-completeness result implies the fixed parameter intractability results, but is
much stronger.

ICG is closely related to TRIANGULATING COLORED GRraPHS (TCG) where we
look for a properly colored triangulated supergraph G’ of a k-colored input graph ¢
(i.e., G’ does not contain a chordless cycle of length at least four). This problem is
known to be NP-complete [BFW92], solvable in O(n**!) time for fixed & [MWW94],
and solvable in linear time for the cases & = 2 and k£ = 3 [BK93, 1593, KW92, NON94].
Despite the close relationship between ICG and TCG, it appears that ICG poses some
additional difficulties which require more complex and time consuming algorithms. For
instance, while there is an easy characterization which assures that three-colored simple
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