Skip to main content

Conceptual clustering of complex objects: A generalization space based approach

  • Conference paper
  • First Online:
Conceptual Structures: Applications, Implementation and Theory (ICCS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 954))

Included in the following conference series:

Abstract

A key issue in learning from observations is to build a classification of given objects or situations. Conceptual clustering methods address this problem of recognizing regularities among a set of objects that have not been pre-classified, so as to organize them into a hierarchy of concepts. Early approaches have been limited to unstructured domains, in which objects are described by fixed sets of attribute-value pairs. Recent approaches in structured domains use a first order logic based representation to represent complex objects. The problem addressed in this paper is to provide a basis for the analysis of complex objects clustering represented using conceptual graphs formalism. We propose a new clustering method that extracts a hierarchical categorization of the provided objects from an explicit space of concepts hierarchies, called Generalization Space. We give a general algorithm and expose several complexity factors. This algorithm has been implemented in a system called coing. We provide some empirical results on its use to cluster a large database of Chinese characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bisson. KBG: Induction de Bases de Connaissances en Logique des Prédicats. PhD thesis, Université Paris XI-Orsay, France, 1993.

    Google Scholar 

  2. I. Bournaud. Conceptual clustering revision. In Annual Meeting of the Classification Society of North America, Denver, June 1995.

    Google Scholar 

  3. I. Bournaud and J.D. Zucker. Découverte de similitudes entre objets structurés par exploration d'un espace de généralisations. In Environnements Interactifs d'Apprentissage avec Ordinateur. Eyrolles, Paris, 1995.

    Google Scholar 

  4. C. Decaestecker. Apprentissage et outils statistiques en classification incrémentale. In Revue d'intelligence artificielle 7-n1, pages 33–71. 1993.

    Google Scholar 

  5. E. Diday, J. Lemaire, J. Pouget, and F. Testu. Elements d'Analyse des données. Dunod, 1982.

    Google Scholar 

  6. T. Dietterich. Unsupervised concept learning and discovery. In Readings in Machine Learning, pages 263–266. Morgan Kaufmann, 1990.

    Google Scholar 

  7. G. Ellis. Efficient retrieval from hierarchies of objects using lattice operations. In n-699 Lecture Notes in AI, editor, Proc. First International Conference on Conceptual Structures, pages 274–293. 1993.

    Google Scholar 

  8. G. Ellis. Managing complex objects. Technical report, University of Quennsland, Australia, 1993.

    Google Scholar 

  9. D. Fisher. Knowledge acquisition via incremental conceptual clustering. In Machine Learning 2, pages 139–172. 1987.

    Google Scholar 

  10. D. Fisher. Iterative optimization and simplification of hierarchical clusterings. Technical report, Vanderbilt University-Nashville, USA, 1995.

    Google Scholar 

  11. D. Fisher and P. Langley. Approaches to conceptual clustering. In Proc. Ninth International Joint Conference on Artificial Intelligence, pages 691–697, 1985.

    Google Scholar 

  12. D. Fisher and M. Pazzani. Computational models of concept learning. In Concept Formation: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann, San-Mateo, California, 1991.

    Google Scholar 

  13. M. Garey and D. Johnson. Computers and intractability: A guide to the theory of NP-completeness. CA: W. H. Freeman, 1979.

    Google Scholar 

  14. J.H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation. In Artificial Intelligence 40, pages 11–61. 1989.

    Google Scholar 

  15. O. Gey. Saturation et généralisation de graphes conceptuels. In Actes des Neuvièmes Journées Francaise de l'Apprentissage, pages C1–C14, Strasbourg, France, 1994.

    Google Scholar 

  16. M. Gluck and J. Corter. Information incertainty and the utility of categories. In Proc. Seventh Annual Conference of the Cognitive Science Society, pages 283–287, 1985.

    Google Scholar 

  17. S.J. Hanson and M. Bauer. Conceptual clustering, categorization, and polymorphy. In Machine Learning 3, pages 343–372. 1989.

    Google Scholar 

  18. F. Hayes-Roth and J. McDermott. An interference matching technique for inducing abstractions. In Communications of ACM-21(5), pages 401–410, 1978.

    Google Scholar 

  19. P. Langley. Editorial — machine learning and concept formation. In Machine Learning 2, pages 99–102. 1987.

    Google Scholar 

  20. M. Lebowitz. Experiments with incremental concept formation: Unimem. In Machine Learning 2, pages 103–138. 1987.

    Google Scholar 

  21. H. Levesque and R. Brachman. A fundamental tradeoff in knowledge representation and reasoning (final version). In Readings in Artificial Intelligence, pages 41–71. Morgan Kaufmann, 1985.

    Google Scholar 

  22. R. Levinson. A self organizing retrieval system for graph. In Proc. AAAI'84,vol 1, Austin, Texas, 1984.

    Google Scholar 

  23. R.S. Michalski and R.E. Stepp. An application of ai techniques to structuring objects into an optimal conceptual hierarchy. In Proc. Seventh International Joint Conference on Artificial Intelligence, pages 460–465, 1981.

    Google Scholar 

  24. R.S. Michalski and R.E. Stepp. Learning from observation: Conceptual clustering. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning, An Artificial Intelligence Approach, Volume I, pages 331–363. Springer-Verlag, 1983.

    Google Scholar 

  25. G. Mineau. Structuration des Bases de Connaissances par Généralisation. PhD thesis, Université Montréal, Canada, 1990.

    Google Scholar 

  26. G. Mineau, J. Gecsei, and R. Godin. Structuring knowledge bases using automatic learning. In Proc. Sixth International Conference on Data Engineering, pages 274–280, Los Angeles, USA, 1990.

    Google Scholar 

  27. F. Neri and L. Saitta. Knowledge representation in machine learning. In Proc. ECML-94, pages 20–27, Catania, Italy, April 1994.

    Google Scholar 

  28. J. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley, Massachusetts, 1984.

    Google Scholar 

  29. R.E. Stepp and R.S. Michalski. Conceptual clustering: Inventing goal-oriented classifications of structured objects. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning, An Artificial Intelligence Approach, Volume II, pages 471–498. Morgan Kaufmann, San-Mateo, California, 1986.

    Google Scholar 

  30. K. Thompson and P. Langley. Concept formation in structured domains. In Concept Formation: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann, San-Mateo, California, 1991.

    Google Scholar 

  31. J. Wolff. Data compression, generalization, and overgeneralization in an evolving theory of language development. In Proc. AISB-80 Conference on Artificial Intelligence, pages 1–10, 1980.

    Google Scholar 

  32. J.D. Zucker and J.G. Ganascia. Selective reformulation of examples in concept learning. In Proc. International Conference on Machine Learning, pages 352–360, New-Brunswick, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerard Ellis Robert Levinson William Rich John F. Sowa

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournaud, I., Ganascia, JG. (1995). Conceptual clustering of complex objects: A generalization space based approach. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds) Conceptual Structures: Applications, Implementation and Theory. ICCS 1995. Lecture Notes in Computer Science, vol 954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60161-9_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-60161-9_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60161-6

  • Online ISBN: 978-3-540-49539-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics