Skip to main content

Strict finitism and feasibility

  • Conference paper
  • First Online:
  • 199 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 960))

Abstract

We examine the relation between predicative recurrence and strictly finitistic tenets in the philosophy of mathematics, primarily by focusing on the rôle of numerical notations in computing. After an overview of Wittgenstein's ideas on the “surveyability” of notations, we analyze a subtle form of circularity in the usual justification of the primitive recursive definition of exponentiation (Isles 1992), and suggest connections with recent works on predicative recurrence (Leivant 1993b, Bellantoni & Cook 1993).

This is an expanded version of my talk for the Logic and Computational Complexity Meeting, and is part of a larger project analyzing the confluence of mathematical results and philosophical arguments in the analysis of feasible computations that will be described in a future joint paper with Daniel Leivant, to whom I am greatly indebted for stimulating my interest in this field and for prompting me to write this preliminary account. It will be apparent from the text that his views, and also those of David Isles, have been quite influential on the present paper (of course they are not at all responsible for any of my mistakes). I am grateful also to Stephen Bellantoni, Paolo Boldi, Gabriele Lolli, Diego Marconi, Piergiorgio Odifreddi and Nicoletta Sabadini for criticisms and suggestions, and to Roberta Mari for playing both as Proponent and Opponent in the design of the games described in the last section. Finally, I would like to thank my friend, Miss Claudia Bonino, for betting long ago that this paper would eventually have been written. The research was supported by CNR Cooperation Project “Linguaggi Applicativi e Dimostrazioni Costruttive” and MURST 40%.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (Extended Abstract). In Masami Hagiya and J.C. Mitchell, editors, Theoretical Aspects of Computer Software, 1994, Lecture Notes in Computer Science 789, pages 1–15. Springer-Verlag, Berlin-Heidelberg-New York, 1994.

    Google Scholar 

  • S.J. Bellantoni. Predicative recursion and computational complexity. Technical Report TR 264/92, Department of Computer Science, University of Toronto, 1992.

    Google Scholar 

  • S.J. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions. Computational Complexity, 1993.

    Google Scholar 

  • P. Bernays. On Platonism in Mathematics. In P. Benacerraf and H. Putnam, editors, Philosophy of Mathematics, pages 274–288. Prentice-Hall, Englewood Cliffs, NJ, 1964. Originally appeared in French in L'Enseignement Mathèmatique, 1935, pp. 52–69.

    Google Scholar 

  • É. Borel. Les nombres inaccessibles. Gauthier-Villars, Paris, 1952.

    Google Scholar 

  • S. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

    Google Scholar 

  • P.-L. Curien. Concrete data structures, sequential algorithms, and linear logic. Message to the mailing list types@theory.lcs.mit.edu, June 3, 1992.

    Google Scholar 

  • M. Davis. Why Gödel didn't have a Church's thesis. Information and Control, 54:3–24, 1982.

    Article  Google Scholar 

  • R. Dedekind. Essays on the Theory of Numbers. Dover, New York, 1963.

    Google Scholar 

  • M. Dummett. Wittgenstein's Philosophy of Mathematics. Philosophical Review, 68, 1959. Reprinted in Truth and Other Enigmas, Duckworth, London, 1978, pp. 166–185.

    Google Scholar 

  • M. Dummett. Wang's paradox. Synthese, 30:301–324, 1975. Reprinted in Truth and Other Enigmas, Duckworth, London, 1978, pp. 248–268.

    Article  Google Scholar 

  • M. Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.

    Google Scholar 

  • J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

    Google Scholar 

  • E. Engeler. An algorithmic model of strict finitism. In B. Dömölki and T. Gergely, editors, Mathematical Logic in Computer Science, Colloquia Mathematica Societas János Bolyai, 26, Amsterdam, 1981. North-Holland. This paper was written in 1971.

    Google Scholar 

  • R.L. Epstein and W.A. Carnielli. Computability: Computable Functions, Logic and the Foundations of Mathematics. Wadsworth & Brooks/Cole, Pacific Grove, Ca, 1989.

    Google Scholar 

  • A.S. Esenin-Vol'pin. Le programme ultra-intuitionniste des fondements des mathèmatiques. In Infinitistic Methods, pages 201–223. Pergamon Press-PWN, Oxford and Warsaw, 1961.

    Google Scholar 

  • A.S. Esenin-Vol'pin. The ultra-intuitionistic criticism and the anti-traditional program for the foundations of mathematics. In A. Kino, J. Myhill, and R. Vesley, editors, Intuitionism and Proof Theory, pages 3–45. North-Holland, Amsterdam, 1970.

    Google Scholar 

  • W. Felscher. Dialogues as a foundation for intuitionistic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 3, pages 341–372. Reidel, Dordrecht, 1986.

    Google Scholar 

  • R.O. Gandy. Church's Thesis and Principles for Mechanisms. In J. Barwise, H.J. Keisler, and K. Kunen, editors, The Kleene Symposium, pages 123–148, Amsterdam, 1980. North-Holland.

    Google Scholar 

  • J.R. Geiser. A formalization of Essenin-Volpin's proof theoretical studies by means of non-standard analysis. Journal of Symbolic Logic, 39(1):81–87, 1974.

    Google Scholar 

  • L. Henkin. On mathematical induction. American Mathematical Monthly, 67:323–338, 1960.

    Google Scholar 

  • G. Huet and J.-J. Lévy. Call by need computations in non-ambiguous linear term rewriting systems. Rapport Laboria 359, IRIA, Aug. 1979.

    Google Scholar 

  • J.M.E. Hyland and C.-H.L. Ong. On full abstraction for PCF. Draft, October 1994.

    Google Scholar 

  • D. Isles. On the notion of standard non-isomorphic natural number series. In F. Richman, editor, Constructive Mathematics, Lecture Notes in Mathematics 873, pages 111–134. Springer-Verlag, Berlin-Heidelberg-New York, 1981.

    Google Scholar 

  • D. Isles. What evidence is there that 265536 is a natural number? Notre Dame Journal of Formal Logic, 33(4):465–480, 1992.

    Google Scholar 

  • D. Isles. A finite analog to the Löwenheim-Skolem theorem. To appear in Studia Logica, 199?.

    Google Scholar 

  • S.C. Kleene. Introduction to Metamathematics. Elsevier, New York, 1952.

    Google Scholar 

  • J.W. Klop. Term rewriting systems. Technical Report CS R9073, Centrum voor Wiskunde en Informatica, Amsterdam, 1990.

    Google Scholar 

  • D.E. Knuth. The Art of Computer Programming, volume 1. Addison Wesley, Reading, Ma, second edition, 1968.

    Google Scholar 

  • G. Kreisel. Wittgenstein's Remarks on the Foundations of Mathematics. British Journal for the Philosophy of Science, 9:135–158, 1958.

    Google Scholar 

  • D. Leivant. A foundational delineation of poly-time. Information and Computation, 1993.

    Google Scholar 

  • D. Leivant. Stratified functional programs and computational complexity. In Conference Records of the Twentieth Annual ACM Symposium on Principles of Programming Languages, New-York, 1993. ACM.

    Google Scholar 

  • P. Lorenzen. Ein dialogisches Konstructivitätskriterium. In Infinitistic Methods, pages 193–200. Pergamon Press-PWN, Oxford and Warsaw, 1961.

    Google Scholar 

  • G. Mannoury. Methodologisches und Philosophisches zur Elementar-Mathematik. Haarlem, 1909.

    Google Scholar 

  • G. Mannoury. Woord en Gedachte. Groningen, 1931.

    Google Scholar 

  • E. Nelson. Predicative Arithmetic. Princeton University Press, Princeton, 1986.

    Google Scholar 

  • R. Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36(3):494–508, 1971.

    Google Scholar 

  • C. Parsons. The impredicativity of induction. In M. Detlefsen, editor, Proof, Logic and Formalization, pages 139–161. Routledge, London and New York, 1992.

    Google Scholar 

  • P.K. Rashevskii. On the dogma of natural numbers. Russian Mathematical Surveys, 28(4):143–148, 1973.

    Google Scholar 

  • B. Rotman. Ad Infinitum. The Ghost in Turing's Machine, Stanford University Press, Stanford, CA, 1993.

    Google Scholar 

  • V.Yu. Sazonov. On feasible numbers. Journal of Symbolic Logic, 57(1):331, 1992. Abstract of an unpublished paper with the same title.

    Google Scholar 

  • J. Simon. On feasible numbers (preliminary version). In Conference Record of the Ninth Annual Symposium on the Theory of Computing, pages 195–207, New York, NY, 1977. Association for Computing Machinery.

    Google Scholar 

  • A. Sochor. The Alternative Set Theory and its approach to Cantor's Set Theory. In H.J. Skala, S. Termini, and E. Trillas, editors, Aspects of Vagueness, Theory and Decision Library, pages 161–203, Dordrecht, 1984. Reidel.

    Google Scholar 

  • W. Stegmüller. Remarks on the completeness of logical systems relative to the validity-concepts of P. Lorenzen and K. Lorenz. Notre Dame Journal of Formal Logic, 5(2):81–112, 1964.

    Google Scholar 

  • A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936–37.

    Google Scholar 

  • J. van Bendegem. Finite, empirical mathematics: outline of a model. Preprint 17, Rijksuniversiteit, Gent, Belgium, 1985.

    Google Scholar 

  • D. van Dantzig. Is \(10^{(10^{10} )}\)a finite number? Dialectica, 19:273–277, 1956. Reprinted in Epstein & Carnielli 1989, pp. 258–261.

    Google Scholar 

  • P. Vopěnka. Mathematics in the Alternative Set Theory. Teubner, Leipzig, 1979.

    Google Scholar 

  • H. Wang. Eighty years of foundational studies. Dialectica, 12:466–497, 1958. All quotations are from the reprint of the paper in Hao Wang, Logic, Computers and Sets, Chelsea Publishing Company, New York, 1970, pp. 34–56.

    Google Scholar 

  • L. Wittgenstein. Bemerkungen über die Grundlagen der Mathematik. Blackwell, Oxford, 1956. Edited by G.H. von Wright, R. Rhees and G.E.M. Anscombe.

    Google Scholar 

  • L. Wittgenstein. Philosophische Grammatik. Blackwell, Oxford, 1969. Edited by R. Rhees.

    Google Scholar 

  • C. Wright. Wittgenstein on the Foundations of Mathematics. Duckworth, London, 1980.

    Google Scholar 

  • C. Wright. Strict finitism. Synthese, 51:203–282, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice Cardone .

Editor information

Daniel Leivant

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardone, F. (1995). Strict finitism and feasibility. In: Leivant, D. (eds) Logic and Computational Complexity. LCC 1994. Lecture Notes in Computer Science, vol 960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60178-3_76

Download citation

  • DOI: https://doi.org/10.1007/3-540-60178-3_76

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60178-4

  • Online ISBN: 978-3-540-44720-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics