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Abstract. This paper presents a theorem prover for Reiter’s default
logic, one of the most studied nonmonotonic logics. Our theorem prover
is based on a decomposition of default logic into two main elements:
we describe an extension of the resolution principle, that handles the
“monotonic” aspect of the defaults, and we provide a generalization of
Reiter’s and Levy’s algorithms for the computation of hitting sets, that
takes care of the nonmonotonic part of default logic. Lastly, we describe
how these two components can be separately modified in order to obtain
theorem provers for other variants of default logic, notably prioritized
default logic.

1 Introduction

Default reasoning occurs whenever an agent must complete the certain informa-
tion he has about a domain, with some knowledge which is plausible but not
infallible. Pieces of such knowledge, also called pieces of default knowledge or
defaults for short, enable the agent to draw reliable conclusions, which may have
to be retracted in presence of new information.

In many logical approaches to default reasoning, the certain information is
completed with defaults that are coherent with one another, to generate an
extension of the certain information. As there are, usually, several possible com-
binations of defaults that are coherent with one another, several extensions can
be built. This notion of coherence can be the consistency in the sense of classical
logic [23, 10] or of some modal logics [30, 31]. Other notions of coherence have
been shown [16, 9] to underly Reiter’s default logic [24] and its variants.



In order to restrict the number of extensions, it is often necessary to use pri-
orities among the defaults, like the so-called specificity principle, widely used in
taxonomy. Other kinds of priorities, studied in the context of default reasoning,
include ordering relations among the defaults, representing their relative reliabil-
ities [4, 13, 11, 6], or some notions implicitly embedded in fixed-point constructs,
as it is the case in Reiter’s default logic [25, 5, 8].

A growing number of studies deal with algorithmic problems related to the
computation of extensions. Some of these studies are based on TMS like algo-
rithms [14, 13]. Other methods rely on more ad hoc approaches [22, 28, 29, 12,
26]. In this paper, following an approach by Levy [16], we present two methods
that separately handle the notion of coherence between the defaults, and that
of priorities among them.

More precisely, we propose a generalization of the resolution principle to
defaults. That is, we define so-called “extended clauses”, that are some kind of
clausal representations of defaults, and we then define some new resolution rules
for these extended clauses. We can then check the coherence of a set of defaults
using these resolution rules, by trying to generate an empty clause.

We then propose a generalization of Levy’s [17] algorithm for the computation
of sets of defaults that generate extensions. This algorithm works by “eliminat-
ing”, from an initial set of defaults, as many defaults as possible in order to
restore some coherence of this set. The particularity of our algorithm is that it
is not specially designed for default logic. It can handle a wide class of priorities
among pieces of default knowledge.

In the next section, we present Reiter’s original definition of default logic,
and we recall the characterization that is used in our theorem prover. In Sect. 3,
we describe our extended resolution principle, together with the new type of
clauses that we introduce. Sect. 4 presents our elimination algorithm, and Sect. 5
describe some modifications that can be done to these two methods in order to
obtain other variants of default logic.

2 Default logic

A default theory is a pair (W,D), where W is a set of closed formulas of first
order predicate calculus, representing the certain information, and D is a set of
defaults, of the.form f :g

h , where f, g, h are closed formulas of the language of first

order predicate calculus. The default f :g
h is intended to mean: “if f is true, and

if nothing proves that g is false, then conclude h”. We suppose, in the sequel,
that W is consistent. Reiter [24] defines sets of theorems that are consequences
of a default theory:

Definition 1 ([24]). A set of formulas E is an extension of a default theory
(W,D) iff E = Γ (E), where Γ (E) is the smallest set that is deductively closed,
contains W , and such that for all f :g

h ∈ D, if f ∈ Γ (E) and ¬g /∈ E, then
h ∈ Γ (E).



In [19], we give another characterization of the extensions of a default theory,
based on the following definitions:

Definition 2 ([19]). Let (W,D) be a closed default theory. The set of formulas
generated by a subset U of D, denoted by Thdef(W ∪ U), is the smallest set
of formulas that contains W , is deductively closed (in the sense of predicate
calculus), and such that for all f :gh ∈ U , if f ∈ Thdef(W ∪U) then h ∈ Thdef(W ∪
U). We will denote by Th the deduction operator of the predicate calculus.

Definition 3 ([19]). A conflict of a default theory (W,D) is a subset C of D
minimal that contains a default f :g

h such that f ∧ ¬g ∈ Thdef(W ∪ U). In the
sequel, Ξ denotes the set of conflicts of a theory.

Definition 4 ([19]). An elimination function on a default theory (W,D) is a
function φ that associates, to each conflict C ∈ Ξ, a set of pairs (d, V ) ∈ C×2D.
A subset U of D is φ-preferred if it does not contain any conflict of the theory
and verifies: ∀d ∈ D \ U,∃C ∈ Ξ,C ⊆ U ∪ {d} and (d, U) ∈ φ(C)

The intended meaning of (d, V ) ∈ φ(C) is that, in order to resolve the con-
flict C, one can eliminate d, as soon as the elements of V are not themselves
eliminated. See [19] for a more detailled presentation of these notions.

Theorem 1 ([19]). A set of formulas E is an extension of a default theory
(W,D) iff E is generated by an φDL-preferred subset of D, where φDL is the
elimination function defined by: φDL(C) = {( f :gh , V ) ∈ C × 2D | f ∧ ¬g ∈
Thdef(W ∪ V )}.

The next proposition shows that the extended deduction operator Thdef is
strongly related to the notion of conflict. It can be compared to a general result
of classical logic: a formula f is classicaly entailed by a consistent set of formulas
W if and only if W ∪ {f → ⊥} is inconsistent.

Proposition 1 ([20]). Given a default theory (W,D), whose set of conflicts is
empty, then f ∈ Thdef(W ∪U) iff f :⊥

⊥ is in a conflict of the theory W,U ∪{ f :⊥⊥ }.

Let us now outline the major steps taken by our theorem prover. Given a
default theory (W,D) and a formula f , we want to decide whether f is in at
least one extension of the theory:

1. Compute the conflicts of (W,D ∪ { f :⊥⊥ }) (including those of (W,D)).

2. Compute φDL on the conflicts of (W,D).

3. Compute the φDL-preferred subsets of D.

4. f is in the extension generated by an φDL-preferred subset U of D iff there
is a conflict V ∪ { f :⊥⊥ } of (W,D ∪ { f :⊥⊥ }) such that V ⊆ U .
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Fig. 1. Extended resolution rules (c1 and c2 denote two clauses whose resolvent is c)

3 An extended resolution principle

In order to compute the conflicts of a default theory, we extend the classical
resolution principle to defaults.

Definition 5. The clausal form of a default d = ¬CN :CN ′

CN ′′ , where CN , CN ′ and

CN ′′ are conjunctions of clauses, is the set of defaults d = {¬c:c
′

c′′ d | c ∈ CN, c′ ∈
CN ′, c′′ ∈ CN ′′}. We will denote by D the union of the clausal forms of the set
of defaults D, and call extended clauses the elements of D.

Figure 1 presents the “extended resolution rules”, that we will use together
with the classical one.

Rules (1) and (2) are used to prove the prerequisite of a default d from the
clauses of W and the consequents of other defaults obtained from rule (3) (see
below): we make resolutions against the negation of the prerequisite of the default

only. Therefore, when the extended clause “¬2:c′

c′′ d” is produced, the prerequisite
of this default is proved.

Once the prerequisite of d has been proved, its consequent can be used like
any formula of W (rule 3). However, the consistency of its justification is checked
by making resolutions on it (rules 5-6). The production, using these rules, of an
extended clause of the form ¬2:2

> dproves a conflict.
Rule (4) is there to avoid producing again the consequent of d using rule (3)

everytime a resolution is made on its justification.
The production of an empty clause, using these extended resolution rules and

the classical one, shows that the falsity is a consequence, in the sense of Thdef,
of the set of defaults. In this case, the negation of the justification of any default
can also be proved, therefore it also proves a conflict.

Notice how the indexes of the extended defaults have to be taken into account
in rules (2) and (6): we can only make a resolution between the prerequisites
(respectively the justifications) of two extended clauses if they have the same
indexes, that is, if they have been produced from the same default. We will see
the effect of relaxing these conditions in Sect 5.

Theorem 2 ([20]). Let (W,D) be a default theory, such that W is a finite set
of clauses and D is finite and can be put under clausal form. A subset C of
D is a conflict of the theory iff it is minimal such that the empty clause or an
extended clause of the form ¬2:2

> d can be produced from W ∪ C using rules (1)
to (6) and the classical resolution rule.
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Fig. 2. Extended resolutions on Example 1

Example 1. Let W = {p ∨ q,¬r ∨ ¬s} and D = {d, d′}, where d = p∨q:r
s and

d′ = q:t
t . Figure 2 shows the extended resolutions produced to prove that {d} is

a conflict of the theory.

In order to compute all the conflicts of a theory, we use [20] Besnard et al.’s
saturation by set [2], which returns all conflicts of a set of (extended) clauses,
and which is incremental: given two sets of clauses, it is possible to saturate
E ∪ F using the result of the saturation of F . Thus, given a default theory
(W,D), we will first saturate W ∪ D in order to compute the conflicts of the
theory. Given some formula f , this result significantly simplify the saturation of
W ∪ D ∪ { f :⊥⊥ }. Our implementation uses a particular resolution strategy, the
head-literal resolution, which was proved in [3] to be complete and decidable for
the class of so-called groundable clauses.

Lastly, let us briefly describe the computation of φDL: a default d can be
eliminated in a context V iff its prerequisite and the negation of its justification
can be proved from V . This corresponds to the production of extended clauses of

the form ¬(2):c
c′ d and ¬(2):2

> d during the saturation process. Thus, the elimination
function φDL can be computed from the result of the saturation.

4 Prioritized conflict resolution

The computation of the φ-preferred subsets of D, given a default theory (W,D),
is done using an adaptation of Levy’s algorithm for the computation “augmented
HS-trees” [17]. Levy’s has shown how his algorithm can be used for the compu-
tation of Reiter’s default logic. We generalize below this result, by extending his
notion of exception to a wider class of elimination functions. This result will be
used in the next section, when we describe how to adapt our theorem prover to
other variants of default logic.

Definition 6. An elimination function φ on the set of conflicts Ξ of a default
theory (W,D) is 2-monotonic if for all C ∈ Ξ and (d, V ∪ V ′) ∈ D × 2D, if
(d, V ) ∈ φ(C) then (d, V ∪V ′) ∈ φ(C). An exceptions is a pair (d, V ∪ (C \{d}))
where C ∈ Ξ and (d, V ) ∈ φ(C)}. (d, V ) is minimal if for no exception of



the form (d, V ′), V ′ ⊂ V . We denote by Σ the set of minimal exceptions of a
theory. Given a subset E of Σ, we denote E1 = {d | ∃V ⊆ D, (d, V ) ∈ E} and
E2 = ∪V ∈{V ′|∃d∈D,(d,V ′)∈E}V .

Theorem 3. Let (W,D) be a default theory, and φ a 2-monotonic elimination
function on Ξ. A subset U of D is φ-preferred iff there exists E ⊆ Σ such that
U = E1, E1 ∩ E2 = ∅ and ∀C ∈ Ξ,C ∩ E1 6= ∅.
Proof (sketch) 1. Suppose U is φ-preferred, then ∀d ∈ D \ U,∃Cd ∈ Ξ,Cd \ {d} ⊆
U and (d, U) ∈ φ(Cd). Let Vd ⊆ U ∪ (Cd \ {d}) be minimal such that (d, Vd) ∈ Σ, and
let E = {(d, Vd) | d ∈ D \ U}. Clearly U = D \ E1. One can check that E1 ∩ E2 = ∅
and ∀C ∈ Ξ,C ∩ E1 6= ∅. For the converse, let E ⊆ Σ s.t. E1 ∩ E2 = ∅ and ∀C ∈
Ξ,C ∩E1 6= ∅, and let U = D \E1. For all C ∈ Ξ, since E1 ∩C 6= ∅, C 6⊆ U . Moreover
let d ∈ D \ U = E1, and let V ⊆ D and C ∈ Ξ s.t. (d, V ∪ (C \ {d})) ∈ E: since
E1 ∩ E2 = ∅, V ⊆ U and C \ {d} ⊆ U . By definition of Σ, (d, V ) ∈ φ(C), hence
(d, U) ∈ φ(C).

We compute the φ-preferred subsets of D by constructing a binary tree,
whose nodes are labelled by pairs of the form (χ, Υ ), where χ ⊆ 2D and Υ ⊆ D:
χ is a set of conflicts that remain to be solved, and Υ is a set of defaults that
cannot be eliminated any more, because they justify previous eliminations. The
root is labelled by (Ξ, ∅), and we consider an enumeration of Σ. Consider a new
exception (d, V ) in this enumeration. For each leaf of the tree labeled by (χ, Υ ),
if d /∈ Υ , and if ∅ /∈ {C \ V | C ∈ χ, d /∈ C} = χ′, build two edges. The first one,
labelled by d, leads to a new leaf labelled by (χ′, Υ ∪ V ). The second one is not
labelled, and leads to a leaf labelled by (χ, Υ ). Then U is an φ-preferred subsets
of D iff U is the complementary in D of the set of labels of the edges on a path
from the root to a leaf labelled by a pair of the form (∅, Υ ).

This tree can be pruned by a depth-first search. Let U be the φ-preferred
subset of D corresponding to a leaf labelled by (∅, Υ ). Consider a node labelled
by (χ′, Υ ′), such that the set L of labels of the edges from the root to this node,
joined with ∪C∈χ′C, is included in D \U : if this branch leads to a new solution
U ′, it will be the complementary of a set included in L ∪ (∪C∈χ′C). Since φ-
preferred subsets of D are maximal such that they do not contain any conflict
of the theory, we cannot obtain a new solution in the branches below this node.

5 Other variants of default logic

A major interest of this decomposition of the theorem prover into two completely
independent tasks is that it enables us to adapt it to several other variants of
default logic. In this section, we describe three such modifications.

Strong regularity Whereas Reiter’s default logic requires that the justifications
of the defaults used to generate an extension are separately consistent with
the extension, several variants put a stronger condition: they require that the
justifications of all the defaults together are consistent with the extensions [5, 27].
Froidevaux and Mengin [9] formalize it with a definition similar to the following
one:
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Definition 7 ([9]). A set of defaults D is strongly regular w.r.t. a set of for-
mulas W if Thdef(W ∪D) is consistent with {g | f :gh ∈ D}.

We can modify the definitions of conflict and of irregularity accordingly. In
order for our extended resolution procedure to compute these irregularities, we
simply have to replace rule (6) with rule (6’) above,where c is the resolvent of
c1 and c2. So we are now allowed to make resolutions between clauses that have
been produced with the justifications of several defaults. If this leads to some
extended clause ¬2:2

> , then it means that the set of defaults is strongly irregular.

Reasoning by cases It is well-known that Reiter’s default logic does not enable
one to reason by cases using defaults: from the theory defined by W = {a ∨ b}
and D = {a:cc ,

b:d
d } it is not possible to conclude c ∨ d. Several authors have

propose to modify Reiter’s definition of the extension in order to allow such
reasoning by cases. The idea is that one must be able to fire defaults “by sets”,
that is, to conclude the disjunction of the consequences of some defaults once the
disjuction of their prerequisite has been proved. In order to adapt our theorem
prover to reasoning by cases, we simply have to replace rule (2) with rules (2’)
and (2”) abobe, where c is the resolvent of c1 and c2. As an example, it is possible
to deduce the empty clause, using rules (1), (3) to (6), the above rule and the
classical resolution rule, from W ∪D ∪ { c:2

2
, d:2

2
}, where the latter set contains

the extended clausal form of c∨d:2
2

.

Moinard [21] describes how this modification of default logic leads to some
unwanted contrapositions of the defaults. He proposes to remedy to this problem
by strenghtening the consistency condition on the justifications of the defaults,
and the condition that allows one to eliminate a default. It would be interesting
to specify the notion of irregularity as well as the elimination function that
correspond to Moinard’s definitions.

Prioritized default logic Several authors have proposed to add to default logic
the possibility to define an ordering among the defaults, such that d1 ≤ d2 means
that the default d1 is less reliable than the default d2. The idea is that if d1 and d2
are conflicting, then one must use d2 to generate an extension rather that d1. In
[19], we have proposed to associate, to such an ordering, the elimination function
min≤, such that min≤(C) = {(d, V ) ∈ C×2D | ∀d′ ∈ C, d′ 6< d}. The meaning of
this elimination function is that in order to resolve a conflict, one must eliminate
one of its minimal (for ≤) elements. In order to adapt our theorem prover to the



use of such a relation among the defaults, we simply have to apply the elimination
algorithm to the set of conflicts of a theory, considering the elimination function
min≤ ◦φDL: min≤ ◦φDL(C) = {(d, V ) ∈ φDL(C) | ∀d′ ∈ C, d′ 6< d}.

6 Conclusion

We have described here the two main elements of a theorem prover for default
logic. The first one generalizes the resolution principle to the (monotonic) deduc-
tions that can be made using defaults. The main interest of our presentation, by
means of the introduction of special resolution rules, is that it is completely inde-
pendent from any resolution strategy. We have implemented a theorem prover for
default logic that uses theses rules combined to a resolution strategy by Bossu
and Siegel [3], the resolution on head literals. But other resolution strategies
could have been used. It is important to note that the resolution steps obtained
using rules (1) to (6) correspond to resolution steps that would be obtained
using the classical rule only on a clausal form of W ∪ {¬f, g, h | f :gh ∈ D}. Con-
sequently, any resolution strategy that is complete and that terminates on some
particular class of clauses can be generalized to an extended resolution strategy
that terminates and is complete on the corresponding class of extended clauses.

In comparison to many other theorem provers for default logic, we do not
simply use some classical theorem prover to compute proofs for the prerequisites
of the defaults or counter-arguments against their justifications. We provide,
together with the extension of the resolution principle, a kind of “deduction the-
orem” that permits to make the link between the notion of conflicting defaults
and that of monotonic deduction with defaults. Notice also that we do not need
the introduction of any new propositional variable, as it is the case for the theo-
rem provers that use some kind of traduction of the defaults into classical logic.
This results in a greater clarity of the resolution steps, and simpler implementa-
tion. We have also described how simple modifications of some of the extended
resolution rules can lead to other variants of default logic, that strengthen the
consistency condition on the justification of the defaults or allow one to reason
by cases.

Whereas the first part of our theorem prover is specific to default logic, the
second one, that is, the elimination algorithm, is completely independent from
any particular nonmonotonic logic. Levy [17] gives a detailed comparison be-
tween his algorithm and TMS-based algorithms used to compute extensions of
default logic. As the algorithm that we have presented in this paper is not funda-
mentally different from Levy’s one, this comparison still holds for our algorithm.

The main difference between Levy’s algorithm and ours is that we do not
need to check that the leaves of our tree correspond to valid sets of defaults
generating extensions.

We have described in [20] how the notion of prioritized conflict resolution
underlies some other famous nonmonotonic logic, like McDermott and Doyle’s
one [18]. In [19], we have also shown how elimination functions are interesting
from the knowledge representation point of view.



The elements presented above are part of a system for prioritized default
reasoning that we have implemented in Caml Light, a language of the ML family.
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3. Geneviève Bossu and Pierre Siegel. Saturation, nonmonotonic reasoning and the
closed world assumption. Artificial Intelligence, 25:13–63, 1985.

4. Gerhard Brewka. Preferred subtheories: An extended logical framework for default
reasoning. In Proceedings of 11th International Joint Conference on Artificial In-
telligence (IJCAI 89), pages 1043–1048, 1989.

5. Gerhard Brewka. Cumulative default logic: In defense of nonmonotonic inference
rules. Artificial Intelligence, 50:183–205, 1991.
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