
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Proposed Categorical Semantics for ML Modules

Citation for published version:
Fourman, MP & Thielecke, H 1995, A Proposed Categorical Semantics for ML Modules. in Category Theory
and Computer Science, 6th International Conference, CTCS '95, Cambridge, UK, August 7-11, 1995,
Proceedings. Springer-Verlag, pp. 240-252. https://doi.org/10.1007/3-540-60164-3_30

Digital Object Identifier (DOI):
10.1007/3-540-60164-3_30

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Category Theory and Computer Science, 6th International Conference, CTCS '95, Cambridge, UK, August 7-11,
1995, Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/3-540-60164-3_30
https://doi.org/10.1007/3-540-60164-3_30
https://www.research.ed.ac.uk/en/publications/e53a370c-6070-4b3f-b7a6-163cc5cc16b7


A proposed categorical semantics
for ML modules

Michael Fourman
and

Hayo Thielecke

Laboratory for Foundations of Computer Science
Department of Computer Science

University of Edinburgh

e-mail: mikef@dcs.ed.ac.uk and ht@dcs.ed.ac.uk

June 2, 1995

Abstract

We present a simple categorical semantics for ML signatures, structures and
functors. Our approach relies on realizablity semantics in the category of assem-
blies. Signatures and structures are modelled as objects in slices of the category of
assemblies. Instantiation of signatures to structures and hence functor application
is modelled by pullback.

1 Introduction

Building on work on the semantics of programming languages in realizability mod-
els, in particular that of Wesley Phoa [Pho90] and John Longley [Lon95], we sketch
a simple approach to elements of the ML modules system, such as signatures, struc-
tures and functors. Once the basic machinery is set up, we will need only quite basic
category theory.

This paper is an updated and completely revised version of an earlier paper by Mi-
chael Fourman and Wesley Phoa [PF92]. The construction of “generic” (in a sense to
be defined below) elements and types presented here is essentially the same as in that
paper. However, our presentation is much more elementary. Instead of relying on the
internal language of the effective topos, we give explicit descriptions in the realizabil-
ity model. As in [Lon95], it is hoped that this will make our account comprehensible to
Computer Scientists in general.

Apart from these stylistic changes, the main difference from the earlier paper is that
we do not claim a characterization of the of the “generic predomain” construction in



terms of a universal property in a fairly large class of toposes—as a “classifying topos
for predomains”; no hint at a proof of this is given in [PF92], and indeed, as stated
there, this claim appears to be simply false. The point is that the “standard” construc-
tion of a generic predomain as an object in a polynomial category, sketched in [PF92],
classifies presentations of predomains, and a given predomain has many presentations.
It seems that a rigorous statement of the appropriate universal property would require
careful attention to the internal category of predomains, which is technically delicate
[Hyl88], and would make our account of ML modules yet more inaccessible.

Here we present a more simple-minded approach, inspired by the idea of poly-
nomial categories, but worked out at a concrete level. Perhaps this is mathematically
much less compelling than the claims in [PF92], but it is simpler, more accessible, and,
we hope, correct.

A much weaker property of the generic predomain appears to be quite sufficient as
a basis for all we wish to say about ML modules, and, we can often replace an account
in terms of the slice categories used to model modules by talking, instead, about the
objects in the base category used to construct these slices. So this paper is primarily an
attempt to rescue the ideas on ML presented in [PF92], while basing them on a much
humbler, but less dubious, mathematical framework.

We need to warn the reader, however, that this is still only a sketch of work in pro-
gress.

2 Semantics in the category of assemblies

We will model our ML-like language in the category of assemblies (over a partial com-
binatory algebra). Readers not familiar with realizability semantics may think of this
as a mathematical setting that combines elements of domain theory and the PER model
of polymorphism.

2.1 Assemblies

Let A be the set of natural numbers and n�m � A , let n �m denote the number that the
n-th Turing machine prints on its tape when let loose on the number m or undefined
when this does not terminate. In this context we do not think of A as a set of numbers;
instead it is the partial applicative structure that we want to emphasize. Moreover, with
some care most of what follows should generalize to other partial applicative algeb-
ras. The particular choice of A here is due only to ease of presentation, as it allows us
to avoid technicalities about realizers, appealing instead to the reader’s intuition that a
certain operation can “obviously” be performed by a Turing Machine. (The category
of assemblies for the particular choice of the natural numbers with Kleene application
as the partial combinatory algebra is sometimes called �-sets. For an introduction, see
[Pho92]) Let h�� �i be a recursive encoding of pairs on A . We define operations � and
� on its power set PA as follows: for B,C � A , let

B �C � fhr� si � A j r � B� s � Cg

B � C � fr � A j s � B implies r � s � Cg



2.1 Definition The category A of assemblies is defined as follows: an assembly A �
�jAj� k� � Ak� consists of a set jAj and a function

k� � Ak � jAj � PA

such that for all a � jAj, ka � Ak �� �.
An assembly A is called modest iff a �� b � jAj implies ka � Ak 	 kb � Ak � �.

A morphism A
f� B of assemblies is a function jAj

f� jBj such that the set
of its realizers �

a�jAj

�ka � Ak � kf�a� � Bk�

is non-empty.

When defining morphism in the sequel, we will be somewhat sloppy and define only
the underlying set-theoretic function, leaving it to the reader to convince himself that
this is indeed realizable.

2.2 Slices of the category of assemblies

We will need to work with families of assemblies indexed over an assembly, i. e. in slice
categories A�I.

For a morphism I
f� J , we will denoted the corresponding pullback functor

A�I �
f�

A�J

Note that as the category of assemblies is locally cartesian closed, f� has left and right
adjoints

P
f a f� a

Q
f . In particular, for any I we have the pullback I� along

I � �. We will frequently not distinguish notationally between an object A in A
and its pullback I�A along I � �.

2.3 Predomains

Recall that the category of assemblies contains objects �, � and �, which in “domain-
theoretic” terms one could think of as ascending chains of length 2, � and � � �, re-
spectively.

Let � be the assembly �f
��g � k� � �k� where

k
 � �k � fa � A j a � � � g

k� � �k � fa � A j a � � g

.
Let the lift A� of an assembly A be

P
�

Q
�	A. The lift functor has an initial al-

gebra � and a terminal algebra �, and there is a canonical injection �
�� �. For any

assembly I, we can extend these concepts to the slice A�I: the analogue of � in A�I
is its pullback along I � �, etc. (But note that one could define all the above objects
in the internal language of the ambient topos. The fact that pullback functors preserve
such definitions validates the above.)



2.2 Definition An object A � A�I is called a �-space iff

A
�� ��

A

a � �f � f�a��

is monic.

Roughly speaking, we will consider an object A to be domain-like in this setting if it
has limits of increasing chains in the sense that every map from the “generic increasing
chain” (i. e. �) to A extends uniquely to a map from the “generic increasing chain with
a limit point added” (i. e. �) to A.

� � A

..
...

..�

�

�
�

�

2.3 Definition An object A in A�I is complete iff

A� A�� A�

is an isomorphism.

This basic idea is elaborated (for somewhat technical reasons) to the following defini-
tion, due to John Longley and Alex Simpson [Lon95].

2.4 Definition An object A in A�I is well-complete iff

A�
� A�

�

� A�
�

is an isomorphism.

Let WellComplA be the set of realizers for the inverse of A�
�. We may regard this

as the “realizability truth-value” of the proposition “A is well-complete”. In particu-
lar, this is the empty set iff A is not well-complete; otherwise its elements constitute
computational evidence of well-completeness.

We will adopt well-complete �-spaces as our notion of “predomain”, combining
Phoa’s notion of �-space (which we need for “smallness”, see below) with well-completeness
(which is a particularly well-behaved notion of “domain-like” object).

3 Generic elements and generic predomains

We describe how to add generic elements and types to our categories. The former is
standard, the latter appears to be basically folklore but is hard to find worked out in the
literature in any level of detail.



3.1 Generic elements

In order to account for value declarations in ML signatures, which we shall view as
being generic in the sense of being free to be instantiated to any value of the appropriate
type, we need a way of adding an element of a given type.

The following well-known technique of adding an indeterminate element allows us
to do that (this is topos-theoretic folklore, but does not require the full structure of a
topos so that we can use it in our more modest setting).

3.1 Fact For each object A � A, there exists a “generic element” �
x� A�A of A

(in the slice over A), such that for every I in A and every element � � I�A of A

in the slice over I, � � I�A is a pullback of �
x� A�A along a (unique) map

I � A.
The generic element �

x� A�A in A�A is just

A
h�A� �Ai� A� A

����AR ���
�
��

A

In the next section we shall address the much less trivial issue how and to what
extent we can add not only an element of a given type, but a new type itself.

3.2 Construction of a generic predomain

Just as the generic element for an object A was obtained by taking the category of ob-
jects “varying” over A (i. e. the sliceA�A, we will now construct another slice category
varying over all types. The reader will suspect that an object of all objects looks dubi-
ous, and indeed we can only obtain a category varying over a restricted class of objects.
Two facts are crucial for this size restriction.

Modest assemblies form an essentially small collection. Let S be a sub-partition of
A , i. e. a set of non-empty and pairwise disjoint subsets of A . Define the assembly 
S to
be �S� �S�. For an assembly A, define �A to be the set fka � Ak j a � jAjg. We have
�
S � S and, for modest A, 
�A �� A.

Hence a modest assembly may (up to isomorphism) be recovered from the subpar-
tition of the set of realizers to which it gives rise. Hence we can form a small collection
of objects that contains (isomorphic copies) of all modest assemblies.

The second crucial fact is due to Phoa [Pho90]:

3.2 Fact ([Pho90]) Every �-space is modest.

3.3 Proposition There exists a family

�
G


C�

�
in A that is generic in the sense that pre-

domains (in any slice) are precisely the pullbacks of it. More precisely,



1.

�
G


C�

�
is a well-complete �-space in A�C� and

2. for any well-complete �-space

�
A

�
I

�
in a slice A�I there exists a morphism

I
p�q� C� such that

�
A

�
I

�
is a pullback of

�
G


C�

�
along p�q.

A � G

I

�

�
p�q� C�

�

PROOF (Sketch) We define the generic predomain

�
G


C�

�
as follows

jC�j �
n
fka � Ak j a � jAjg

��� A is a well-complete �-space
o

kS � C�k � WellCompl�S� �S�

and

jGj � f�S� s�jS � jC�j� s � Sg

k�S� s� � Gk � kS � C�k � s

The map G � C� is defined by �S� s� � S.

Now a family

�
A

�
I

�
may be regarded as the indexed collection of the fibres of the

map �, i. e. for each i � jIj, we can define an assembly Ai by

jAij � fa � jAj j ��a� � ig

ka � Aik � ka � Ak

And it can be shown that

�
A

�
I

�
is a �-space iff all the Ai are and that it is well-

complete iff the Ai are (uniformly) well-complete, i. e. if there is a realizer in�
i�jIj

�ki � Ik �WellComplAi� �

It follows from this characterization that



1.

�
G


C�

�
is a well-complete �-space.

2. Given

�
A

�
I

�
, we can define maps

I � C�

i � WellComplAi

A
p�q� G

a � �fkb � Ak j ��b� � ��a�g � ka � Ak�

making the diagram above a pullback.

�

3.4 Remark The morphism I
p�q� C� is unfortunately not unique; intuitively, it has

a certain freedom which (isomorphic) representative of a fibre Ai to pick. So

�
G


C�

�
is

generic only in a weak sense and does not quite amount to a “predomain classifier”.

3.5 Remark A similar construction could be used to introduce a generic complete �-
space. This is the construction given in [PF92]. The lack of uniqueness of the map
p�q making the diagram a pullback could be used to construct a counterexample to the

universal property which the corresponding

�
G


C�

�
was claimed to enjoy.

3.6 Remark Alternatively, one could use the internal language of the ambient realiz-
ability topos to define the generic predomain. That would arguably have been more
elegant, but perhaps less accessible.

4 The semantics of the module system

We are now in a position to explain how the generic elements and types of the preced-
ing sections can be used to account for ML modules. (As we shall be quite informal
anyway, we refer the reader to Paulson [Pau91] for details of these.)

In our account, signatures will be reified as objects (in suitably constructed slices).
Matching, refining and functor application can then be modelled by generalized sub-
stitution, i. e. pullback functors. We hope that this depiction of signatures as concrete
objects helps to formalize programmers’ intuitions about them.

We hope that the systematic use of slice categories will facilitate the housekeeping
of type and value environments and that the fact that pullback functors preserve all the
relevant structure will give an easy way to ensure that denotations that ought to be “the
same” are indeed isomorphic. This claim would need a more precise account of the de-
notational semantics of modules in order to be validated to any extent. We shall content
ourselves with giving hints at such a definition.



4.1 Signatures

We begin by showing how signatures live in slice categories. For a signature SIGA,
we need to distinguish between the object JSIGAK, which we may regard as being just
SIGA itself, and its generic instance , LSIGAM, which is an object inA�JSIGAK. Something
defined in terms of the type and value environment represented by SIGA will be mod-
elled as an object in the slice over JSIGAK.

Consider the signature
sig type t end

We will model it as the generic predomain

LtM �

�
G


C�

�

in A�C�. Next, consider

sig type t� val f � t� 	 t end

Note that LtM lives in A�C�. As every slice is cartesian closed, there is an exponential

LtMLtM

in A�C�. Hence we have a generic element of LtMLtM in A�C��LtM
LtM; and this is LfM.

So we obtain the category in which the denotation of a signature lives by success-

ively slicing A, which gives of course just another slice of A, as for A
f� B we

have A�B�f �� A�A. But note that in the example above we sliced A�C� by an object
that was not already in A. So although all we get by this process are slices of A, they
may be over relatively more complicated objects than would be the case if we were just
successively adding more indeterminate types to obtain

A�C�� � � ��C�
�� A��C� � � � � � C��

We may even regard this dependence of JfK on JtK as a rudimentary account of
scope , inasmuch as the dependence of f on t is reflected in that we first have to slice to
get a place where t lives. By contrast, the order of slicing could be permuted in cases
such as

sig type s� type t end

or
sig val a � int� val b � int end�

4.2 Structures matching a signature

Now consider a structure matching a signature in the previous example, e.g.

struct type t � A end � sig type t end

where JAK � A for some predomain A. We get a diagram expressing this matching



A � G

�

�
� C�

�

and by pulling back along � � C� we can instantiate the generic t of the signature
to the concrete t � A. By this instantiation the generic element of LtMLtM then becomes
the generic element of AA inA�A, which can be further instantiated to any real element
of AA in A.

In short we can thus match

struct type t � A� fun f�x � t� � x end

to
sig type t� val f � t� 	 t end�

4.3 Signatures matching a signature

If a signature SIGB matches another signature SIGA, this will allow us to construct a
map

JSIGBK � JSIGAK�

This means that whenever we have matched SIGB, then we have (by composi-
tion with JSIGBK � JSIGAK) also matched SIGA. And (in the opposite direction),
whenever we have something implemented in terms of SIGA, i. e. a structure in the
slice over JSIGAK, then we can pull it back along JSIGBK � JSIGAK to obtain a
structure implemented in terms of SIGB.

4.4 Generic structures

Signatures can have substructure components (of a given signature). We can account
for them by considering the signature as the type of the structure and then proceeding
as we did above for constructing a generic element of a given type.

By the same method as we used for generic elements of a given type, we can con-
struct a generic element, or rather generic instance of a signature SIGA in the slice
A�JSIGAK.

This view of treating signatures as the type of the structures that are its instances
appears to fit in quite well with the general ideas underlying the ML language.

4.5 Sharing constraints

Consider



signature SIGC = sig
structure sa: SIGA;
structure sb: SIGB;
sharing type SIGA.ta = SIGB.tb

end

As the denotation of SIGC, we take the equalizer

JSIGCK � � JSIGA� SIGBK
JSIGA�taK�
JSIGB�tbK

� C�

If structures matching SIGA and SIGB are given, this will amount to maps � � JSIGAK
and � � JSIGBK and hence to a map � � JSIGA� SIGBK. And if the components
sa�ta and sb�tb are the same type, the map � � JSIGA� SIGBK will equalize

JSIGA� SIGBK
JSIGA�taK�

JSIGB�tbK
� C�

inducing a map � � JSIGCK.

4.6 Functors

A functor of the form

functor F(S: SIGA) = struct ... end

will be modelled as a structure in A�JSIGAK. Given any a structure S� matching the
signature SIGA, we get

� � �

�

JS�K

� pJS�Kq� JSIGAK
�

LSIGAM

And we can instantiate the actual parameter S� for the formal parameter S in the
body of F by pulling the structure in A�JSIGAK representing the body of F back along
pJS�Kq.

4.7 Summary of the definitions

To summarize, we concentrate on the ML fragment in figure 1 and give a “Pidgin”
semantics (see figure 2). This is not meant to be formal, we only try to give a more
condensed presentation by abusing a familiar and concise formalism (in the style of
Pidgin-Algol). In particular, we wanted to emphasize the dependence of each step on
previous slice constructions.



Figure 1: A BNF fragment for signatures

Decl ��� type Ident j val Ident � Type j structure Ident � Sign

Decls ��� Decl jDecls� Decl

Sign ��� sigDecls end

Figure 2: A Pidgin Semantics for signatures

Jval a � AKC � JAKC

Lval a � AMC � �
h���i� JAK�CJAKC

Jtype tKC � C�

Ltype tMC �

�
G


C�

�

Jstructure s � SIGAKC � Jval s � JSIGAKKC

Lstructure s � SIGAMC � Lval s � JSIGAKMC

JDecls� DeclKC � JDeclKC�JDeclsKC

LDecls� DeclMC � LDeclMC�JDeclsKC

JsigDecls endKC � JDeclsKC

LsigDecls endMC � LDeclsMC



5 Concluding remarks

It remains to be seen to what extent Extended ML [San89] could be accommodated
in this framework. In [PF92] a strong case was made for the internal language of the
effective topos. We sketch how our ideas can be developed to include Extended ML.
When dealing with signatures containing Extended ML axioms, we work (temporarily)
in the ambient topos — but the objects thus constructed will again be assemblies.

Let the formula 
 be (the conjunction of) a set of Extended ML axioms imposed on
a signature SIGA. Let SIGA	 be the signature SIGA augmented with the axioms in 
.
By interpreting 
 in the internal language, we obtain as its denotation a morphism into
the object of truth-values

JSIGAK
J	K� 

This classifies the object of all structures satisfying the axioms 
:

JSIGA	K 	 � JSIGAK

�

�
	

true � 
�

J
K

And its generic instance is the pullback

� 	 � �

JSIGA	K

LSIGA	M

�
	 � JSIGAK

�

LSIGAM

The object LSIGA	M in the slice over JSIGA	K is the generic structure satisfying all the
axioms. Just as structures matching SIGA arise as pullbacks of LSIGAM, those structures
that additionally satisfy the axioms in 
 are pullbacks of LSIGA	M.

So the internal language allows us to continue our programme of reifying signa-
tures, as we have reified not only matching, but also satisfaction of axioms. (Longley
has suggested that a classical logic, which may be interpreted in the internal language,
is more appropriate than the constructive internal logic for program verification. It may
also be more appropriate in this context. But that issue is orthogonal to the concerns of
this paper.)

References

[Hyl88] J.M.E. Hyland. A small complete category. Annals of Pure and Applied Logic,
40:135–165, 1988.



[Lon95] John Longley. Realizability Toposes and Language Semantics. PhD thesis,
University of Edinburgh, 1995.

[Pau91] Lawrence C. Paulson. ML for the Working Programmer. Cambridge Uni-
versity Press, 1991.

[PF92] Wesley Phoa and Michael Fourman. A proposed categorical semantics for
Pure ML. In W. Kuich, editor, Automata, Languages and Programming, pages
533–544. ICALP, Springer-Verlag, LNCS 623, July 1992.

[Pho90] Wesley Phoa. Domain Theory in Realizability Toposes. PhD thesis, University
of Cambridge, 1990.

[Pho92] Wesley Phoa. An introduction to fibrations, topos theory, the effective topos
and modest sets. Technical Report ECS-LFCS-92-208, LFCS, April 1992.

[San89] Don Sannella. Formal program development in Extended ML for the working
programmer. Technical Report ECS-LFCS-89-102, LFCS, December 1989.


